Skip to main content

Isolation and Characterization of Single-Domain Antibodies from Immune Phage Display Libraries

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2702))

Abstract

Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy KM, Weaver C (2016) Janeway’s immunobiology: ninth international, Student edn. Garland Science

    Google Scholar 

  2. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433 –455

    Article  CAS  PubMed  Google Scholar 

  4. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

    Article  CAS  PubMed  Google Scholar 

  5. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11(1):47–59

    Article  CAS  PubMed  Google Scholar 

  6. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775 –797

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19(5):921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM et al (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426

    Article  CAS  PubMed  Google Scholar 

  9. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038–1041

    Article  CAS  PubMed  Google Scholar 

  10. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554

    Article  CAS  PubMed  Google Scholar 

  11. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  CAS  PubMed  Google Scholar 

  12. Muyldermans S (2021) Applications of nanobodies. Annu Rev of Anim Biosci 9:21

    Article  Google Scholar 

  13. Arbabi-Ghahroudi M (2017) Camelid single-domain antibodies: historical perspective and future outlook. Front Immunol 8:1589

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M et al (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198(3):157–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holliger P, Winter G (1993) Engineering bispecific antibodies. Curr Opin Biotechnol 4(4):446–449

    Article  CAS  PubMed  Google Scholar 

  16. McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A et al (2022) Programmable attenuation of antigenic sensitivity for a Nanobody-based EGFR chimeric antigen receptor through hinge domain truncation. Front Immunol 13:864868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henry KA, Tanha J, Hussack G (2015) Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 28(10):379–383

    Article  CAS  PubMed  Google Scholar 

  18. Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4(4):386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trempe F, Rossotti MA, Maqbool T, MacKenzie CR, Arbabi-Ghahroudi M (2022) Llama DNA immunization and isolation of functional single-domain antibody binders. Methods Mol Biol 2446:37 –70

    Article  PubMed  Google Scholar 

  20. Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D et al (2022) Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun Biol 5(1):933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baral TN, MacKenzie R, Arbabi GM (2013) Single-domain antibodies and their utility. Curr Protoc Immunol 103:2 17 1-2 57

    Google Scholar 

  22. Arbabi-Ghahroudi M, To R, Gaudette N, Hirama T, Ding W, MacKenzie R et al (2009) Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Protein Eng Des Sel 22(2):59–66

    Article  CAS  PubMed  Google Scholar 

  23. Rossotti MA, Henry KA, van Faassen H, Tanha J, Callaghan D, Hussack G et al (2019) Camelid single-domain antibodies raised by DNA immunization are potent inhibitors of EGFR signaling. Biochem J 476(1):39–50

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Sousa R (2012) Novel system for in vivo biotinylation and its application to crab antimicrobial protein scygonadin. Biotechnol Lett 34(9):1629–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maniatis T, Fritsch EF, Sambrook J, Sambrook J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory

    Google Scholar 

  26. Hussack G, Arbabi-Ghahroudi M, Mackenzie CR, Tanha J (2012) Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol 911:211 –239

    Article  CAS  PubMed  Google Scholar 

  27. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2009) Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol 502:341 –364

    Article  CAS  PubMed  Google Scholar 

  28. Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KK, MacKenzie R et al (2011) Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 286(11):8961–8976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rossotti MA, Pirez M, Gonzalez-Techera A, Cui Y, Bever CS, Lee KS et al (2015) Method for sorting and pairwise selection of nanobodies for the development of highly sensitive sandwich immunoassays. Anal Chem 87(23):11907–11914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hussack G, Ryan S, van Faassen H, Rossotti M, MacKenzie CR, Tanha J (2018) Neutralization of Clostridium difficile toxin B with VHH-fc fusions targeting the delivery and CROPs domains. PLoS One 13(12):e0208978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henry KA, van Faassen H, Harcus D, Marcil A, Hill JJ, Muyldermans S et al (2019) Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 71(4):307–320

    Article  CAS  PubMed  Google Scholar 

  32. Wernery U (2001) Camelid immunoglobulins and their importance for the new-born—a review. J Vet Med B Infect Dis Vet Public Health 48(8):561–568

    Article  CAS  PubMed  Google Scholar 

  33. Kabat EANIoHCU (1991) Sequences of proteins of immunological interest. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda

    Google Scholar 

  34. Barbas CF, Barbas CF, Burton DR, Scott JK, Silverman GJ (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Canada, Human Health Therapeutic Research Center. We gratefully acknowledge the excellent assistance of Sonia Leclerc for DNA sequencing.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Arbabi-Ghahroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rossotti, M.A., Trempe, F., van Faassen, H., Hussack, G., Arbabi-Ghahroudi, M. (2023). Isolation and Characterization of Single-Domain Antibodies from Immune Phage Display Libraries. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics