Skip to main content

Combined Analysis of mRNA Expression and Open Chromatin in Microglia

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

Abstract

The advance of single-cell RNA-sequencing technologies in the past years has enabled unprecedented insights into the complexity and heterogeneity of microglial cell states in the homeostatic and diseased brain. This includes rather complex proteomic, metabolomic, morphological, transcriptomic, and epigenetic adaptations to external stimuli and challenges resulting in a novel concept of core microglia properties and functions. To uncover the regulatory programs facilitating the rapid transcriptomic adaptation in response to changes in the local microenvironment, the accessibility of gene bodies and gene regulatory elements can be assessed. Here, we describe the application of a previously published method for simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq) on microglia nuclei isolated from frozen mouse brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312. https://doi.org/10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  2. Tremblay M-È (2011) The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol 7(1):67–76. https://doi.org/10.1017/S1740925X12000038

    Article  PubMed  Google Scholar 

  3. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170. https://doi.org/10.1016/0306-4522(90)90229-w

    Article  CAS  PubMed  Google Scholar 

  4. Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83(6):1309–1320. https://doi.org/10.1046/j.1471-4159.2002.01243.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  6. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  7. Edler MK, Mhatre-Winters I, Richardson JR (2021) Microglia in aging and Alzheimer's disease: a comparative species review. Cell 10(5). https://doi.org/10.3390/cells10051138

  8. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, Zelada González F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353(6301):aad8670. https://doi.org/10.1126/science.aad8670

    Article  CAS  Google Scholar 

  9. Silvin A, Uderhardt S, Piot C, Da Mesquita S, Yang K, Geirsdottir L, Mulder K, Eyal D, Liu Z, Bridlance C, Thion MS, Zhang XM, Kong WT, Deloger M, Fontes V, Weiner A, Ee R, Dress R, Hang JW, Balachander A, Chakarov S, Malleret B, Dunsmore G, Cexus O, Chen J, Garel S, Dutertre CA, Amit I, Kipnis J, Ginhoux F (2022) Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55(8):1448–1465.e1446. https://doi.org/10.1016/j.immuni.2022.07.004

    Article  CAS  PubMed  Google Scholar 

  10. Olah M, Patrick E, Villani A-C, Xu J, White CC, Ryan KJ, Piehowski P, Kapasi A, Nejad P, Cimpean M, Connor S, Yung CJ, Frangieh MA (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9(1):539. https://doi.org/10.1038/s41467-018-02926-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(1):253–271.e256. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  12. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169(7):1276–1290.e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grün D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  14. Yeh H, Ikezu T (2019) Transcriptional and epigenetic regulation of microglia in health and disease. Trends Mol Med 25(2):96–111. https://doi.org/10.1016/j.molmed.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA -binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, Pokholok D, Aryee MJ, Steemers FJ, Lebofsky R, Buenrostro JD (2019) Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol 37(8):916–924. https://doi.org/10.1038/s41587-019-0147-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy AT, Chang HY, Wang Y, Wong WH (2018) Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci U S A 115(30):7723–7728. https://doi.org/10.1073/pnas.1805681115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Huang Y, Singh R, Vert J-P, Noble WS (2019) Jointly embedding multiple single-cell omics measurements. Algor Bioinform 143. https://doi.org/10.4230/LIPIcs.WABI.2019.10

  20. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ (2019) Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177(7):1873–1887.e1817. https://doi.org/10.1016/j.cell.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin Y, Wu T-Y, Wan S, Yang JYH, Wong WH, Wang YXR (2022) scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. Nat Biotechnol 40(5):703–710. https://doi.org/10.1038/s41587-021-01161-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Yang C, Zhang X (2022) scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously. Genome Biol 23(1):139. https://doi.org/10.1186/s13059-022-02706-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L, Steemers FJ, Adey AC, Trapnell C, Shendure J (2018) Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361(6409):1380–1385. https://doi.org/10.1126/science.aau0730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Liu C, Quintero A, Wu L, Yuan Y, Wang M, Cheng M, Leng L, Xu L, Dong G, Li R, Liu Y, Wei X, Xu J, Chen X, Lu H, Chen D, Wang Q, Zhou Q, Lin X, Li G, Liu S, Wang Q, Wang H, Fink JL, Gao Z, Liu X, Hou Y, Zhu S, Yang H, Ye Y, Lin G, Chen F, Herrmann C, Eils R, Shang Z, Xu X (2019) Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun 10(1):470. https://doi.org/10.1038/s41467-018-08205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, Lucero J, Behrens MM, Hu M, Ren B (2019) An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol 26(11):1063–1070. https://doi.org/10.1038/s41594-019-0323-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Lake BB, Zhang K (2019) High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 37(12):1452–1457. https://doi.org/10.1038/s41587-019-0290-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, Ding J, Brack A, Kartha VK, Tay T, Law T, Lareau C, Hsu Y-C, Regev A, Buenrostro JD (2020) Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183(4):1103–1116.e1120. https://doi.org/10.1016/j.cell.2020.09.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360(6385):176–182. https://doi.org/10.1126/science.aam8999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nerlov C, Graf T (1998) PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12(15):2403–2412. https://doi.org/10.1101/gad.12.15.2403

    Article  Google Scholar 

  31. Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24(12):2033–2040. https://doi.org/10.1101/gr.177881.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merkel D (2014) Docker: lightweight Linux containers for consistent development and deployment. Linux J 2014(239):2.

    Google Scholar 

  33. Renaud G, Stenzel U, Maricic T, Wiebe V, Kelso J (2015) deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31(5):770–772. https://doi.org/10.1093/bioinformatics/btu719

    Article  CAS  PubMed  Google Scholar 

  34. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573–3587.e3529. https://doi.org/10.1016/j.cell.2021.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Konishi H, Kobayashi M, Kunisawa T, Imai K, Sayo A, Malissen B, Crocker PR, Sato K, Kiyama H (2017) Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia 65(12):1927–1943. https://doi.org/10.1002/glia.23204

    Article  PubMed  Google Scholar 

  36. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R (2021) Single-cell chromatin state analysis with Signac. Nat Methods 18(11):1333–1341. https://doi.org/10.1038/s41592-021-01282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beyer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

Overview of all necessary oligonucleotides and primers as published by Ma and colleagues in 2020 [27] (XLSX 9 kb)

Supplementary Table 2

Sequences for barcoding oligonucleotides as published by Ma and colleagues in 2020 [27] (XLSX 17 kb)

Supplementary Table 3

Sequences for the library-specific Ad1 primer as published by Ma and colleagues in 2020 [27] (XLSX 10 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scholz, R., Brösamle, D., Yuan, X., Neher, J.J., Beyer, M. (2024). Combined Analysis of mRNA Expression and Open Chromatin in Microglia. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics