Skip to main content

Transcranial Direct Current Stimulation (tDCS)

  • Protocol
  • First Online:
Language Electrified

Part of the book series: Neuromethods ((NM,volume 202))

  • 635 Accesses

Abstract

tDCS is a noninvasive neuromodulation technique that induces changes in brain excitability and promotes cerebral plasticity. The device consists of a stimulator that delivers sustained direct subthreshold current (1.0–2.5 mA) through at least two connected electrodes placed on the scalp: the anode and the cathode, respectively connected to the positive and the negative pole of the battery. The stimulation administered is too weak to induce neuronal activity regardless of the afferent input, but still sufficient to alter neuron excitability and spontaneous firing rate. In particular, anodal stimulation results in excitation of the cerebral areas below the electrode by lowering GABA levels, while cathodic stimulation results in inhibition thereof by lowering glutamate levels.

The consequences of this stimulation can last just a few minutes after stimulation (short-term effects affecting non-synaptic mechanisms) or up to several months (long-term effects mediated by synaptic modifications) and over time have been objectively assessed and monitored with other neurophysiological techniques such as TMS, EEG and ERPs, and MRI/MRS.

Language performance is an example of a cognitive area that can be improved by stimulating the prefrontal and temporal regions of the brain in both healthy and aphasic individuals. Specifically, anodal tDCS in multiple areas of the left frontal lobe improved phonemic fluency, sentence production, naming performance, and language comprehension, while stimulation over Wernicke’s area increased learning speed and overall accuracy and decreased naming latencies in healthy subjects.

In aphasic patients, repeated tDCS application over the frontal cortex resulted in improvements in naming accuracy and fluency that lasted up to 6 and 2 months after treatment, respectively. Even stimulation of the posterior perisylvian region showed an improvement in naming accuracy and a reduction in naming latencies, as well as an improvement in auditory verbal comprehension. Overall, these results suggest that repetitive tDCS could be a promising tool in the rehabilitation of patients with language disorders, although further studies are needed to prove the potential and limitations of its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penfield W (1965) Conditioning the uncommitted cortex for language learning. Brain 88(4):787–798

    Article  CAS  PubMed  Google Scholar 

  2. Ojemann GA (1993) Functional mapping of cortical language areas in adults. Intraoperative approaches. Adv Neurol 63:155–163

    CAS  PubMed  Google Scholar 

  3. Rapport RL, Tan CT, Whitaker HA (1983) Language function and dysfunction among Chinese- and English-speaking polyglots: cortical stimulation, Wada testing, and clinical studies. Brain Lang 18(2):342–366

    Article  CAS  PubMed  Google Scholar 

  4. Saxena S, Hillis AE (2017) An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 17(11):1091–1107

    Article  CAS  PubMed  Google Scholar 

  5. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M (1998) Polarization of the human motor cortex through the scalp. Neuroreport 9(10):2257–2260

    Article  CAS  PubMed  Google Scholar 

  6. Ardolino G, Bossi B, Barbieri S, Priori A (2005) Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol 568(Pt 2):653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L (2010) Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci 31(4):704–709

    Article  PubMed  Google Scholar 

  8. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2012) Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 107(7):1881–1889

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT et al (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN et al (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13):3379–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bocci T, Caleo M, Tognazzi S, Francini N, Briscese L, Maffei L et al (2014) Evidence for metaplasticity in the human visual cortex. J Neural Transm (Vienna) 121(3):221–231

    Article  PubMed  Google Scholar 

  13. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W (2004) Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29(8):1573–1578

    Article  CAS  PubMed  Google Scholar 

  14. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N et al (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553(Pt 1):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  16. Lisman JE (2001) Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J Physiol 532(Pt 2):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Polania R, Nitsche MA, Paulus W (2011) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32(8):1236–1249

    Article  PubMed  Google Scholar 

  18. Venkatakrishnan A, Contreras-Vidal JL, Sandrini M, Cohen LG (2011) Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation. Conf Proc IEEE Eng Med Biol Soc 2011:8102–8105

    Google Scholar 

  19. Polania R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33(10):2499–2508

    Article  PubMed  Google Scholar 

  20. Grent-’t-Jong T, Rivolta D, Sauer A, Grube M, Singer W, Wibral M et al (2016) MEG-measured visually induced gamma-band oscillations in chronic schizophrenia: evidence for impaired generation of rhythmic activity in ventral stream regions. Schizophr Res 176(2–3):177–185

    Article  PubMed  Google Scholar 

  21. Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mussmann M et al (2016) EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophr Bull 42(1):239–249

    PubMed  Google Scholar 

  22. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978

    Article  PubMed  Google Scholar 

  23. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2):206–214

    Article  CAS  PubMed  Google Scholar 

  24. Ormel PR, van Mierlo HC, Litjens M, Strien MEV, Hol EM, Kahn RS et al (2017) Characterization of macrophages from schizophrenia patients. NPJ Schizophr 3(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jamil A, Batsikadze G, Kuo HI, Labruna L, Hasan A, Paulus W et al (2017) Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol 595(4):1273–1288

    Article  CAS  PubMed  Google Scholar 

  26. Di Lazzaro V, Manganelli F, Dileone M, Notturno F, Esposito M, Capasso M et al (2012) The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex. J Neural Transm (Vienna) 119(12):1499–1506

    Article  PubMed  Google Scholar 

  27. Cengiz B, Murase N, Rothwell JC (2013) Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI). Exp Brain Res 225(3):321–331

    Article  PubMed  Google Scholar 

  28. Vaseghi B, Zoghi M, Jaberzadeh S (2015) The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects: conventional vs. unihemispheric concurrent dual-site stimulation. Front Hum Neurosci 9:533

    Article  PubMed  PubMed Central  Google Scholar 

  29. Davidson TW, Bolic M, Tremblay F (2016) Predicting modulation in Corticomotor excitability and in Transcallosal inhibition in response to anodal transcranial direct current stimulation. Front Hum Neurosci 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mangia AL, Pirini M, Cappello A (2014) Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Front Hum Neurosci 8:601

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ (2018) Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex 28(4):1132–1140

    Article  PubMed  Google Scholar 

  32. Wirth M, Rahman RA, Kuenecke J, Koenig T, Horn H, Sommer W et al (2011) Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia 49(14):3989–3998

    Article  PubMed  Google Scholar 

  33. Cespon J, Rodella C, Rossini PM, Miniussi C, Pellicciari MC (2017) Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects. Front Aging Neurosci 9:420

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weigl M, Mecklinger A, Rosburg T (2016) Transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. Clin Neurophysiol 127(5):2263–2272

    Article  PubMed  Google Scholar 

  35. Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D et al (2015) Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat 11:2913–2917

    Article  PubMed  PubMed Central  Google Scholar 

  36. Radman N, Britz J, Buetler K, Weekes BS, Spierer L, Annoni JM (2018) Dorsolateral prefrontal transcranial direct current stimulation modulates language processing but does not facilitate overt second language word production. Front Neurosci 12:490

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baptista NI, Manfredi M, Boggio PS (2018) Medial prefrontal cortex stimulation modulates irony processing as indexed by the N400. Soc Neurosci 13(4):495–510

    Article  PubMed  Google Scholar 

  38. Nuber S, Jacob H, Kreifelts B, Martinelli A, Wildgruber D (2018) Attenuated impression of irony created by the mismatch of verbal and nonverbal cues in patients with autism spectrum disorder. PLoS One 13(10):e0205750

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zalla T, Amsellem F, Chaste P, Ervas F, Leboyer M, Champagne-Lavau M (2014) Individuals with autism spectrum disorders do not use social stereotypes in irony comprehension. PLoS One 9(4):e95568

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rossetti I, Brambilla P, Papagno C (2018) Metaphor comprehension in Schizophrenic patients. Front Psychol 9:670

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hone-Blanchet A, Edden RA, Fecteau S (2016) Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol Psychiatry 80(6):432–438

    Article  PubMed  Google Scholar 

  42. Kim S, Stephenson MC, Morris PG, Jackson SR (2014) tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage 99:237–243

    Article  CAS  PubMed  Google Scholar 

  43. Stagg CJ, Johansen-Berg H (2013) Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Hum Neurosci 7:857

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carlson HL, Ciechanski P, Harris AD, MacMaster FP, Kirton A (2018) Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimul 11(1):94–103

    Article  PubMed  Google Scholar 

  45. Harris AD, Wang Z, Ficek B, Webster K, Edden RA, Tsapkini K (2019) Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiol Aging 79:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C et al (2014) Local GABA concentration is related to network-level resting functional connectivity. elife 3:e01465

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferrucci R, Cortese F, Priori A (2015) Cerebellar tDCS: how to do it. Cerebellum 14(1):27–30

    Article  PubMed  Google Scholar 

  48. Truong DQ, Bikson M (2018) Physics of transcranial direct current stimulation devices and their history. J ECT 34(3):137–143

    Article  PubMed  Google Scholar 

  49. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R (2014) Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 592(16):3345–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Utz KS, Dimova V, Oppenlander K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia 48(10):2789–2810

    Article  PubMed  Google Scholar 

  51. Agnew WF, McCreery DB (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery 20(1):143–147

    Article  CAS  PubMed  Google Scholar 

  52. Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72(4–6):208–214

    Article  PubMed  Google Scholar 

  53. Cattaneo Z, Pisoni A, Papagno C (2011) Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals. Neuroscience 183:64–70

    Article  CAS  PubMed  Google Scholar 

  54. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann E (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5):872–875

    Article  CAS  PubMed  Google Scholar 

  55. Nozari N, Arnold JE, Thompson-Schill SL (2014) The effects of anodal stimulation of the left prefrontal cortex on sentence production. Brain Stimul 7(6):784–792

    Article  PubMed  PubMed Central  Google Scholar 

  56. Penolazzi B, Pastore M, Mondini S (2013) Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency. Behav Brain Res 248:129–135

    Article  PubMed  Google Scholar 

  57. Ehlis A-C, Haeussinger FB, Gastel A, Fallgatter AJ, Plewnia C (2016) Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on cortical activation during word fluency. NeuroImage 140:134–140

    Article  PubMed  Google Scholar 

  58. Herrmann MJ, Horst AK, Loble S, Moll MT, Katzorke A, Polak T (2017) Relevance of dorsolateral and frontotemporal cortex on the phonemic verbal fluency - a fNIRS-study. Neuroscience 367:169–177

    Article  CAS  PubMed  Google Scholar 

  59. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2009) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208(2):311–318

    Article  PubMed  Google Scholar 

  60. Holland R, Leff AP, Josephs O, Galea JM, Desikan M, Price CJ et al (2011) Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 21(16):1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lifshitz-Ben-Basat A, Mashal N (2018) Improving naming abilities among healthy young-old adults using transcranial direct current stimulation. J Psycholinguist Res 47(1):113–124

    Article  PubMed  Google Scholar 

  62. Pisoni A, Cerciello M, Cattaneo Z, Papagno C (2017) Phonological facilitation in picture naming: when and where? A tDCS study. Neuroscience 352:106–121

    Article  CAS  PubMed  Google Scholar 

  63. Rosso C, Valabregue R, Arbizu C, Ferrieux S, Vargas P, Humbert F et al (2014) Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimul 7(1):122–129

    Article  PubMed  Google Scholar 

  64. Li B, Liu H, Perez A, Xie N (2018) Cathodal transcranial direct current stimulation over right dorsolateral prefrontal cortex improves language control during language switching. Behav Brain Res 351:34–41

    Article  PubMed  Google Scholar 

  65. Giustolisi B, Vergallito A, Cecchetto C, Varoli E, Lauro LJR (2018) Anodal transcranial direct current stimulation over left inferior frontal gyrus enhances sentence comprehension. Brain Lang 176:36–41

    Article  PubMed  Google Scholar 

  66. Hussey EK, Ward N, Christianson K, Kramer AF (2011) Language and memory improvements following tDCS of left lateral prefrontal cortex. PLoS One 10(11):e0141417

    Article  Google Scholar 

  67. Ihara AS, Mimura T, Soshi T, Yorifuji S, Hirata M, Goto T et al (2014) Facilitated lexical ambiguity processing by transcranial direct current stimulation over the left inferior frontal cortex. J Cogn Neurosci 27(1):26–34

    Article  PubMed  Google Scholar 

  68. Malyutina S, Zelenkova V, Buivolova O, Oosterhuis EJ, Zmanovsky N, Feurra M (2018) Modulating the interhemispheric balance in healthy participants with transcranial direct current stimulation: no significant effects on word or sentence processing. Brain Lang 186:60–66

    Article  PubMed  Google Scholar 

  69. Fiori V, Kunz L, Kuhnke P, Marangolo P, Hartwigsen G (2018) Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. NeuroImage 181:550–559

    Article  PubMed  Google Scholar 

  70. de Vries MH, Barth AC, Maiworm S, Knecht S, Zwitserlood P, Floel A (2010) Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci 22(11):2427–2436

    Article  Google Scholar 

  71. Floel A, Rosser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive brain stimulation improves language learning. J Cogn Neurosci 20(8):1415–1422

    Article  PubMed  Google Scholar 

  72. Fiori V, Cipollari S, Caltagirone C, Marangolo P (2014) "If two witches would watch two watches, which witch would watch which watch?" tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience 256:195–200

    Article  CAS  PubMed  Google Scholar 

  73. Perry LK, Lupyan G (2014) The role of language in multi-dimensional categorization: evidence from transcranial direct current stimulation and exposure to verbal labels. Brain Lang 135:66–72

    Article  PubMed  Google Scholar 

  74. Ross LA, McCoy D, Wolk DA, Coslett HB, Olson IR (2010) Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia 48(12):3671–3674

    Article  PubMed  Google Scholar 

  75. Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR (2008) Enhancing language performance with non-invasive brain stimulation--a transcranial direct current stimulation study in healthy humans. Neuropsychologia 46(1):261–268

    Article  PubMed  Google Scholar 

  76. Meinzer M, Yetim O, McMahon K, de Zubicaray G (2016) Brain mechanisms of semantic interference in spoken word production: an anodal transcranial Direct Current Stimulation (atDCS) study. Brain Lang 157:72–80

    Article  PubMed  Google Scholar 

  77. Brückner S, Kammer T (2017) Both anodal and cathodal transcranial direct current stimulation improves semantic processing. Neuroscience 343:269–275

    Article  PubMed  Google Scholar 

  78. Monti A, Ferrucci R, Fumagalli M, Mameli F, Cogiamanian F, Ardolino G et al (2013) Transcranial direct current stimulation (tDCS) and language. J Neurol Neurosurg Psychiatry 84(8):832–842

    Article  PubMed  Google Scholar 

  79. Floel A, Meinzer M, Kirstein R, Nijhof S, Deppe M, Knecht S et al (2011) Short-term anomia training and electrical brain stimulation. Stroke 42(7):2065–2067

    Article  PubMed  Google Scholar 

  80. Rosso C, Arbizu CL, Dhennain C, Lamy J-C, Samson Y (2018) Repetitive sessions of tDCS to improve naming in post-stroke aphasia: insights from an individual patient data (IPD) meta-analysis. Restor Neurol Neurosci 36(1):107–116

    Google Scholar 

  81. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S et al (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79(4):451–453

    Article  CAS  PubMed  Google Scholar 

  82. Biou E, Cassoudesalle H, Cogne M, Sibon I, De Gabory I, Dehail P et al (2019) Transcranial direct current stimulation in post-stroke aphasia rehabilitation: a systematic review. Ann Phys Rehabil Med 62:104

    Article  PubMed  Google Scholar 

  83. Branscheidt M, Hoppe J, Freundlieb N, Zwitserlood P, Liuzzi G (2017) tDCS over the motor cortex shows differential effects on action and object words in associative word learning in healthy aging. Front Aging Neurosci 9:137

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kang EK, Kim YK, Sohn HM, Cohen LG, Paik NJ (2011) Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci 29(3):141–152

    PubMed  PubMed Central  Google Scholar 

  85. Lee SY, Cheon HJ, Yoon KJ, Chang WH, Kim YH (2013) Effects of dual transcranial direct current stimulation for aphasia in chronic stroke patients. Ann Rehabil Med 37(5):603–610

    Article  PubMed  PubMed Central  Google Scholar 

  86. Norise C, Sacchetti D, Hamilton R (2017) Transcranial direct current stimulation in post-stroke chronic Aphasia: the impact of baseline severity and task specificity in a pilot sample. Front Hum Neurosci 11:260

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vestito L, Rosellini S, Mantero M, Bandini F (2014) Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot study. Front Hum Neurosci 8:785

    Article  PubMed  PubMed Central  Google Scholar 

  88. Baker JM, Rorden C, Fridriksson J (2010) Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41(6):1229–1236

    Article  PubMed  PubMed Central  Google Scholar 

  89. Campana S, Caltagirone C, Marangolo P (2015) Combining Voxel-based Lesion-symptom Mapping (VLSM) with A-tDCS language treatment: predicting outcome of recovery in nonfluent chronic aphasia. Brain Stimul 8(4):769–776

    Article  PubMed  Google Scholar 

  90. Fridriksson J, Rorden C, Elm J, Sen S, George MS, Bonilha L (2018) Transcranial direct current stimulation vs Sham stimulation to treat Aphasia after stroke: a randomized clinical trial. JAMA Neurol 75(12):1470–1476

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meinzer M, Darkow R, Lindenberg R, Floel A (2016) Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain 139(Pt 4):1152–1163

    Article  PubMed  Google Scholar 

  92. Shah-Basak PP, Norise C, Garcia G, Torres J, Faseyitan O, Hamilton RH (2015) Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci 9:201

    Article  PubMed  PubMed Central  Google Scholar 

  93. Spielmann K, van de Sandt-Koenderman WME, Heijenbrok-Kal MH, Ribbers GM (2018) Transcranial direct current stimulation does not improve language outcome in Subacute Poststroke Aphasia. Stroke 49(4):1018–1020

    Article  PubMed  Google Scholar 

  94. Marangolo P (2013) tDCS over the left inferior frontal cortex improves speech production in aphasia. Front Hum Neurosci 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  95. Marangolo P, Fiori V, Di Paola M, Cipollari S, Razzano C, Oliveri M et al (2013) Differential involvement of the left frontal and temporal regions in verb naming: a tDCS treatment study. Restor Neurol Neurosci 31(1):63–72

    PubMed  Google Scholar 

  96. Marangolo P, Fiori V, Gelfo F, Shofany J, Razzano C, Caltagirone C et al (2014) Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restor Neurol Neurosci 32(2):367–379

    CAS  PubMed  Google Scholar 

  97. Marangolo P, Fiori V, Sabatini U, De Pasquale G, Razzano C, Caltagirone C et al (2016) Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from Aphasia. J Cogn Neurosci 28(5):724–738

    Article  PubMed  Google Scholar 

  98. Elsner B, Kugler J, Pohl M, Mehrholz J (2019) Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev 5:CD009760

    PubMed  Google Scholar 

  99. Marangolo P, Marinelli C, Bonifazi S, Fiori V, Ceravolo M, Provinciali L et al (2011) Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res 225(2):498–504

    Article  CAS  PubMed  Google Scholar 

  100. Cipollari S, Veniero D, Razzano C, Caltagirone C, Koch G, Marangolo P (2015) Combining TMS-EEG with transcranial direct current stimulation language treatment in aphasia. Expert Rev Neurother 15(7):833–845

    Article  CAS  PubMed  Google Scholar 

  101. Vines BW, Norton AC, Schlaug G (2011) Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front Psychol 2:230

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pestalozzi MI, Di Pietro M, Martins Gaytanidis C, Spierer L, Schnider A, Chouiter L et al (2018) Effects of prefrontal transcranial direct current stimulation on lexical access in chronic poststroke aphasia. Neurorehabil Neural Repair 32(10):913–923

    Article  PubMed  Google Scholar 

  103. Fridriksson J, Richardson JD, Baker JM, Rorden C (2011) Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke 42(3):819–821

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG et al (2011) Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci 23(9):2309–2323

    Article  PubMed  Google Scholar 

  105. Wu D, Wang J, Yuan Y (2015) Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neurosci Lett 589:115–120

    Article  CAS  PubMed  Google Scholar 

  106. You DS, Kim D-Y, Chun MH, Jung SE, Park SJ (2011) Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang 119(1):1–5

    Article  PubMed  Google Scholar 

  107. Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, Wright A et al (2017) Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum Neurosci 10:695

    Article  PubMed  PubMed Central  Google Scholar 

  108. Marangolo P, Fiori V, Caltagirone C, Pisano F, Priori A (2017) Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. J Cogn Neurosci 30(2):188–199

    Article  PubMed  Google Scholar 

  109. Marangolo P, Fiori V, Shofany J, Gili T, Caltagirone C, Cucuzza G et al (2017) Moving beyond the brain: transcutaneous spinal direct current stimulation in post-stroke aphasia. Front Neurol 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  110. Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P (2014) Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol 125(3):577–584

    Article  PubMed  Google Scholar 

  111. Lazar RM, Minzer B, Antoniello D, Festa JR, Krakauer JW, Marshall RS (2010) Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke 41(7):1485–1488

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zeiler SR, Krakauer JW (2013) The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol 26(6):609–616

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bucur M, Papagno C (2019) Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance. Neurosci Biobehav Rev 102:264–289

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Ferrucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferrucci, R., Ruggiero, F., Mameli, F., Bocci, T., Priori, A. (2023). Transcranial Direct Current Stimulation (tDCS). In: Grimaldi, M., Brattico, E., Shtyrov, Y. (eds) Language Electrified. Neuromethods, vol 202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3263-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3263-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3262-8

  • Online ISBN: 978-1-0716-3263-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics