Skip to main content

Protein Tethering for Single-Molecule Force Spectroscopy

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

  • 946 Accesses

Abstract

Molecular manipulation by optical tweezers is a central technique to study the folded states of individual proteins and how they depend on interactions with molecules including DNA, ligands, and other proteins. One of the key challenges of this approach is to stably attach DNA handles in an efficient manner. Here, we provide detailed descriptions of a universal approach to covalently link long DNA tethers of up to 5000 base pairs to proteins with or without native cysteines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Killian JL, Ye F, Wang MD (2018) Optical tweezers: A force to be reckoned with. Cell 175(6):1445–1448. https://doi.org/10.1016/j.cell.2018.11.019

    Article  Google Scholar 

  2. Neupane K, Foster DAN, Dee DR, Yu H, Wang F, Woodside MT (2016) Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352(6282):239–242. https://doi.org/10.1126/science.aad0637

    Article  ADS  Google Scholar 

  3. Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R, Zachmann-Brand B, Mayer MP, Kramer G, Bukau B, Tans SJ (2016) Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539(7629):448–451. https://doi.org/10.1038/nature20137

    Article  ADS  Google Scholar 

  4. Yu H, Gupta AN, Liu X, Neupane K, Brigley AM, Sosova I, Woodside MT (2012) Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates. Proc Natl Acad Sci 109(36):14452–14457. https://doi.org/10.1073/pnas.1206190109

    Article  ADS  Google Scholar 

  5. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390):902–907. https://doi.org/10.1126/science.282.5390.902

    Article  ADS  Google Scholar 

  6. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409(6818):374–378. https://doi.org/10.1038/35053131

    Article  ADS  Google Scholar 

  7. Avellaneda MJ, Franke KB, Sunderlikova V, Bukau B, Mogk A, Tans SJ (2020) Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 74. https://doi.org/10.1038/s41586-020-2017-2

  8. Gross P, Farge G, Peterman EJ, Wuite GJ (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol 475:427–453. https://doi.org/10.1016/S0076-6879(10)75017-5

    Article  Google Scholar 

  9. Avellaneda MJ, Koers EJ, Minde DP, Sunderlikova V, Tans SJ (2020) Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Commun Chem 3(1). https://doi.org/10.1038/s42004-020-0267-4

  10. Naqvi MM, Avellaneda MJ, Roth A, Koers EJ, Roland A, Sunderlikova V, Kramer G, Rye HS, Tans SJ (2022) Protein chain collapse modulation and folding stimulation by GroEL-ES. Sci Adv 8(9):eabl6293. https://doi.org/10.1126/sciadv.abl6293

  11. Mashaghi A, Moayed F, Koers EJ, Kramer G, Mayer MP, Tans SJ (2021) https://doi.org/10.1101/2021.08.08.455546

  12. Mulla Y, Avellaneda MJ, Roland A, Baldauf L, Jung W, Kim T, Tans SJ, Koenderink GH (2022) Weak catch bonds make strong networks. Nat Mater 21(9):1019–1023. https://doi.org/10.1038/s41563-022-01288-0

    Article  ADS  Google Scholar 

  13. Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28(20):7016–7018

    Article  ADS  Google Scholar 

  14. Avellaneda MJ, Koers EJ, Minde DP, Sunderlikova V, Tans SJ (2020) Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA-protein coupling. Commun Chem 3(1). https://doi.org/10.1038/s42004-020-0267-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander J. Tans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Avellaneda, M.J., Koers, E.J., Sunderlikova, V., Tans, S.J. (2024). Protein Tethering for Single-Molecule Force Spectroscopy. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics