Skip to main content

Proximity Mapping of Ciliary Proteins by BioID

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2725))

Abstract

The primary cilium is a highly conserved microtubule-based organelle present in most vertebrate cell types. Mutations in ciliary protein genes can lead to dysfunctional or absent cilia and are the cause of a large group of heterogeneous diseases known as ciliopathies. ARL13B is a member of the ARF family of regulatory GTPases and is highly enriched on the ciliary membrane. The absence of ARL13B disrupts cilia architecture and mutations have been linked to several diseases; yet there remain major gaps in our understanding of the role that ARL13B plays in primary cilia function. Here, we demonstrate how in cellulo proximity-dependent biotinylation (BioID) can be used to generate a comprehensive protein proximity map of ciliary proteins by performing BioID on N- and C-terminally BirA*-tagged ARL13B. This method can theoretically provide insight into any cilia protein, identifying key interactors that play a critical role in ciliary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol 8(11):880–893

    Article  CAS  Google Scholar 

  3. Mojarad BA, Gupt GD, Hasegan M, Goudiam O, Basto R, Gingras AC, Pelletier L (2017) CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme. Open Biol 7(6):170114

    Article  PubMed  PubMed Central  Google Scholar 

  4. St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo BO, Veri A, JDR K, Rajendran D, Couzens AL, Currie KW, Tkach JM, SWT C, Pelletier L, Gingras AC (2016) Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep 17(9):2488–2501

    Article  CAS  PubMed  Google Scholar 

  5. Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, Tkach JM, Underhill AQ, Zhang L, Bourmoum M, Wrana JL, Pelletier L (2019) Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun 10(1):1–20

    Article  Google Scholar 

  6. Liu Y, Gupta GD, Barnabas DD, Agircan FG, Mehmood S, Wu D, Coyaud E, Johnson CM, McLaughlin SH, Andreeva A, Freund SMV, Robinson CV, Cheung SWT, Raught B, Pelletier L (2018) Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nat Commun 9(1):1–15

    Google Scholar 

  7. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gupta GD, Coyaud É, Gonçalves J, Mojarad BA, Liu Y, Wu Q, Gheiratmand L, Comartin D, Tkach JM, Cheung SWT, Bashkurov M, Hasegan M, Knight JD, Lin ZY, Schueler M, Hildebrandt F, Moffat J, Gingras AC, Raught B, Pelletier L (2015) A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163(6):1484–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gheiratmand L, Coyaud É, Gupta GD, Laurent EM, Hasegan M, Prosser SL, Gonçalves J, Raught B, Pelletier L (2019) Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 38(14):e101109

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gingras AC, Abe KT, Raught B (2019) Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 48:44–54

    Article  CAS  PubMed  Google Scholar 

  12. Lambert JP, Picaud S, Fujisawa T, Hou H, Savitsky P, Uusküla-Reimand L, Gupta GD, Abdouni H, Lin ZY, Tucholska M, Knight JDR, Gonzalez-Badillo B, St-Denis N, Newman JA, Stucki M, Pelletier L, Bandeira N, Wilson MD, Filippakopoulos P, Gingras AC (2019) Interactome rewiring following pharmacological targeting of BET bromodomains. Mol Cell 73(3):621–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD (2022) Proximity profiling of the CFTR interaction landscape in response to Orkambi. Int J Mol Sci 23(5):2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hesketh GG, Youn JY, Samavarchi-Tehrani P, Raught B, Gingras AC (2017) Parallel exploration of interaction space by BioID and affinity purification coupled to mass spectrometry. In: Proteomics. Humana Press, New York, pp 115–136

    Chapter  Google Scholar 

  15. Zhao H, Khan Z, Westlake CJ (2022) Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol. Academic

    Google Scholar 

  16. Cantagrel V, Silhavy JL, Bielas SL, Swistun D, Marsh SE, Bertrand JY, Audollent S, Attie-Bitach T, Holden KR, Dobyns WB, Traver D, Al-Gazali L, Ali BR, Lindner TH, Caspary T, Otto EA, Hildebrandt F, Glass IA, Logan CV, Johnson CA, Gleeson JG (2008) Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet 83(2):170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E (2020) ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 319:C404–C418

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roy R, Jerman S, Jozsef L, McNamara T, Onyekaba G, Sun Z, Marin EP (2017) Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J Biol Chem 292(43):17703–17717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  21. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24

    Article  CAS  PubMed  Google Scholar 

  22. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Eng JK, Martin DB, Nesvizhskii AI, Aebersold R (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10(6):1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pedrioli PG (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis. Proteome bioinformatics. Methods Mol Biol 604(2010):213–238

    Article  CAS  PubMed  Google Scholar 

  24. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D, Fermin D, Qin ZS, Tyers M, Gingras AC, Nesvizhskii AI (2011) SAINT: probabilistic scoring of affinity purification–mass spectrometry data. Nat Methods 8(1):70–73

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Zhang J, Larsen B, Stark C, Breitkreutz A, Lin ZY, Breitkreutz BJ, Ding Y, Colwill K, Pasculescu A, Pawson T, Wrana JL, Nesvizhskii AI, Raught B, Tyers M, Gingras AC (2010) ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat Biotechnol 28(10):1015–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knight JDR, Choi H, Gupta GD, Pelletier L, Raught B, Nesvizhskii AI, Gingras AC (2017) ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat Methods 14(7):645–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44(W1):W147–W153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brian Raught or Gagan D. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iazzi, M., St-Germain, J., Acharya, S., Raught, B., Gupta, G.D. (2024). Proximity Mapping of Ciliary Proteins by BioID. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics