Skip to main content

Recent Advances in Clinical Applications of P300 and MMN

  • Protocol
  • First Online:
Psychophysiology Methods

Part of the book series: Neuromethods ((NM,volume 206))

  • 326 Accesses

Abstract

Event-related potentials (ERP), in particular P300 and MMN, have been used for decades in clinical research, but hardly in clinical practice. This chapter provides an overview of recent clinical ERP studies with P300 and MMN as primary components. Due to the (non-)availability of recent studies, this review is restricted to traumatic brain injury, Parkinson’s disease, attention deficit/hyperactivity disorder, borderline personality disorder, schizophrenia, depression, alcohol use disorder, and, in particular, dementia/mild cognitive impairment. The main findings are summarized at the end of each chapter. In the general discussion, possibilities for the clinical application of ERPs as derived from the current research are summarized, and strategies to promote the use of ERPs in clinical practice are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campanella S (2021) Use of cognitive event-related potentials in the management of psychiatric disorders: towards an individual follow-up and multi-component clinical approach. World J Psychiatry 11:153–168

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sutton S, Braren M, Zubin J et al (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188

    Article  CAS  PubMed  Google Scholar 

  3. Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Article  Google Scholar 

  4. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  5. Falkenstein M, Hohnsbein J, Hoormann J (1994) Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol 92:148–160

    Article  CAS  PubMed  Google Scholar 

  6. Gajewski PD, Falkenstein M (2014) Age-related effects on ERP and oscillatory EEG-dynamics in a 2-back task. J Psychophysiol 28:162–177

    Article  Google Scholar 

  7. Falkenstein M, Hohnsbein J, Hoormann J (1994) Time pressure effects on late components of the event-related potential (ERP). J Psychophysiol 8:22–30

    Google Scholar 

  8. Getzmann S, Gajewski PD, Falkenstein M (2013) Does age increase auditory distraction? Electrophysiological correlates of high and low performance in seniors. Neurobiol Aging 34:1952–1962

    Article  PubMed  Google Scholar 

  9. Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152–170

    Article  PubMed  Google Scholar 

  10. Falkenstein M, Hoormann J, Hohnsbein J (2002) Inhibition-related ERP components: variation with age and time-on-task. J Psychophysiol 16:167–175

    Article  Google Scholar 

  11. Anderer P, Pascual-Marqui RD, Semlitsch HV et al (1998) Electrical sources of P300 event-related brain potentials revealed by low resolution electromagnetic tomography. Neuropsychobiology 37:20–27

    Article  CAS  PubMed  Google Scholar 

  12. Bocquillon P, Bourrie JL, Palmero-Soler E et al (2011) Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components. Clin Neurophysiol 122:1991–2002

    PubMed  Google Scholar 

  13. Sabeti M, Katebi SD, Rastgar K et al (2016) A multi-resolution approach to localize neural sources of P300 event-related brain potential. Comput Methods Progr Biomed 133:155–168

    Article  CAS  Google Scholar 

  14. Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112:2224–2232

    Article  CAS  PubMed  Google Scholar 

  15. Huster RJ, Enriquez-Geppert S, Lavallee CF et al (2012) Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int J Psychophysiol 87:217–233

    Article  PubMed  Google Scholar 

  16. Ramautar JR, Kok A, Ridderinkhof KR (2006) Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biol Psychol 72:96–109

    Article  CAS  PubMed  Google Scholar 

  17. Näätänen R, Paavilainen P, Titinen H et al (1993) Attention and mismatch negativity. Psychophysiology 30:436–450

    Article  PubMed  Google Scholar 

  18. Kropotov J, Näätänen R, Sevostianov V et al (1995) Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology 32:418–422

    Article  CAS  PubMed  Google Scholar 

  19. Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123

    Article  PubMed  Google Scholar 

  20. Schröger E (1998) Measurement and interpretation of the mismatch negativity. Behav Res Methods Instr Comput 30:131–145

    Article  Google Scholar 

  21. Schröger E, Giard MH, Wolff C (2000) Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol 111:1450–1460

    Article  PubMed  Google Scholar 

  22. Pazo-Alvarez P, Cadaveira F, Amenedo E (2003) MMN in the visual modality: a review. Biol Psychol 63:199–236

    Article  CAS  PubMed  Google Scholar 

  23. Kimura M, Schröger E, Czigler I (2011) Visual mismatch negativity and its importance in visual cognitive sciences. Neuroreport 22:669–673

    Article  PubMed  Google Scholar 

  24. Giard MH, Perrin F, Pernier J et al (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27(6):627–640

    Article  CAS  PubMed  Google Scholar 

  25. Rinne T, Alho K, Ilmoniemi RJ et al (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage 12:14–19

    Article  CAS  PubMed  Google Scholar 

  26. Susac A, Heslenfeld DJ, Huonker R et al (2014) Magnetic source localization of early visual mismatch response. Brain Topogr 27:648–651

    Article  PubMed  Google Scholar 

  27. Campanella S, Schroder E, Kajosch H et al (2019) Why cognitive event-related potentials (ERPs) should have a role in the management of alcohol disorders. Neurosci Biobehav Rev 106:234–244

    Article  PubMed  Google Scholar 

  28. Goodin DS, Squires KC, Starr A (1978) Long latency event-related components of the auditory evoked potential in dementia. Brain 101:635–648

    Article  CAS  PubMed  Google Scholar 

  29. Brush CJ, Ehmann PJ, Olson RL et al (2018) Do sport-related concussions result in long-term cognitive impairment? A review of event-related potential research. Int J Psychophysiol 132:124–134

    Article  PubMed  Google Scholar 

  30. Li H, Li N, Xing Y et al (2021) P300 as a potential indicator in the evaluation of neurocognitive disorders after traumatic brain injury. Front Neurol 12:690792

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruiter KI, Boshra R, Doughty M et al (2019) Disruption of function: neurophysiological markers of cognitive deficits in retired football players. Clin Neurophysiol 130:111–121

    Article  PubMed  Google Scholar 

  32. Clayton G, Davis N, Holliday A et al (2020) In-clinic event related potentials after sports concussion: a 4-year study. J Pediat Rehab Med 13:81–92

    Google Scholar 

  33. Davis TM, Hill BD, Evans KJ et al (2017) P300 event-related potentials differentiate better performing individuals with traumatic brain injury: a preliminary study of semantic processing. J Head Trauma Rehab 32:E27–E36

    Article  Google Scholar 

  34. Seer C, Lange F, Georgiev D et al (2016) Event-related potentials and cognition in Parkinson’s disease: an integrative review. Neurosci Biobehav Rev 71:691–714

    Article  PubMed  Google Scholar 

  35. Jafari Z, Kolb BE, Mohajerani MH (2020) Auditory dysfunction in Parkinson’s disease. Mov Disord 35:537–550

    Article  PubMed  Google Scholar 

  36. De Groote E, De Keyser K, Santens P et al (2020) Future perspectives on the relevance of auditory markers in prodromal Parkinson’s disease. Front Neurol 11:1–17

    Article  Google Scholar 

  37. Pauletti C, Mannarellia D, Locuratolo N et al (2019) Central fatigue and attentional processing in Parkinson’s disease: an event-related potentials study. Clin Neurophysiol 130:692–700

    Article  PubMed  Google Scholar 

  38. Kaiser A, Aggensteiner PM, Baumeister S et al (2020) Earlier versus later cognitive event-related potentials (ERPs) in attention-deficit/hyperactivity disorder (ADHD): a meta-analysis. Neurosci Biobehav Rev 112:117–134

    Article  PubMed  Google Scholar 

  39. Zhang J, Qiu M, Pan J et al (2020) The preattentive change detection in preschool children with attention deficit hyperactivity disorder: a mismatch negativity study. Neuroreport 31:776–779

    Article  PubMed  Google Scholar 

  40. Breitling-Ziegler C, Tegelbeckers J, Flechtner HH et al (2020) Economical assessment of working memory and response inhibition in ADHD using a combined n-back/Nogo paradigm: an ERP study. Front Hum Neurosci 14:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peisch V, Rutter T, Wilkinson CL et al (2021) Sensory processing and P300 event-related potential correlates of stimulant response in children with attention-deficit/hyperactivity disorder: a critical review. Clin Neurophysiol 132:953–966

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brunner JF (2016) Predicting clinical outcome of stimulant medication in pediatric attention, deficit/hyperactivity disorder (ADHD): single-dose changes in event-related potentials (ERPs). Eur Psychiatry 33:S144

    Google Scholar 

  43. Marquardt L, Eichele H, Lundervold AJ et al (2018) Event-related-potential (ERP) correlates of performance monitoring in adults with attention-deficit hyperactivity disorder (ADHD). Front Psychol 9:485

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meachon EJ, Meyer M, Wilmut K (2021) Evoked potentials differentiate developmental coordination disorder from attention-deficit/hyperactivity disorder in a stop-signal task: a pilot study. Front Hum Neurosci 15:629479

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hsieh MH, Chien YL, Shur-Fen Gau S (2021) Mismatch negativity and P3a in drug-naive adults with attention-deficit hyperactivity disorder. Psychol Med 52(15):1–11

    PubMed  Google Scholar 

  46. Kim S, Baek JH, Kwon JY (2021) Machine-learning-based diagnosis of drug-naive adult patients with attention-deficit hyperactivity disorder using mismatch negativity. Transl Psychiatry 11:484. https://doi.org/10.1038/s41398-021-01604-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flasbeck V, Juckel G, Brüne M (2020) Evidence for altered neural processing in patients with borderline personality disorder: a review of event-related potential studies. J Psychophysiol 35:163–185

    Article  Google Scholar 

  48. Penengo C, Colli C, Bonivento C et al (2022) Auditory event-related electroencephalographic potentials in borderline personality disorder. J Affect Dis 296:454–464

    Article  PubMed  Google Scholar 

  49. Ramos-Loyo J, Juárez-García C, Llamas-Alonso LA et al (2021) Inhibitory control under emotional contexts in women with borderline personality disorder: an electrophysiological study. J Psychiat Res 132:182–190

    Article  PubMed  Google Scholar 

  50. Pfefferbaum A, Wenegrat BG, Ford JM et al (1984) Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroenceph Clin Neurophysiol/Evoked Pot Section 59:104–124

    Article  CAS  Google Scholar 

  51. Hamilton HK, Perez VB, Ford JM et al (2018) Mismatch negativity but not P300 is associated with functional disability in schizophrenia. Schizophr Bull 44:492–504

    Article  PubMed  Google Scholar 

  52. Avissar M, Xie S, Vail B et al (2018) Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophrenia Res 191:25–34

    Article  Google Scholar 

  53. Erickson MA, Albrecht M, Ruffle A et al (2017) No association between symptom severity and MMN impairment in schizophrenia: a meta-analytic approach. Schizophr Res Cogn 9:13–17

    Article  PubMed  PubMed Central  Google Scholar 

  54. Perrottelli A, Giordano GM, Brando F et al (2021) EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. FrontPsychiatry 12:653642

    Google Scholar 

  55. Diner BC, Holcomb PJ, Dykman RA (1985) P300 in major depressive disorder. Psychiatry Res 15:175–184

    Article  CAS  PubMed  Google Scholar 

  56. Bruder GE, Kroppmann CJ, Kayser J et al (2009) Reduced brain responses to novel sounds in depression: P3 findings in a novelty oddball task. Psychiatry Res 170:218–223

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klawohn J, Santopetro NJ, Meyer A et al (2019) Reduced P300 in depression: evidence from a flanker task and impact on ERN, CRN, and Pe. Psychophysiology 57:e13520

    Article  Google Scholar 

  58. Santopetro NJ, Kallen AM, Threadgill H et al (2020) Reduced flanker P300 prospectively predicts increases in depression in female adolescents. Biol Psychol 156:107967

    Article  PubMed  Google Scholar 

  59. Santopetro NJ, Brush CJ, Bruchnak A et al (2021) A reduced P300 prospectively predicts increased depressive severity in adults with clinical depression. Psychophysiology 58:e13767

    Article  PubMed  Google Scholar 

  60. Wada M, Kurose S, Miyazaki T et al (2019) The P300 event-related potential in bipolar disorder: a systematic review and meta-analysis. J Affect Dis 256:234–249

    Article  PubMed  Google Scholar 

  61. Fu L, Xiang D, Subodh D et al (2018) Auditory P300 study in patients with convalescent bipolar depression and bipolar depression. Neuroreport 29:968–973

    Article  PubMed  Google Scholar 

  62. Zhong BL, Xu YM, Xie WX et al (2019) Can P300 aid in the differential diagnosis of unipolar disorder versus bipolar disorder depression? A meta-analysis of comparative studies. J Affect Dis 245:219–227

    Article  PubMed  Google Scholar 

  63. Tseng YJ, Nouchi R, Cheng CH (2021) Mismatch negativity in patients with major depressive disorder: a meta-analysis. Clin Neurophysiol 132:2654–2665

    Article  PubMed  Google Scholar 

  64. Hermens DF, Chitty KM, Kaur M (2018) Mismatch negativity in bipolar disorder: a neurophysiological biomarker of intermediate effect? Schizophr Res 191:132–139

    Article  PubMed  Google Scholar 

  65. Raggi A, Lanza G, Ferri R (2021) Auditory mismatch negativity in bipolar disorder: a focused review. Rev Neurosci 33(1):17–30

    Article  PubMed  Google Scholar 

  66. Kim S, Baek JH, Shim S et al (2020) Mismatch negativity indices and functional outcomes in unipolar and bipolar depression. Sci Rep 10:12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hamidovic A, Wang Y (2019) The P300 in alcohol use disorder: a meta-analysis and meta-regression. Progr Neuro-Psychopharmacol Biol Psychiatry 95:109716

    Article  CAS  Google Scholar 

  68. Begleiter H, Porjesz B, Bihari B et al (1984) Event-related brain potentials in boys at risk for alcoholism. Science 225:1493–1496

    Article  CAS  PubMed  Google Scholar 

  69. Begleiter H, Porjesz B (1999) What is inherited in the predisposition toward alcoholism? A proposed model. Alcoholism Clin Exp Res 23:1125–1135

    Article  CAS  Google Scholar 

  70. Harper J, Malone SM, Iacono WG (2021) Parietal P3 and midfrontal theta prospectively predict the development of adolescent alcohol use. Psychol Med 51:416–425

    Article  PubMed  Google Scholar 

  71. Liu X, Zhou H, Jiang C et al (2020) Cognitive control deficits in alcohol dependence are a trait- and state-dependent biomarker: an ERP study. Front Psych 11:606891

    Article  Google Scholar 

  72. Horvath A, Szucs A, Csukly G et al (2018) EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci 23:183–220

    Article  Google Scholar 

  73. Babiloni C, Blinowska K, Bonanni L et al (2020) What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 85:58–73

    Article  PubMed  Google Scholar 

  74. Babiloni C, Arakaki X, Bonanni L et al (2021) EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiol Aging 103:78–97

    Article  PubMed  Google Scholar 

  75. Fruehwirt W, Dorffner G, Roberts S et al (2019) Associations of event-related brain potentials and Alzheimer’s disease severity: a longitudinal study. Progr Neuro-Psychopharmacol Biol Psychiatry 92:31–38

    Article  Google Scholar 

  76. Gu L, Zhang Z (2017) Exploring potential electrophysiological biomarkers in mild cognitive impairment: a systematic review and meta-analysis of event-related potential studies. J Alzh Dis 58:1283–1292

    Article  Google Scholar 

  77. Bell KL, Lister JJ, Conter R et al (2021) Cognitive event-related potential responses differentiate older adults with and without probable mild cognitive impairment. Exp Aging Res 47:145–164

    Article  PubMed  Google Scholar 

  78. Correa-Jaraba KS, Lindín M, Díaz F (2018) Increased amplitude of the P3a ERP component as a neurocognitive marker for differentiating amnestic subtypes of mild cognitive impairment. Front Aging Neurosci 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao L, Gu L, Shu H et al (2020) The reduced left hippocampal volume related to the delayed P300 latency in amnestic mild cognitive impairment. Psychol Med 20:1–9

    Google Scholar 

  80. Gu L, Chen J, Gao L et al (2017) The effect of apolipoprotein E ε4 (APOE ε4) on visuospatial working memory in healthy elderly and amnestic mild cognitive impairment patients: an event-related potentials study. Front Aging Neurosci 9:145

    Article  PubMed  PubMed Central  Google Scholar 

  81. Paitel ER, Samii MR, Nielson KA (2021) A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease. Behav Brain Res 396:112904

    Article  CAS  PubMed  Google Scholar 

  82. Chiang HS, Spence JS, Kraut MA et al (2018) Age effects on event-related potentials in individuals with amnestic mild cognitive impairment during semantic categorization Go/NoGo tasks. Neurosci Lett 670:19–21

    Article  CAS  PubMed  Google Scholar 

  83. Cid-Fernández S, Lindín M, Díaz F (2017) Neurocognitive and behavioral indexes for identifying the amnestic subtypes of mild cognitive impairment. J Alzheimers Dis 60:633–649

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fraga FJ, Quispe Mamani G, Johns E et al (2018) Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Comput Methods Prog Biomed 164:1–13

    Article  Google Scholar 

  85. Gozeke E, Tomrukcu EN (2016) Visual event-related potentials in patients with mild cognitive impairment. Int J Gerontol 10:190–192

    Article  Google Scholar 

  86. Gu L, Chen J, Gao L et al (2018) Cognitive reserve modulates attention processes in healthy elderly and amnestic mild cognitive impairment: an event-related potential study. Clin Neurophysiol 129:198–207

    Article  PubMed  Google Scholar 

  87. Li BY, Tang H, Chen S (2016) Retrieval deficiency in brain activity of working memory in amnesic mild cognitive impairment patients: a brain event-related potentials study. Front Aging Neurosci 8:54

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li J, Broster LS, Jicha GA et al (2017) A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging. Alzheimers Res Ther 9:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. López-Zunini RA, Knoefel F, Lord C et al (2016) Event-related potentials elicited during working memory are altered in mild cognitive impairment. Int J Psychophysiol 109:1–8

    Article  PubMed  Google Scholar 

  90. Papadaniil CD, Kosmidou VE, Tsolaki A et al (2016) Cognitive MMN and P300 in mild cognitive impairment and Alzheimer’s disease: a high density EEG-3D vector field tomography approach. Brain Res 1648:425–433

    Article  CAS  PubMed  Google Scholar 

  91. Ramos-Goicoa M, Galdo-Álvarez S, Díaz F et al (2016) Effect of Normal aging and of mild cognitive impairment on event-related potentials to a Stroop color-word task. J Alzheimers Dis 52:1487–1501

    Article  PubMed  Google Scholar 

  92. Tsai CL, Pai MC, Ukropec J et al (2016) The role of physical fitness in the neurocognitive performance of task switching in older persons with mild cognitive impairment. J Alzheimers Dis 53:143–159

    Article  PubMed  Google Scholar 

  93. Tsolaki AC, Kosmidou V, Kompatsiaris I et al (2017) Brain source localization of MMN and P300 ERPs in mild cognitive impairment and Alzheimer’s disease: a high-density EEG approach. Neurobiol Aging 55:190–201

    Article  PubMed  Google Scholar 

  94. Waninger S, Berka C, Meghdadi A et al (2018) Event-related potentials during sustained attention and memory tasks: utility as biomarkers for mild cognitive impairment. Alzheimers Dement Diagn Assess Dis Monit 10:452–460

    Google Scholar 

  95. Invitto S, Piraino G, Ciccarese V et al (2018) Potential role of OERP as early marker of mild cognitive impairment. Front Aging Neurosci 10:272

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gao L, Chen J, Gu L et al (2018) Effects of gender and apolipoprotein E on novelty MMN and P3a in healthy elderly and amnestic mild cognitive impairment. Front Aging Neurosci 21:10

    Google Scholar 

  97. Ruzzoli M, Pirulli C, Mazza V et al (2016) The mismatch negativity as an index of cognitive decline for the early detection of Alzheimer’s disease. Sci Rep 6:33167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Laptinskaya D, Thurm F, Küster OC et al (2018) Auditory memory decay as reflected by a new mismatch negativity score is associated with episodic memory in older adults at risk of dementia. Front Aging Neurosci 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ritter W, Simson R, Vaughan HG et al (1979) A brain event related to the making of a sensory discrimination. Science 203:1358–1361

    Article  CAS  PubMed  Google Scholar 

  100. Gajewski PD, Stoerig P, Falkenstein M (2008) ERP-correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134

    Article  CAS  PubMed  Google Scholar 

  101. Falkenstein M, Hohnsbein J, Hoormann J et al (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    Article  CAS  PubMed  Google Scholar 

  102. Gehring WJ, Coles MGH, Meyer DE et al (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  103. Verleger R, Kömpf D, Neukäter W (1992) Event-related EEG potentials in mild dementia of the Alzheimer type. Electroencephalogr Clin Neurophysiol/Evoked Pot Sect 84:332–343

    Article  CAS  Google Scholar 

  104. Thurm F, Antonenko D, Schlee W et al (2013) Effects of aging and mild cognitive impairment on electrophysiological correlates of performance monitoring. J Alzheimers Dis 35:575–587

    Article  PubMed  Google Scholar 

  105. Elverman KH, Paitel ER, Figueroa CM et al (2021) Event-related potentials, inhibition, and risk for Alzheimer’s disease among cognitively intact elders. J Alzheimers Dis 80:1413–1428

    Article  PubMed  Google Scholar 

  106. Chapman RM, Gardner MN, Klorman R et al (2018) Temporospatial components of brain ERPs as biomarkers for Alzheimer’s disease. Alzheimers Dement (Amst) 10:604–614

    Article  PubMed  Google Scholar 

  107. Jervis BW, Bigan C, Jervis MW et al (2019) New-onset Alzheimer’s disease and normal subjects 100% differentiated by P300. Am J Alzheimers Dis Other Dement 34:308–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Falkenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Falkenstein, M. (2024). Recent Advances in Clinical Applications of P300 and MMN. In: Valeriani, M., de Tommaso, M. (eds) Psychophysiology Methods. Neuromethods, vol 206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3545-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3545-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3544-5

  • Online ISBN: 978-1-0716-3545-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics