Skip to main content

Generation of Organoids and Analysis of Ferroptosis in Organoids

  • Protocol
  • First Online:
Ferroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2712))

Abstract

Ferroptosis is a unique form of iron-dependent cell death induced by lipid peroxidation and subsequent plasma membrane rupture, which sets it apart from other types of regulated cell death. Ferroptosis has been linked to a diverse range of biological processes, such as aging, immunity, and cancer. Organoids, on the other hand, are three-dimensional (3D) miniaturized model systems of different organs in vitro cultures, which have gained widespread interest for modeling tissue development and disease, drug screening, and cell therapy. Organoids offer tremendous potential for improving our understanding of human diseases, particularly in the search for the field of ferroptosis in pathological processes of organs. Furthermore, cancer organoids are utilized to investigate molecular mechanisms and drug screening in vitro due to the anti-tumor effect of ferroptosis. Currently, the development of liver organoids has reached a relatively mature stage. Here, we present the protocols for the generation of liver organoids and liver cancer organoids, along with the methods for detecting ferroptosis in organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo J, Zhou Y, Liu D et al (2022) Mitochondria as multifaceted regulators of ferroptosis. Life Metab 1:134–148

    Google Scholar 

  3. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang D, Chen X, Kang R et al (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  5. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  6. Rossi G, Manfrin A, Lutolf MP (2018) Progress and potential in organoid research. Nat Rev Genet 19:671–687

    Article  CAS  PubMed  Google Scholar 

  7. Hu H, Gehart H, Artegiani B et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(1591–606):e19

    Google Scholar 

  8. Qian X, Nguyen HN, Song MM et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujii M, Matano M, Toshimitsu K et al (2018) Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23:787–93.e6

    Article  CAS  PubMed  Google Scholar 

  10. Morizane R, Lam AQ, Freedman BS et al (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Broutier L, Mastrogiovanni G, Verstegen MM et al (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23:1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shinozawa T, Kimura M, Cai Y et al (2021) High-Fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160:831–46.e10

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Comish PB, Tang D et al (2021) Characteristics and biomarkers of Ferroptosis. Front Cell Dev Biol 9:637162

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen F, Cai X, Kang R et al (2023) Autophagy-dependent ferroptosis in cancer. Antioxid Redox Signal. https://doi.org/10.1089/ars.2022.0202. Epub ahead of print

  15. Chen X, Comish PB, Tang D, Kang R (2021) Characteristics and Biomarkers of Ferroptosis. Front Cell Dev Biol. 9:637162

    Google Scholar 

  16. Deng F, Zhao BC, Yang X et al (2021) The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes 13:1–21

    Article  PubMed  Google Scholar 

  17. Mun SJ, Ryu JS, Lee MO et al (2019) Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol 71:970–985

    Article  CAS  PubMed  Google Scholar 

  18. Olgasi C, Cucci A, Follenzi A (2020) iPSC-derived liver organoids: a journey from drug screening, to disease modeling, arriving to regenerative medicine. Int J Mol Sci 21:6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23:393–410

    Article  CAS  PubMed  Google Scholar 

  20. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  Google Scholar 

  21. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  22. Kratochvil MJ, Seymour AJ, Li TL et al (2019) Engineered materials for organoid systems. Nat Rev Mater 4:606–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to matrigel. Nat Rev Mater 5:539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Si-Tayeb K, Noto FK, Nagaoka M et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    Article  CAS  PubMed  Google Scholar 

  25. Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407–418

    Article  CAS  PubMed  Google Scholar 

  26. Meng Y, Sun J, Zhang G et al (2022) The three-dimension preclinical models for ferroptosis monitoring. Front Bioeng Biotechnol 10:1020971

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ben-David U, Ha G, Tseng YY et al (2017) Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 49:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li M, Izpisua Belmonte JC (2019) Organoids - preclinical models of human disease. N Engl J Med 380:569–579

    Article  PubMed  Google Scholar 

  29. Nuciforo S, Fofana I, Matter MS et al (2018) Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 24:1363–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun L, Wang Y, Cen J et al (2019) Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol 21:1015–1026

    Article  CAS  PubMed  Google Scholar 

  31. Tang D, Kroemer G (2020) Ferroptosis. Curr Biol 30:R1292-r7

    Article  Google Scholar 

  32. Lorenzato A, Magrì A, Matafora V et al (2020) Vitamin C restricts the emergence of acquired resistance to EGFR-targeted therapies in colorectal cancer. Cancers 12:685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo J, Duan L, He X et al (2021) A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK mutant mtDNA depletion syndrome. Adv Sci (Weinh) 8:2004680

    Article  CAS  PubMed  Google Scholar 

  34. Ouyang S, Li H, Lou L et al (2022) Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 52:102317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Q, Deng T, Zhang H et al (2022) Adipocyte-derived exosomal MTTP suppresses Ferroptosis and promotes chemoresistance in colorectal cancer. Adv Sci (Weinh) 9:e2203357

    Article  PubMed  Google Scholar 

  36. Zou Y, Zheng S, Xie X et al (2022) N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun 13:2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185:2401–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Li J, Kang R et al (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081

    Article  CAS  PubMed  Google Scholar 

  40. Zheng J, Conrad M (2020) The metabolic underpinnings of Ferroptosis. Cell Metab 32:920–937

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, W., Su, Y., Guo, J., Wang, M., Liu, X. (2023). Generation of Organoids and Analysis of Ferroptosis in Organoids. In: Kroemer, G., Tang, D. (eds) Ferroptosis. Methods in Molecular Biology, vol 2712. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3433-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3433-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3432-5

  • Online ISBN: 978-1-0716-3433-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics