Skip to main content

Aptamer Conjugated RNA/DNA Hybrid Nanostructures Designed for Efficient Regulation of Blood Coagulation

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2709))

Abstract

Disruptions to the hemostatic pathway can cause a variety of serious or even life-threatening complications. Situations in which the coagulation of blood has become disturbed necessitate immediate care. Thrombin-binding aptamers are single-stranded nucleic acids that bind to thrombin with high specificity and affinity. While they can effectively inhibit thrombin, they suffer from rapid degradation and clearance in vivo. These issues are resolved, however, by attaching the therapeutic aptamer to a nucleic acid nanostructure. The increased size of the nanostructure-aptamer complex elongates the post-infusion half-life of the aptamer. These complexes are also immunoquiescent. A significant benefit of using nucleic acids as anticoagulants is their rapid deactivation by the introduction of a nanostructure made fully from the reverse complement of the therapeutically active nanostructure. These advantages make nanoparticle conjugated antithrombin aptamers a promising candidate for a rapidly reversible anticoagulant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ke W, Chandler M, Cedrone E, Saito RF, Rangel MC, De Souza JM et al (2022) Locking and unlocking thrombin function using Immunoquiescent nucleic acid nanoparticles with regulated retention in vivo. Nano Lett 22(14):5961–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M et al (2019) Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13(11):12301–12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dupont DM, Thuesen CK, Bøtkjær KA, Behrens MA, Dam K, Sørensen HP et al (2015) Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites. PLoS One 10(3):e0119207

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krissanaprasit A, Key CM, Froehlich K, Pontula S, Mihalko E, Dupont DM et al (2021) Multivalent aptamer-functionalized single-strand RNA origami as effective, target-specific anticoagulants with corresponding reversal agents. Adv Healthc Mater 10(11):2001826

    Article  CAS  Google Scholar 

  5. Chan MY, Rusconi CP, Alexander JH, Tonkens RM, Harrington RA, Becker RC (2008) A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J Thromb Haemost 6(5):789–796

    Article  CAS  PubMed  Google Scholar 

  6. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG, Lin M et al (2006) First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology. Circulation 114(23):2490–2497

    Article  CAS  PubMed  Google Scholar 

  7. Woodruff RS, Sullenger BA (2015) Modulation of the coagulation Cascade using aptamers. Arterioscler Thromb Vasc Biol 35(10):2083–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker R, Povsic T, Cohen MG, Rusconi C, Sullenger B (2010) Nucleic acid aptamers as antithrombotic agents: opportunities in extracellular therapeutics. Thromb Haemost 103(3):586–595

    Article  CAS  PubMed  Google Scholar 

  9. Zavyalova E, Samoylenkova N, Revishchin A, Golovin A, Pavlova G, Kopylov A (2014) Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model. PLoS ONE 9(9):e107113

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mayer G, Rohrbach F, Pötzsch B, Müller J (2011) Aptamer-based modulation of blood coagulation. Hamostaseologie 31(04):258–263

    Article  CAS  PubMed  Google Scholar 

  11. Vaganov AA, Taranushenko TE, Luzan NA, Shchugoreva IA, Kolovskaya OS, Artyushenko PV et al (2022) Aptamers regulating the hemostasis system. Molecules 27(23):8593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gahlon HL, Sturla SJ (2013) Hydrogen bonding or stacking interactions in differentiating duplex stability in oligonucleotides containing synthetic nucleoside probes for alkylated DNA. Chem Eur J 19(33):11062–11067

    Article  CAS  PubMed  Google Scholar 

  13. Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M et al (2014) Multifunctional RNA nanoparticles. Nano Lett 14(10):5662–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  PubMed  Google Scholar 

  15. Kretz CA, Stafford AR, Fredenburgh JC, Weitz JI (2006) HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by Prothrombinase. J Biol Chem 281(49):37477–37485

    Article  CAS  PubMed  Google Scholar 

  16. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566

    Article  CAS  PubMed  Google Scholar 

  17. Di Cera E (2008) Thrombin. Mol Asp Med 29(4):203–254

    Article  Google Scholar 

  18. Potter TM, Rodriguez JC, Neun BW, Ilinskaya AN, Cedrone E, Dobrovolskaia MA (2018) In vitro assessment of nanoparticle effects on blood coagulation. Methods Mol Biol 1682:103–124

    Article  CAS  PubMed  Google Scholar 

  19. Lakna: difference between intrinsic and extrinsic pathways in blood clotting. https://pediaa.com/difference-between-intrinsic-and-extrinsic-pathways-in-blood-clotting/ (2018)

  20. STart4 standard operating procedure and training manual. Diagnostica Stago(June 2002)

    Google Scholar 

  21. HHS FDA/CDER/CVM. Bioanalytical method validation. Guidance for industry

    Google Scholar 

  22. Largy E, Mergny J-L, Gabelica V (2016) Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Springer, Cham, pp 203–258

    Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM139587 (to K.A.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill A. Afonin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rolband, L.A., Ke, W., Afonin, K.A. (2023). Aptamer Conjugated RNA/DNA Hybrid Nanostructures Designed for Efficient Regulation of Blood Coagulation. In: Afonin, K.A. (eds) RNA Nanostructures. Methods in Molecular Biology, vol 2709. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3417-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3417-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3416-5

  • Online ISBN: 978-1-0716-3417-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics