Skip to main content

Dissecting the Role of the Ccr4–Not Deadenylase Complex in Pluripotency and Differentiation

  • Protocol
  • First Online:
Deadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2723))

  • 517 Accesses

Abstract

In this chapter, we describe methods and assays to examine the role of the Ccr4–Not mRNA deadenylase complex in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. We present the following procedures: sgRNA design and cloning, the culture of mouse ESCs, transfection and colony picking, genotyping, generation of Cnot3 conditional deletion ESCs, assessment of Cnot3 deletion efficiency, and examination of the impact on ESC maintenance and differentiation. The above approach and protocols can also be readily applied to study other Ccr4–Not subunits in ESC fate regulation, thereby facilitating the systematic dissection of Ccr4–Not function in stem cells and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Passmore LA, Coller J (2022) Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 23:93–106

    Article  CAS  PubMed  Google Scholar 

  2. Yan YB (2014) Deadenylation: enzymes, regulation, and functional implications. Wiley Interdiscip Rev RNA 5:421–443

    Article  CAS  PubMed  Google Scholar 

  3. Temme C, Zaessinger S, Meyer S et al (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23:2862–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nousch M, Techritz N, Hampel D et al (2013) The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. J Cell Sci 126:4274–4285

    CAS  PubMed  Google Scholar 

  5. Yi H, Park J, Ha M et al (2018) PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol Cell 70:1081–1088.e1085

    Article  CAS  PubMed  Google Scholar 

  6. Collart MA (2016) The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip Rev RNA 7:438–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chalabi Hagkarim N, Grand RJ (2020) The regulatory properties of the Ccr4-not complex. Cell 9:2379

    Article  Google Scholar 

  8. Zheng X, Dumitru R, Lackford BL et al (2012) Cnot1, Cnot2, and Cnot3 maintain mouse and human ESC identity and inhibit extraembryonic differentiation. Stem Cells 30:910–922

    Article  CAS  PubMed  Google Scholar 

  9. Zheng X, Yang P, Lackford B et al (2016) CNOT3-dependent mRNA deadenylation safeguards the pluripotent state. Stem Cell Rep 7:897–910

    Article  CAS  Google Scholar 

  10. Joly W, Chartier A, Rojas-Rios P et al (2013) The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Rep 1:411–424

    Article  CAS  Google Scholar 

  11. Zhou B, Liu J, Ren Z et al (2017) Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Sci Rep 7:1500

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zukeran A, Takahashi A, Takaoka S et al (2016) The CCR4-NOT deadenylase activity contributes to generation of induced pluripotent stem cells. Biochem Biophys Res Commun 474:233–239

    Article  CAS  PubMed  Google Scholar 

  13. Raisch T, Valkov E (2022) Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr Opin Struct Biol 77:102460

    Article  CAS  PubMed  Google Scholar 

  14. Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 107:8242–8247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayashi K, Ohta H, Kurimoto K et al (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Chu W, Gill RA et al (2023) Computational tools and resources for CRISPR/Cas genome editing. Genomics Proteomics Bioinformatics 21(1):108–126

    Article  PubMed  Google Scholar 

  18. Schubert MS, Thommandru B, Woodley J et al (2021) Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci Rep 11:19482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stover AE, Schwartz PH (2011) The generation of embryoid bodies from feeder-based or feeder-free human pluripotent stem cell cultures. Methods Mol Biol 767:391–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Yang P (2008) In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp 17:825

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank members of the Hu lab for their comments and discussions on this protocol. This work was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences Z01ES102745 (to G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Chen, Q., Lackford, B., Hu, G. (2024). Dissecting the Role of the Ccr4–Not Deadenylase Complex in Pluripotency and Differentiation. In: Valkov, E., Goldstrohm, A.C. (eds) Deadenylation. Methods in Molecular Biology, vol 2723. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3481-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3481-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3480-6

  • Online ISBN: 978-1-0716-3481-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics