Skip to main content

Neural Underpinnings of Semantic Processing

  • Protocol
  • First Online:
Language Electrified

Part of the book series: Neuromethods ((NM,volume 202))

  • 598 Accesses

Abstract

The N400 component of the event-related potential (ERP) is the most widely used brain signal in research on semantic processing. It has been discovered now more than 30 years ago, in 1980, as a larger negativity for semantically incongruent sentence continuations such as “I take my coffee with cream and dog” (as compared to congruent continuations such as “sugar”). The N400 has meanwhile been shown to be modulated by a very wide variety of lexical and semantic variables and has taught us a lot about how meaning is processed in language and beyond. This chapter reviews the literature on the N400 component including its relationship to the subsequent P600 component and discusses implications for the neurocognition of semantic processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cloze probability refers to the rate of participants completing a sentence fragment with a specific word in offline sentence completion tasks; for instance, most participants complete the sentence fragment “I take my coffee with cream and…” with “sugar,” while some, but fewer participants, may complete the sentence, e.g., with “sweetener.”

  2. 2.

    How are concepts represented in the mind and brain? This is an actively debated issue, but one perspective is that concepts are represented based on semantic features. For example, the semantic features for the concept “mouse” could be: is an animal, is furry, is small, has a tail, has four legs, likes cheese, fears cats, etc. Empirical semantic feature production norms have been collected for large sets of concepts by asking large groups of participants to generate semantic features for living and nonliving things [41]. Based on these norms, it has been shown that semantic features play an important role in language and meaning processing. For instance, the number of a concept’s semantic features [4, 122], the intercorrelation of a concept’s features [123, 124], as well as overlap of semantic features between two concepts [125, 126] all modulate performance in lexical and semantic tasks.

  3. 3.

    There is an interesting interaction of this effect with the visual hemifield in which the stimuli are presented, indicating that the effect of semantic feature overlap may primarily rely on processes in the left hemisphere ([29]; see Fig. 1, row 2).

References

  1. Kutas M, Hillyard Steven A (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science (1979) 207:203–205

    CAS  Google Scholar 

  2. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62(August):621–647

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rabovsky M, McRae K (2014) Simulating the N400 ERP component as semantic network error: insights from a feature-based connectionist attractor model of word meaning. Cognition, 132(1):68–89. http://www.ncbi.nlm.nih.gov/pubmed/24762924

  4. Rabovsky M, Sommer W, Abdel Rahman R (2012) Implicit word learning benefits from semantic richness: electrophysiological and behavioral evidence. J Exp Psychol Learn Mem Cogn 38:1076–1083

    Article  PubMed  Google Scholar 

  5. Rabovsky M, Hansen SS, McClelland JL (2018) Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nat Hum Behav 2:693–705

    Google Scholar 

  6. Rabovsky M, McClelland JL (2020) Quasi-compositional mapping from form to meaning: a neural network-based approach to capturing neural responses during human language comprehension. Philos Trans R Soc Lond B Biol Sci 375(1791):20190313

    Article  PubMed  Google Scholar 

  7. Kuperberg GR (2016) Separate streams or probabilistic inference? What the N400 can tell us about the comprehension of events. Lang Cogn Neurosci 31(5):602–616

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuperberg GR, Jaeger TF (2016) What do we mean by prediction in language comprehension? Lang Cogn Neurosci 31(1):32–59

    Article  PubMed  Google Scholar 

  9. McClelland JL (1994) The interaction of nature and nurture in development: a parallel distributed processing perspective. In: International perspectives on psychological science, Volume 1: Leading themes. Erlbaum, Hillsdale

    Google Scholar 

  10. Bornkessel-Schlesewsky I, Schlesewsky M (2019) Towards a neurobiologically plausible model of language-related, negative event-related potentials. Front Psychol 10:298

    Google Scholar 

  11. Rabovsky M (2020) Change in a probabilistic representation of meaning can account for N400 effects on articles: a neural network model. Neuropsychologia 143:107466

    Article  PubMed  Google Scholar 

  12. Fitz H, Chang F (2019) Language ERPs reflect learning through prediction error propagation. Cogn Psychol, 111:15–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010028518300124

  13. Hodapp A, Rabovsky M (2021) The N400 ERP component reflects an error-based implicit learning signal during language comprehension. Eur J Neurosci 54(9):7125–7140

    Article  CAS  PubMed  Google Scholar 

  14. Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36(3):181–204

    Article  PubMed  Google Scholar 

  15. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci, 360(1456):815–836. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569488&tool=pmcentrez&rendertype=abstract

  16. Lau EF, Phillips C, Poeppel D (2008) A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 9(12):920–933

    Article  CAS  PubMed  Google Scholar 

  17. Brouwer H, Crocker MW, Venhuizen NJ, Hoeks JCJ (2017) A neurocomputational model of the N400 and the P600 in language processing. Cogn Sci 41:1318–1352

    Article  PubMed  Google Scholar 

  18. Baggio G, Hagoort P (2011) The balance between memory and unification in semantics: a dynamic account of the N400. Lang Cogn Process 26(9):1338–1367

    Article  Google Scholar 

  19. Brown C, Hagoort P (1993) The processing nature of the N400: evidence from masked priming. J Cogn Neurosci 5(1):34–44

    Article  CAS  PubMed  Google Scholar 

  20. Lyu B, Choi HS, Marslen-Wilson WD, Clarke A, Randall B, Tyler LK (2019) Neural dynamics of semantic composition. Proc Natl Acad Sci U S A 116(42):21318–21327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferreira F (2003) The misinterpretation of noncanonical sentences. Cogn Psychol 47(2):164–203

    Article  PubMed  Google Scholar 

  22. Kuperberg GR, Sitnikova T, Caplan D, Holcomb PJ (2003) Electrophysiological distinctions in processing conceptual relationships within simple sentences. Cogn Brain Res 17(1):117–129

    Article  Google Scholar 

  23. Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kutas M, Hillyard SA (1983) Event-related brain potentials to grammatical errors and semantic anomalies. Mem Cogn 11:539–550

    Article  CAS  Google Scholar 

  25. Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307:101–103

    Article  Google Scholar 

  26. DeLong KA, Urbach TP, Kutas M (2005) Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nat Neurosci 8(8):1117–1121

    Article  CAS  PubMed  Google Scholar 

  27. van Petten C, Kutas M (1991) Influences of semantic and syntactic context on open- and closed-class words. Mem Cogn 19(1):95–112

    Article  Google Scholar 

  28. Federmeier KD, Wlotko EW, de Ochoa-Dewald E, Kutas M (2007) Multiple effects of sentential constraint on word processing. Brain Res 1146(1):75–84

    Article  CAS  PubMed  Google Scholar 

  29. Federmeier KD (2007) Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology. Blackwell Publishing Inc 44:491–505

    Google Scholar 

  30. Kutas M (1993) In the company of other words: electrophysiological evidence for single-word and sentence context effects. Lang Cogn Process 8(4):533–572

    Article  Google Scholar 

  31. Federmeier KD, Kutas M (1999) A rose by any other name: long-term memory structure and sentence processing. J Mem Lang 41:469–495

    Article  Google Scholar 

  32. Arkhipova Y, Lopopolo A, Rabovsky M (2022) The N400 amplitude is best predicted by probability of upcoming semantic features, not lexical items. In: Architectures and mechanisms for language processing conference. York

    Google Scholar 

  33. Stone K, Khaleghi N, Rabovsky M (2022) Semantic versus lexical violations in Persian phrasal verbs. In: Architectures and mechanisms for language processing conference. York. Preprint available on OSF https://osf.io/sz96m/

  34. Koivisto M, Revonsuo A (2001) Cognitive representations underlying the N400 priming effect. Cogn Brain Res 12(3):487–490

    Article  CAS  Google Scholar 

  35. Rugg MD (1985) The effects of semantic priming and word repetition on event-related potentials. Psychophysiology 22(6):642–647

    Article  CAS  PubMed  Google Scholar 

  36. Rommers J, Federmeier KD (2018) Predictability’s aftermath: downstream consequences of word predictability as revealed by repetition effects. Cortex 101:16–30

    Article  PubMed  PubMed Central  Google Scholar 

  37. Besson M, Kutas M, van Petten C (1992) An event-related potential (ERP) analysis of semantic congruity and repetition effects in sentences. J Cogn Neurosci 4(2):132–149

    Article  CAS  PubMed  Google Scholar 

  38. Barber H, Vergara M, Carreiras M (2004) Syllable-frequency effects in visual word recognition: evidence from ERPs. Neuroreport 15:545–548

    Article  PubMed  Google Scholar 

  39. Rabovsky M, Álvarez CJ, Hohlfeld A, Sommer W (2008) Is lexical access autonomous? Evidence from combining overlapping tasks with recording event-related brain potentials. Brain Res 1222:156–165

    Article  CAS  PubMed  Google Scholar 

  40. Kounios J, Holcomb PJ (1994) Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. J Exp Psychol Learn Mem Cogn 20:804–823

    Article  CAS  PubMed  Google Scholar 

  41. McRae K, Cree G, Seidenberg M, McNorgan C (2005) Semantic feature production norms for a large set of living and nonliving things. Behav Res Methods 37:547–559

    Article  PubMed  Google Scholar 

  42. Rabovsky M, Sommer W, Abdel Rahman R (2012) The time course of semantic richness effects in visual word recognition. Front Hum Neurosci 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holcomb PJ, Grainger J, O’Rourke T (2002) An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. J Cogn Neurosci 14:938–950

    Article  PubMed  Google Scholar 

  44. Laszlo S, Federmeier KD (2011) The N400 as a snapshot of interactive processing: evidence from regression analyses of orthographic neighbor and lexical associate effects. Psychophysiology 48:176–186

    Article  PubMed  PubMed Central  Google Scholar 

  45. Willems RM, Ozyürek A, Hagoort P (2008) Seeing and hearing meaning: ERP and fMRI evidence of word versus picture integration into a sentence context. J Cogn Neurosci, 20(7):1239–1249. Available from: http://mitprc.silverchair.com/jocn/article-pdf/20/7/1235/1759592/jocn.2008.20085.pdf

  46. Proverbio AM, Riva F (2009) RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neurosci Lett 459(3):142–146

    Article  CAS  PubMed  Google Scholar 

  47. Sitnikova T, Holcomb PJ, Kiyonaga KA, Kuperberg GR (2008) Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. J Cogn Neurosci, 20(11):2037–2057. Available from: www.nmr.mgh.harvard.edu/$tatiana/movies

  48. Niedeggen M, Rösler F, Jost K (1999) Processing of incongruous mental calculation problems: evidence for an arithmetic N400 effect. Psychophysiology 36(3):307–324

    Article  CAS  PubMed  Google Scholar 

  49. Niedeggen M, Rösler F (1999) N400 effects reflect activation spread during retrieval of arithmetic facts. Psychol Sci, 10(3):271–276. Available from: http://pss.sagepub.com/content/10/3/271.short

  50. Hagoort P, Hald L, Bastiaansen M, Petersson KM (2004) Integration of word meaning and world knowledge in language comprehension. Science (1979) 304(5669):438–441

    CAS  Google Scholar 

  51. Hagoort P, van Berkum J (2007) Beyond the sentence given. Philos Trans R Soc Lond B Biol Sci 362(1481):801–811

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nieuwland MS, van Berkum JJA (2006) When peanuts fall in love: N400 evidence for the power of discourse. J Cogn Neurosci 18(7):1098–1111

    Article  PubMed  Google Scholar 

  53. van Berkum JJA, van den Brink D, Tesink CMJY, Kos M, Hagoort P (2008) The neural integration of speaker and message. J Cogn Neurosci 20(4):580–591

    Article  PubMed  Google Scholar 

  54. Partee B, ter Meulen A, Wall RE (1990) Mathematical methods in linguistics, Studies in linguistics and philosophy, vol 30. Kluwer, Dordrecht

    Google Scholar 

  55. Fischler I, Bloom PA, Childers DG, Roucos SE, Perry NW (1983) Brain potentials related to stages of sentence verification. Psychophysiology 20(4):400–409

    Article  CAS  PubMed  Google Scholar 

  56. Nieuwland MS, Kuperberg GR (2008) When the truth is not too hard to handle an event-related potential study on the pragmatics of negation. Psychol Sci, 19(12):1213–1218. Available from: www.nmr.mgh.harvard

  57. Nieuwland MS (2016) Quantification, prediction, and the online impact of sentence truth-value: evidence from event-related potentials. J Exp Psychol Learn Mem Cogn 42(2):316–334

    Article  PubMed  Google Scholar 

  58. Ito A, Martin AE, Nieuwland MS (2017) Why the A/AN prediction effect may be hard to replicate: a rebuttal to Delong, Urbach, and Kutas (2017). Lang Cogn Neurosci 32(8):974–983

    Article  Google Scholar 

  59. Yan S, Kuperberg GR, Jaeger TF (2017) Prediction (or not) during language processing. A commentary on Nieuwland et al. (2017) and DeLong et al. (2005). bioRxiv. Available from: https://doi.org/10.1101/143750

  60. DeLong KA, Quante L, Kutas M (2014) Predictability, plausibility, and two late ERP positivities during written sentence comprehension. Neuropsychologia, 61:150–162. Available from: https://doi.org/10.1016/j.neuropsychologia.2014.06.016

  61. DeLong KA, Urbach TP, Kutas M (2017) Is there a replication crisis? Perhaps. Is this an example? No: a commentary on Ito, Martin, and Nieuwland (2016). Lang Cogn Neurosci 32(8):966–973

    Article  Google Scholar 

  62. Ito A, Martin AE, Nieuwland MS (2017) How robust are prediction effects in language comprehension? Failure to replicate article-elicited N400 effects. Lang Cogn Neurosci 32(8):954–965

    Article  Google Scholar 

  63. Nieuwland MS, Politze-Ahles S, Heyselaar E, Segaer K, Bartolozzi F, Kogan V et al (2018) Large-scale replication study reveals a limit on probabilistic prediction in language. eLife 7:1–24

    Article  Google Scholar 

  64. Nicenboim B, Vasishth S, Rösler F (2020) Are words pre-activated probabilistically during sentence comprehension? Evidence from new data and a Bayesian random-effects meta-analysis using publicly available data. Neuropsychologia 142: 07427. Available from: https://pubmed.ncbi.nlm.nih.gov/32251629/

  65. Kim A, Osterhout L (2005) The independence of combinatory semantic processing: evidence from event-related potentials. J Mem Lang 52(2):205–225

    Article  Google Scholar 

  66. Hoeks JCJ, Stowe LA, Doedens G (2004) Seeing words in context: the interaction of lexical and sentence level information during reading. Cogn Brain Res 19:59–73

    Article  Google Scholar 

  67. van Herten M, Kolk HHJ, Chwilla DJ (2005) An ERP study of P600 effects elicited by semantic anomalies. Cogn Brain Res 22(2):241–255

    Article  Google Scholar 

  68. van Herten M, Chwilla DJ, Kolk HHJ (2006) When heuristics clash with parsing routines: ERP evidence for conflict monitoring in sentence perception. J Cogn Neurosci 18(7):1181–1197

    Article  PubMed  Google Scholar 

  69. Brouwer H, Fitz H, Hoeks J (2012) Getting real about semantic illusions: rethinking the functional role of the P600 in language comprehension. Brain Res, 1446:127–143. Available from: https://doi.org/10.1016/j.brainres.2012.01.055

  70. Kuperberg GR (2007) Neural mechanisms of language comprehension: challenges to syntax. Brain Res 1146(1):23–49

    Article  CAS  PubMed  Google Scholar 

  71. Ferreira F, Bailey KGD, Ferraro V (2002) Good-enough representations in language comprehension. Curr Dir Psychol Sci 11(1):11–15

    Article  Google Scholar 

  72. Karimi H, Ferreira F (2016) Good-enough linguistic representations and online cognitive equilibrium in language processing. Q J Exp Psychol, 69(5):1013–1040. Available from: http://www.tandfonline.com/doi/full/10.1080/17470218.2015.1053951

  73. Bader M, Meng M (2018) The misinterpretation of noncanonical sentences revisited. J Exp Psychol Learn Mem Cogn 44(18):1286–1311

    Article  PubMed  Google Scholar 

  74. Laszlo S, Plaut DC (2012) A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain Lang, 120(3):271–281. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0093934X11001544

  75. Laszlo S, Armstrong BC (2014) PSPs and ERPs: applying the dynamics of post-synaptic potentials to individual units in simulation of temporally extended Event-Related Potential reading data. Brain Lang 132:22–27

    Article  PubMed  Google Scholar 

  76. Frank SL, Galli G, Vigliocco G (2015) The ERP response to the amount of information conveyed by words in sentences. Brain Lang, 140:1–25. Available from: https://doi.org/10.1016/j.bandl.2014.10.006

  77. Michaelov JA, Bergen BK (2020) How well does surprisal explain N400 amplitude under different experimental conditions? In: Proceedings of the annual meeting of the Cognitive Science Society. Available from: http://arxiv.org/abs/2010.04844

  78. Michaelov JA, Bardolph MD, Coulson S, Bergen BK (2021) Different kinds of cognitive plausibility: why are transformers better than RNNs at predicting N400 amplitude? In: Proceedings of the annual meeting of the Cognitive Science Society. Available from: http://arxiv.org/abs/2107.09648

  79. Lopopolo A, Rabovsky M (2021) Predicting the N400 ERP component using the Sentence Gestalt model trained on a large scale corpus. In: Proceedings of the annual meeting of the Cognitive Science Society

    Google Scholar 

  80. Lindborg A, Musiolek L, Ostwald D, Rabovsky M (2023) Semantic surprise predicts the N400 brain potential. Neuroimage Rep, 3(1):100161. Available from: https://doi.org/10.1101/2022.05.31.494099

    Article  Google Scholar 

  81. Lindborg A, Rabovsky M (2021) Meaning in brains and machines: internal activation update in large-scale language model partially reflects the N400 brain potential. In: Proceedings of the annual meeting of the Cognitive Science Society

    Google Scholar 

  82. Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  83. McClelland JL, St. John M, Taraban R (1989) Sentence comprehension: a parallel distributed processing approach. Lang Cogn Process 4:287–336

    Article  Google Scholar 

  84. Rumelhart DE (1979) Some problems with the notion of literal meanings. In: Ortony A (ed) Metaphor and thought, 1st edn. Cambridge University Press, pp 71–82

    Google Scholar 

  85. Gibson E, Bergen L, Piantadosi ST (2013) Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proc Natl Acad Sci 110(20):8051–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibson E, Tan C, Futrell R, Mahowald K, Konieczny L, Hemforth B et al (2017) Don’t underestimate the benefits of being misunderstood. Psychol Sci 28(6):703–712

    Article  PubMed  Google Scholar 

  87. Hagoort P, Brown C, Groothusen J (1993) The syntactic positive shift (SPS) as an ERP measure of syntactic processing. Lang Cogn Process 8(4):439–483

    Article  Google Scholar 

  88. Hagoort P, Brown CM (2000) ERP effects of listening to speech compared to reading: the P600/SPS to syntactic violations in spoken sentences and rapid serial visual presentation. Neuropsychologia 38:1531–1549

    Article  CAS  PubMed  Google Scholar 

  89. Angrilli A, Penolazzi B, Vespignani F, De Vincenzi M, Job R, Ciccarelli L et al (2002) Cortical brain responses to semantic incongruity and syntactic violation in Italian language: an event-related potential study. Neurosci Lett 322(1):5–8

    Article  CAS  PubMed  Google Scholar 

  90. Balconi M, Pozzoli U (2005) Comprehending semantic and grammatical violations in Italian. N400 and P600 comparison with visual and auditory stimuli. J Psycholinguist Res 34(1):71–98

    Article  PubMed  Google Scholar 

  91. Gouvea AC, Phillips C, Kazanina N, Poeppel D (2010) The linguistic processes underlying the P600. Lang Cogn Process 25(2):149–188

    Article  Google Scholar 

  92. Tanner D, Grey S, van Hell JG (2017) Dissociating retrieval interference and reanalysis in the P600 during sentence comprehension. Psychophysiology 54(2):248–259

    Article  PubMed  Google Scholar 

  93. Hagoort P, Brown CM (1999) Gender electrified: ERP evidence on the syntactic nature of gender processing. J Psycholinguist Res 28(6):715–728

    Article  CAS  PubMed  Google Scholar 

  94. Münte TF, Szentkuti A, Wieringa BM, Matzke M, Johannes S (1997) Human brain potentials to reading syntactic errors in sentences of different complexity. Neurosci Lett 235(3):105–108

    Article  PubMed  Google Scholar 

  95. Kaan E, Harris A, Gibson E, Holcomb P (2000) The P600 as an index of syntactic integration difficulty. Lang Cogn Process 15(2):159–201

    Article  Google Scholar 

  96. Osterhout L, Holcomb PJ (1992) Event-related brain potentials elicited by syntactic anomaly. J Mem Lang 31:785–806

    Article  Google Scholar 

  97. Frisch S, Schlesewsky M, Saddy D, Alpermann A (2002) The P600 as an indicator of syntactic ambiguity. Cognition 85(3):83–92

    Article  Google Scholar 

  98. Steinhauer K, Alter K, Friederici AD (1999) Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nat Neurosci 2(2):191–196

    Article  CAS  PubMed  Google Scholar 

  99. Kotz SA, Schmidt-Kassow M (2009) Event-related brain potentials suggest a late interaction of meter and syntax in the P600 impact of social interaction on second language learning. J Cogn Neurosci 21:1693–1708

    Article  PubMed  Google Scholar 

  100. Schacht A, Sommer W, Shmuilovich O, Casado Martinez P, Martin-Loeches M (2014) Differential task effects on N400 and P600 elicited by semantic and syntactic violations. PLoS One 9(3):1–7

    Article  Google Scholar 

  101. Regel S, Gunter TC, Friederici AD (2010) Isn’t it ironic? An electrophysiological exploration of figurative language processing. J Cogn Neurosci 23(2):277–293

    Article  PubMed  Google Scholar 

  102. Spotorno N, Cheylus A, Van Der Henst J-B, Noveck IA (2013) What’s behind a P600? Integration operations during irony processing. PLoS One 8(6):1–10

    Article  Google Scholar 

  103. van Petten C, Luka BJ (2012) Prediction during language comprehension: benefits, costs, and ERP components. Int J Psychophysiol, 83(2):176–190. Available from: https://doi.org/10.1016/j.ijpsycho.2011.09.015

  104. Quante L, Bölte J, Zwitserlood P (2018) Dissociating predictability, plausibility and possibility of sentence continuations in reading: evidence from late-positivity ERPs. PeerJ 6:e5717

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kuperberg GR, Brothers T, Wlotko EW (2019) A tale of two positivities and the N400: distinct neural signatures are evoked by confirmed and violated predictions at different levels of representation. J Cogn Neurosci 32(1):12–35

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kos M, van den Brink D, Hagoort P (2012) Individual variation in the late positive complex to semantic anomalies. Front Psychol 3:1–10

    Article  Google Scholar 

  107. Kim A, Oines L, Miyake A (2018) Individual differences in verbal working memory underlie a tradeoff between semantic and structural processing difficulty during language comprehension: an ERP investigation. J Exp Psychol Learn Mem Cogn 44(3):406–420

    Article  PubMed  Google Scholar 

  108. Dimigen O, Sommer W, Kliegl R (2007) Long reading regressions are accompanied by a P600-like brain potential. In: Proceedings of the 14th European Conference on Eye Movements (ECEM), University of Potsdam, Potsdam, Germany. Journal of Eye Movement Research

    Google Scholar 

  109. Metzner P, von der Malsburg T, Vasishth S, Rösler F (2017) The importance of reading naturally: evidence from combined recordings of eye movements and electric brain potentials. Cogn Sci 41:1232–1263

    Article  PubMed  Google Scholar 

  110. Donchin E (1981) Surprise! … Surprise? Psychophysiology 18(5):493–513

    Article  CAS  PubMed  Google Scholar 

  111. Sassenhagen J, Schlesewsky M, Bornkessel-Schlesewsky I (2014) The P600-as-P3 hypothesis revisited: single-trial analyses reveal that the late EEG positivity following linguistically deviant material is reaction time aligned. Brain Lang 137:29–39

    Article  PubMed  Google Scholar 

  112. Coulson S, King JW, Kutas M (1998) Expect the unexpected: event-related brain response to morphosyntactic violations. Lang Cogn Process 13(1):21–58

    Article  Google Scholar 

  113. Osterhout L, Hagoort P (1999) A superficial resemblance does not necessarily mean you are part of the family: counterarguments to Coulson, King and Kutas (1998) in the P600/SPS-P300 debate. Lang Cogn Process 14(1):1–14

    Article  Google Scholar 

  114. Contier F, Weymar M, Wartenburger I, Rabovsky M (2022) The P600 and P3 ERP components are linked to pupil dilation as correlate of norepinephrine activity. In: Proceedings of the annual meeting of the Cognitive Science Society

    Google Scholar 

  115. Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89(1):221–234

    Article  CAS  PubMed  Google Scholar 

  116. Luck SJ, Vogel EK, Shapiro KL (1996) Word meanings can be accessed but not reported during the attentional blink. Nature 383:616–618

    Article  CAS  PubMed  Google Scholar 

  117. Rolke B, Heil M, Streb J, Hennighausen E (2001) Missed prime words within the attentional blink evoke an N400 semantic priming effect, vol 38, p 165

    Google Scholar 

  118. Luck SJ (1998) Sources of dual-task interference: evidence from human electrophysiology. Psychol Sci 9:223–227

    Article  Google Scholar 

  119. Vogel EK, Luck SJ, Shapiro KL (1998) Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform 24(6):1656–1674

    Article  CAS  PubMed  Google Scholar 

  120. Contier F, Weymar M, Wartenburger I, Rabovsky M (2022) The P600, but not the N400, is modulated by sustained attention. J Cogn Neurosci, 34(12):2297–2310. Available from: https://doi.org/10.1101/2021.11.18.469143

    Article  PubMed  Google Scholar 

  121. Tan Y, Hagoort P (2020) Catecholaminergic modulation of semantic processing in sentence comprehension. Cereb Cortex 30(12):6426–6443

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pexman P, Lupker SJ, Hino Y (2002) The impact of feedback semantics in visual word recognition: number-of-features effects in lexical decision and naming tasks. Psychon Bull Rev 9(3):542–549

    Article  PubMed  Google Scholar 

  123. Mcrae K, Seidenberg MS, de Sa VR (1997) On the nature and scope of featural representations of word meaning. J Exp Psychol Gen, 126:99–130

    Article  CAS  PubMed  Google Scholar 

  124. Rabovsky M, Schad DJ, Abdel Rahman R (2016) Language production is facilitated by semantic richness but inhibited by semantic density: evidence from picture naming. Cognition 146:240–244

    Article  PubMed  Google Scholar 

  125. Lucas M (2000) Semantic priming without association: a meta-analytic review. Psychon Bull Rev 7:618–630

    Article  CAS  PubMed  Google Scholar 

  126. Hutchison KA (2003) Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychon Bull Rev 10(4):785–813

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Emmy Noether Grant No. RA 2715/2-1 by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) to Milena Rabovsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Rabovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rabovsky, M. (2023). Neural Underpinnings of Semantic Processing. In: Grimaldi, M., Brattico, E., Shtyrov, Y. (eds) Language Electrified. Neuromethods, vol 202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3263-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3263-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3262-8

  • Online ISBN: 978-1-0716-3263-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics