Skip to main content

Evaluation of Mesenteric Microvascular Hyperpermeability Following Hemorrhagic Shock Using Intravital Microscopy

  • Protocol
  • First Online:
Vascular Hyperpermeability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2711))

  • 515 Accesses

Abstract

Intravital microscopy is a powerful tool for evaluating vascular hyperpermeability in various vascular beds. Hemorrhagic shock after traumatic injury is known to induce microvascular hyperpermeability, life-threatening edema, and microcirculatory perfusion disturbances. Here we describe the microsurgical and imaging methods to study mesenteric vascular hyperpermeability using intravital microscopy, in a rat model of hemorrhagic shock. In this protocol, hemorrhagic shock is induced by controlled withdrawal of blood to reduce the mean arterial pressure (MAP) to 40 mmHg for 60 min, followed by resuscitation for 60 min. To study the changes in vascular permeability, the rats are given FITC-albumin, a fluorescent tracer, intravenously. The FITC-albumin flux across the vessel wall is measured in mesenteric postcapillary venules by determining intravascular and extravascular fluorescence intensity under intravital microscopy. Intravital microscopic evaluation of high molecular weight FITC-albumin permeability is a reliable indicator of microvascular hyperpermeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Childs E et al (1999) Leukocyte adherence and sequestration following hemorrhagic shock and total ischemia in rats. Shock 11:248–252

    Article  CAS  PubMed  Google Scholar 

  2. Childs EW, Udobi KF, Wood JG, Hunter FA, Smalley DM, Cheung LY (2002) In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock. Shock 8:423–427

    Article  Google Scholar 

  3. Tharakan B et al (2010) (-)-Deprenyl inhibits vascular hyperpermeability after hemorrhagic shock. Shock 33:56–63

    Article  CAS  PubMed  Google Scholar 

  4. Childs E et al (2007) Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 292:H3179–H3189

    Article  CAS  PubMed  Google Scholar 

  5. Childs E et al (2010) 17β-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock 34:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murao Y, Hata M, Ohnishi K, Okuchi K, Nakajima Y, Hiasa Y, Junger WG, Hoyt DB, Ohnishi T (2003) Hypertonic saline resuscitation reduces apoptosis and tissue damage of the small intestine in a mouse model of hemorrhagic shock. Shock 20:23–28

    Article  PubMed  Google Scholar 

  7. Childs EW, Udobi KF, Hunter FA, Dhevan V (2005) Evidence of transcellular albumin transport after hemorrhagic shock. Shock 23:565–570

    CAS  PubMed  Google Scholar 

  8. Davidson MT, Deitch EA, Lu Q, Hasko G, Abungu B, Nemeth ZH, Zaets SB, Gaspers LD, Thomas AP, Xu DZ (2004) Trauma-hemorrhagic shock mesenteric lymph induces endothelial apoptosis that involves both caspase-dependent and caspase-independent mechanisms. Ann Surg 240:123–131

    Article  PubMed  PubMed Central  Google Scholar 

  9. Therade-Matharan S, Laemmel E, Duranteau J, Vicaut E (2004) Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC. Am J Physiol Regul Integr Comp Physiol 287:R1037–R1043

    Article  CAS  PubMed  Google Scholar 

  10. Savoye G, Tamion F, Richard V, Varin R, Thuillez C (2005) Hemorrhagic shock resuscitation affects early and selective mesenteric artery endothelial function through a free radical-dependent mechanism. Shock 23:411–416

    Article  CAS  PubMed  Google Scholar 

  11. van Leeuwen ALI et al (2020) In vitro endothelial hyperpermeability occurs early following traumatic hemorrhagic shock. Clin Hemorheol Microcirc 75:121–133

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed W. Childs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Williams, T.R., Childs, E.W. (2024). Evaluation of Mesenteric Microvascular Hyperpermeability Following Hemorrhagic Shock Using Intravital Microscopy. In: Tharakan, B. (eds) Vascular Hyperpermeability. Methods in Molecular Biology, vol 2711. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3429-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3429-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3428-8

  • Online ISBN: 978-1-0716-3429-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics