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An Introduction to Magnetic Tweezers 

David Dulin 

Abstract 

Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechani-
cal interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field 
originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching 
the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical 
tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling 
long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 
1–10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility 
have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly 
applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, 
protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput 
single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and 
at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence 
spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative 
fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to 
magnetic tweezers including a description of the hardware, the theory behind force calibration, its 
spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of 
biological applications. 
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1 Brief History and Application of Magnetic Tweezers 

Magnetic tweezers use the magnetic field generated by permanent 
or electromagnets to apply force and/or rotate magnetic particles 
attached to a biological material, hence inducing a mechanical 
stress. The first biophysics assay using a magnetic actuator in a 
biological context was reported by Crick and Hughes in 1950 
[1], where magnetic particles placed in the cytoplasm of a cell 
were displaced to interrogate its viscoelastic properties. Magnetic 
tweezers have two main areas of application in biophysics: cellular 
mechanics and single-molecule biophysics. The force applied in
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cellular mechanics is usually relatively large (≫ 1 nN) [2, 3] com-
pared to the single-molecule world (≪100 pN) [4], and therefore 
their respective instrument designs differ significantly. Here, we 
solely focus on magnetic tweezers assays for single-molecule 
biophysics.
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In the 1990s, the Bustamante lab and the Croquette and 
Bensimon lab pioneered the modern version of single-mole-
cule magnetic tweezers capable of applying a constant force (even 
below 1 pN) and torque, enabling the interrogation of DNA 
mechanical properties at the single-molecule level [5, 6].Nowadays, 
magnetic tweezers are found in many labs around the world, and 
single-molecule studies have been performed on various protein-
nucleic acids systems [7], ranging from helicases [8] to DNA poly-
merases [7–9], topoisomerases and gyrases [10–13], cellular and 
viral RNA polymerases [14], nucleoprotein filaments [15–18], and 
the mechanical stability of protein folding and protein-ligand inter-
actions [19–23]. The simplicity and the robustness of the technique 
make it a powerful single-molecule force spectroscopy assay that 
has become more and more popular in the academic community. 

2 Description of a Magnetic Tweezers Apparatus 

Magnetic tweezers for single-molecule studies are composed of a 
collimated light source located above a magnetic field source (e.g., 
permanent magnets) that is mounted on top of a flow cell in which 
super-paramagnetic beads (simply coined magnetic beads from 
now on) are tethered to the flow cell coverslip surface by a biomol-
ecule (Fig. 1a). The magnetic beads are imaged using an inverted 
microscope onto a camera, which enables the tracking of their 
three-dimension position as a function of time. The latest comple-
mentary metal-oxide-semiconductor (CMOS) cameras enable both 
high-throughput (Fig. 1b) [24–27] and high-speed measurements 
[28–30]. The vertical and angular position of the magnets is 
adjusted using linear motors to vary the force (Fig. 1c) and the 
torque (Fig. 1d), respectively, applied to the biomolecule. The 
inverted microscope body may be either custom build or bought 
commercially. Given its simple design, the custom body presents 
only a mild difficulty to produce and is mechanically more stable. 

2.1 Magnet 

Configuration 

Different configurations have been used in magnetic tweezers 
experiments to modulate how force and torque are applied 
[15]. The most standard configuration uses a pair of cubic perma-
nent magnets, being either vertically (Fig. 1a, c, and d) or horizon-
tally aligned [31]. While the gap between the magnets gives access 
to the light source, it also modulates the applied force: a smaller 
gap results in a larger maximum force but reduces the surface 
area that experiences a homogenous force field [32, 33]. The



two-permanent magnet cubes configuration strongly clamps the 
magnetic bead in rotation, which precludes specific applications, 
e.g., directly measuring the torsional stiffness of a soft biomolecule 
such as DNA. Alternative magnet geometries have therefore been 
developed using either a single cylindrical magnet [34] or addition-
ally having a small side magnet attached to it to angularly trap the 
magnetic bead mildly [35, 36]. These methods have been reviewed 
in detail in Ref. [15]. 
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Fig. 1 Magnetic tweezers for single-molecule applications. (a) Schematic of a magnetic tweezers instrument 
(Adapted from Ref. [61]). (b) Field of view of a high-throughput magnetic tweezers assay, where ~500 
magnetic beads of 2.8 μm diameter can be followed simultaneously (50× magnification, 120 nm pixel size) 
(Adapted from Ref. [49]). (c, d) Force and torque spectroscopy, respectively, of a single nucleic acid molecule 
using magnetic tweezers. The nucleic acid molecule is attached to the magnetic bead via a biotin-streptavidin 
bond, and to the surface via digoxigenin-antidigoxigenin attachment. Biotin and digoxigenin molecules are 
inserted nonspecifically during the synthesis of the nucleic acid handles that are subsequently ligated to the 
main nucleic acid strand (Adapted from Ref. [51])
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2.2 Illumination Different light sources have been used to illuminate the sample. A 
source is chosen to be spatially and temporally coherent, which 
generates many diffraction rings with a good contrast to enable 
an excellent tracking resolution. Light-emitting diodes (LEDs) are 
a simple solution that provide a good temporal coherence (~10 nm 
spectral dispersion, full width at half maximum), are easily colli-
mated using a high numerical aperture aspherical lens, and provide 
enough light intensity to image the beads in standard image acqui-
sition frequency (50–100 Hz) (Fig. 1a). To achieve high-speed 
image acquisition (≥ kHz), a high photon flux through the sample 
is required. Unfortunately, LEDs can hardly satisfy this require-
ment. With a noncoherent light source, a high flux may be achieved 
using a fiber-coupled arc lamp in combination with a spectral filter 
[30, 37]. Coherent sources such as laser diodes and super-
luminescent diodes also enable an efficient collection and collima-
tion of the output light onto the sample [38]. This enables short 
camera shutter times and therefore high image acquisition rates. 
However, these coherent sources have the shortcoming of creating 
spurious speckle patterns in the field of view. Dark field illumina-
tion, i.e., by blocking the zero-order light pathway, has recently 
demonstrated the best to date resolution by reducing the back-
ground noise significantly [39]. 

2.3 Bead Position 

Tracking Algorithm 

To follow biomolecular reactions with magnetic tweezers, one must 
precisely track the magnetic bead’s position in three dimensions. To 
this end, different algorithms have been developed, all using the 
diffraction pattern originating from the out-of-focus micron-sized 
beads (Fig. 2a–c). A region of interest around the bead is defined a 
priori to indicate which area of the camera image contains single, 
insolated beads (Fig. 2a, b). A lookup table is acquired before the 
start of the experiment by capturing a diffraction pattern of the bead 
at different objective positions along the z-axis (Fig. 2a) 
[40, 41]. The objective is displaced using a high-resolution piezo 
stage in steps of ~50–100 nm (Fig. 1a). To determine the bead’s 
position in the (x,y)-plane, a rough estimate is obtained from a center 
of mass, followed by a cross-correlation algorithm (Fig. 2d). More 
sophisticated versions of this tracking algorithm have been devel-
oped, such as the quadrant interpolation method [25, 42]. To deter-
mine the axial position (z-axis), the diffraction pattern of the 
magnetic bead at any given frame is compared to the lookup table 
using a squared error metric. Sub-plane resolution is then obtained 
by a polynomial fit of the resulting error curve (Fig. 2a). Because of 
the simplicity of these tracking algorithms, hundreds of beads may be 
followed in parallel and in real-time using modern GPUs to perform 
the calculation [25, 30].
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Fig. 2 Bead localization in a magnetic tweezers experiment. (a) Left, diffraction 
pattern of a 3 μm diameter reference bead attached to the surface of a coverslip 
at different distances from the bead to the microscope objective’s focal plane 
along the z-axis. Right, a lookup table built up from radial intensity profiles 
across the center of the images of the diffraction pattern taken at different focal 
plane positions spaced by 50 nm intervals. (b, c) Diffraction pattern and intensity 
profile along the x-axis (black line). (d) Autocorrelation function (ACF) between 
two profiles as in (b) separated by 10 pixels (gray). The maximum of ACF is 
indicated by the arrow
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2.4 Temperature 

Control 

Enzymatic reactions are sensitive to temperature fluctuations and 
follow the Arrhenius law: 

k Tð Þ=Ae -Ea=kBT , ð1Þ 
where k is the forward reaction rate constant, A is a pre-exponential 
factor, Ea is the activation energy, kB the Boltzmann constant, and 
T the temperature [43]. It is therefore of great importance to 
precisely control the temperature in the flow chamber. Several 
articles have been reported on establishing a temperature control 
on the flow chambers [44–46]. Simulation and data have clearly 
demonstrated that the main heat sink is the oil immersion objective 
[45], which directly contacts with the glass coverslip area where the 
reaction occurs. In conclusion, controlling the temperature at the 
objective enables a precise control of the temperature of the reac-
tion (±0.1 °C), which can be achieved using a simple device com-
mercially available from Thorlabs [46]. 

2.5 Surface 

Functionalization and 

Nucleic Acid Construct 

Fabrication 

Magnetic tweezers are a surface-based technique (Fig. 1a); there-
fore, the flow chamber’s glass surface should be treated with care to 
prevent nonspecific attachment to the surface of either the mag-
netic beads or the biomolecules of interest. Different types of 
surface functionalization have been developed, such as polyethyl-
ene glycol (PEG) [47, 48], nitrocellulose [49], and lipid bilayer 
[50]. The last two are being described in detail in Chapter 21. The 
type of attachment is of great importance and therefore defines the 
methodology to generate the tether. The standard method of 
tethering the magnetic beads relies on fabricating nucleic acids 
containing both a biotin handle on one end, to attach the strepta-
vidin coated bead, and a digoxigenin (dig) handle on the other end 
to attach the nucleic acid to anti-digoxigenin (anti-dig) antibodies 
adsorbed to the flow chamber’s glass surface [51]. Such labels are 
introduced when generating the nucleic acid by adding dig- or 
biotin-labeled UTP to the nucleotide sets. While biotin-
streptavidin forms a very stable bond, the dig-anti-dig bond is 
much weaker and not suitable for high-force or long experiments, 
even when using glutaraldehyde to cross-link proteins to the nitro-
cellulose surface [52]. For such experiments, covalent attachment is 
preferred to replace the dig-anti-dig bond using either a PEG 
functionalized surface with covalent chemistry to attach the bio-
molecule to the surface [47, 48] or a direct attachment [20], 
providing a tether with a much longer tether surface attachment 
lifetime . 

DNA and RNA construct fabrication rely either on specific 
ligation of double-stranded ends (Fig. 3a, b), annealing single-
stranded nucleic acids, or a combination of both. Very detailed 
protocols can be found in several method articles [51–56], and 
this topic will therefore not be further discussed here.

https://doi.org/10.1007/978-1-0716-3377-9_21


An Introduction to Magnetic Tweezers 381

Fig. 3 DNA construct fabrication for single-molecule force spectroscopy experiments. (a) Steps in synthesizing 
double-stranded DNA constructs. A plasmid is digested to generate a stem. Handles labeled with either biotins 
(BIO) or digoxigenins (DIG) are generated by PCR using λ phage DNA as a template and by adding either 
bio-dUTP or dig-dUTP in the reaction solution. The handles are purified, digested, and ligated to the stem. (b) 
Similar approach as in (a) to fabricate a DNA hairpin. The different segments are produced by PCR digestion 
and ligated together to shape as a hairpin 

3 Physical Principles 

3.1 Force and Torque 

Origin 

Magnetic tweezers can apply forces between a femto-Newton 
(fN) and a nano-Newton (nN) [4], which depends on the magnetic 
bead size (i.e., the total amount of magnetic content) and the 
magnet configuration. In the configuration described in Fig. 1a, 
reducing the gap between the two magnets increases the force. 
Because of the very large force range accessible, magnetic tweezers 
have been applied to investigate very different biomolecular sys-
tems. The force experienced by a magnetic particle in a magnetic 
field is described by: 

F 
→ 

mag = 
1 
2 
∇ 
→ 

m
→ 

sat � B 
→ 

, ð2Þ 
→ 

where F mag is the magnetic force, m
→ 

sat is the saturated magne-
tization of the particle, and B 

→ 
is the magnetic field [32]. Interest-

ingly, the magnetic force is directly proportional to the gradient of 
the magnetic field, not its magnitude. 

One of the key aspects of magnetic tweezers is their ability to 
apply torque to the tether [6, 57], and torque spectroscopy was 
performed on many different complexes, e.g., double-stranded



nucleic acids and nucleoprotein filaments [15]. The magnetic beads 
are made of super-paramagnetic nanoparticles embedded in a latex 
matrix, and therefore their magnetization should align with the 
magnetic field. However, an asymmetry in the nanoparticle spatial 
organization induces an anisotropy in m

→ 
sat, with a minor compo-

nent m
→ 

0 not aligned with B 
→ 

[58]. This induces a torque Γ 
→ 

on the 
bead, which is derived from: 
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Γ 
→ 
= m→ 

0 × B 
→ 
: ð3Þ 

The torque response of the biomolecule is negligible in respect 
to Γ 

→ 
. Hence, rotating the magnets induces a rotation of the mag-

netic bead, thereby transferring torque to the coilable tether. An 
example of coilable tether is a fully double-stranded nucleic acid 
molecule with multiple attachment points at both ends (Fig. 1a). 
To measure the torque response of the biomolecule, and therefore 
its torsional stiffness and related mechanical properties, different 
magnet configurations have been developed to reduce the magni-
tude of Γ 

→ 
, such as the magnetic torque tweezers [35]. 

3.2 Force Calibration The force Fmag may be calibrated from Eq. (1), by using msat (from 
the factory specifications of the magnetic beads) and spatially char-
acterizing the magnetic field generated by the magnets with a Hall 
probe [32]. However, this method is not the preferred one, as it 
relies on parameters measured externally for a given batch of beads. 
Therefore, in situ force calibration methods that rely on parameters 
directly measured in the magnetic tweezers assay are preferred 
[59]. To this end, the theory relating the force as a function of 
the tethered magnetic bead lateral fluctuations is derived below. 
The force may therefore be extracted from measuring such 
fluctuations. 

The position of a tethered magnetic bead experiencing a force 
Fmag is best described as an inverted pendulum (Fig. 4a, b) [6, 60] 
with two representative cases of pendulum lengths coined short 
(Fig. 4a) and long pendulum (Fig. 4b), respectively. In the former 
case, the fluctuation in position along the x-axis is pinned by the 
magnetic field B 

→ 
(Fig. 4a), and the length of the pendulum is 

therefore the length of the tether Lext. In the latter case, the 
fluctuation in position of the bead along the y-axis is not con-
strained by the magnetic field (Fig. 4a), and the length of the 
pendulum is therefore Lext + R, where R is the magnetic bead 
radius. 

Considering the short pendulum case, the small displacement 
δx from the equilibrium position caused by the collisions with the 
water molecules (Fig. 4c), i.e., the Brownian motion, induces a 
restoring force that can be described as: 

F restoring = kxδx, ð4Þ



h i
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Fig. 4 Force calibration in a magnetic tweezers instrument. (a, b) Schematic of the tethered magnetic bead 
position fluctuations along either (a) the x-axis (short pendulum) or (b) the y-axis (long pendulum). (c) 
Schematic of the forces exerted on the magnetic bead in the short pendulum configuration. (d) Position of 
a magnetic bead along the x-axis against the y-position (left) and time (right). Data taken at three different 
forces. (e) Force calibration for M270 (blue, 2.8 μm diameter) and MyOne (red, 1 μm diameter) magnetic 
beads as a function of the distance of the magnets to the flow chamber (Adapted from Ref. [61]) 

where kx is the trap stiffness along the x-axis. Therefore, 

F restoring =Fmag � sin θð Þ=Fmag � δx=Lext, ð5Þ 
and 

kx =Fmag=Lext, ð6Þ 
where θ is the angle spanned by the tether when the bead is at its 
current and equilibrium positions, and Lext is the length of tether. 
At small θ, the potential energy landscape Ux is quadratic [60], i.e., 

U x = 1=2ð Þ � kxδx2 , ð7Þ 
and we can therefore apply the equipartition theorem 
( Ux = (1/2) ∙ kBT) on Eq. (7), and we obtain:



ÞÞ
ÞÞ

384 David Dulin

hδx2i= kBT =kx = kBT � Lext=Fmag, ð8Þ 
and, by extension, for the long pendulum case: 

δy2 = kBT =ky = kBT � Lext þ Rð Þ=Fmag: ð9Þ 
Equation (8) and (9) directly link the applied force with the 

fluctuations in the lateral position of the bead and the tether length 
(Fig. 4d). Both are parameters that one can easily retrieve from 
experiments to enable a direct force calibration as a function of the 
distance of the magnets from the magnetic bead (Fig. 4e) [61, 62]. 

To provide an accurate force calibration, the lateral fluctuation 
of the bead must be measured accurately to not overestimate the 
force (Eqs. 8 and 9). To this end, one should make sure the image 
acquisition does not overly integrate (meaning average) the mag-
netic bead position fluctuation [61]. From the equation of motion 
of the magnetic bead experiencing Fmag, we are able to extract the 
characteristic time scale of the bead: 

t c,x = γ=kx =6πηRLext=Fmag and t c,y = γ=ky 
=6πηR Lext þ Rð Þ=Fmag, ð10Þ 

where γ is the drag coefficient, η the viscosity of the solution 
(typically water, i.e., ~10-3 Pa.s), and R the radius of the magnetic 
bead and defines the time during which the bead has explored the 
trap. For Lext ≤ R, the drag coefficient must be corrected to include 
the effect of the surface, as described by the Faxén law [63]: 

γFaxen =6πηR= 1-9=8 R= RþLextð Þð Þþ1=2 R= RþLextð Þð Þ3 -57=100 R= RþLextðð 4 

þ1=5 R= RþLextð Þð Þ5þ7=200 R= RþLextð Þð Þ11 -1=25 R= RþLextðð 12 , 

ð11Þ 
hδx2i averages away toward a measured value hδx2imeas as a 

function of the camera shutter time τsh and tc, x as 

δx2 
meas 

= 2kBT =πkxð Þ arctan 4πt c,x=τsh : ð12Þ 
To minimize the error in the force due to camera image blur-

ring, we must minimize the difference between hδx2i and hδx2imeas. 
For example, to measure Fmag with a 10% error due to camera 
image blurring, τsh must be at least four times smaller than tc, x 
[61]. How feasible is this in practice? Most large chip CMOS 
cameras acquire images with a frequency fac~10 - 100 Hz, while 
the characteristic time for a Lext = 1 μm, R = 1.4 μm and 
Fmag = 10 pN (typical experimental conditions) is tc, x~0.03 s, 
i.e., similar to τsh for zero-dead time image acquisition ( fac~1/τsh). 
In such case, one may use longer DNA tethers to increase tc, x in 
respect of τsh and extract a calibration table for Fmag as a function of 
the magnets distance to the magnetic bead [59]. However, this 
only works for magnetic beads with a small dispersion in magnetic 
content, hence in force, such as the Dynabeads M-270 
(R = 1.4 μm) and MyOne (R = 0.5 μm) magnetic beads from



Invitrogen. For shorter tethers or higher forces, one may use a very 
fast camera, i.e., fac in the kilohertz range, or use a nonzero dead 
time acquisition, i.e., τsh ≪ 1/fac [59, 61]. The former is not 
available for all camera models and only when using a small field 
of view [28–30].The latter is easily programmable in most cameras 
without compromising the field of view [61]. Another possibility is 
to correct hδx2imeas for the camera image blurring, either in the 
frequency or time domain [59, 64]. This works well for τsh/2 < tc, 
x < τsh/4 [60], and packages in MATLAB and Python are available 
to perform such calibrations [59, 65]. These strategies however fail 
to perform accurate force calibration for very short tethers, as the 
rotation of the bead induced by the magnetic field pinning by the 
magnetic bead must be accounted for [66, 67]. Similar strategies to 
calibrate the force may also be applied to acoustic force spectros-
copy (AFS) [68], as the tethered bead is described by a similar 
model (i.e., the inverted pendulum). 
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3.3 Estimating the 

Spatiotemporal 

Resolution of Magnetic 

Tweezers 

The main parameters measured in magnetic tweezers experiments 
are the change in the tether’s extension Lext due to either a mechan-
ical response of the tether or an enzymatic activity modifying the 
tether length. It is therefore essential to determine the noise ampli-
tude along the z-axis. The spatiotemporal resolution in a magnetic 
tweezers assay depends on the tracking and thermal noise as 
follows: 

δztoth i= δztr 2 þ δzth 2: ð13Þ 

3.3.1 Tracking 

Resolution and Stability 

The tracking resolution is defined by the hardware (microscope 
objective magnification, numerical aperture, pixel size and light 
intensity) and the algorithm used. To experimentally evaluate δztr, 
the Allan deviation (AD) is particularly useful [28, 64, 69] 
(Fig. 5a). The AD of a particle position along the, e.g., z-axis, is 
defined as follows: 

σAD τð Þ= 
1 
2 

zτ,jþ1 - zτ,j 
2 

with zτ,j = 
1 
τ 

τ jþ0:5ð Þ  

τ j -0:5ð Þ  
z tð Þdt , ð14Þ 

where τ defines both the time between consecutive samples and the 
time over which the sample is averaged. Simply put, the AD is 
one-half the average difference in position between consecutive 
intervals of duration τ, averaged over all intervals of duration τ. 
For a bead stuck to the surface, we observe two regimes (Fig. 5a): 
AD initially decreases as 1= τ

p 
, indicating how the frame-to-frame 

uncorrelated noise averages out, and the AD subsequently reaches a 
lower bound and rises again due to long timescale drift dominating 
the noise (e.g., mechanical drift, tracking algorithm bias). To 
improve the stability during the measurement, the mechanical 
drift is corrected by subtracting the position of a reference bead



fixed to the flow chamber surface from the position of the magnetic
bead (Figs. and ) [ ]. The resolution of the bead position
tracking may be further improved by setting an autofocus locked
onto the position of a reference bead and adjusting the objective’s

285a1a
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Fig. 5 Spatiotemporal resolution of a magnetic tweezers instrument. (a) Allan deviation (AD) of the z-axis 
position of a 3 μm diameter surface-attached polystyrene reference bead (blue), subtracted to another 
reference bead (RS, orange), and using autofocus (AF, green). The data were acquired using a 100× objective 
magnification and at 58 Hz acquisition frequency. (b) Raw (gray) and 1 Hz low-pass filtered (dark gray) trace 
acquired while using the autofocus and drift corrected by subtracting the z-position of another reference bead 
(green in (a)) (Adapted from Ref. [49]). (c, d) Height of a (c) reference bead and (d) DNA-tethered bead while 
using the piezo stage to move the sample by the increments indicated on top of the panel (in nm) (Adapted 
from Ref. [69]). (e, f) Magnetic tweezers assay to monitor single-nucleotide steps of Upf1 helicase when 
unwinding a DNA hairpin (Adapted from Ref. [39])



ÞÞ

focal plane’s position using a high-resolution piezo stage and 
increase the τ at which AD rises again by decreasing the negative 
impact of the tracking algorithm bias [49] (Fig. 5a, b). For a 
magnetic tweezers instrument with 100× magnification, 1.25 
numerical aperture microscope objective, and 60 nm pixel size in 
the image plane, tracking resolutions for a single image of δztr~1 nm 
and δztr~0.3 nm are achievable for 1 μm and 3 μm diameter beads, 
respectively (using the quadrant interpolation algorithm) [69].
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The tracking resolution may be improved by acquiring data at 
high fac and subsequently averaging out the tracking noise by 
integrating the bead position over N frames. This results in a 
reduction of the tracking noise by a factor of N

p 
, enabling the 

observation of steps as small as 0.3 nm for a reference bead with the 
standard magnetic tweezers configuration (Fig. 5c) [28–30, 69] 
and for a tethered magnetic bead (Fig. 5d) [69]. Recent develop-
ments in magnetic tweezers instrumentation, specifically in the 
illumination and imaging path, have enabled the first observation 
of single-nucleotide translocation steps by a helicase unwinding a 
DNA hairpin (Fig. 5e, f) [39]. 

3.3.2 Thermal Noise The thermal noise depends on the tether stiffness, kz, as follows: 

δz2 th = kBT =kz, ð15Þ 
where 

kz = 
∂Fmag Lextð Þ  

∂Lext 
= 

kBT 
2LPLC 

2þ 1-
Lext 

LC 
ð16Þ 

with LP and LC being the persistence and the contour length of the 
tether, respectively, assuming the response of the tether to Fmag is 
well-described by the inextensible Worm-like chain model 
[70]. Similar to hδx2imeas, the thermal noise is integrated by the 
camera during the image acquisition. Hence, 

δz2 th meas 
= 2kBT =πkzð Þ  arctan 4πt c,z=τsh ð17Þ 

with tc, z = γ/kz. For Lext ≤ R, γ must be corrected to account for 
the coverslip surface effect using Brenner’s approximation [63]: 

γBrenner =6πηR= 1-9=8 R= R þ Lextð Þð Þ þ  3=8 R= R þ Lextðð 3

-1=4 R= R þ Lextð Þð Þ4 , 
ð18Þ 

Ideally, the resolution of the magnetic tweezers assay is limited 
by the thermal noise, which can be estimated using Eqs. 16 and 17. 
An accurate simulation of the overall measurement noise for a 
tethered magnetic bead in a magnetic tweezers assay has been 
described by Burnham and colleagues [71], which is useful to



estimate the spatiotemporal resolution for a given magnetic twee-
zers experiment. 
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Fig. 6 DNA supercoiling experiments using magnetic tweezers. Dynamic 
rotation-extension experiment on a 21 kbp long DNA tether at either 0.3 pN 
(gray) or 4 pN (black). At low force, both negative and positive supercoils induce 
plectonemes. At high force, positive supercoils induce plectonemes, while 
negative supercoils unwind the DNA tether. The arrow indicates the buckling 
transition at high force 

3.4 Using Torque 

Spectroscopy in 

Magnetic Tweezers 

One of the key aspects of magnetic tweezers is their ability to 
control the torque applied to a coilable biomolecule (Fig. 1d, 
Fig. 6) [6, 57]. This has been (and still is) used to investigate the 
mechanical response to torque of double-stranded nucleic acids 
[15, 72]. To enable torque spectroscopy, the nucleic acid must be 
topologically constrained, i.e., without free rotation point, such as a 
fully double-stranded DNA with multiple attachment points at 
both ends (Fig. 1d). The twist (Tw) and the writhe (Wr) define 
the supercoiled state of the molecule. The former is the number of 
times the molecule turns around itself, such as for the DNA double 
helix, and the latter is defined by the number of times the molecule 
winds over itself. The helical pitch for a relaxed DNA molecule is 
10.5 bp/turn and, therefore, the total twist in a relaxed DNA 
molecule (Tw0) is the number of base pairs divided by the helical 
pitch. The linking number (Lk), which is the sum of twist and 
writhe, is a topological invariant for a torsionally constrained mole-
cule, meaning 

Lk=Tw þ Wr= constant: ð19Þ 

For a torsionally relaxed DNA molecule, Wr= 0, so Lk0= Tw0. 
A molecule is said to be supercoiled when Lk ≠ Lk0. 

In addition, the supercoil density σ is a useful description of the 
torsional state of a molecule:
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σ = Lk-Lk0ð Þ=Lk0: ð20Þ 
Lext as a function of σ is often used to represent magnetic 

tweezers experiments investigating the response of double-
stranded nucleic acids to torsional stress. This provides an easy 
way to compare the torsional properties of DNA tethers of different 
lengths. 

Upon addition of positive turns to a torsionally relaxed mole-
cule, Lext remains constant at first, as the addition of twist is 
absorbed through deformation of the molecule (Fig. 6). In this 
regime, Tw > Tw0, Wr  = 0, and the torque Γ increase linearly with 
the number of turns N: 

Γ=C2πN=LC, ð21Þ 
where C is the torsional modulus of the molecule, e.g., C~90 kBT 
for DNA [35, 73–75]. This may be used to monitor the torque-
dependence of a specific DNA-protein interaction, e.g., RNA 
polymerase-promoter open complex formation by the bacterial 
RNA polymerase [76]. At the critical torque ΓC, the molecule’s 
extension suddenly decreases to form the first loop upon further 
addition of coiling to the DNA molecule (Fig. 6). This event is also 
called the buckling transition and is followed by a linear decrease in 
Lext with added turns [6, 77]. ΓC is given through having the 
energy to form a loop of radius RL being equal to the work done 
by the addition of one extra turn 2πΓC: 

ER =2πRLFmag þ πLPkBT =RL, ð22Þ 
Minimizing ER as a function of RL gives ΓC and the change in 

extension per superhelical turn Δz such as [73, 78]: 

ΓC = 2LPkBTFmag andΔz =2πRL = π 2LPkBT =Fmag, ð23Þ 
This model only describes Δz qualitatively, and more sophisti-

cated models have been derived to describe Δz more accurately 
[15, 31]. At high force and in the negative supercoil regime, it is 
more favorable for the DNA molecule to unwind than forming 
plectoneme, while the rotation-extension of a DNA molecule is 
symmetrical at low force, i.e., the tether forms plectonemes for 
both negative and positive supercoil addition (Fig. 6). 

4 Combining Magnetic Tweezers with Other Techniques 

Magnetic tweezers have been combined with fluorescence micros-
copy to enable simultaneous force/torque and fluorescence spec-
troscopy investigations. The preferred fluorescence approach is 
objective-based total internal reflection fluorescence microscopy 
(TIRFM), as it is a surface-based approach with a shallow excitation 
depth (~hundreds of nanometers), leaving the magnetic bead out



of the excitation volume. Two main configurations have been 
reported for such assay, using either a standard vertical magnet 
configuration (Fig. 7a) or a horizontal magnet configuration 
(Fig. 7b). In the former configuration, the magnets pull vertically 
on the magnetic bead, and vertical motion of a dye-labeled enzyme 
may be reported using the fluorescence channel and the exponen-
tial decay of the evanescent field of the TIRF excitation [79–82]. In 
the latter configuration, a magnetic force is applied sideways, which 
stretches the DNA molecule laterally, enabling transverse observa-
tion of displacements biomolecular objects (e.g., protein, plecto-
neme) [83–85]. These two configurations have different 
advantages. The first enables rapid modulation of the applied 
torque, as is done in the rotor bead assay developed by Bryant 
and colleagues [12]. A sideway configuration gives access to a 
higher localization precision of fluorescently labeled biomolecules 
moving along, e.g., a DNA tether [83–85]. Chapter 22 will discuss 
different configurations of magnetic tweezers combined with fluo-
rescence microscopy. Darkfield microscopy has been combined 
with magnetic tweezers in the rotor bead assay to use backscattered 
light from a gold nanoparticle as a tracker, which provides an 
excellent signal-to-noise ratio while minimizing the size of the 
object to track, and therefore gives access to a higher measurement 
bandwidth [86]. The combination of magnetic tweezers with opti-
cal tweezers has also been reported by Cees Dekker and 
colleagues [87]. 
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Fig. 7 Magnetic tweezers combined with total internal reflection fluorescence (TIRF) microscopy. (a) Vertically 
oriented attractive force and (b) horizontally oriented attractive force. The pink oval indicates a protein of 
interest labeled with a fluorescent dye (green sphere). In (a), the exponential decay of the evanescent field is 
used to localize the protein along the DNA, while in (b) the position is determined from direct localization in the 
plane of observation

https://doi.org/10.1007/978-1-0716-3377-9_22
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5 Applications of Magnetic Tweezers in Single-Molecule Biophysics 

Magnetic tweezers present many advantages to study biomolecules 
in vitro one at a time. They are a force clamp technique that enables 
force spectroscopy measurements from ~10 fN to ~1 nN [4], 
depending on the total amount of magnetic material in the bead. 
Because the distance between the magnetic bead and the magnets 
has to vary significantly (around 0.05 mm) to vary the force signifi-
cantly, magnetic tweezers can apply a constant force over very long 
measurement. This holds true even at low force (< 1 pN), unlike 
for an AFM or optical tweezers. Furthermore, the combination of a 
homogenous magnetic field over a very large field of view (~mm2 ) 
and commercially available magnetic beads with homogenous mag-
netic content enables high-throughput force spectroscopy mea-
surements at constant force with a small bead-to-bead variation in 
force (~10% standard deviation). For these reasons, magnetic twee-
zers have been applied to study protein folding and unfolding 
dynamics at a low constant force [19], such as the titin immuno-
globulin domain [23], talin and protein L [21], von Willebrand 
factor folding [20], protein-ligand interactions to interrogate 
either SARS-CoV-2 spike or ACE2 interactions (Fig. 8a, b) [88], 
and the rapamycin-mediated association between FKBP12 and 
FRB [22, 89]. 

Furthermore, the recent advances in tracking algorithms, illu-
mination, and imaging strategies have brought magnetic tweezers 
on par with optical tweezers in terms of their spatiotemporal reso-
lution. Additionally, the ability to perform high-throughput track-
ing in magnetic tweezers enables the in-depth characterization of 
mechanochemical pathways of translocating molecular motor. 
Examples include viral RNA polymerases (Fig. 8c, d) [26, 49, 
90–92], the bacterial RNA polymerase [93], the DNA polymerase 
[7, 8], helicases (Fig. 5c) [39, 44, 94–104], and the SMC complex 
[105, 106]. Magnetic tweezers have also enabled the characteriza-
tion of nucleoprotein filament formation or mechanical properties 
[107–110], protein-mediated DNA condensation [111, 112], and 
chromatin filament and nucleosome stability [113–117]. 

Magnetic tweezers are naturally well suited to perform torque 
spectroscopy experiments. This has been extensively used to inves-
tigate biological systems that induce a change in the linking number 
of a tethered coilable double-stranded nucleic acid. Topoisome-
rases remove the excess of negative or positive supercoils in the 
DNA molecule that naturally occur in the cell during DNA tran-
scription and replication [118]. Therefore, their activity is essential 
to maintain cellular homeostasis. Using magnetic tweezers to 
induce a large excess of supercoils to a DNA molecule has been 
used to investigate the mechanochemical cycle of topoisomerases 
[24, 119–124]. Cellular RNA polymerases have been extensively
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Fig. 8 Examples of magnetic tweezers applications in single-molecule biophysics. (a, b) Schematic and 
experimental traces showing the binding and dissociation kinetics of the SARS-CoV-2 spike protein RBD from 
the ACE2 receptor as a function of force. (b) The time-dependent traces reveal populations in the bound and 
dissociated states as a function of the applied force (Adapted from Ref. [88]). (c, d) Schematic and 
experimental traces of elongating SARS-CoV-2 core replication-transcription complexes. (d) The time-
dependent traces demonstrate rich dynamics with bursts of nucleotide addition interrupted by pauses of 
various durations (Adapted from Ref. [49]). (e, f) RNA polymerase (RNAP)-promoter open complex formation on 
a positively supercoiled DNA. Upon promoter opening, upon n positive supercoils addition, moving the bead 
downward by nΔz. The surface is passivated using a lipid-bilayer strategy. The trace in (f) shows the promoter 
alternating between a closed state (CS, promoter closed) and an open state (OS, RNAP-promoter open) 
(Adapted from Ref. [50])



investigated using magnetic tweezers. Indeed, they must open 
double-stranded DNA at the promoter site to form the RNA 
polymerase-promoter open complex and initiate transcription, 
which consequently removes ~1 turn of twist in the DNA molecule 
(the transcription bubble is 13–14 nt, and DNA makes one full turn 
every ~10.5 bp). Using the conservation of the linking number 
condition described above (Fig. 8e), many details in the mechanism 
of transcription initiation by cellular RNA polymerase have been 
revealed (Fig. 8f), such as the impact of torque on promoter open-
ing, the dynamics of transcription initiation and promoter escape as 
a function of the promoter sequence and salt concentration, the 
transcription start site selection, and R-loop formation during 
transcription [14, 50, 76, 125–129]. A similar approach was used 
to investigate Cas9 R-loop formation [130, 131]. The torque 
spectroscopy capabilities of magnetic tweezers have also been 
used to investigate the torsional properties and stability of chroma-
tin filaments [116, 132, 133] and nucleosome assembly [134– 
136], as well as other nucleoprotein filaments, such as those formed 
by Rad51, RecA, and H-NS [35, 137–141].
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6 Perspectives 

The unique advantages of magnetic tweezers, i.e., simplicity (and 
therefore low cost), stability, high parallelization and resolution, 
large force range, and torque spectroscopy, make it a very powerful 
technique. It has been established in many labs worldwide, with an 
ever-increasing demand. Only one company currently sells mag-
netic tweezers instruments (Mad City labs), and more could be 
done to have the technique more available at low cost. Currently, 
no open-source instrument design has been released or published, 
and CAD drawings would help democratizing magnetic tweezers. 
A software interface already exists [25], though in proprietary 
format (LabView, National Instruments), and efforts must be 
made to release an open-source interface in a nonproprietary lan-
guage, such as Python. The development of routines for data 
analysis in nonproprietary languages to help the analysis of complex 
dynamics of molecular motors will further support the democrati-
zation of magnetic tweezers with appropriate statistical tools to 
analyze single-molecule data. Altogether, these developments will 
bring magnetic tweezers and their application to a broader com-
munity. Lastly, there is no combined high-throughput single-
molecule force/torque and fluorescence spectroscopy assay avail-
able to date. The statistical power of such hydrid assay would 
potentiate the investigation of ever more complex biomolecular 
systems.
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