Skip to main content

Neurophysiology of Language Pathologies

  • Protocol
  • First Online:
Language Electrified

Part of the book series: Neuromethods ((NM,volume 202))

Abstract

Language- and speech-related disorders are among the most frequent consequences of developmental and acquired pathologies. While classical approaches to the study of these disorders typically employed the lesion method to unveil one-to-one correspondence between locations, the extent of the brain damage, and corresponding symptoms, recent advances advocate the use of online methods of investigation. For example, the use of electrophysiology or magnetoencephalography—especially when combined with anatomical measures—allows for in vivo tracking of real-time language and speech events, and thus represents a particularly promising venue for future research targeting rehabilitative interventions. In this chapter, we provide a comprehensive overview of language and speech pathologies arising from cortical and/or subcortical damage, and their corresponding neurophysiological and pathological symptoms. Building upon the reviewed evidence and literature, we aim at providing a description of how the neurophysiology of the language network changes as a result of brain damage. We will conclude by summarizing the evidence presented in this chapter, while suggesting directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that in most cases, traumatic brain injuries entail a combination of a focal lesion (the contact point with the skull or with an external object) and a diffuse lesion (often due to the shearing and tearing of white matter tracts, for example in the case of car accidents). A distinction between the two components can be made only on an individual basis. See also [22, 41].

  2. 2.

    Subtle deficits are especially frequent following mild TBI, as—in severe injuries—they may be masked by more global deficits (e.g., coma, motor deficits [22]). A full description of the different forms and severity grades of TBI is, however, outside the scope of this chapter (but see, e.g., [59]).

  3. 3.

    Here, the model is simplified to focus on perceptive and productive deficits; originally, it includes a third “concept” center and its connections to the motor and sensory hubs [82,83,84].

References

  1. Knuepffer C et al (2012) Reduced N400 semantic priming effects in adult survivors of paediatric and adolescent traumatic brain injury. Brain Lang 123:52–63. https://doi.org/10.1016/j.bandl.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  2. Fratantoni JM et al (2017) Electrophysiological correlates of word retrieval in traumatic brain injury. J Neurotrauma 34:1017–1021. https://doi.org/10.1089/neu.2016.4651

    Article  PubMed Central  PubMed  Google Scholar 

  3. Münte TF, Heinze H-J (1994) Brain potentials reveal deficits of language processing after closed head injury. Arch Neurol 51:482–493. https://doi.org/10.1001/archneur.1994.00540170058017

    Article  PubMed  Google Scholar 

  4. Kielar A, Deschamps T, Jokel R, Meltzer JA (2016) Functional reorganization of language networks for semantics and syntax in chronic stroke: evidence from MEG. Hum Brain Mapp 37:2869–2893. https://doi.org/10.1002/hbm.23212

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kielar A et al (2018) Abnormal language-related oscillatory responses in primary progressive aphasia. Neuroimage Clin 18:560–574. https://doi.org/10.1016/j.nicl.2018.02.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Campana S, Caltagirone C, Marangolo P (2015) Combining voxel-based lesion-symptom mapping (VLSM) with A-tDCS language treatment: predicting outcome of recovery in nonfluent chronic aphasia. Brain Stimul 8:769–776. https://doi.org/10.1016/j.brs.2015.01.413

    Article  PubMed  Google Scholar 

  7. Dubovik S et al (2012) The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 61:249–257. https://doi.org/10.1016/j.neuroimage.2012.03.024

    Article  PubMed  Google Scholar 

  8. Kielar A et al (2019) Slowing is slowing: delayed neural responses to words are linked to abnormally slow resting state activity in primary progressive aphasia. Neuropsychologia 129:331–347. https://doi.org/10.1016/j.neuropsychologia.2019.04.007

    Article  PubMed  Google Scholar 

  9. Reid LB et al (2015) Interpreting intervention induced neuroplasticity with fMRI: the case for multimodal imaging strategies. Neural Plast 2016:e2643491. https://doi.org/10.1155/2016/2643491

    Article  Google Scholar 

  10. Piai V et al (2017) Neuroplasticity of language in left-hemisphere stroke: evidence linking subsecond electrophysiology and structural connections. Hum Brain Mapp 38:3151–3162. https://doi.org/10.1002/hbm.23581

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mesulam M-M (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613. https://doi.org/10.1002/ana.410280502

    Article  CAS  PubMed  Google Scholar 

  12. Mesulam M-M et al (2014) Primary progressive aphasia and the evolving neurology of the language network. Nat Rev Neurol 10:554–569. https://doi.org/10.1038/nrneurol.2014.159

    Article  PubMed Central  PubMed  Google Scholar 

  13. Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137:2408–2422. https://doi.org/10.1093/brain/awu101

    Article  PubMed  Google Scholar 

  14. Spironelli C, Angrilli A (2009) EEG delta band as a marker of brain damage in aphasic patients after recovery of language. Neuropsychologia 47:988–994. https://doi.org/10.1016/j.neuropsychologia.2008.10.019

    Article  PubMed  Google Scholar 

  15. Catani M, Mesulam M (2008) What is a disconnection syndrome? Cortex 44:911–913. https://doi.org/10.1016/j.cortex.2008.05.001

    Article  PubMed  Google Scholar 

  16. Dick AS, Bernal B, Tremblay P (2014) The language connectome: new pathways, new concepts. Neuroscientist 20:453–467. https://doi.org/10.1177/1073858413513502

    Article  PubMed  Google Scholar 

  17. Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91:1357–1392. https://doi.org/10.1152/physrev.00006.2011

    Article  PubMed  Google Scholar 

  18. Friederici AD, Gierhan SME (2013) The language network. Curr Opin Neurobiol 23:250–254. https://doi.org/10.1016/j.conb.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Eisinger RS et al (2018) Non-motor characterization of the basal ganglia: evidence from human and non-human primate electrophysiology. Front Neurosci 12:385. https://doi.org/10.3389/fnins.2018.00385

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kotz SA, Schwartze M (2010) Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci 14:392–399. https://doi.org/10.1016/j.tics.2010.06.005

    Article  PubMed  Google Scholar 

  21. Kotz SA, Schwartze M, Schmidt-Kassow M (2009) Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex 45:982–990. https://doi.org/10.1016/j.cortex.2009.02.010

    Article  PubMed  Google Scholar 

  22. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115:4–18. https://doi.org/10.1016/s1388-2457(03)00258-x

    Article  CAS  PubMed  Google Scholar 

  23. Broca P (1865) Sur le siège de la faculté du langage articulé. Bull Mem Soc Anthropol Paris 6:377–393

    Google Scholar 

  24. Wernicke C (1974) Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  25. Bates E et al (2003) Voxel-based lesion–symptom mapping. Nat Neurosci 6:448–450. https://doi.org/10.1038/nn1050

    Article  CAS  PubMed  Google Scholar 

  26. Mirman D et al (2015) Neural organization of spoken language revealed by lesion–symptom mapping. Nat Commun 6:6762. https://doi.org/10.1038/ncomms7762

    Article  CAS  PubMed  Google Scholar 

  27. Mirman D, Thye M (2018) Uncovering the neuroanatomy of core language systems using lesion-symptom mapping. Curr Dir Psychol Sci 27:455–461. https://doi.org/10.1177/0963721418787486

    Article  Google Scholar 

  28. Boehme AK et al (2016) Effect of aphasia on acute stroke outcomes. Neurology 87:2348–2354. https://doi.org/10.1212/WNL.0000000000003297

    Article  PubMed Central  PubMed  Google Scholar 

  29. Thye M, Mirman D (2018) Relative contributions of lesion location and lesion size to predictions of varied language deficits in post-stroke aphasia. Neuroimage Clin 20:1129–1138. https://doi.org/10.1016/j.nicl.2018.10.017

    Article  PubMed Central  PubMed  Google Scholar 

  30. Meinzer M et al (2004) Intensive language training enhances brain plasticity in chronic aphasia. BMC Biol 2:20. https://doi.org/10.1186/1741-7007-2-20

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nicolo P et al (2015) Coherent neural oscillations predict future motor and language improvement after stroke. Brain 138:3048–3060. https://doi.org/10.1093/brain/awv200

    Article  PubMed  Google Scholar 

  32. Butz M et al (2004) Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett 355:93–96. https://doi.org/10.1016/j.neulet.2003.10.065

    Article  CAS  PubMed  Google Scholar 

  33. Vieth JB, Kober H, Grummich P (1996) Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG. Brain Topogr 8:215–221. https://doi.org/10.1007/BF01184772

    Article  CAS  PubMed  Google Scholar 

  34. Spironelli C, Manfredi M, Angrilli A (2013) Beta EEG band: a measure of functional brain damage and language reorganization in aphasic patients after recovery. Cortex 49:2650–2660. https://doi.org/10.1016/j.cortex.2013.05.003

    Article  PubMed  Google Scholar 

  35. Westlake KP et al (2012) Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol 237:160–169. https://doi.org/10.1016/j.expneurol.2012.06.020

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rosso C et al (2014) Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimul 7:627–635. https://doi.org/10.1016/j.brs.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Nagata K et al (1982) Topographic electroencephalographic study of cerebral infarction using computed mapping of the EEG. J Cereb Blood Flow Metab 2:79–88. https://doi.org/10.1038/jcbfm.1982.9

    Article  CAS  PubMed  Google Scholar 

  38. Crosson B et al (2007) Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev 17:157–177. https://doi.org/10.1007/s11065-007-9024-z

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mohr B et al (2016) Hemispheric contributions to language reorganisation: an MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia 93:413–424. https://doi.org/10.1016/j.neuropsychologia.2016.04.006

    Article  PubMed  Google Scholar 

  40. Parkinson RB et al (2009) Lesion characteristics related to treatment improvement in object and action naming for patients with chronic aphasia. Brain Lang 110:61–70. https://doi.org/10.1016/j.bandl.2009.05.005

    Article  PubMed Central  PubMed  Google Scholar 

  41. Andriessen TM, Jacobs B, Vos PE (2010) Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 14:2381–2392. https://doi.org/10.1111/j.1582-4934.2010.01164.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Schretlen DJ, Shapiro AM (2003) A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry 15:341–349. https://doi.org/10.1080/09540260310001606728

    Article  PubMed  Google Scholar 

  43. Shenton ME et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192. https://doi.org/10.1007/s11682-012-9156-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mcdonald S (1992) Communication disorders following closed head injury: new approaches to assessment and rehabilitation. Brain Inj 6:283–292. https://doi.org/10.3109/02699059209029670

    Article  CAS  PubMed  Google Scholar 

  45. Barwood CH, Murdoch BE (2013) Unravelling the influence of mild traumatic brain injury (MTBI) on cognitive-linguistic processing: a comparative group analysis. Brain Inj 27:671–676. https://doi.org/10.3109/02699052.2013.775500

    Article  PubMed  Google Scholar 

  46. Hinchliffe FJ, Murdoch BE, Chenery HJ (1998) Towards a conceptualization of language and cognitive impairment in closed-head injury: use of clinical measures. Brain Inj 12:109–132. https://doi.org/10.1080/026990598122746

    Article  CAS  PubMed  Google Scholar 

  47. Butler-Hinz S, Caplan D, Waters G (1990) Characteristics of syntactic comprehension deficits following closed head injury versus left cerebrovascular accident. J Speech Lang Hear Res 33:269–280. https://doi.org/10.1044/jshr.3302.269

    Article  CAS  Google Scholar 

  48. Coulson S, King JW, Kutas M (1998) Expect the unexpected: event-related brain response to morphosyntactic violations. Lang Cogn Process 13:21–58. https://doi.org/10.1080/016909698386582

    Article  Google Scholar 

  49. Key-DeLyria Sarah E et al (2016) Sentence processing in traumatic brain injury: evidence from the P600. J Speech Lang Hear Res 59:759–771. https://doi.org/10.1044/2016_JSLHR-L-15-0104

    Article  CAS  PubMed  Google Scholar 

  50. Gorno-Tempini ML et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6

    Article  PubMed Central  PubMed  Google Scholar 

  51. Mesulam M-M (2001) Primary progressive aphasia. Ann Neurol 49:425–432. https://doi.org/10.1002/ana.91

    Article  CAS  PubMed  Google Scholar 

  52. Adams JH et al (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15:49–59. https://doi.org/10.1111/j.1365-2559.1989.tb03040.x

    Article  CAS  PubMed  Google Scholar 

  53. Ledwidge P (2018) The impact of sports-related concussions on the language system: a case for event-related brain potentials. Ann Behav Neurosci 1:36–46

    Article  Google Scholar 

  54. Eierud C et al (2014) Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin 4:283–294. https://doi.org/10.1016/j.nicl.2013.12.009

    Article  PubMed Central  PubMed  Google Scholar 

  55. Inglese M et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103:298–303. https://doi.org/10.3171/jns.2005.103.2.0298

    Article  PubMed  Google Scholar 

  56. Irimia A et al (2012) Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin 1:1–17. https://doi.org/10.1016/j.nicl.2012.08.002

    Article  PubMed Central  PubMed  Google Scholar 

  57. Ptak T et al (2003) Cerebral fractional anisotropy score in trauma patients: a new indicator of white matter injury after trauma. Am J Roentgenol 181:1401–1407. https://doi.org/10.2214/ajr.181.5.1811401

    Article  Google Scholar 

  58. Ware JB et al (2017) Inter-subject variability of axonal injury in diffuse traumatic brain injury. J Neurotrauma 34:2243–2253. https://doi.org/10.1089/neu.2016.4817

    Article  PubMed Central  PubMed  Google Scholar 

  59. Marini A, Zettin M, Galetto V (2014) Cognitive correlates of narrative impairment in moderate traumatic brain injury. Neuropsychologia 64:282–288. https://doi.org/10.1016/j.neuropsychologia.2014.09.042

    Article  PubMed  Google Scholar 

  60. Davis GA, Coelho CA (2004) Referential cohesion and logical coherence of narration after closed head injury. Brain Lang 89:508–523. https://doi.org/10.1016/j.bandl.2004.01.003

    Article  PubMed  Google Scholar 

  61. Ilie G, Cusimano MD, Li W (2017) Prosodic processing post traumatic brain injury – a systematic review. Syst Rev 6:1. https://doi.org/10.1186/s13643-016-0385-3

    Article  PubMed Central  PubMed  Google Scholar 

  62. Wong MN, Murdoch B, Whelan B-M (2010) Language disorders subsequent to mild traumatic brain injury (MTBI): evidence from four cases. Aphasiology 24:1155–1169. https://doi.org/10.1080/02687030903168212

    Article  Google Scholar 

  63. Lau EF, Phillips C, Poeppel D (2008) A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 9:920–933. https://doi.org/10.1038/nrn2532

    Article  CAS  PubMed  Google Scholar 

  64. Mirman D, Britt AE (2014) What we talk about when we talk about access deficits. Philos Trans R Soc Lond B Biol Sci 369:20120388. https://doi.org/10.1098/rstb.2012.0388

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kotz SA, Gunter TC (2015) Can rhythmic auditory cuing remediate language-related deficits in Parkinson’s disease? Ann N Y Acad Sci 1337:62–68. https://doi.org/10.1111/nyas.12657

    Article  PubMed  Google Scholar 

  66. Chan D et al (2004) EEG abnormalities in frontotemporal lobar degeneration. Neurology 62:1628–1630. https://doi.org/10.1212/01.WNL.0000123103.89419.B7

    Article  CAS  PubMed  Google Scholar 

  67. Wilson SM (2017) Lesion-symptom mapping in the study of spoken language understanding. Lang Cogn Neurosci 32:891–899. https://doi.org/10.1080/23273798.2016.1248984

    Article  PubMed  Google Scholar 

  68. Olichney JM et al (2008) Patients with MCI and N400 or P600 abnormalities are at very high risk for conversion to dementia. Neurology 70:1763–1770. https://doi.org/10.1212/01.wnl.0000281689.28759.ab

    Article  CAS  PubMed  Google Scholar 

  69. Neary D, Snowden J, Mann D (2005) Frontotemporal dementia. Lancet Neurol 4:771–780. https://doi.org/10.1016/S1474-4422(05)70223-4

    Article  PubMed  Google Scholar 

  70. Cope TE et al (2020) Anterior temporal lobe is necessary for efficient lateralised processing of spoken word identity. Cortex 126:107–118. https://doi.org/10.1016/j.cortex.2019.12.025

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hodges JR et al (1992) Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain J Neurol 115(Pt 6):1783–1806. https://doi.org/10.1093/brain/115.6.1783

    Article  Google Scholar 

  72. Ralph MAL et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55. https://doi.org/10.1038/nrn.2016.150

    Article  CAS  PubMed  Google Scholar 

  73. Ralph MAL et al (1998) Naming in semantic dementia—what matters? Neuropsychologia 36:775–784. https://doi.org/10.1016/S0028-3932(97)00169-3

    Article  Google Scholar 

  74. Grieder M et al (2016) Discovering EEG resting state alterations of semantic dementia. Clin Neurophysiol 127:2175–2181. https://doi.org/10.1016/j.clinph.2016.01.025

    Article  PubMed  Google Scholar 

  75. Neary D et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554. https://doi.org/10.1212/WNL.51.6.1546

    Article  CAS  PubMed  Google Scholar 

  76. Sami S et al (2018) Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar degeneration: pathology versus phenotype. Brain 141:2500–2510. https://doi.org/10.1093/brain/awy180

    Article  PubMed Central  PubMed  Google Scholar 

  77. Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113. https://doi.org/10.1016/j.neubiorev.2014.12.010

    Article  PubMed  Google Scholar 

  78. Kotz SA et al (2003) Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc 9:1053–1060. https://doi.org/10.1017/S1355617703970093

    Article  PubMed  Google Scholar 

  79. Lichteim L (1885) On aphasia. Brain 7:433–484. https://doi.org/10.1093/brain/7.4.433

    Article  Google Scholar 

  80. Tesak J, Code C (2008) Milestones in the history of aphasia: theories and protagonists. Psychology Press, London

    Book  Google Scholar 

  81. Yourganov G, Smith KG, Fridriksson J, Rorden C (2015) Predicting aphasia type from brain damage measured with structural MRI. Cortex 73:203–215. https://doi.org/10.1016/j.cortex.2015.09.005

    Article  PubMed Central  PubMed  Google Scholar 

  82. Geschwind N (1972) Language and the brain. Sci Am 226:76–83. https://doi.org/10.1038/scientificamerican0472-76

    Article  CAS  PubMed  Google Scholar 

  83. Geschwind N (1974) Conduction aphasia. In: Geschwind N (ed) Selected papers on language and the brain. Springer, Dordrecht, pp 509–529

    Chapter  Google Scholar 

  84. Geschwind N (1970) The organization of language and the brain. Science 170:940–944

    Article  CAS  PubMed  Google Scholar 

  85. Anderson JM et al (1999) Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke–Geschwind model. Brain Lang 70:1–12. https://doi.org/10.1006/BRLN.1999.2135

    Article  CAS  PubMed  Google Scholar 

  86. Binder JR (2017) Current controversies on Wernicke’s area and its role in language. Curr Neurol Neurosci Rep 17:1–10. https://doi.org/10.1007/s11910-017-0764-8

    Article  Google Scholar 

  87. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 57:8–16. https://doi.org/10.1002/ana.20319

    Article  Google Scholar 

  88. Tremblay P, Dick AS (2016) Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 162:60–71. https://doi.org/10.1016/j.bandl.2016.08.004

    Article  PubMed  Google Scholar 

  89. Booth JR et al (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144. https://doi.org/10.1016/J.BRAINRES.2006.11.074

    Article  CAS  PubMed  Google Scholar 

  90. Kang EK et al (2017) Subcortical aphasia after stroke. Ann Rehabil Med 41:725–733. https://doi.org/10.5535/arm.2017.41.5.725

    Article  PubMed Central  PubMed  Google Scholar 

  91. Radanovic M, Mansur LL (2017) Aphasia in vascular lesions of the basal ganglia: a comprehensive review. Brain Lang 173:20–32. https://doi.org/10.1016/j.bandl.2017.05.003

    Article  PubMed  Google Scholar 

  92. Friederici AD et al (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 13:170–177. https://doi.org/10.1093/cercor/13.2.170

    Article  PubMed  Google Scholar 

  93. Moro A et al (2001) Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage 13:110–118. https://doi.org/10.1006/nimg.2000.0668

    Article  CAS  PubMed  Google Scholar 

  94. Kotz SA et al (2002) Modulation of the lexical–semantic network by auditory semantic priming: an event-related functional MRI study. NeuroImage 17:1761–1772. https://doi.org/10.1006/nimg.2002.1316

    Article  PubMed  Google Scholar 

  95. Kuperberg GR et al (2000) Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study. J Cogn Neurosci 12:321–341. https://doi.org/10.1162/089892900562138

    Article  CAS  PubMed  Google Scholar 

  96. Ni W et al (2000) An event-related neuroimaging study distinguishing form and content in sentence processing. J Cogn Neurosci 12:120–133. https://doi.org/10.1162/08989290051137648

    Article  CAS  PubMed  Google Scholar 

  97. Longworth CE et al (2005) The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions. Brain 128:584–596. https://doi.org/10.1093/brain/awh387

    Article  CAS  PubMed  Google Scholar 

  98. Profant O et al (2017) Auditory dysfunction in patients with Huntington’s disease. Clin Neurophysiol 128:1946–1953. https://doi.org/10.1016/j.clinph.2017.07.403

    Article  PubMed  Google Scholar 

  99. Hancock R, Richlan F, Hoeft F (2017) Possible roles for fronto-striatal circuits in reading disorder. Neurosci Biobehav Rev 72:243–260. https://doi.org/10.1016/j.neubiorev.2016.10.025

    Article  PubMed  Google Scholar 

  100. Grossman M et al (2002) Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology 16:174–181. https://doi.org/10.1037//0894-4105.16.2.174

    Article  PubMed  Google Scholar 

  101. Kotz SA, Schmidt-Kassow M (2015) Basal ganglia contribution to rule expectancy and temporal predictability in speech. Cortex 68:48–60. https://doi.org/10.1016/J.CORTEX.2015.02.021

    Article  PubMed  Google Scholar 

  102. Sapir S (2014) Multiple factors are involved in the dysarthria associated with Parkinson’s disease: a review with implications for clinical practice and research. J Speech Lang Hear Res 57:1330–1343. https://doi.org/10.1044/2014_JSLHR-S-13-0039

    Article  PubMed  Google Scholar 

  103. Sörös P et al (2017) Increase in beta-band activity during preparation for overt speech in patients with Parkinson’s disease. Front Hum Neurosci 11:371. https://doi.org/10.3389/fnhum.2017.00371

    Article  PubMed Central  PubMed  Google Scholar 

  104. Mallet N et al (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28:4795–4806. https://doi.org/10.1523/JNEUROSCI.0123-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Law J et al (2000) Prevalence and natural history of primary speech and language delay: findings from a systematic review of the literature. Int J Lang Commun Disord 35:165–188. https://doi.org/10.1080/136828200247133

    Article  CAS  PubMed  Google Scholar 

  106. Newbury DF, Fisher SE, Monaco AP (2010) Recent advances in the genetics of language impairment. Genome Med 2:6. https://doi.org/10.1186/gm127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Tomblin B (2011) Co-morbidity of autism and SLI: kinds, kin and complexity. Int J Lang Commun Disord 46:127–137. https://doi.org/10.1111/j.1460-6984.2011.00017.x

    Article  PubMed  Google Scholar 

  108. Vargha-Khadem F, Gadian DG, Copp A, Mishkin M (2005) FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 6:131–138. https://doi.org/10.1038/nrn1605

    Article  CAS  PubMed  Google Scholar 

  109. Watkins RV, Yairi E, Ambrose NG (1999) Early childhood stuttering III. J Speech Lang Hear Res 42:1125–1135. https://doi.org/10.1044/jslhr.4205.1125

    Article  CAS  PubMed  Google Scholar 

  110. Bishop DV (2017) Why is it so hard to reach agreement on terminology? The case of developmental language disorder (DLD). Int J Lang Commun Disord 52:671–680. https://doi.org/10.1111/1460-6984.12335

    Article  PubMed Central  PubMed  Google Scholar 

  111. Tomas E, Vissers C (2019) Behind the scenes of developmental language disorder: time to call neuropsychology back on stage. Front Hum Neurosci 12:1–10. https://doi.org/10.3389/fnhum.2018.00517

    Article  Google Scholar 

  112. Helen T-F, Cooper J (1999) Present and future possibilities for defining a phenotype for specific language impairment. J Speech Lang Hear Res 42:1275–1278. https://doi.org/10.1044/jslhr.4205.1275

    Article  Google Scholar 

  113. Tomblin JB et al (1997) Prevalence of specific language impairment in kindergarten children. J Speech Lang Hear Res 40:1245–1260. https://doi.org/10.1044/jslhr.4006.1245

    Article  CAS  PubMed  Google Scholar 

  114. Evans JL, Brown TT (2016) Chapter 72 – Specific language impairment. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, San Diego, pp 899–912

    Chapter  Google Scholar 

  115. Pijnacker J et al (2017) Semantic processing of sentences in preschoolers with specific language impairment: evidence from the N400 effect. J Speech Lang Hear Res 60:627–639. https://doi.org/10.1044/2016_JSLHR-L-15-0299

    Article  PubMed  Google Scholar 

  116. Evans JL, Selinger C, Pollak SD (2011) P300 as a measure of processing capacity in auditory and visual domains in specific language impairment. Brain Res 1389:93–102. https://doi.org/10.1016/j.brainres.2011.02.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Yairi E, Ambrose N (2013) Epidemiology of stuttering: 21st century advances. J Fluen Disord 38:66–87. https://doi.org/10.1016/j.jfludis.2012.11.002

    Article  Google Scholar 

  118. Etchell AC et al (2018) A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. J Fluen Disord 55:6–45. https://doi.org/10.1016/j.jfludis.2017.03.007

    Article  Google Scholar 

  119. Kaganovich N, Wray AH, Weber-Fox C (2010) Non-linguistic auditory processing and working memory update in pre-school children who stutter: an electrophysiological study. Dev Neuropsychol 35:712–736. https://doi.org/10.1080/87565641.2010.508549

    Article  PubMed Central  PubMed  Google Scholar 

  120. Piispala J et al (2017) Atypical brain activation in children who stutter in a visual Go/Nogo task: an ERP study. Clin Neurophysiol 128:194–203. https://doi.org/10.1016/j.clinph.2016.11.006

    Article  PubMed  Google Scholar 

  121. Kreidler K, Hampton WA, Usler E, Weber C (2017) Neural indices of semantic processing in early childhood distinguish eventual stuttering persistence and recovery. J Speech Lang Hear Res 60:3118–3134. https://doi.org/10.1044/2017_JSLHR-S-17-0081

    Article  PubMed Central  PubMed  Google Scholar 

  122. Vallar G et al (1988) Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study. J Neurol Neurosurg Psychiatry 51:1269–1276. https://doi.org/10.1136/jnnp.51.10.1269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Wallesch C-W, Blanken G (2000) Recurring utterances—how, where, and why are they generated? Brain Lang 71:255–257. https://doi.org/10.1006/brln.1999.2263

    Article  CAS  PubMed  Google Scholar 

  124. Wallesch C-W (2003) Sprache. In: Karnath H-O, Thier P (eds) Neuropsychologie. Springer, Berlin, Heidelberg, pp 551–555

    Chapter  Google Scholar 

  125. Wallesch C-W (1985) Two syndromes of aphasia occurring with ischemic lesions involving the left basal ganglia. Brain Lang 25:357–361. https://doi.org/10.1016/0093-934X(85)90090-2

    Article  CAS  PubMed  Google Scholar 

  126. Wallesch CW, Papagno C (1988) Subcortical aphasia. In: Aphasia. Whurr Publishers, London, pp 256–287

    Google Scholar 

  127. Tankus A, Fried I (2019) Degradation of neuronal encoding of speech in the subthalamic nucleus in Parkinson’s disease. Neurosurgery 84:378. https://doi.org/10.1093/neuros/nyy027

    Article  PubMed  Google Scholar 

  128. Crosson B (1985) Subcortical functions in language: a working model. Brain Lang 25:257–292. https://doi.org/10.1016/0093-934X(85)90085-9

    Article  CAS  PubMed  Google Scholar 

  129. Cappa SF, Vignolo LA (1979) “Transcortical” features of aphasia following left thalamic hemorrhage. Cortex 15:121–129. https://doi.org/10.1016/S0010-9452(79)80012-X

    Article  CAS  PubMed  Google Scholar 

  130. Crosson B et al (1999) Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology 13:171. https://doi.org/10.1037/0894-4105.13.2.171

    Article  CAS  PubMed  Google Scholar 

  131. Raymer AM et al (1997) Lexical–semantic deficits in two patients with dominant thalamic infarction. Neuropsychologia 35:211–219. https://doi.org/10.1016/S0028-3932(96)00069-3

    Article  CAS  PubMed  Google Scholar 

  132. Nadeau SE, Crosson B (1997) Subcortical aphasia. Brain Lang 58:355–402. https://doi.org/10.1006/brln.1997.1707

    Article  CAS  PubMed  Google Scholar 

  133. Weiller C et al (1993) The case of aphasia or neglect after striatocapsular infarction. Brain 116:1509–1525. https://doi.org/10.1093/brain/116.6.1509

    Article  PubMed  Google Scholar 

  134. Adolphs R, Damasio H, Tranel D (2002) Neural systems for recognition of emotional prosody: a 3-D lesion study. Emotion 2:23–51. https://doi.org/10.1037/1528-3542.2.1.23

    Article  PubMed  Google Scholar 

  135. Baum SR, Pell MD (1999) The neural bases of prosody: insights from lesion studies and neuroimaging. Aphasiology 13:581–608. https://doi.org/10.1080/026870399401957

    Article  Google Scholar 

  136. Buchanan TW et al (2000) Recognition of emotional prosody and verbal components of spoken language: an fMRI study. Cogn Brain Res 9:227–238. https://doi.org/10.1016/S0926-6410(99)00060-9

    Article  CAS  Google Scholar 

  137. Wildgruber D et al (2004) Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 14:1384–1389. https://doi.org/10.1093/cercor/bhh099

    Article  CAS  PubMed  Google Scholar 

  138. Lieberman P (2001) Human language and our reptilian brain: the subcortical bases of speech, syntax, and thought. Perspect Biol Med 44:32–51. https://doi.org/10.1353/pbm.2001.0011

    Article  CAS  PubMed  Google Scholar 

  139. Albuquerque L et al (2016) Advanced Parkinson disease patients have impairment in prosody processing. J Clin Exp Neuropsychol 38:208–216. https://doi.org/10.1080/13803395.2015.1100279

    Article  PubMed  Google Scholar 

  140. Breitenstein C et al (2001) Impaired perception of vocal emotions in Parkinson’s disease: influence of speech time processing and executive functioning. Brain Cogn 45:277–314. https://doi.org/10.1006/BRCG.2000.1246

    Article  CAS  PubMed  Google Scholar 

  141. Pell MD, Leonard CL (2003) Processing emotional tone from speech in Parkinson’s disease: a role for the basal ganglia. Cogn Affect Behav Neurosci 3:275–288. https://doi.org/10.3758/CABN.3.4.275

    Article  PubMed  Google Scholar 

  142. Pell MD, Cheang HS, Leonard CL (2006) The impact of Parkinson’s disease on vocal-prosodic communication from the perspective of listeners. Brain Lang 97:123–134. https://doi.org/10.1016/j.bandl.2005.08.010

    Article  PubMed  Google Scholar 

  143. Pell MD, Leonard CL (2005) Facial expression decoding in early Parkinson’s disease. Cogn Brain Res 23:327–340. https://doi.org/10.1016/j.cogbrainres.2004.11.004

    Article  Google Scholar 

  144. Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:953–961. https://doi.org/10.1016/j.cortex.2008.04.002

    Article  PubMed Central  PubMed  Google Scholar 

  145. Friederici AD (2012) The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn Sci 16:262–268. https://doi.org/10.1016/j.tics.2012.04.001

    Article  PubMed  Google Scholar 

  146. Hagoort P (2019) The neurobiology of language beyond single-word processing. Science 366:55–58. https://doi.org/10.1126/science.aax0289

    Article  CAS  PubMed  Google Scholar 

  147. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402. https://doi.org/10.1038/nrn2113

    Article  CAS  PubMed  Google Scholar 

  148. Hartwigsen G (2016) Adaptive plasticity in the healthy language network: implications for language recovery after stroke. Neural Plast 2016:e9674790. https://doi.org/10.1155/2016/9674790

    Article  Google Scholar 

  149. Hage SR, Nieder A (2016) Dual neural network model for the evolution of speech and language. Trends Neurosci 39:813–829. https://doi.org/10.1016/j.tins.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  150. Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88. https://doi.org/10.1111/j.1749-6632.2010.05444.x

    Article  PubMed  Google Scholar 

  151. Perani D et al (2011) Neural language networks at birth. Proc Natl Acad Sci 108:16056–16061. https://doi.org/10.1073/pnas.1102991108

    Article  PubMed Central  PubMed  Google Scholar 

  152. Barbas H, García-Cabezas MÁ, Zikopoulos B (2013) Frontal-thalamic circuits associated with language. Brain Lang 126:49–61. https://doi.org/10.1016/j.bandl.2012.10.001

    Article  PubMed  Google Scholar 

  153. Utianski RL et al (2019) Electroencephalography in primary progressive aphasia and apraxia of speech. Aphasiology 33:1410–1417. https://doi.org/10.1080/02687038.2018.1545991

    Article  PubMed  Google Scholar 

  154. Marangolo P (2020) The potential effects of transcranial direct current stimulation (tDCS) on language functioning: combining neuromodulation and behavioral intervention in aphasia. Neurosci Lett 719:133329. https://doi.org/10.1016/j.neulet.2017.12.057

    Article  CAS  PubMed  Google Scholar 

  155. Wortman-Jutt S, Edwards DJ (2017) Transcranial direct current stimulation in poststroke aphasia recovery. Stroke 48:820–826. https://doi.org/10.1161/STROKEAHA.116.015626

    Article  PubMed Central  PubMed  Google Scholar 

  156. Torres J, Drebing D, Hamilton R (2013) TMS and tDCS in post-stroke aphasia: integrating novel treatment approaches with mechanisms of plasticity. Restor Neurol Neurosci 31:501–515. https://doi.org/10.3233/RNN-130314

    Article  CAS  PubMed  Google Scholar 

  157. Thiel A et al (2013) Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. Stroke 44:2240–2246. https://doi.org/10.1161/STROKEAHA.111.000574

    Article  PubMed  Google Scholar 

  158. Norise C, Hamilton RH (2017) Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: parallels, differences, and lessons learned. Front Hum Neurosci 10:675. https://doi.org/10.3389/fnhum.2016.00675

    Article  PubMed Central  PubMed  Google Scholar 

  159. Rektorová I, Anderková Ľ (2017) Chapter thirty-eight – noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson’s disease. In: Chaudhuri KR, Titova N (eds) International review of neurobiology. Academic Press, pp 1091–1110

    Google Scholar 

  160. Lee HK et al (2019) Does transcranial direct current stimulation improve functional locomotion in people with Parkinson’s disease? A systematic review and meta-analysis. J Neuroeng Rehabil 16:84. https://doi.org/10.1186/s12984-019-0562-4

    Article  PubMed Central  PubMed  Google Scholar 

  161. Zanjani A, Zakzanis KK, Daskalakis ZJ, Chen R (2015) Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in Parkinson’s disease: a quantitative review of the literature. Mov Disord 30:750–758. https://doi.org/10.1002/mds.26206

    Article  PubMed  Google Scholar 

  162. Teichmann M et al (2016) Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia. Ann Neurol 80:693–707. https://doi.org/10.1002/ana.24766

    Article  CAS  PubMed  Google Scholar 

  163. McConathey EM et al (2017) Baseline performance predicts tDCS-mediated improvements in language symptoms in primary progressive aphasia. Front Hum Neurosci 11:347. https://doi.org/10.3389/fnhum.2017.00347

    Article  PubMed Central  PubMed  Google Scholar 

  164. Ficek BN et al (2018) The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin 19:703–715. https://doi.org/10.1016/j.nicl.2018.05.023

    Article  PubMed Central  PubMed  Google Scholar 

  165. Ladányi E et al (2020) Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip Rev Cogn Sci 11:e1528. https://doi.org/10.1002/wcs.1528

    Article  PubMed Central  PubMed  Google Scholar 

  166. Alajouanine TH, Lhermitte F (1965) Acquired aphasia in children. Brain 88:653–662. https://doi.org/10.1093/brain/88.4.653

    Article  CAS  PubMed  Google Scholar 

  167. Vicari S et al (2000) Plasticity and reorganization during language development in children with early brain injury. Cortex 36:31–46. https://doi.org/10.1016/S0010-9452(08)70834-7

    Article  CAS  PubMed  Google Scholar 

  168. Dronkers NF, Ivanova MV, Baldo JV (2017) What do language disorders reveal about brain-language relationships? From classic models to network approaches. J Int Neuropsychol Soc 23:741–754. https://doi.org/10.1017/S1355617717001126

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Verga or Sonja A. Kotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verga, L., Schwartze, M., Kotz, S.A. (2023). Neurophysiology of Language Pathologies. In: Grimaldi, M., Brattico, E., Shtyrov, Y. (eds) Language Electrified. Neuromethods, vol 202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3263-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3263-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3262-8

  • Online ISBN: 978-1-0716-3263-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics