Skip to main content

Reverse Genetics System for Rift Valley Fever Virus

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2733))

Abstract

Rift Valley fever virus (RVFV) is an important mosquito-borne virus that can cause severe disease manifestations in humans including ocular damage, vision loss, late-onset encephalitis, and hemorrhagic fever. In ruminants, RVFV can cause high mortality rates in young animals and high rates of abortion in pregnant animals resulting in an enormous negative impact on the economy of affected regions. To date, no licensed vaccines in humans or anti-RVFV therapeutics for animal or human use are available. The development of reverse genetics has facilitated the generation of recombinant infectious viruses that serve as powerful tools for investigating the molecular biology and pathogenesis of RVFV. Infectious recombinant RVFV can be rescued entirely from cDNAs containing predetermined mutations in their genomes to investigate virus–host interactions and mechanisms of pathogenesis and generate live-attenuated vaccines. In this chapter, we will describe the experimental procedures for the implementation of RVFV reverse genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fawzy M, Helmy YA (2019) The One Health approach is necessary for the control of Rift Valley fever infections in Egypt: a comprehensive review. Viruses 11(2). https://doi.org/10.3390/v11020139

  2. Abdel-Wahab KS, El Baz LM, El-Tayeb EM, Omar H, Ossman MA, Yasin W (1978) Rift Valley fever virus infections in Egypt: pathological and virological findings in man. Trans R Soc Trop Med Hyg 72(4):392–396. https://doi.org/10.1016/0035-9203(78)90134-7

    Article  CAS  PubMed  Google Scholar 

  3. Adam AA, Karsany MS, Adam I (2010) Manifestations of severe Rift Valley fever in Sudan. Int J Infect Dis 14(2):e179–e180. https://doi.org/10.1016/j.ijid.2009.03.029

    Article  PubMed  Google Scholar 

  4. Al-Hazmi A, Al-Rajhi AA, Abboud EB, Ayoola EA, Al-Hazmi M, Saadi R, Ahmed N (2005) Ocular complications of Rift Valley fever outbreak in Saudi Arabia. Ophthalmology 112(2):313–318

    Article  PubMed  Google Scholar 

  5. Alrajhi AA, Al-Semari A, Al-Watban J (2004) Rift Valley fever encephalitis. Emerg Infect Dis 10(3):554–555

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deutman AF, Klomp HJ (1981) Rift Valley fever retinitis. Am J Ophthalmol 92(1):38–42

    Article  CAS  PubMed  Google Scholar 

  7. Laughlin LW, Girgis NI, Meegan JM, Strausbaugh LJ, Yassin MW, Watten RH (1978) Clinical studies on Rift Valley fever. Part 2: Ophthalmologic and central nervous system complications. J Egypt Public Health Assoc 53(3–4):183–184

    CAS  PubMed  Google Scholar 

  8. Maar SA, Swanepoel R, Gelfand M (1979) Rift Valley fever encephalitis. A description of a case. Cent Afr J Med 25(1):8–11

    CAS  PubMed  Google Scholar 

  9. Schrire L (1951) Macular changes in rift valley fever. S Afr Med J 25(50):926–930

    CAS  PubMed  Google Scholar 

  10. Siam AL, Meegan JM (1980) Ocular disease resulting from infection with Rift Valley fever virus. Trans R Soc Trop Med Hyg 74(4):539–541. https://doi.org/10.1016/0035-9203(80)90074-7

    Article  CAS  PubMed  Google Scholar 

  11. Siam AL, Meegan JM, Gharbawi KF (1980) Rift Valley fever ocular manifestations: observations during the 1977 epidemic in Egypt. Br J Ophthalmol 64(5):366–374. https://doi.org/10.1136/bjo.64.5.366

    Article  CAS  PubMed Central  Google Scholar 

  12. Strausbaugh LJ, Laughlin LW, Meegan JM, Watten RH (1978) Clinical studies on Rift Valley fever. Part I: Acute febrile and hemorrhagic-like diseases. J Egypt Public Health Assoc 53(3–4):181–182

    CAS  PubMed  Google Scholar 

  13. Swanepoel R, Manning B, Watt JA (1979) Fatal Rift Valley fever of man in Rhodesia. Cent Afr J Med 25(1):1–8

    CAS  PubMed  Google Scholar 

  14. Yassin W (1978) Clinico-pathological picture in five human cases died with Rift Valley fever. J Egypt Public Health Assoc 53(3–4):191–193

    CAS  PubMed  Google Scholar 

  15. Balkhy HH, Memish ZA (2003) Rift Valley fever: an uninvited zoonosis in the Arabian Peninsula. Int J Antimicrob Agents 21(2):153–157

    Article  CAS  PubMed  Google Scholar 

  16. Andriamandimby SF, Randrianarivo-Solofoniaina AE, Jeanmaire EM, Ravololomanana L, Razafimanantsoa LT, Rakotojoelinandrasana T, Razainirina J, Hoffmann J, Ravalohery JP, Rafisandratantsoa JT, Rollin PE, Reynes JM (2010) Rift Valley fever during rainy seasons, Madagascar, 2008 and 2009. Emerg Infect Dis 16(6):963–970. https://doi.org/10.3201/eid1606.091266

    Article  CAS  PubMed Central  Google Scholar 

  17. Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, Turkistani AM, Al-Sayed MO, Abodahish AA, Khan AS, Ksiazek TG, Shobokshi O (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37(8):1084–1092

    Article  PubMed  Google Scholar 

  18. Gargan TP 2nd, Clark GG, Dohm DJ, Turell MJ, Bailey CL (1988) Vector potential of selected North American mosquito species for Rift Valley fever virus. Am J Trop Med Hyg 38(2):440–446

    Article  PubMed  Google Scholar 

  19. Rolin AI, Berrang-Ford L, Kulkarni MA (2013) The risk of Rift Valley fever virus introduction and establishment in the United States and European Union. Emerg Microbes Infect 2(12):e81. https://doi.org/10.1038/emi.2013.81

    Article  PubMed  PubMed Central  Google Scholar 

  20. Accardi L, Prehaud C, Di Bonito P, Mochi S, Bouloy M, Giorgi C (2001) Activity of Toscana and Rift Valley fever virus transcription complexes on heterologous templates. J Gen Virol 82(Pt 4):781–785. https://doi.org/10.1099/0022-1317-82-4-781

    Article  CAS  PubMed  Google Scholar 

  21. Blakqori G, Kochs G, Haller O, Weber F (2003) Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84(Pt 5):1207–1214. https://doi.org/10.1099/vir.0.18876-0

    Article  CAS  PubMed  Google Scholar 

  22. Dunn EF, Pritlove DC, Jin H, Elliott RM (1995) Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211(1):133–143. https://doi.org/10.1006/viro.1995.1386

    Article  CAS  Google Scholar 

  23. Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306(2):219–224. https://doi.org/10.1016/s0042-6822(02)00070-3

    Article  CAS  PubMed  Google Scholar 

  24. Bouloy M, Weber F (2010) Molecular biology of rift valley fever virus. Open Virol J 4:8–14. https://doi.org/10.2174/1874357901004020008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun Y, Li J, Gao GF, Tien P, Liu W (2018) Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Crit Rev Microbiol 44(5):522–540. https://doi.org/10.1080/1040841X.2018.1446901

    Article  PubMed  Google Scholar 

  26. Gauliard N, Billecocq A, Flick R, Bouloy M (2006) Rift Valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology 351(1):170–179

    Article  CAS  PubMed  Google Scholar 

  27. Ikegami T, Won S, Peters CJ, Makino S (2007) Characterization of Rift Valley fever virus transcriptional terminations. J Virol 81(16):8421–8438. https://doi.org/10.1128/JVI.02641-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Albarino CG, Bird BH, Nichol ST (2007) A shared transcription termination signal on negative and ambisense RNA genome segments of Rift Valley fever, sandfly fever Sicilian, and Toscana viruses. J Virol 81(10):5246–5256. https://doi.org/10.1128/JVI.02778-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lara E, Billecocq A, Leger P, Bouloy M (2011) Characterization of wild-type and alternate transcription termination signals in the Rift Valley fever virus genome. J Virol 85(23):12134–12145. https://doi.org/10.1128/JVI.05322-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olschewski S, Cusack S, Rosenthal M (2020) The cap-snatching mechanism of bunyaviruses. Trends Microbiol 28(4):293–303. https://doi.org/10.1016/j.tim.2019.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Hopkins K, Cherry S (2013) Bunyaviral cap-snatching vs. decapping: recycling cell cycle mRNAs. Cell Cycle 12(24):3711–3712. https://doi.org/10.4161/cc.26878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spiegel M, Plegge T, Pohlmann S (2016) The role of phlebovirus glycoproteins in viral entry, assembly and release. Viruses 8(7). https://doi.org/10.3390/v8070202

  33. Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M (2008) RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378(2):377–384. https://doi.org/10.1016/j.virol.2008.05.033

    Article  CAS  PubMed  Google Scholar 

  34. Habjan M, Penski N, Spiegel M, Weber F (2008) T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol 89(Pt 9):2157–2166. https://doi.org/10.1099/vir.0.2008/002097-0

    Article  CAS  PubMed  Google Scholar 

  35. Ikegami T, Won S, Peters CJ, Makino S (2006) Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80(6):2933–2940. https://doi.org/10.1128/Jvi.80.6.2933-2940.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caplen H, Peters CJ, Bishop DH (1985) Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J Gen Virol 66(Pt 10):2271–2277. https://doi.org/10.1099/0022-1317-66-10-2271

    Article  PubMed  Google Scholar 

  37. Ikegami T, Hill TE, Smith JK, Zhang L, Juelich TL, Gong B, Slack OA, Ly HJ, Lokugamage N, Freiberg AN (2015) Rift Valley fever virus MP-12 vaccine is fully attenuated by a combination of partial attenuations in the S, M, and L segments. J Virol 89(14):7262–7276. https://doi.org/10.1128/JVI.00135-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259. https://doi.org/10.1128/JVI.73.1.251-259.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terasaki K, Kalveram B, Johnson KN, Juelich T, Smith JK, Zhang L, Freiberg AN, Makino S (2021) Rift Valley fever virus 78kDa envelope protein attenuates virus replication in macrophage-derived cell lines and viral virulence in mice. PLoS Negl Trop Dis 15(9):e0009785. https://doi.org/10.1371/journal.pntd.0009785

    Article  CAS  PubMed Central  Google Scholar 

  40. Ikegami T, Peters CJ, Makino S (2005) Rift Valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79(9):5606–5615. https://doi.org/10.1128/JVI.79.9.5606-5615.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto N (2003) Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol 47(8):613–617. https://doi.org/10.1111/j.1348-0421.2003.tb03424.x

    Article  CAS  PubMed  Google Scholar 

  42. Pathak KB, Nagy PD (2009) Defective interfering RNAs: foes of viruses and friends of virologists. Viruses 1(3):895–919. https://doi.org/10.3390/v1030895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Public Health Service grant AI148763 from the National Institutes of Health and pilot grants from the Institute for Human Infections and Immunity at the University of Texas Medical Branch. BT was supported by the James W. McLaughlin Postdoctoral Fellowship Fund at the University of Texas Medical Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Makino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tercero, B., Makino, S. (2024). Reverse Genetics System for Rift Valley Fever Virus. In: PĂ©rez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics