Skip to main content

Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2733))

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the Coronaviridae family responsible for the coronavirus disease 19 (COVID-19) pandemic. To date, SARS-CoV-2 has been accountable for over 624 million infection cases and more than 6.5 million human deaths. The development and implementation of SARS-CoV-2 reverse genetics approaches have allowed researchers to genetically engineer infectious recombinant (r)SARS-CoV-2 to answer important questions in the biology of SARS-CoV-2 infection. Reverse genetics techniques have also facilitated the generation of rSARS-CoV-2 expressing reporter genes to expedite the identification of compounds with antiviral activity in vivo and in vitro. Likewise, reverse genetics has been used to generate attenuated forms of the virus for their potential implementation as live-attenuated vaccines (LAV) for the prevention of SARS-CoV-2 infection. Here we describe the experimental procedures for the generation of rSARS-CoV-2 using a well-established and robust bacterial artificial chromosome (BAC)-based reverse genetics system. The protocol allows to produce wild-type and mutant rSARS-CoV-2 that can be used to understand the contribution of viral proteins and/or amino acid residues in viral replication and transcription, pathogenesis and transmission, and interaction with cellular host factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen KG et al (2020) The proximal origin of SARS-CoV-2. Nat Med 26(4):450–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu R et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed Central  Google Scholar 

  3. Ksiazek TG et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966

    Article  CAS  PubMed  Google Scholar 

  4. Peiris JS et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325

    Article  CAS  PubMed  Google Scholar 

  5. van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6):e00473

    Google Scholar 

  6. Zaki AM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820

    Article  CAS  PubMed  Google Scholar 

  7. Alfaraj SH et al (2019) Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: a cohort study. Travel Med Infect Dis 29:48–50

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gudbjartsson DF et al (2020) Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med 382(24):2302–2315

    Article  CAS  PubMed  Google Scholar 

  9. Petersen E et al (2020) Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dise 20(9):e238–e244

    Google Scholar 

  10. Sikkema RS et al (2019) Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review – CORRIGENDUM. Epidemiol Infect 147:e198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar M, Madabhavi I (2022) SARS-CoV-2 variants of concern: a review. Monaldi Arch Chest Dis 93(3):2337

    Google Scholar 

  12. Ahmad A, Fawaz MAM, Aisha A (2022) A comparative overview of SARS-CoV-2 and its variants of concern. Infez Med 30(3):328–343

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ashoor D et al (2022) How concerning is a SARS-CoV-2 variant of concern? Computational predictions and the variants labeling system. Front Cell Infect Microbiol 12:868205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bian L et al (2022) Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Hum Vaccin Immunother 18(5):2057161

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mohapatra RK et al (2022) SARS-CoV-2 and its variants of concern including Omicron: a never ending pandemic. Chem Biol Drug Des 99(5):769–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabaan AA et al (2022) A comprehensive review on the current vaccines and their efficacies to combat SARS-CoV-2 variants. Vaccines (Basel) 10(10):1655

    Google Scholar 

  17. Khare S et al (2022) SARS-CoV-2 vaccines: types, working principle, and its impact on thrombosis and gastrointestinal disorders. Appl Biochem Biotechnol 195:1541–1573

    Google Scholar 

  18. Liang HY et al (2022) SARS-CoV-2 variants, current vaccines and therapeutic implications for COVID-19. Vaccines (Basel) 10(9)

    Google Scholar 

  19. Mahmood A et al (2022) Acute adverse effects of vaccines against SARS-COV-2. Cureus 14(7):e27379

    PubMed  PubMed Central  Google Scholar 

  20. Park H et al (2022) Insights into the immune responses of SARS-CoV-2 in relation to COVID-19 vaccines. J Microbiol 60(3):308–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sendi P et al (2022) First-generation oral antivirals against SARS-CoV-2. Clin Microbiol Infect 28(9):1230–1235

    Article  CAS  PubMed Central  Google Scholar 

  22. Moreno S et al (2022) Use of antivirals in SARS-CoV-2 infection critical review of the role of remdesivir. Drug Des Devel Ther 16:827–841

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nappi F, Iervolino A, Avtaar Singh SS (2022) Molecular insights of SARS-CoV-2 antivirals administration: a balance between safety profiles and impact on cardiovascular phenotypes. Biomedicine 10(2):437

    Google Scholar 

  24. Mabrouk MT et al (2022) Advanced materials for SARS-CoV-2 vaccines. Adv Mater 34(12):e2107781

    Article  Google Scholar 

  25. Wu F et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Almazan F et al (2014) Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 189:262–270

    Article  CAS  PubMed  Google Scholar 

  27. Enjuanes L et al (2006) Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 60:211–230

    Article  CAS  PubMed  Google Scholar 

  28. Zhu N et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nogales A et al (2022) Mutation L319Q in the PB1 polymerase subunit improves attenuation of a candidate live-attenuated influenza a virus vaccine. Microbiol Spectr 10(3):e0007822

    Article  PubMed  Google Scholar 

  30. Ye C et al (2020) Rescue of SARS-CoV-2 from a single bacterial artificial chromosome. MBio 11(5):e02168–e02120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marquez-Jurado S et al (2018) An alanine-to-valine substitution in the residue 175 of zika virus NS2A protein affects viral RNA synthesis and attenuates the virus in vivo. Viruses 10(10)

    Google Scholar 

  32. Jangra S, et al (2021) The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralizing activity of human convalescent and post-vaccination sera. medRxiv, 2021

    Google Scholar 

  33. Nogales A et al (2017) The K186E amino acid substitution in the canine influenza virus H3N8 NS1 protein restores its ability to inhibit host gene expression. J Virol 91(22):e00877-17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Perez DR et al (2017) Plasmid-based reverse genetics of influenza a virus. Methods Mol Biol 1602:251–273

    Article  CAS  PubMed  Google Scholar 

  35. Nogales A et al (2016) Development and applications of single-cycle infectious influenza a virus (sciIAV). Virus Res 216:26–40

    Article  CAS  PubMed  Google Scholar 

  36. Kehrer T, et al (2022) Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. bioRxiv, 2022

    Google Scholar 

  37. Veleanu A et al (2022) Molecular analyses of clinical isolates and recombinant SARS-CoV-2 carrying B.1 and B.1.617.2 spike mutations suggest a potential role of non-spike mutations in infection kinetics. Viruses 14(9):2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiem K et al (2022) Monitoring SARS-CoV-2 infection using a double reporter-expressing virus. Microbiol Spectr 10(5):e0237922

    Google Scholar 

  39. Chiem K, Nogales A, Martinez-Sobrido L (2022) Generation, characterization, and applications of influenza a reporter viruses. Methods Mol Biol 2524:249–268

    Article  CAS  PubMed  Google Scholar 

  40. Ye C et al (2023) Immunization with recombinant accessory protein-deficient SARS-CoV-2 protects against lethal challenge and viral transmission. Microbiol Spectr 11(3):e00653-23

    Google Scholar 

  41. Martinez-Sobrido L, de la Torre JC (2016) Reporter-expressing, replicating-competent recombinant arenaviruses. Viruses 8(7):197

    Article  PubMed  PubMed Central  Google Scholar 

  42. Breen M et al (2016) Replication-competent influenza a viruses expressing reporter genes. Viruses 8(7):179

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chiem K et al (2022) Identification of amino acid residues required for inhibition of host gene expression by influenza virus a/Viet Nam/1203/2004 H5N1 PA-X. J Virol 96(5):e0040821

    Article  PubMed  Google Scholar 

  44. Morales Vasquez D et al (2022) Bioluminescent and fluorescent reporter-expressing recombinant SARS-CoV-2. Methods Mol Biol 2524:235–248

    Article  CAS  PubMed  Google Scholar 

  45. Ye C, Martinez-Sobrido L (2022) Generation of bi-reporter-expressing tri-segmented arenavirus. Methods Mol Biol 2524:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiem K et al (2021) Bi-reporter vaccinia virus for tracking viral infections in vitro and in vivo. Microbiol Spectr 9(3):e0160121

    Article  PubMed  Google Scholar 

  47. Morales Vasquez D et al (2021) Live imaging and quantification of viral infection in K18 hACE2 transgenic mice using reporter-expressing recombinant SARS-CoV-2. J Vis Exp 177:e63127

    Google Scholar 

  48. Ye C et al (2021) Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses. Proc Natl Acad Sci U S A 118(41) e2111593118

    Google Scholar 

  49. Chiem K et al (2021) Amino acid residues involved in inhibition of host gene expression by influenza A/Brevig Mission/1/1918 PA-X. Microorganisms 9(5):1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nogales A, DeDiego ML, Martinez-Sobrido L (2022) Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 12:954811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye C, de la Torre JC, Martinez-Sobrido L (2020) Reverse genetics approaches for the development of mammarenavirus live-attenuated vaccines. Curr Opin Virol 44:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martinez-Sobrido L, DeDiego ML, Nogales A (2020) Reverse genetics approaches for the development of new vaccines against influenza A virus infections. Curr Opin Virol 44:26–34

    Google Scholar 

  53. Avila-Perez G et al (2020) In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development. Sci Rep 10(1):512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blanco-Lobo P et al (2019) Novel approaches for the development of live attenuated influenza vaccines. Viruses 11(2):190

    Google Scholar 

  55. Martinez-Sobrido L, de la Torre JC (2017) Development of recombinant arenavirus-based vaccines. Methods Mol Biol 1581:133–149

    Article  CAS  PubMed  Google Scholar 

  56. Nogales A et al (2016) Rearrangement of influenza virus spliced segments for the development of live-attenuated vaccines. J Virol 90(14):6291–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nogales A et al (2017) Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology 500:1–10

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Sobrido L, de la Torre JC (2016) Novel strategies for development of hemorrhagic fever arenavirus live-attenuated vaccines. Expert Rev Vaccines 15(9):1113–1121

    Article  CAS  PubMed  Google Scholar 

  59. Baker SF, Nogales A, Martinez-Sobrido L (2015) Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virol 10(6):715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng BY et al (2015) Arenavirus genome rearrangement for the development of live attenuated vaccines. J Virol 89(14):7373–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng BY et al (2015) Development of live-attenuated arenavirus vaccines based on codon deoptimization. J Virol 89(7):3523–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y et al (2022) A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc Natl Acad Sci U S A 119(33):e2201616119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie X et al (2021) Engineering SARS-CoV-2 using a reverse genetic system. Nat Protoc 16(3):1761–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thi Nhu Thao T et al (2020) Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582(7813):561–565

    Article  CAS  PubMed  Google Scholar 

  65. Ye C et al (2020) Rescue of SARS-CoV-2 from a single bacterial artificial chromosome. MBio 11(5):e02168-20

    Google Scholar 

  66. Chiem K et al (2021) Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes. J Virol 95(7):e02209–e02220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chiem K, Ye C, Martinez-Sobrido L (2020) Generation of recombinant SARS-CoV-2 using a bacterial artificial chromosome. Curr Protoc Microbiol 59(1):e126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Almazán F et al (2006) Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 80(21):10900–10906

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hotard AL et al (2012) A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis. Virology 434(1):129–136

    Article  CAS  PubMed  Google Scholar 

  70. Pu SY et al (2011) Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 85(6):2927–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiem K et al (2021) A bifluorescent-based assay for the identification of neutralizing antibodies against SARS-CoV-2 variants of concern in vitro and in vivo. J Virol 95(22):e0112621

    Article  PubMed  Google Scholar 

  72. Almazan F et al (2015) Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes. Methods Mol Biol 1282:135–152

    Article  CAS  PubMed  Google Scholar 

  73. Almazan F et al (2013) Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio 4(5):e00650-13

    Article  PubMed  PubMed Central  Google Scholar 

  74. Avila-Perez G et al (2019) Rescue of recombinant zika virus from a bacterial artificial chromosome cDNA clone. J Vis Exp 148:59537

    Google Scholar 

Download references

Acknowledgments

Research on SARS-CoV-2 in L.M-S laboratory was partially supported by grants W81XWH2110103 and W81XWH2110095 from the Department of Defense (DoD) Peer Reviewed Medical Research Program (PRMRP); 1R43AI165089-01, 1R01AI161363-01, and 1R01AI161175-01A1 from the National Institutes of Health (NIH); the Center for Research on Influenza Pathogenesis and Transmission (CRIPT), one of the National Institute of Allergy and Infectious Diseases (NIAID)-funded Centers of Excellence for Influenza Research and Response (CEIRR; contract # 75N93021C00014); the Antiviral Countermeasures Development Center (AC/DC) (1U19AI171403-01), the Center for Antiviral Medicines & Pandemic Preparedness (CAMPP) (1U19AI171443-01), and the QCRG Pandemic Response Program (1U19AI171110-01), three of the National Institutes of Health (NIH)-funded Antiviral Drug Discovery Centers for Pathogens of Pandemic Concern; the San Antonio Partnership for Precision Therapeutics; and the San Antonio Medical Foundation. Research in L.M-S was also partially supported by NIH R01AI145332, R01AI142985, and R01AI141607 grants and by DoD W81XWH1910496 PRMRP grant.

Materials Availability

The pBeloBAC11-SARS-CoV-2 BAC clone described in this book chapter for the generation of rSARS-CoV-2 is available at this website: https://www.txbiomed.org/services-2/reverse-genetics-plasmids. Other BAC clones as well as their respective rSARS-CoV-2 are also available at the same website.

Conflict of Interest

C.Y, F.A, and L. M.-S are co-inventors on a patent application directed to BAC-based reverse genetics approaches to generate rSARS-CoV-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjin Ye or Luis Martínez-Sobrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiem, K., Nogales, A., Almazán, F., Ye, C., Martínez-Sobrido, L. (2024). Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2. In: Pérez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics