Skip to main content

Super-Resolution Microscopy of the Bacterial Cell Wall Labeled by Fluorescent D-Amino Acids

  • Protocol
  • First Online:
The Bacterial Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2727))

Abstract

Fluorescent D-amino acids (FDAAs) enable in situ visualization of bacterial cell wall synthesis via their incorporation into peptidoglycan (PG) crosslinks. When combined with super-resolution microscopy, FDAAs allow the details of cell wall synthesis to be resolved beyond the diffraction limit of visible light. Here, we describe using the super-resolution method of single-molecule localization microscopy (SMLM) in conjunction with two newly synthesized FDAAs (sCy5DA and sCy5DL_amide) to resolve bacterial PG at the nanoscale in a variety of species, including Gram-negative, Gram-positive, and mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  2. Egan AJF, Errington J, Vollmer W (2020) Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 18:446–460

    Article  CAS  PubMed  Google Scholar 

  3. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F et al (2012) In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed 124:12687–12691

    Article  Google Scholar 

  4. Kuru E, Radkov A, Meng X, Egan A, Alvarez L, Dowson A et al (2019) Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem Biol 14:2745–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuru E, Tekkam S, Hall E, Brun YV, Van Nieuwenhze MS (2015) Synthesis of fluorescent D -amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc 10:33–52

    Article  CAS  PubMed  Google Scholar 

  6. Hsu Y-P, Rittichier J, Kuru E, Yablonowski J, Pasciak E, Tekkam S et al (2017) Full color palette of fluorescent D-amino acids for in situ labeling of bacterial cell walls. Chem Sci 8:6313–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radkov AD, Hsu Y-P, Booher G, VanNieuwenhze MS (2018) Imaging bacterial Cell Wall biosynthesis. Annu Rev Biochem 87:991–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu Y-P, Hall E, Booher G, Murphy B, Radkov AD, Yablonowski J et al (2019) Fluorogenic d -amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat Chem 11:335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang B, Bates M, Zhuang X (2009) Super-Resolution Fluorescence Microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Reymond L, Rutschmann O, Meyer MA, Denereaz J, Qiao J et al (2022) Fluorescent D-amino acids for super-resolution microscopy of the bacterial cell Wall. ACS Chem Biol 17:2418–2424

    Google Scholar 

  12. Zhang C (2023) STORM imaging of Bacillus subtilis labeled by fluorescent D-amino acids, Zenodo

    Google Scholar 

  13. Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  15. Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S et al (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartwich TMP, Chung KKH, Schroeder L, Bewersdorf J, Soeller C, Baddeley D (2018) A stable, high refractive index, switching buffer for super-resolution imaging. BioRxiv 465492

    Google Scholar 

  17. Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8:e69004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olivier N, Keller D, Rajan VS, Gönczy P, Manley S (2013) Simple buffers for 3D STORM microscopy. Biomed Opt Express 4:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu L, Rajendram M, Huang KC (2021) Effects of fixation on bacterial cellular dimensions and integrity. iScience 24:102348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis JL, Dong B, Sun C, Zhang HF (2018) Method to identify and minimize artifacts induced by fluorescent impurities in single-molecule localization microscopy. J Biomed Opt 23:106501

    Article  PubMed  PubMed Central  Google Scholar 

  21. Douglass KM, Sieben C, Archetti A, Lambert A, Manley S (2016) Super-resolution imaging of multiple cells by optimized flat-field epi-illumination. Nat Photon 10:705–708

    Article  CAS  Google Scholar 

  22. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340

    Article  CAS  PubMed  Google Scholar 

  23. Speiser A, Müller L-R, Hoess P, Matti U, Obara CJ, Legant WR et al (2021) Deep learning enables fast and dense single-molecule localization with high accuracy. Nat Methods 18:1082–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s H2020 program under the European Research Council (ERC; CoG 819823 Piko, to S.M. and C.Z.). We thank Matthew D. Lycas for giving suggestions on this protocol after observing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suliana Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, C., Manley, S. (2024). Super-Resolution Microscopy of the Bacterial Cell Wall Labeled by Fluorescent D-Amino Acids. In: Ton-That, H. (eds) The Bacterial Cell Wall. Methods in Molecular Biology, vol 2727. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3491-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3491-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3490-5

  • Online ISBN: 978-1-0716-3491-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics