Skip to main content

The Detection of Exosomal PD-L1 in Peripheral Blood

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

Abstract

Peripheral blood is a source for liquid biopsy, which can meet the requirements of pretreatment disease typing to determine precise targeted therapy and monitoring of posttreatment minimal residual disease monitoring. Compared with ctDNA and CTC, exosomes have a higher concentration, good biostability, biocompatibility, low immunogenicity, and low toxicity in peripheral blood. Tumors generally secrete a large amounts of exosomes, which have potential pathophysiological roles in tumor progression. With the continuous improvement of liquid biopsy technology, many researchers have found that exosomes are the key for tumor PD-L1 to exert its role, which may be the mechanism that leads to PD-L1 and/or PD-1 inhibitor therapy resistance. Namely, tumor-derived exosomes may mediate systemic immunosuppression against PD-1 or PD-L1 inhibitor therapy, endogenous tumor cell–derived exosomal PD-L1, and tumor microenvironment–derived exosomes. Induction of PD-L1 by exosomes may be a crucial mechanisms of exosome-mediated antitumor immune tolerance. This article reviews the relationship between the detection of peripheral blood exosomal PD-L1 and tumor progression and the mechanism of exosomal PD-L1 in tumor immunotherapy.

Authors’ Contributions: Rui Wang conceived the study hypothesis and drafted the manuscript. Yanjia Yang reviewed the literature and drafted the manuscript. Jiajun Huang contributed to drawing the figures and drafting the manuscript. Yandan Yao conceived the study hypothesis, revised it critically for important intellectual content, and supervised the writing of the manuscript. All the authors read and approved the final manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saini A, Pershad Y, Albadawi H, Kuo M, Alzubaidi S, Naidu S, Knuttinen MG, Oklu R (2018) Liquid biopsy in gastrointestinal cancers. Diagnostics (Basel, Switzerland) 8(4):75

    CAS  PubMed  Google Scholar 

  2. Whiteside TL (2016) Exosomes and tumor-mediated immune suppression. J Clin Invest 126(4):1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514

    Article  CAS  PubMed  Google Scholar 

  4. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M (2011) Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica 96(9):1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dabitao D, Margolick JB, Lopez J, Bream JH (2011) Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J Immunol Methods 372(1–2):71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ariston Gabriel AN, Wang F, Jiao Q, Yvette U, Yang X, Al-Ameri SA, Du L, Wang YS, Wang C (2020) The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol Cancer 19(1):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y (2020) Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 145:102860

    Article  PubMed  Google Scholar 

  9. Zhang Z, Tang Y, Song X, Xie L, Zhao S, Song X (2020) Tumor-derived exosomal miRNAs as diagnostic biomarkers in non-small cell lung cancer. Front Oncol 10:560025

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ (2017) Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 8(44):77028–77040

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goto T, Fujiya M, Konishi H, Sasajima J, Fujibayashi S, Hayashi A, Utsumi T, Sato H, Iwama T, Ijiri M, Sakatani A, Tanaka K, Nomura Y, Ueno N, Kashima S, Moriichi K, Mizukami Y, Kohgo Y, Okumura T (2018) An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 18(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abue M, Yokoyama M, Shibuya R, Tamai K, Yamaguchi K, Sato I, Tanaka N, Hamada S, Shimosegawa T, Sugamura K, Satoh K (2015) Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol 46(2):539–547

    Article  CAS  PubMed  Google Scholar 

  13. Moloudizargari M, Hekmatirad S, Mofarahe ZS, Asghari MH (2021) Exosomal microRNA panels as biomarkers for hematological malignancies. Curr Probl Cancer 45(5):100726

    Article  PubMed  Google Scholar 

  14. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuchiya N (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9(4):e92921

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X (2018) Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol (Dordr) 41(1):25–33

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Qian N, Ling S, Li Y, Sun W, Li J, Du R, Zhong G, Liu C, Yu G, Cao D, Liu Z, Wang Y, Qi Z, Yao Y, Wang F, Liu J, Hao S, Jin X, Zhao Y, Xue J, Zhao D, Gao X, Liang S, Li Y, Song J, Yu S, Li Y (2021) Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11(3):1429–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, Zhang H, Liu Y, Han D, Zhang N, Ma T, Wang Y, Ye F, Luo D, Li X, Yang Q (2020) LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 19(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, Lee HW, Han YS, Chun JM, Park SY, Hur K (2019) Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer 144(6):1444–1452

    Article  CAS  PubMed  Google Scholar 

  19. Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, Temraz S (2020) Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. Int J Mol Sci 21(4):1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, Alahari SK (2020) Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 39(5):953–974

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Li Z, Xu S, Guo J (2020) Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal 34(7):e23359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Dong Y, Gong A, Kong H, Gao J, Hao X, Liu Y, Wang Z, Fan Y, Liu C, Xu W (2021) Exosomal circRNAs as novel cancer biomarkers: challenges and opportunities. Int J Biol Sci 17(2):562–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji J, Chen R, Zhao L, Xu Y, Cao Z, Xu H, Chen X, Shi X, Zhu Y, Lyu J, Jiang J, Wang Y, Zhou T, He J, Wei X, Wu JB, Yang B, Wang F (2021) Circulating exosomal mRNA profiling identifies novel signatures for the detection of prostate cancer. Mol Cancer 20(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Re M, Cucchiara F, Rofi E, Fontanelli L, Petrini I, Gri N, Pasquini G, Rizzo M, Gabelloni M, Belluomini L, Crucitta S, Ciampi R, Frassoldati A, Neri E, Porta C, Danesi R (2021) A multiparametric approach to improve the prediction of response to immunotherapy in patients with metastatic NSCLC. Cancer Immunol Immunother 70(6):1667–1678

    Article  PubMed  Google Scholar 

  25. Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  26. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL (2018) Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res 24(4):896–905

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cordonnier M, Nardin C, Chanteloup G, Derangere V, Algros MP, Arnould L, Garrido C, Aubin F, Gobbo J (2020) Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 9(1):1710899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li C, Li C, Zhi C, Liang W, Wang X, Chen X, Lv T, Shen Q, Song Y, Lin D, Liu H (2019) Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med 17(1):355

    Article  PubMed  PubMed Central  Google Scholar 

  30. Del Re M, Marconcini R, Pasquini G, Rofi E, Vivaldi C, Bloise F, Restante G, Arrigoni E, Caparello C, Bianco MG, Crucitta S, Petrini I, Vasile E, Falcone A, Danesi R (2018) PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer 118(6):820–824

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kibria G, Ramos EK, Lee KE, Bedoyan S, Huang S, Samaeekia R, Athman JJ, Harding CV, Lötvall J, Harris L, Thompson CL, Liu H (2016) A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci Rep 6:36502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pang Y, Shi J, Yang X, Wang C, Sun Z, Xiao R (2020) Personalized detection of circling exosomal PD-L1 based on Fe(3)O(4)@TiO(2) isolation and SERS immunoassay. Biosens Bioelectron 148:111800

    Article  CAS  PubMed  Google Scholar 

  33. Huang M, Yang J, Wang T, Song J, Xia J, Wu L, Wang W, Wu Q, Zhu Z, Song Y, Yang C (2020) Homogeneous, low-volume, efficient, and sensitive quantitation of circulating exosomal PD-L1 for cancer diagnosis and immunotherapy response prediction. Angew Chem Int Ed Engl 59(12):4800–4805

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W, Cha JH, Hou J, Hsu JL, Sun L, Hung MC (2018) Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 28(8):862–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu P, Steel JC, Zhang M, Morris JC, Waitz R, Fasso M, Allison JP, Waldmann TA (2012) Simultaneous inhibition of two regulatory T-cell subsets enhanced Interleukin-15 efficacy in a prostate tumor model. Proc Natl Acad Sci U S A 109(16):6187–6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414–427.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morrissey SM, Yan J (2020) Exosomal PD-L1: roles in tumor progression and immunotherapy. Trends Cancer 6(7):550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monypenny J, Milewicz H, Flores-Borja F, Weitsman G, Cheung A, Chowdhury R, Burgoyne T, Arulappu A, Lawler K, Barber PR, Vicencio JM, Keppler M, Wulaningsih W, Davidson SM, Fraternali F, Woodman N, Turmaine M, Gillett C, Franz D, Quezada SA, Futter CE, Von Kriegsheim A, Kolch W, Vojnovic B, Carlton JG, Ng T (2018) ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep 24(3):630–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H, Hayes JL, Lee K, Balaj L, Passaro C, Rooj AK, Krasemann S, Carter BS, Chen CC, Steed T, Treiber J, Rodig S, Yang K, Nakano I, Lee H, Weissleder R, Breakefield XO, Godlewski J, Westphal M, Lamszus K, Freeman GJ, Bronisz A, Lawler SE, Chiocca EA (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4(3):eaar2766

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ning Y, Shen K, Wu Q, Sun X, Bai Y, Xie Y, Pan J, Qi C (2018) Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett 199:36–43

    Article  CAS  PubMed  Google Scholar 

  42. Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, Kochan G (2018) The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bardhan K, Anagnostou T, Boussiotis VA (2016) The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 7:550

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5(230):ra46

    Article  PubMed  PubMed Central  Google Scholar 

  46. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33(16):3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR, Chaudhary D (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura S, Hayashi K, Imaoka Y, Kitamura Y, Akazawa Y, Tabata K, Groen R, Tsuchiya T, Yamasaki N, Nagayasu T, Fukuoka J (2017) Intratumoral heterogeneity of programmed cell death ligand-1 expression is common in lung cancer. PLoS One 12(10):e0186192

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rasihashemi SZ, Rezazadeh Gavgani E, Majidazar R, Seraji P, Oladghaffari M, Kazemi T, Lotfinejad P (2021) Tumor-derived exosomal PD-L1 in progression of cancer and immunotherapy. J Cell Physiol 237:1648

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundamental Research Funds for the Central Universities (20ykjc03), the National Science Foundation of China (82071859), and Guangdong Innovation and Entrepreneurship Team Projects (2019BT02Y198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yandan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, R., Yang, Y., Huang, J., Yao, Y. (2023). The Detection of Exosomal PD-L1 in Peripheral Blood. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics