Skip to main content

Reverse Engineering in Biotechnology: The Role of Genetic Engineering in Synthetic Biology

  • Protocol
  • First Online:
Reverse Engineering of Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2719))

Abstract

Synthetic biology is built on genetic engineering and principles of design engineering, which provides control over the biological functions of interest. This chapter explores the uses, processes, and applications of genetic engineering in synthetic biology. The chapter provides a brief history and course of development of the field of synthetic biology and genetic engineering and their unbreakable association. Next, the chapter delves into materials and methods and the applications of synthetic biology. This includes discussing the generally used components of genetic engineering to design new functions into organisms and even the general steps that are part of any synthetic biology experiment. Lastly, the chapter also explains the use of the materials and methodology discussed in solving a specific problem related to a model mentioned in the paper titled “Development of Integrase-mediated differentiation circuits to improve evolutionary stability in E. coli.” It explains how by using genetic engineering a synthetic biology-related problem was solved efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  Google Scholar 

  2. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381

    Article  Google Scholar 

  3. Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci 106(12):4629–4634

    Article  Google Scholar 

  4. Weber W, Schoenmakers R, Keller B, Gitzinger M, Grau T, Daoud-El Baba M, Sander P, Fussenegger M (2008) A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc Natl Acad Sci 105(29):9994–9998

    Article  Google Scholar 

  5. Jacob F, Monod J (1961) On the regulation of gene activity. Cold Spring Harb Symp Quant Biol 26:193–211

    Article  Google Scholar 

  6. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543

    Article  Google Scholar 

  7. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518):929–994

    Article  Google Scholar 

  8. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  Google Scholar 

  9. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22(10):1249–1252

    Article  Google Scholar 

  10. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12(5):381–390

    Article  Google Scholar 

  11. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  Google Scholar 

  12. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  Google Scholar 

  13. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  Google Scholar 

  14. Nicholl DS (2023) An introduction to genetic engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  16. El Karoui M, Hoyos-Flight M, Fletcher L (2019) Future trends in synthetic biology—a report. Front Bioeng Biotechnol 7:175

    Article  Google Scholar 

  17. Wurtzel ET, Vickers CE, Hanson AD, Millar AH, Cooper M, Voss-Fels KP, Nikel PI, Erb TJ (2019) Revolutionizing agriculture with synthetic biology. Nat Plants 5(12):1207–1210

    Article  Google Scholar 

  18. Tang H, Wang W, Zhang L, Huang L, Lu X, Xu P (2017) Application of synthetic biology in environmental remediation. Sheng wu Gong Cheng xue bao = Chin J Biotechnol 33(3):506–515

    Google Scholar 

  19. Kandel ER, Markram H, Matthews PM, Yuste R, Koch C (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci 14(9):659–664

    Article  Google Scholar 

  20. Jain KK (2013) Synthetic biology and personalized medicine. Med Princ Pract 22(3):209–219

    Article  Google Scholar 

  21. Wu MR, Jusiak B, Lu TK (2019) Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer 19(4):187–195

    Google Scholar 

  22. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793

    Article  Google Scholar 

  23. Williams RL, Murray RM (2022) Integrase-mediated differentiation circuits improve evolutionary stability of burdensome and toxic functions in E. coli. Nat Commun 13(1):6822

    Article  Google Scholar 

  24. Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4(1):1–20

    Article  Google Scholar 

  25. Green MR, Sambrook J (2018) The basic polymerase chain reaction (PCR). Cold Spring Harb Protoc 2018(5):pdb-rot095117

    Article  Google Scholar 

  26. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 20(62):e3923

    Google Scholar 

  27. Smith DR (1993) Restriction endonuclease digestion of DNA. Transgenesis techniques: principles and protocols. Methods Mol Biol 18:427–431

    Google Scholar 

  28. Froger A, Hall JE (2007) Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp (6):253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bijukumar, G., Somvanshi, P.R. (2024). Reverse Engineering in Biotechnology: The Role of Genetic Engineering in Synthetic Biology. In: Mandal, S. (eds) Reverse Engineering of Regulatory Networks. Methods in Molecular Biology, vol 2719. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3461-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3461-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3460-8

  • Online ISBN: 978-1-0716-3461-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics