Skip to main content

The GENTIL Method for Isolation of Human Adult Cardiomyocytes from Cryopreserved Tissue for Proteomic Analyses

  • Protocol
  • First Online:
Familial Cardiomyopathies

Abstract

Heart failure is a serious clinical and economic health care problem, and its clinical progression is linked to pathological cardiac remodeling. Due to the heterogeneity of heart failure, lack of animal models to accurately represent advanced heart failure, and limited access to fresh human cardiac tissue, little is known regarding cell-type-specific mechanisms and context-specific functions of cardiomyocytes during disease development processes. While mass spectrometry has been increasingly applied to unravel changes in the proteome associated with cardiovascular physiology and disease, most studies have used homogenized tissue. Therefore, new studies using isolated cardiomyocytes are necessary to gain a better understanding of the intricate cell-type-specific molecular mechanisms underlying the pathophysiology of heart failure. This chapter describes the GENTIL method, which incorporates recent technological developments in sample handling, for isolation of cardiomyocytes from cryopreserved human cardiac tissues for use in proteomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, De Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, MacKey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics – 2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  2. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Piña IL, Trogdon JG (2013) Forecasting the impact of heart failure in the United States a policy statement from the american heart association. Circ Heart Fail 6:606–619. https://doi.org/10.1161/HHF.0b013e318291329a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Owens AT, Brozena SC, Jessup M (2016) New management strategies in heart failure. Circ Res 118:480–495. https://doi.org/10.1161/CIRCRESAHA.115.306567

    Article  CAS  PubMed  Google Scholar 

  4. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582. https://doi.org/10.1016/S0735-1097(99)00630-0

    Article  CAS  PubMed  Google Scholar 

  5. Creemers EEJM, Cleutjens JPM, Smits JFM, Daemen MJAP (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89:201–210. https://doi.org/10.1161/hh1501.094396

    Article  CAS  PubMed  Google Scholar 

  6. Correll RN, Eder P, Burr AR, Despa S, Davis J, Bers DM, Molkentin JD (2014) Overexpression of the Na + /K + ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ Res 114:249–256. https://doi.org/10.1161/CIRCRESAHA.114.302293

    Article  CAS  PubMed  Google Scholar 

  7. Hilgendorf I, Gerhardt LMS, Tan TC, Winter C, Holderried TAW, Chousterman BG, Iwamoto Y, Liao R, Zirlik A, Scherer-Crosbie M, Hedrick CC, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2014) Ly-6C high monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res 114:1611–1622. https://doi.org/10.1161/CIRCRESAHA.114.303204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR (2014) Angiotensin–Neprilysin inhibition versus Enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  9. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ (2009) Calcium upregulation by percutaneous Administration of Gene Therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15:171–181. https://doi.org/10.1016/j.cardfail.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ (2011) Calcium upregulation by percutaneous Administration of Gene Therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum ca 2+ -ATPase in patients with advanced heart failure. Circulation 124:304–313. https://doi.org/10.1161/CIRCULATIONAHA.111.022889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, Hajjar RJ (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108. https://doi.org/10.1161/CIRCRESAHA.113.302421

    Article  CAS  PubMed  Google Scholar 

  12. Schächinger V, Haberbosch W, Yu J, Hamm CW, Tonn T (2006) Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. N Engl J Med:12

    Google Scholar 

  13. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904. https://doi.org/10.1016/S0140-6736(12)60195-0

    Article  PubMed  Google Scholar 

  14. Dassanayaka S, Jones SP (2015) Recent developments in heart failure. Circ Res 117. https://doi.org/10.1161/CIRCRESAHA.115.305765

  15. Barallobre-Barreiro J, Radovits T, Fava M, Mayr U, Lin W-Y, Ermolaeva E, Martínez-López D, Lindberg EL, Duregotti E, Daróczi L, Hasman M, Schmidt LE, Singh B, Lu R, Baig F, Siedlar AM, Cuello F, Catibog N, Theofilatos K, Shah AM, Crespo-Leiro MG, Doménech N, Hübner N, Merkely B, Mayr M (2021) Extracellular matrix in heart failure: role of ADAMTS5 in proteoglycan remodeling. Circulation 144:2021–2034. https://doi.org/10.1161/CIRCULATIONAHA.121.055732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kline KG, Frewen B, Bristow MR, MacCoss MJ, Wu CC (2008) High quality catalog of Proteotypic peptides from human heart. J Proteome Res 7:5055–5061. https://doi.org/10.1021/pr800239e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Westbrook JA, Wheeler JX, Wait R, Welson SY, Dunn MJ (2006) The human heart proteome: two-dimensional maps using narrow-range immobilised pH gradients. Electrophoresis 27:1547–1555. https://doi.org/10.1002/elps.200500777

    Article  CAS  PubMed  Google Scholar 

  18. Tucholski T, Cai W, Gregorich ZR, Bayne EF, Mitchell SD, McIlwain SJ, de Lange WJ, Wrobbel M, Karp H, Hite Z, Vikhorev PG, Marston SB, Lal S, Li A, dos Remedios C, Kohmoto T, Hermsen J, Ralphe JC, Kamp TJ, Moss RL, Ge Y (2020) Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proc Natl Acad Sci U S A 117:24691–24700. https://doi.org/10.1073/pnas.2006764117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiang F, Shi Z, Guo X, Qiu Z, Chen X, Huang F, Sha J, Chen X (2011) Proteomic analysis of myocardial tissue from the border zone during early stage post-infarct remodelling in rats. Eur J Heart Fail 13:254–263. https://doi.org/10.1093/eurjhf/hfq196

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Chen L, Kim E, Tran D, Phinney BS, Knowlton AA (2014) Mitochondrial proteome remodeling in ischemic heart failure. Life Sci 101:27–36. https://doi.org/10.1016/j.lfs.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishtala K, Phong TQ, Steil L, Sauter M, Salazar MG, Kandolf R, Kroemer HK, Felix SB, Volker U, Klingel K, Hammer E (2011) Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes. Proteomics 12:4310

    Article  Google Scholar 

  22. Lu D, Xia Y, Chen Z, Chen A, Wu Y, Jia J, Sun A, Zou Y, Qian J, Ge J (2019) Cardiac proteome profiling in ischemic and dilated cardiomyopathy mouse models. Front Physiol 10:750. https://doi.org/10.3389/fphys.2019.00750

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kartberg A-J, Hambiliki F, Arvidsson T, Stavreus-Evers A, Svalander P (2008) Vitrification with DMSO protects embryo membrane integrity better than solutions without DMSO. Reprod BioMed 17:378–384. https://doi.org/10.1016/S1472-6483(10)60221-0

    Article  Google Scholar 

  24. Guo G, Chen L, Rao M, Chen K, Song J, Hu S (2018) A modified method for isolation of human cardiomyocytes to model cardiac diseases. J Transl Med 16:288. https://doi.org/10.1186/s12967-018-1649-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voigt N, Zhou X-B, Dobrev D (2013) Isolation of human atrial myocytes for simultaneous measurements of Ca2+ transients and membrane currents. JoVE 50235. https://doi.org/10.3791/50235

  26. Coppini R, Ferrantini C, Aiazzi A, Mazzoni L, Sartiani L, Mugelli A, Poggesi C, Cerbai E (2014) Isolation and functional characterization of human ventricular cardiomyocytes from fresh surgical samples. JoVE 86:e51116. https://doi.org/10.3791/51116

    Article  CAS  Google Scholar 

  27. Wojtkiewicz M, Luecke LB, Castro C, Burkovetskaya M, Mesidor R, Gundry RL (2022) Bottom-up proteomic analysis of human adult cardiac tissue and isolated cardiomyocytes. J Mol Cell Cardiol 162:20–31. https://doi.org/10.1016/j.yjmcc.2021.08.008

    Article  CAS  PubMed  Google Scholar 

  28. Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte Caveolae. J Biol Chem 275:41447–41457. https://doi.org/10.1074/jbc.M006951200

    Article  CAS  PubMed  Google Scholar 

  29. Rutering J, Ilmer M, Recio A, Coleman M, Vykoukal J, Alt E (2015) Improved method for isolation of neonatal rat cardiomyocytes with increased yield of C-kit+ cardiac progenitor cells. J Stem Cell Res Ther 5:1–8. https://doi.org/10.4172/2157-7633.1000305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Xu R, Jiang Y-N, Zhu W-N, Wang Y-H (2015) Simultaneous separation of primary cardiomyocytes and cardiac fibroblasts from neonatal rats with density gradient centrifugation. Sheng Li Xue Bao 67:423–430

    CAS  PubMed  Google Scholar 

  31. Curiox, Laminar Washâ„¢ HT2000 Station 96 User Manual (n.d.)

    Google Scholar 

  32. Leica, Instructions for Use VT1200 /VT1200 S Vibrating-blade microtome (n.d.). https://www.leicabiosystems.com/sites/default/files/media_product-download/2021-03/Leica_VT1200S_IFU_1v7J_en.pdf

  33. Wojtkiewicz M, Berg Luecke L, Kelly MI, Gundry RL (2021) Facile preparation of peptides for mass spectrometry analysis in bottom-up proteomics workflows. Curr Protoc 1. https://doi.org/10.1002/cpz1.85

  34. Luecke LB, Waas M, Littrell J, Wojtkiewicz M, Castro C, Burkovetskaya M, Schuette EN, Buchberger AR, Churko JM, Chalise U, Waknitz M, Konfrst S, Reuben R, Morrissette-McAlmon J, Mahr C, Anderson DR, Boheler KR, Gundry RL (2023) Surfaceome mapping of primary human heart cells with CellSurfer uncovers cardiomyocyte surface protein LSMEM2 and proteome dynamics in failing hearts. Nat Cardiovasc Res 2:76

    Article  PubMed  Google Scholar 

  35. Han Y, Wright JM, Lau E, Lam MPY (2020) Determining alternative protein isoform expression using RNA sequencing and mass spectrometry. STAR Protoc 1:100138. https://doi.org/10.1016/j.xpro.2020.100138

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rookyard AW, Paulech J, Thyssen S, Liddy KA, Puckeridge M, Li DK, White MY, Cordwell SJ (2021) A global profile of reversible and irreversible cysteine redox post-translational modifications during myocardial ischemia/reperfusion injury and antioxidant intervention. Antioxid Redox Signal 34:11–31. https://doi.org/10.1089/ars.2019.7765

    Article  CAS  PubMed  Google Scholar 

  37. Yechikov S, Copaciu R, Gluck JM, Deng W, Chiamvimonvat N, Chan JW, Lieu DK (2016) Same-single-cell analysis of pacemaker-specific markers in human induced pluripotent stem cell-derived cardiomyocyte subtypes classified by electrophysiology. Stem Cells 34:2670–2680. https://doi.org/10.1002/stem.2466

    Article  CAS  PubMed  Google Scholar 

  38. Lionheart Imaging Training Manual (2022)

    Google Scholar 

  39. Waas M, Weerasekera R, Kropp EM, Romero-Tejeda M, Poon EN, Boheler KR, Burridge PW, Gundry RL (2019) Are these cardiomyocytes? Protocol development reveals impact of sample preparation on the accuracy of identifying cardiomyocytes by flow cytometry. Stem Cell Rep 12:395–410. https://doi.org/10.1016/j.stemcr.2018.12.016

    Article  CAS  Google Scholar 

  40. Wojtkiewicz M, Berg Luecke L, Castro C, Burkovetskaya M, Mesidor R, Gundry RL (2022) Bottom-up proteomic analysis of human adult cardiac tissue and isolated cardiomyocytes. J Mol Cell Cardiol 162:20–31. https://doi.org/10.1016/j.yjmcc.2021.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [R35-HL155460 to R.L.G.; TL1TR001437 to L.B.L], American Heart Association [20PRE35200049 to L.B.L]. Funding sources were not involved in study design, data collection, interpretation, analysis, or publication. Mass spectrometry analyses were performed using instrumentation in the CardiOmics Program in the Center for Heart and Vascular Research at UNMC.

Conflicts of Interest

R.L.G. is on the advisory board of ProtiFi and receives no compensation of any kind for this role.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah L. Gundry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waknitz, M., Berg Luecke, L., Mesidor, R., Wojtkiewicz, M., Castro, C., Gundry, R.L. (2024). The GENTIL Method for Isolation of Human Adult Cardiomyocytes from Cryopreserved Tissue for Proteomic Analyses. In: Regnier, M., Childers, M. (eds) Familial Cardiomyopathies. Methods in Molecular Biology, vol 2735. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3527-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3527-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3526-1

  • Online ISBN: 978-1-0716-3527-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics