Skip to main content

Genetic Engineering and Rebooting of Bacteriophages in L-Form Bacteria

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2734))

Abstract

The rapid increase of circulating, antibiotic-resistant pathogens is a major ongoing global health crisis, and arguably, the end of the “golden age of antibiotics” is looming. This has led to a surge in research and development of alternative antimicrobials, including bacteriophages, to treat such infections (phage therapy). Isolating natural phage variants for the treatment of individual patients is an arduous and time-consuming task. Furthermore, the use of natural phages is frequently hampered by natural limitations, such as moderate in vivo activity, the rapid emergence of resistance, insufficient host range, or the presence of undesirable genetic elements within the phage genome. Targeted genetic editing of wild-type phages (phage engineering) has successfully been employed in the past to mitigate some of these pitfalls and to increase the therapeutic efficacy of the underlying phage variants. Clearly, there is a large potential for the development of novel, marker-less genome-editing methodologies to facilitate the engineering of therapeutic phages. Steady advances in synthetic biology have facilitated the in vitro assembly of modified phage genomes, which can be activated (“rebooted”) upon transformation of a suitable host cell. However, this can prove challenging, especially in difficult-to-transform Gram-positive bacteria. In this chapter, we detail the production of cell wall-deficient L-form bacteria and their application to activate synthetic genomes of phages infecting Gram-positive host species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed Central  Google Scholar 

  2. De Oliveira DMP, Forde BM, Kidd TJ et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33(3):e00181-19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nick JA, Dedrick RM, Gray AL et al (2022) Host and pathogen response to bacteriophage engineered against mycobacterium abscessus lung infection. Cell 185(11):1860–74 e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10)

    Google Scholar 

  5. Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25(5):730–733

    Article  CAS  PubMed Central  Google Scholar 

  6. Pires DP, Costa AR, Pinto G et al (2020) Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 44(6):684–700

    Article  CAS  PubMed  Google Scholar 

  7. Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29(7):995–1003

    Article  CAS  PubMed  Google Scholar 

  8. Torres-Barcelo C (2018) Phage therapy faces evolutionary challenges. Viruses 10:6

    Article  Google Scholar 

  9. Egido JE, Costa AR, Aparicio-Maldonado C et al (2022) Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 46(1):fuab048

    Article  CAS  PubMed  Google Scholar 

  10. Meile S, Sarbach A, Du J et al (2020) Engineered reporter phages for rapid bioluminescence-based detection and differentiation of viable listeria cells. Appl Environ Microbiol 86(11):e00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Funatsu T, Taniyama T, Tajima T et al (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46(6):365–369

    Article  CAS  Google Scholar 

  12. Du J, Meile S, Baggenstos J et al (2023) Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors. Nat Commun 14(1):4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunne M, Rupf B, Tala M et al (2019) Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep 29(5):1336–50 e4

    Article  CAS  PubMed  Google Scholar 

  14. Matsuda T, Freeman TA, Hilbert DW, et al., Stapleton PP et al (2005) Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery 137(6):639–646

    Article  Google Scholar 

  15. Paul VD, Sundarrajan S, Rajagopalan SS et al (2011) Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 11:195

    Article  CAS  PubMed Central  Google Scholar 

  16. Meile S, Du J, Dunne M, Kilcher S et al (2022) Engineering therapeutic phages for enhanced antibacterial efficacy. Curr Opin Virol 52:182–191

    Article  CAS  PubMed  Google Scholar 

  17. Ando H, Lemire S, Pires DP et al (2015) Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1(3):187–196

    Article  CAS  PubMed Central  Google Scholar 

  18. Jaschke PR, Lieberman EK, Rodriguez J et al (2012) A fully decompressed synthetic bacteriophage oX174 genome assembled and archived in yeast. Virology 434(2):278–284

    Article  CAS  PubMed  Google Scholar 

  19. Kilcher S, Studer P, Muessner C et al (2018) Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci U S A 115(3):567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin J, Jardine P, Noireaux V (2012) Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth Biol 1(9):408–413

    Article  CAS  PubMed  Google Scholar 

  21. Garamella J, Marshall R, Rustad M et al (2016) The All E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5(4):344–355

    Article  CAS  PubMed  Google Scholar 

  22. Rustad M, Eastlund A, Jardine P et al (2018) Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth Biol (Oxf) 3(1):ysy002

    Article  CAS  PubMed  Google Scholar 

  23. Emslander Q, Vogele K, Braun P et al (2022) Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem Biol 29(9):1434–45 e7

    Article  CAS  PubMed  Google Scholar 

  24. Kapteijn R, Shitut S, Ashmann D et al (2022) DNA uptake by cell wall-deficient bacteria reveals a putative ancient macromolecule uptake mechanism. bioRxiv

    Google Scholar 

  25. Woo PC, To AP, Lau SK et al (2003) Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. Med Hypotheses 61(4):503–508

    Article  CAS  PubMed  Google Scholar 

  26. White TB, Doyle RJ, Streips UN (1981) Transformation of a Bacillus subtilis L-form with bacteriophage deoxyribonucleic acid. J Bacteriol 145(2):878–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Studer P, Borisova M, Schneider A et al (2016) The absence of a mature cell wall sacculus in stable listeria monocytogenes L-form cells is independent of peptidoglycan synthesis. PLoS One 11(5):e0154925

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We kindly thank Prof. Alex O’Neill (University of Leeds) for providing the SH1000ΔmutS strain used in this study.

Conflict of Interest Statement

S.K. is a part-time employee of Micreos Pharmaceuticals, and M.J.L. is a scientific advisor to Micreos Pharmaceuticals. J.F. and S.M. declare no conflict of interest.

Funding

S.K. and S.M. have been funded through an Ambizione grant (PZ00P3_174108) from the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Loessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernbach, J., Meile, S., Kilcher, S., Loessner, M.J. (2024). Genetic Engineering and Rebooting of Bacteriophages in L-Form Bacteria. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 2734. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3523-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3523-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3522-3

  • Online ISBN: 978-1-0716-3523-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics