Skip to main content

Structure Determination of SH2–Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2705))

  • 313 Accesses

Abstract

The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu BA, Jablonowski K, Raina M et al (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868. https://doi.org/10.1016/j.molcel.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Sadowski I, Stone JC, Pawson T (1986) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6(12):4396–4408. https://doi.org/10.1128/mcb.6.12.4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu BA, Shah E, Jablonowski K et al (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):ra83. https://doi.org/10.1126/scisignal.2002105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waksman G, Kumaran S, Lubman O (2004) SH2 domains: role, structure and implications for molecular medicine. Expert Rev Mol Med 6(3):1–18. https://doi.org/10.1017/S1462399404007331

    Article  PubMed  Google Scholar 

  5. Waksman G, Kuriyan J (2004) Structure and specificity of the SH2 domain. Cell 116(2 Suppl):S45–S48, 43 p following S48. https://doi.org/10.1016/s0092-8674(04)00043-1

    Article  CAS  PubMed  Google Scholar 

  6. Liu BA, Engelmann BW, Nash PD (2012) The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 586(17):2597–2605. https://doi.org/10.1016/j.febslet.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  7. Eck MJ, Shoelson SE, Harrison SC (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362(6415):87–91. https://doi.org/10.1038/362087a0

    Article  CAS  PubMed  Google Scholar 

  8. Waksman G, Kominos D, Robertson SC et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358(6388):646–653. https://doi.org/10.1038/358646a0

    Article  CAS  PubMed  Google Scholar 

  9. Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol 293(4):971–985. https://doi.org/10.1006/jmbi.1999.3190

    Article  CAS  PubMed  Google Scholar 

  10. Kaneko T, Joshi R, Feller SM, Li SS (2012) Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 10(1):32. https://doi.org/10.1186/1478-811X-10-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545. https://doi.org/10.1126/science.2821624

    Article  CAS  PubMed  Google Scholar 

  12. Vogel US, Dixon RA, Schaber MD et al (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335(6185):90–93. https://doi.org/10.1038/335090a0

    Article  CAS  PubMed  Google Scholar 

  13. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877. https://doi.org/10.1016/j.cell.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  14. Gideon P, John J, Frech M et al (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056. https://doi.org/10.1128/mcb.12.5.2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellis C, Moran M, McCormick F, Pawson T (1990) Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343(6256):377–381. https://doi.org/10.1038/343377a0

    Article  CAS  PubMed  Google Scholar 

  16. Moran MF, Polakis P, McCormick F et al (1991) Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol Cell Biol 11(4):1804–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moran MF, Koch CA, Anderson D et al (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci U S A 87(21):8622–8626. https://doi.org/10.1073/pnas.87.21.8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Cristofano A, Carpino N, Dunant N et al (1998) Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J Biol Chem 273(9):4827–4830. https://doi.org/10.1074/jbc.273.9.4827

    Article  PubMed  Google Scholar 

  19. Wagner MJ, Hsiung MS, Gish GD et al (2020) The Shb scaffold binds the Nck adaptor protein, p120 RasGAP, and Chimaerins and thereby facilitates heterotypic cell segregation by the receptor EphB2. J Biol Chem 295(12):3932–3944. https://doi.org/10.1074/jbc.RA119.009276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson D, Koch CA, Grey L et al (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250(4983):979–982

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan DR, Morrison DK, Wong G et al (1990) PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61(1):125–133. https://doi.org/10.1016/0092-8674(90)90220-9

    Article  CAS  PubMed  Google Scholar 

  22. Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16(13):3877–3888. https://doi.org/10.1093/emboj/16.13.3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu KQ, Settleman J (1997) Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J 16(3):473–483. https://doi.org/10.1093/emboj/16.3.473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heraud C, Pinault M, Lagree V, Moreau V (2019) p190RhoGAPs, the ARHGAP35- and ARHGAP5-encoded proteins, in health and disease. Cell 8(4):351. https://doi.org/10.3390/cells8040351

    Article  CAS  Google Scholar 

  25. Stiegler AL, Boggon TJ (2017) p190RhoGAP proteins contain pseudoGTPase domains. Nat Commun 8(1):506. https://doi.org/10.1038/s41467-017-00483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koch CA, Moran MF, Anderson D et al (1992) Multiple SH2-mediated interactions in v-src-transformed cells. Mol Cell Biol 12(3):1366–1374. https://doi.org/10.1128/mcb.12.3.1366-1374.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roof RW, Haskell MD, Dukes BD et al (1998) Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP-p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol Cell Biol 18(12):7052–7063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hernandez SE, Settleman J, Koleske AJ (2004) Adhesion-dependent regulation of p190RhoGAP in the developing brain by the Abl-related gene tyrosine kinase. Curr Biol 14(8):691–696. https://doi.org/10.1016/j.cub.2004.03.062

    Article  CAS  PubMed  Google Scholar 

  29. Bradley WD, Hernandez SE, Settleman J, Koleske AJ (2006) Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Mol Biol Cell 17(11):4827–4836. https://doi.org/10.1091/mbc.E06-02-0132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaber Chehayeb R, Wang J, Stiegler AL, Boggon TJ (2020) The GTPase-activating protein p120RasGAP has an evolutionarily conserved “FLVR-unique” SH2 domain. J Biol Chem 295(31):10511–10521. https://doi.org/10.1074/jbc.RA120.013976

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jaber Chehayeb R, Stiegler AL, Boggon TJ (2020) Correction: crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLoS One 15(2):e0229627. https://doi.org/10.1371/journal.pone.0229627

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang ZY, Maclean D, Thieme-Sefler AM et al (1993) A continuous spectrophotometric and fluorimetric assay for protein tyrosine phosphatase using phosphotyrosine-containing peptides. Anal Biochem 211(1):7–15. https://doi.org/10.1006/abio.1993.1224

    Article  CAS  PubMed  Google Scholar 

  33. Ozols J (1990) Amino acid analysis. Methods Enzymol 182:587–601. https://doi.org/10.1016/0076-6879(90)82046-5

    Article  CAS  PubMed  Google Scholar 

  34. McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394. https://doi.org/10.1107/S0907444911007281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Rachel Jaber Chehayeb and Jessica Wang. Kimberly Vish is acknowledged for helpful comments. This research was supported by 1R01NS117609 and 1R01GM138411 to T.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus J. Boggon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stiegler, A.L., Boggon, T.J. (2023). Structure Determination of SH2–Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP. In: Carlomagno, T., Köhn, M. (eds) SH2 Domains. Methods in Molecular Biology, vol 2705. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3393-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3393-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3392-2

  • Online ISBN: 978-1-0716-3393-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics