Skip to main content

Selection of High-Affinity Heterodimeric Antigen-Binding Fc Fragments from a Large Yeast Display Library

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2681))

Abstract

Antigen-binding Fc (Fcab™) fragments, where a novel antigen binding site is introduced by the mutagenesis of the C-terminal loops of the CH3 domain, function as parts of bispecific IgG-like symmetrical antibodies when they replace their wild-type Fc. Their homodimeric structure typically leads to bivalent antigen binding. In particular, biological situations monovalent engagement, however, would be preferred, either for avoiding agonistic effects leading to safety issues, or the attractive option of combining a single chain (i.e., one half) of an Fcab fragment reactive with different antigens in one antibody. We present the strategies for construction and selection of yeast libraries displaying heterodimeric Fcab fragments and discuss the effects of altered thermostability of the basic Fc scaffold and novel library designs that lead to isolation of highly affine antigen binding clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C (2021) Bispecific antibodies: from research to clinical application. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.626616

  2. Sebastian M, Kuemmel A, Schmidt M, Schmittel A (2009) Catumaxomab: a bispecific trifunctional antibody. Drugs Today 45:589–597. https://doi.org/10.1358/dot.2009.45.8.1401103

    Article  CAS  Google Scholar 

  3. Sanford M (2015) Blinatumomab: first global approval. Drugs 75:321–327. https://doi.org/10.1007/S40265-015-0356-3

    Article  CAS  PubMed  Google Scholar 

  4. Kang C (2022) Mosunetuzumab: first Approval. Drugs 82:1229–1234. https://doi.org/10.1007/S40265-022-01749-5

    Article  CAS  PubMed  Google Scholar 

  5. Moreau P, Garfall AL, van de Donk NWCJ et al (2022) Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 387:495–505. https://doi.org/10.1056/nejmoa2203478

    Article  CAS  PubMed  Google Scholar 

  6. Parums DV (2021) Editorial: Global regulatory initiatives deliver accelerated approval of the first bispecific therapeutic monoclonal antibody for advanced non-small cell lung cancer (NSCLC). Med Sci Monit 27:10.12659/MSM.934854

    Article  Google Scholar 

  7. Nicolò M, Ferro Desideri L, Vagge A, Traverso CE (2021) Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin Investig Drugs 30:193–200. https://doi.org/10.1080/13543784.2021.1879791

    Article  CAS  PubMed  Google Scholar 

  8. Weyand AC, Pipe SW (2019) New therapies for hemophilia. Blood 133:389–398. https://doi.org/10.1182/blood-2018-08-872291

    Article  CAS  PubMed  Google Scholar 

  9. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI (2019) Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18:585–608. https://doi.org/10.1038/S41573-019-0028-1

    Article  CAS  PubMed  Google Scholar 

  10. Sellmann C, Doerner A, Knuehl C et al (2016) Balancing selectivity and efficacy of bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J Biol Chem 291:25106–25119. https://doi.org/10.1074/jbc.M116.753491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moore PA, Zhang W, Rainey GJ et al (2011) Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 117:4542–4551. https://doi.org/10.1182/blood-2010-09-306449

    Article  CAS  PubMed  Google Scholar 

  12. Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, Frangioni JV, Wittrup KD (2010) A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 23:221. https://doi.org/10.1093/PROTEIN/GZP077

    Article  CAS  PubMed  Google Scholar 

  13. Yu L, Huang N, Ge L, Sun H, Fu Y, Liu C, Wang J (2021) Structural design of tetravalent T-cell engaging bispecific antibodies: improve developability by engineering disulfide bonds. J Biol Eng 15:18. https://doi.org/10.1186/s13036-021-00272-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu X, Sereno AJ, Huang F et al (2015) Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 7:470–482. https://doi.org/10.1080/19420862.2015.1022694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kraman M, Faroudi M, Allen NL et al (2020) FS118, a bispecific antibody targeting lag-3 and PD-L1, enhances T-cell activation resulting in potent antitumor activity. Clin Cancer Res 26:3333–3344. https://doi.org/10.1158/1078-0432.CCR-19-3548

    Article  CAS  PubMed  Google Scholar 

  16. Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N (2020) CD137/OX40 bispecific antibody induces potent antitumor activity that is dependent on target coengagement. Cancer Immunol Res 8:781–793. https://doi.org/10.1158/2326-6066.CIR-19-0798

    Article  CAS  PubMed  Google Scholar 

  17. Lakins MA, Koers A, Giambalvo R et al (2020) FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin Cancer Res 26:4154–4167. https://doi.org/10.1158/1078-0432.CCR-19-2958

    Article  CAS  PubMed  Google Scholar 

  18. Wozniak-Knopp G, Bartl S, Bauer A et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297. https://doi.org/10.1093/protein/gzq005

    Article  CAS  PubMed  Google Scholar 

  19. Everett KL, Kraman M, Wollerton FPG, Zimarino C, Kmiecik K, Gaspar M, Pechouckova S, Allen NL, Doody JF, Tuna M (2019) Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods 154:60–69. https://doi.org/10.1016/j.ymeth.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  20. Traxlmayr MW, Faissner M, Stadlmayr G, Hasenhindl C, Antes B, Rüker F, Obinger C (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta Proteins Proteomics 1824:542–549. https://doi.org/10.1016/j.bbapap.2012.01.006

    Article  CAS  Google Scholar 

  21. Hasenhindl C, Traxlmayr MW, Wozniak-Knopp G, Jones PC, Stadlmayr G, Rüker F, Obinger C (2013) Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc. Protein Eng Des Sel 26:675–682. https://doi.org/10.1093/protein/gzt041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Traxlmayr MW, Lobner E, Hasenhindl C, Stadlmayr G, Oostenbrink C, Rüker F, Obinger C (2014) Construction of pH-sensitive Her2-binding IgG1-Fc by directed evolution. Biotechnol J 9:1013–1022. https://doi.org/10.1002/biot.201300483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  24. Sádio F, Stadlmayr G, Stadlbauer K, Rüker F, Wozniak-Knopp G (2019) Yeast surface display and cell sorting of antigen-binding Fc fragments. Methods Mol Biol 1923:287–308. https://doi.org/10.1007/978-1-4939-9024-5_13

    Article  CAS  PubMed  Google Scholar 

  25. Wozniak-Knopp G, Stadlmayr G, Perthold JW, Stadlbauer K, Woisetschläger M, Sun H, Rüker F (2017) Designing Fcabs: well-expressed and stable high affinity antigen-binding Fc fragments. Protein Eng Des Sel 30:567–581. https://doi.org/10.1093/protein/gzx042

    Article  CAS  Google Scholar 

  26. Lobner E, Humm AS, Göritzer K, Mlynek G, Puchinger MG, Hasenhindl C, Rüker F, Traxlmayr MW, Djinović-Carugo K, Obinger C (2017) Fcab-HER2 interaction: a Ménage à Trois. Lessons from X-ray and Solution studies. Structure 25:878–889.e5. https://doi.org/10.1016/J.STR.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  27. Lobner E, Humm A-S, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C (2017) Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 9:1088–1104. https://doi.org/10.1080/19420862.2017.1364825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birnbaum ME, Berry R, Hsiao YS et al (2014) Molecular architecture of the αβ T cell receptor-CD3 complex. Proc Natl Acad Sci U S A 111:17576–17581. https://doi.org/10.1073/PNAS.1420936111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Piskol R, Ybarra R et al (2019) CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med 11:eaax8861

    Article  PubMed  Google Scholar 

  30. Nagorsen D, Baeuerle PA (2011) Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 317:1255–1260. https://doi.org/10.1016/J.YEXCR.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  31. Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, Panoskaltsis-Mortari A, Weiner LM, Vallera DA, Miller JS (2012) Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther 11:2674–2684. https://doi.org/10.1158/1535-7163.MCT-12-0692/85205/AM/BISPECIFIC-AND-TRISPECIFIC-KILLER-CELL-ENGAGERS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H (2021) Design of a trispecific checkpoint inhibitor and natural killer cell engager based on a 2 + 1 common light chain antibody architecture. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.669496

  33. Natale V, Stadlmayr G, Benedetti F, Stadlbauer K, Rüker F, Wozniak-Knopp G (2022) Trispecific antibodies produced from mAb2 pairs by controlled Fab-arm exchange. Biol Chem 403:509–523. https://doi.org/10.1515/hsz-2021-0376

    Article  CAS  PubMed  Google Scholar 

  34. Carter P, Ridgway JBB, Presta LG (1996) ‘Knobs-into-holes’ provides a rational design strategy for engineering antibody CH3 domains for heavy chain heterodimerization. Immunotechnology 2:73. https://doi.org/10.1016/1380-2933(96)80685-3

    Article  Google Scholar 

  35. Von Kreudenstein TS, Escobar-Carbrera E, Lario PI et al (2013) Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs 5:646–654. https://doi.org/10.4161/mabs.25632

    Article  Google Scholar 

  36. Gunasekaran K, Pentony M, Shen M et al (2010) Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem 285:19637–19646. https://doi.org/10.1074/JBC.M110.117382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skegro D, Stutz C, Ollier R, Svensson E, Wassmann P, Bourquin F, Monney T, Gn S, Blein S (2017) Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J Biol Chem 292:9745–9759. https://doi.org/10.1074/jbc.M117.782433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A 63:78–85. https://doi.org/10.1073/pnas.63.1.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atwell S, Ridgway JBB, Wells JA, Carter P (1997) Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol 270:26–35. https://doi.org/10.1006/jmbi.1997.1116

    Article  CAS  PubMed  Google Scholar 

  40. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial fab library generation and surface display. FEBS Lett 564:24–34. https://doi.org/10.1016/S0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

  41. Shields RL, Namenuk AK, Hong K et al (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276:6591–6604. https://doi.org/10.1074/jbc.M009483200

    Article  CAS  PubMed  Google Scholar 

  42. Leung KM, Batey S, Rowlands R et al (2015) A HER2-specific Modified Fc Fragment (Fcab) induces antitumor effects through degradation of HER2 and apoptosis. Mol Ther 23:1722–1733. https://doi.org/10.1038/mt.2015.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stadlbauer K, Andorfer P, Stadlmayr G, Rüker F, Wozniak-Knopp G (2022) Bispecific mAb2 antibodies targeting CD59 enhance the complement-dependent cytotoxicity mediated by rituximab. Int J Mol Sci 23:5208. https://doi.org/10.3390/IJMS23095208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Terawaki S, Tanaka Y, Nagakura T et al (2007) Specific and high-affinity binding of tetramerized PD-L1 extracellular domain to PD-1-expressing cells: possible application to enhance T cell function. Int Immunol 19:881–890. https://doi.org/10.1093/INTIMM/DXM059

    Article  CAS  PubMed  Google Scholar 

  46. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/NAR/GKY427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellí G, Garí E, Piedrafita L, Aldea M, Herrero E (1998) An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26:942–947. https://doi.org/10.1093/nar/26.4.942

    Article  PubMed  PubMed Central  Google Scholar 

  48. Orr BA, Carr LM, Wittrup KD, Roy EJ, Kranz DM (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19:631–638. https://doi.org/10.1021/bp0200797

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support by the company F-star Therapeutics, Christian Doppler Society, Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged (CD Laboratory for innovative Immunotherapeutics, grant to GWK). FB was a fellow of the international PhD program “BioToP-Biomolecular Technology of Proteins,” funded by the Austrian Science Fund (FWF) (W1224). This project was also supported by EQ-BOKU VIBT GmbH and BOKU Core Facility for Biomolecular and Cellular Analysis. ™ Fcab and mAb2 are the trademarks of F-star Therapeutics Limited (Cambridge, United Kingdom).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Wozniak-Knopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benedetti, F., Stadlmayr, G., Stadlbauer, K., Rüker, F., Wozniak-Knopp, G. (2023). Selection of High-Affinity Heterodimeric Antigen-Binding Fc Fragments from a Large Yeast Display Library. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2681. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3279-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3279-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3278-9

  • Online ISBN: 978-1-0716-3279-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics