Skip to main content

In Vitro and Ex Vivo Methodologies for T-Cell Trafficking Through Blood–Brain Barrier After TLR Activation

  • Protocol
  • First Online:
Toll-Like Receptors

Abstract

This chapter describes ex vivo isolation of human T cells and of naïve splenocytes respectively collected from multiple sclerosis patients and healthy controls and experimental autoimmune encephalomyelitis-affected mice. After the magnetic sorting of naïve and activated T helper lymphocytes, we provide details about the cell cultures to measure the interaction with extracellular matrix proteins using standard cell invasion or hand-made in vitro assays, upon different stimuli, through Toll-like receptor(s) ligands, T-cell activators, and cell adhesion molecules modulators. Finally, we describe the methods to harvest and recover T cells to evaluate the properties associated with their trafficking ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicolò C, Di Sante G, Orsini M et al (2006) Mycobacterium tuberculosis in the adjuvant modulates the balance of Th immune response to self-antigen of the CNS without influencing a “core” repertoire of specific T cells. Int Immunol 18:363–374. https://doi.org/10.1093/intimm/dxh376

    Article  CAS  PubMed  Google Scholar 

  2. Nicolò C, Sali M, Di Sante G et al (2010) Mycobacterium smegmatis expressing a chimeric protein MPT64-proteolipid protein (PLP) 139-151 reorganizes the PLP-specific T cell repertoire favoring a CD8-mediated response and induces a relapsing experimental autoimmune encephalomyelitis. J Immunol 184:222–235. https://doi.org/10.4049/jimmunol.0804263

    Article  CAS  PubMed  Google Scholar 

  3. Nicolò C, Di Sante G, Procoli A et al (2013) M tuberculosis in the adjuvant modulates time of appearance of CNS-specific effector T cells in the spleen through a polymorphic site of TLR2. PLoS One 8:e55819. https://doi.org/10.1371/journal.pone.0055819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Penitente R, Nicolò C, Van den Elzen P et al (2008) Administration of PLP 139–151 primes T cells distinct from those spontaneously responsive in vitro to this antigen. J Immunol 180:6611–6622. https://doi.org/10.4049/jimmunol.180.10.6611

    Article  CAS  PubMed  Google Scholar 

  5. Piermattei A, Migliara G, Di Sante G et al (2016) Toll-like receptor 2 mediates in vivo pro- and anti-inflammatory effects of mycobacterium tuberculosis and modulates autoimmune encephalomyelitis. Front Immunol 7:191. https://doi.org/10.3389/fimmu.2016.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tredicine M, Camponeschi C, Pirolli D et al (2022) A TLR/CD44 axis regulates T cell trafficking in experimental and human multiple sclerosis. iScience 25:103763. https://doi.org/10.1016/j.isci.2022.103763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oukka M, Bettelli E (2018) Regulation of lymphocyte trafficking in central nervous system autoimmunity. Curr Opin Immunol 55:38–43. https://doi.org/10.1016/j.coi.2018.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandor AM, Jacobelli J, Friedman RS (2019) Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 198:314–325. https://doi.org/10.1111/cei.13353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strazza M, Azoulay-Alfaguter I, Silverman GJ, Mor A (2015) T cell chemokine receptor patterns as pathogenic signatures in autoimmunity. Discov Med 19:117–125

    PubMed  Google Scholar 

  10. Calvier L, Demuth G, Manouchehri N et al (2020) Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Sci Transl Med 12:eaay7675. https://doi.org/10.1126/scitranslmed.aay7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mousavi A (2020) CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 217:91–115. https://doi.org/10.1016/j.imlet.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  12. Gross CC, Schulte-Mecklenbeck A, Hanning U et al (2017) Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult Scler J 23:1025–1030. https://doi.org/10.1177/1352458516662726

    Article  CAS  Google Scholar 

  13. Lindner M, Klotz L, Wiendl H (2018) Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 146:122–132. https://doi.org/10.1111/jnc.14339

    Article  CAS  PubMed  Google Scholar 

  14. Visser L, Melief M-J, van Riel D et al (2006) Phagocytes containing a disease-promoting toll-like receptor/nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 169:1671–1685. https://doi.org/10.2353/ajpath.2006.060143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Visser L, Jan de Heer H, Boven LA et al (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 174:808–816. https://doi.org/10.4049/jimmunol.174.2.808

    Article  CAS  PubMed  Google Scholar 

  16. Schrijver IA, van Meurs M, Melief MJ et al (2001) Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 124:1544–1554. https://doi.org/10.1093/brain/124.8.1544

    Article  CAS  PubMed  Google Scholar 

  17. Jagessar SA, Kap YS, Heijmans N et al (2010) Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG 34-56 peptide in incomplete freund adjuvant. J Neuropathol Exp Neurol 69:372–385. https://doi.org/10.1097/NEN.0b013e3181d5d053

    Article  CAS  PubMed  Google Scholar 

  18. Shaw PJ, Barr MJ, Lukens JR et al (2011) Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 34:75–84. https://doi.org/10.1016/j.immuni.2010.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beura LK, Hamilton SE, Bi K et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–516. https://doi.org/10.1038/nature17655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valentini M, Piermattei A, Di Sante G et al (2014) Immunomodulation by gut microbiota: role of toll-like receptor expressed by T cells. J Immunol Res 2014:586939. https://doi.org/10.1155/2014/586939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuzmich NN, Sivak KV, Chubarev VN et al (2017) TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 5. https://doi.org/10.3390/vaccines5040034

  22. Luz A, Fainstein N, Einstein O, Ben-Hur T (2015) The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation. Exp Neurol 273:234–242. https://doi.org/10.1016/j.expneurol.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  23. Ko R, Park JH, Ha H et al (2015) Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun 6:6765. https://doi.org/10.1038/ncomms7765

    Article  CAS  PubMed  Google Scholar 

  24. Stierschneider A, Neuditschko B, Colleselli K, Hundsberger H, Herzog F, Wiesner C (2023) Comparative and temporal characterization of LPS and Blue-Light-Induced TLR4 signal transduction and gene expression in optogenetically manipulated endothelial cells. Cells 12:697

    Google Scholar 

  25. Fallarino F, Gargaro M, Mondanell G et al (2016) Delineating the role of toll-like receptors in the neuro-inflammation model EAE. Methods Mol Biol 1390:383–411. https://doi.org/10.1007/978-1-4939-3335-8_23

  26. Colleselli K, Ebeyer-Masotta M, Neuditschko B, Stierschneider A, Pollhammer C, Potocnjak M, Hundsberger H, Herzog F, Wiesner C (2023) Beyond pattern recognition: TLR2 promotes chemotaxis, cell adhesion and migration in THP-1 cells. Cells 12:1425. https://doi.org/10.3390/cells12101425

  27. Brennan FR, Mikecz K, Glant TT et al (1997) CD44 expression by leucocytes in rheumatoid arthritis and modulation by specific antibody: implications for lymphocyte adhesion to endothelial cells and synoviocytes in vitro. Scand J Immunol 45:213–220. https://doi.org/10.1046/j.1365-3083.1997.d01-382.x

    Article  CAS  PubMed  Google Scholar 

  28. McDonald B, Kubes P (2015) Interactions between CD44 and Hyaluronan in leukocyte trafficking. Front Immunol 6:68. https://doi.org/10.3389/fimmu.2015.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghazi-Visser L, Laman JD, Nagel S et al (2013) CD44 variant isoforms control experimental autoimmune encephalomyelitis by affecting the lifespan of the pathogenic T cells. FASEB J 27:3683–3701. https://doi.org/10.1096/fj.13-228809

    Article  CAS  PubMed  Google Scholar 

  30. Laman JD, Maassen CB, Schellekens MM et al (1998) Therapy with antibodies against CD40L (CD154) and CD44-variant isoforms reduces experimental autoimmune encephalomyelitis induced by a proteolipid protein peptide. Mult Scler 4:147–153. https://doi.org/10.1177/135245859800400312

    Article  CAS  PubMed  Google Scholar 

  31. Laman JD, ‘t Hart BA, Power C, Dziarski R (2020) Bacterial peptidoglycan as a driver of chronic brain inflammation. Trends Mol Med 26:670–682. https://doi.org/10.1016/j.molmed.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  32. Yang C, Liang H, Zhao H, Jiang X (2012) CD44 variant isoforms are specifically expressed on peripheral blood lymphocytes from asthmatic patients. Exp Ther Med 4:79–83. https://doi.org/10.3892/etm.2012.543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Latini A, Novelli L, Ceccarelli F et al (2021) mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus 30:1086–1093. https://doi.org/10.1177/09612033211004725

    Article  CAS  PubMed  Google Scholar 

  34. Novelli L, Barbati C, Ceccarelli F et al (2019) CD44v3 and CD44v6 isoforms on T cells are able to discriminate different disease activity degrees and phenotypes in systemic lupus erythematosus patients. Lupus 28:621–628. https://doi.org/10.1177/0961203319838063

    Article  CAS  PubMed  Google Scholar 

  35. Camponeschi C, De Carluccio M, Amadio S et al (2021) S100B protein as a therapeutic target in multiple sclerosis: the S100B inhibitor Arundic acid protects from chronic experimental autoimmune encephalomyelitis. IJMS 22:13558. https://doi.org/10.3390/ijms222413558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller SD, Karpus WJ, Davidson TS (2010) Experimental autoimmune encephalomyelitis in the mouse. In: Coligan JE, Bierer BE, Margulies DH et al (eds) Current protocols in immunology, vol 88. Wiley, Hoboken

    Google Scholar 

  37. Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819. https://doi.org/10.1038/nprot.2006.285

    Article  CAS  PubMed  Google Scholar 

  38. Di Sante G, Gremese E, Tolusso B et al (2021) Haemophilus parasuis (Glaesserella parasuis) as a potential driver of molecular mimicry and inflammation in rheumatoid arthritis. Front Med (Lausanne) 8:671018. https://doi.org/10.3389/fmed.2021.671018

    Article  PubMed  Google Scholar 

  39. Di Sante G, Tolusso B, Fedele AL et al (2015) Collagen specific T-cell repertoire and HLA-DR alleles: biomarkers of active refractory rheumatoid arthritis. EBioMedicine 2:2037–2045. https://doi.org/10.1016/j.ebiom.2015.11.019

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marino M, Maiuri MT, Di Sante G et al (2014) T cell repertoire in DQ5-positive MuSK-positive myasthenia gravis patients. J Autoimmun 52:113–121. https://doi.org/10.1016/j.jaut.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  41. Di Sante G, Amadio S, Sampaolese B et al (2020) The S100B inhibitor pentamidine ameliorates clinical score and neuropathology of relapsing—remitting multiple sclerosis mouse model. Cell 9:748. https://doi.org/10.3390/cells9030748

    Article  CAS  Google Scholar 

  42. Marchese E, Valentini M, Sante GD et al (2020) Alternative splicing of neurexins 1-3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Exp Neurol:113497. https://doi.org/10.1016/j.expneurol.2020.113497

  43. Simmons SB, Pierson ER, Lee SY, Goverman JM (2013) Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 34:410–422. https://doi.org/10.1016/j.it.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93. https://doi.org/10.4103/0976-500X.72350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stone NL, England TJ, O’Sullivan SE (2019) A novel transwell blood brain barrier model using primary human cells. Front Cell Neurosci 13:230. https://doi.org/10.3389/fncel.2019.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomsen MS, Humle N, Hede E et al (2021) The blood-brain barrier studied in vitro across species. PLoS One 16:e0236770. https://doi.org/10.1371/journal.pone.0236770

  47. Schroeter CB, Herrmann AM, Bock S et al (2021) One brain—all cells: a comprehensive protocol to isolate all principal CNS-resident cell types from brain and spinal cord of adult healthy and EAE mice. Cell 10:651. https://doi.org/10.3390/cells10030651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received nonconditional support by Fondazione Cassa di Risparmio di Perugia, Project 2021.0347 (GDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Di Sante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moliterni, C. et al. (2023). In Vitro and Ex Vivo Methodologies for T-Cell Trafficking Through Blood–Brain Barrier After TLR Activation. In: Fallarino, F., Gargaro, M., Manni, G. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 2700. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3366-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3366-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3365-6

  • Online ISBN: 978-1-0716-3366-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics