Skip to main content

Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release

  • Protocol
  • First Online:
Single Molecule Analysis

Abstract

In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages but also the evaluation of each physicochemical property which is able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter, we start revising some recipes for adsorbing protein shells on surfaces and how the geometrical dilation of tips can affect to the AFM topographies. This work also deals with the abilities of AFM to monitor TGEV coronavirus under changing conditions of the liquid environment. Subsequently, we describe several AFM approaches to study cargo release, aging, and multilayered viruses with single indentation and fatigue assays. Finally, we comment on a combined AFM/fluorescence application to study the influence of crowding on GFP packed within individual P22 bacteriophage capsids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng S, Liu Y, Crowley CS et al (2008) Bacterial microcompartments: their properties and paradoxes. BioEssays 30:1084–1095. https://doi.org/10.1002/bies.20830

    Article  Google Scholar 

  2. Guerra P, González-Alamos M, Llauró A et al (2022) Symmetry disruption commits vault particles to disassembly. Sci Adv 8:eabj7795. https://doi.org/10.1126/sciadv.abj7795

    Article  Google Scholar 

  3. Lai Y-T, Reading E, Hura GL et al (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065–1071. https://doi.org/10.1038/nchem.2107

    Article  Google Scholar 

  4. Wimmer E, Mueller S, Tumpey TM, Taubenberger JK (2009) Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 27:1163–1172. https://doi.org/10.1038/nbt.1593

    Article  Google Scholar 

  5. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. ASM Press, Washington, DC

    Google Scholar 

  6. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155. https://doi.org/10.1038/30211

    Article  ADS  Google Scholar 

  7. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869. https://doi.org/10.1242/jcs.03063

    Article  Google Scholar 

  8. Agirre J, Aloria K, Arizmendi JM et al (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101. https://doi.org/10.1016/j.virol.2010.09.034

    Article  Google Scholar 

  9. Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85:70–74. https://doi.org/10.1016/S0006-3495(03)74455-5

    Article  Google Scholar 

  10. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63:862. https://doi.org/10.1128/MMBR.63.4.862-922.1999

    Article  Google Scholar 

  11. Egan P, Sinko R, LeDuc PR, Keten S (2015) The role of mechanics in biological and bio-inspired systems. Nat Commun 6:7418. https://doi.org/10.1038/ncomms8418

    Article  ADS  Google Scholar 

  12. de Pablo PJ (2018) Atomic force microscopy of virus shells. In: Seminars in cell & developmental biology, vol 73. Academic Press, pp 199–208

    Google Scholar 

  13. Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188. https://doi.org/10.1006/jsbi.1997.3875

    Article  Google Scholar 

  14. Armanious A, Aeppli M, Jacak R et al (2016) Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 50:732–743. https://doi.org/10.1021/acs.est.5b04644

    Article  ADS  Google Scholar 

  15. Llauró A, Guerra P, Irigoyen N et al (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106:687–695. https://doi.org/10.1016/j.bpj.2013.12.035

    Article  Google Scholar 

  16. Ivanovska IL, de Pablo PJ, Ibarra B et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci 101:7600–7605. https://doi.org/10.1073/pnas.0308198101

    Article  ADS  Google Scholar 

  17. Llauró A, Luque D, Edwards E et al (2016) Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nanoscale 8:9328–9336

    Article  ADS  Google Scholar 

  18. Zeng C, Hernando-Perez M, Dragnea B et al (2017) Contact mechanics of a small icosahedral virus. Phys Rev Lett 119:038102. https://doi.org/10.1103/PhysRevLett.119.038102

    Article  ADS  Google Scholar 

  19. Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550. https://doi.org/10.1063/1.118639

    Article  ADS  Google Scholar 

  20. Kuznetsov Y, Gershon PD, McPherson A (2008) Atomic force microscopy investigation of vaccinia virus structure. J Virol 82:7551–7566. https://doi.org/10.1128/jvi.00016-08

    Article  Google Scholar 

  21. Vinckier A, Heyvaert I, D’Hoore A et al (1995) Immobilizing and imaging microtubules by atomic force microscopy. Ultramicroscopy 57:337–343. https://doi.org/10.1016/0304-3991(94)00194-r

    Article  Google Scholar 

  22. Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108. https://doi.org/10.1016/j.bpj.2011.01.008

    Article  Google Scholar 

  23. Roos WH (2018) AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol 73:145–152. https://doi.org/10.1016/j.semcdb.2017.07.044

    Article  Google Scholar 

  24. Ortega-Esteban A, Horcas I, Hernando-Perez M et al (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61

    Article  Google Scholar 

  25. Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci 103:4813–4818. https://doi.org/10.1073/pnas.0505628103

    Article  ADS  Google Scholar 

  26. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454. https://doi.org/10.6028/jres.102.030

    Article  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  Google Scholar 

  28. Tang J, Olson N, Jardine PJ et al (2008) DNA poised for release in bacteriophage ø29. Structure 16:935–943. https://doi.org/10.1016/j.str.2008.02.024

    Article  Google Scholar 

  29. Risco C, Antón IM, Enjuanes L, Carrascosa JL (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70:4773–4777

    Article  Google Scholar 

  30. Casanova L, Rutala WA, Weber DJ, Sobsey MD (2009) Survival of surrogate coronaviruses in water. Water Res 43:1893–1898. https://doi.org/10.1016/j.watres.2009.02.002

    Article  Google Scholar 

  31. Zink M, Grubmüller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96:1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028

    Article  Google Scholar 

  32. Ortega-Esteban Á, Mata CP, Rodríguez-Espinosa MJ et al (2020) Cryo-electron microscopy structure, assembly, and mechanics show morphogenesis and evolution of human picobirnavirus. J Virol 94:e01542–e01520. https://doi.org/10.1128/JVI.01542-20

    Article  Google Scholar 

  33. Landau Theory of Elasticity - 3rd Edition. https://www.elsevier.com/books/theory-of-elasticity/landau/978-0-08-057069-3?country=ES&format=print&utm_source=google_ads&utm_medium=paid_search&utm_campaign=spainshopping&gclid=CjwKCAiAv9ucBhBXEiwA6N8nYFtCfz0HTtRL1L1syWMEHTtv-UorKaSJ__wX7OwicfFg6RH2LwSclRoCE24QAvD_BwE&gclsrc=aw.ds. Accessed 12 Dec 2022

  34. Katen S, Zlotnick A (2009) The thermodynamics of virus capsid assembly. Methods Enzymol 455:395–417. https://doi.org/10.1016/S0076-6879(08)04214-6

    Article  Google Scholar 

  35. Ortega-Esteban A, Condezo GN, Pérez-Berná AJ et al (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–10833

    Article  Google Scholar 

  36. Martín-González N, Hernando-Pérez M, Condezo GN et al (2019) Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 47:9231–9242

    Article  Google Scholar 

  37. Cantero M, Carlero D, Chichón FJ et al (2022) Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cell 11:1759. https://doi.org/10.3390/cells11111759

    Article  Google Scholar 

  38. Yao H, Song Y, Chen Y et al (2020) Molecular architecture of the SARS-CoV-2 virus. Cell 183:730–738.e13. https://doi.org/10.1016/j.cell.2020.09.018

    Article  Google Scholar 

  39. Petrov AS, Boz MB, Harvey SC (2007) The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J Struct Biol 160:241–248. https://doi.org/10.1016/j.jsb.2007.08.012

    Article  Google Scholar 

  40. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Article  Google Scholar 

  41. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397. https://doi.org/10.1146/annurev.biophys.37.032807.125817

    Article  Google Scholar 

  42. Hernando-Pérez M, Lambert S, Nakatani-Webster E et al (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:1–8

    Article  Google Scholar 

  43. Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R et al (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434. https://doi.org/10.1038/srep01434

    Article  Google Scholar 

  44. Martín-González N, Delgado-Buscalioni R, de Pablo PJ (2021) Long-range cooperative disassembly and aging during adenovirus uncoating. Phys Rev X 11:021025

    Google Scholar 

  45. Jiménez-Zaragoza M, Yubero MP, Martín-Forero E et al (2018) Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife 7:e37295. https://doi.org/10.7554/eLife.37295

    Article  Google Scholar 

  46. O’Neil A, Prevelige PE, Basu G, Douglas T (2012) Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromolecules 13:3902–3907. https://doi.org/10.1021/bm301347x

    Article  Google Scholar 

  47. Ortega-Esteban A, Bodensiek K, San Martín C et al (2015) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–10579

    Article  Google Scholar 

  48. Strobl K, Selivanovitch E, Ibáñez-Freire P et al (2022) Electromechanical photophysics of GFP packed inside viral protein cages probed by force-fluorescence hybrid single-molecule microscopy. Small 18:2200059. https://doi.org/10.1002/smll.202200059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro José de Pablo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cantero, M. et al. (2024). Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics