Skip to main content

Standardization of Single-Cell RNA-Sequencing Analysis Workflow to Study Drosophila Ovary

  • Protocol
  • First Online:
Germline Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2677))

Abstract

Developments in single-cell technology have considerably changed the way we study biology. Significant efforts have been made over the last few years to build comprehensive cell-type-specific transcriptomic atlases for a wide range of tissues in several model organisms in order to discover cell-type-specific markers and drivers of gene expression. One such tissue is the ovary of the fruit-fly Drosophila melanogaster, which is a popular model system with wide-ranging applications in the study of both development and disease. Three independent studies have recently produced comprehensive maps of cell-type-specific gene expression that describe both spatiotemporal regulation of the process of oogenesis and unique transcriptomic profiles of different cell types that constitute the ovary. In this chapter, we outlined the wet-lab protocol that was followed in our recent study for sample preparation and reanalyze the resultant dataset to discuss the benchmarks in data analysis, which are fundamental to comprehensive curation of the single-cell dataset representing the fly ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vied C, Reilein A, Field NS, Kalderon D (2012) Regulation of stem cells by intersecting gradients of long-range niche signals. Dev Cell 23:836–848. https://doi.org/10.1016/J.DEVCEL.2012.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the drosophila ovary. Science (80- ) 290:328–330. https://doi.org/10.1126/science.290.5490.328

  3. Eliazer S, Buszczak M (2011) Finding a niche: studies from the drosophila ovary. Stem Cell Res Ther 2:45. https://doi.org/10.1186/scrt86

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fadiga J, Nystul TG (2019) The follicle epithelium in the drosophila ovary is maintained by a small number of stem cells. elife 8. https://doi.org/10.7554/eLife.49050

  5. Losick VP, Morris LX, Fox DT, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21:159–171. https://doi.org/10.1016/J.DEVCEL.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nystul T, Spradling A (2007) An epithelial niche in the drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1:277–285. https://doi.org/10.1016/J.STEM.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  7. Assa-Kunik E, Torres IL, Schejter ED et al (2007) Drosophila follicle cells are patterned by multiple levels of notch signaling and antagonism between the notch and JAK/STAT pathways. Development 134:1161–1169. https://doi.org/10.1242/dev.02800

    Article  CAS  PubMed  Google Scholar 

  8. Klusza S, Deng WM (2011) At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in drosophila follicle cells. BioEssays 33:124–134. https://doi.org/10.1002/BIES.201000089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. López-Schier H, St. Johnston D (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during drosophila oogenesis. Genes Dev 15:1393–1405. https://doi.org/10.1101/gad.200901

  10. Sun J, Deng W-M (2007) Hindsight mediates the role of notch in suppressing hedgehog Signaling and cell proliferation. Dev Cell 12:431–442. https://doi.org/10.1016/j.devcel.2007.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun J, Deng WM (2005) Notch-dependent downregulation of the homeodomain gene cut is required for the mitotic cycle/endocycle switch and cell differentiation in drosophila follicle cells. Development 132:4299–4308. https://doi.org/10.1242/dev.02015

    Article  CAS  PubMed  Google Scholar 

  12. Shyu LF, Sun J, Chung HM et al (2009) Notch signaling and developmental cell-cycle arrest in drosophila polar follicle cells. Mol Biol Cell 20:5064–5073. https://doi.org/10.1091/mbc.E09-01-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavaliere V, Donati A, Hsouna A et al (2005) dAkt kinase controls follicle cell size during drosophila oogenesis. Dev Dyn 232:845–854. https://doi.org/10.1002/DVDY.20333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bosco G, Orr-Weaver TL (2002) The cell cycle during oogenesis and early embryogenesis in drosophila. Adv Dev Biol Biochem 12:107–154. https://doi.org/10.1016/S1569-1799(02)12026-0

    Article  CAS  Google Scholar 

  15. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282. https://doi.org/10.1016/J.SEMCDB.2008.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tootle TL, Williams D, Hubb A et al (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 6:e19943. https://doi.org/10.1371/JOURNAL.PONE.0019943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia D, Tamori Y, Pyrowolakis G, Deng WM (2014) Regulation of broad by the notch pathway affects timing of follicle cell development. Dev Biol 392:52–61. https://doi.org/10.1016/J.YDBIO.2014.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bianco A, Poukkula M, Cliffe A et al (2007) Two distinct modes of guidance signalling during collective migration of border cells. Nature 448:362–365. https://doi.org/10.1038/nature05965

    Article  CAS  PubMed  Google Scholar 

  19. Silver DL, Montell DJ (2001) Paracrine Signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in drosophila. Cell 107:831–841. https://doi.org/10.1016/S0092-8674(01)00607-9

    Article  CAS  PubMed  Google Scholar 

  20. Silver DL, Montell DJ, Akira S et al (2001) Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in drosophila. Cell 107:831–841. https://doi.org/10.1016/S0092-8674(01)00607-9

    Article  CAS  PubMed  Google Scholar 

  21. Duchek P, Somogyi K, Jekely G et al (2001) Guidance of cell migration by the drosophila PDGF/VEGF receptor. Cell 107:17–26

    Article  CAS  PubMed  Google Scholar 

  22. Tamori Y, Deng WM (2014) Compensatory cellular hypertrophy: the other strategy for tissue homeostasis. Trends Cell Biol 24:230–237. https://doi.org/10.1016/j.tcb.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  23. Serizier SB, McCall K (2017) Scrambled eggs: apoptotic cell clearance by non-professional phagocytes in the drosophila ovary. Front Immunol 8:1642

    Article  PubMed  PubMed Central  Google Scholar 

  24. Etchegaray JI, Timmons AK, Klein AP et al (2012) Apoptotic cell clearance in Drosophila melanogaster. Dev 139:4029–4039. https://doi.org/10.3389/fimmu.2017.01881

    Article  CAS  Google Scholar 

  25. Slaidina M, Banisch TU, Gupta S, Lehmann R (2020) A single-cell atlas of the developing drosophila ovary identifies follicle stem cell progenitors. Genes Dev 34:239–249. https://doi.org/10.1101/GAD.330464.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slaidina M, Gupta S, Banisch TU, Lehmann R (2021) A single-cell atlas reveals unanticipated cell type complexity in drosophila ovaries. Genome Res 31:1938–1951. https://doi.org/10.1101/gr.274340.120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rust K, Byrnes LE, Yu KS, et al (2020) a single-cell atlas and lineage analysis of the adult drosophila ovary. Nat Commun 2020 111 11:1–17. https://doi.org/10.1038/s41467-020-19361-0

  28. Jevitt A, Chatterjee D, Xie G et al (2020) A single-cell atlas of adult drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 18. https://doi.org/10.1371/journal.pbio.3000538

  29. Li H, Janssens J, De Waegeneer M et al (2021) Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly bioRxiv:2021.07.04.451050. https://doi.org/10.1101/2021.07.04.451050

  30. Tu R, Duan B, Song X et al (2021) Multiple niche compartments orchestrate stepwise germline stem cell progeny differentiation. Curr Biol 31:827–839.e3. https://doi.org/10.1016/j.cub.2020.12.024

    Article  CAS  PubMed  Google Scholar 

  31. Shi J, Jin Z, Yu Y et al (2021) A progressive somatic cell niche regulates germline cyst differentiation in the drosophila ovary. Curr Biol 31:840–852.e5. https://doi.org/10.1016/j.cub.2020.11.053

    Article  CAS  PubMed  Google Scholar 

  32. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:10.15252/msb.20188746

    Article  Google Scholar 

  33. Zappia L, Theis FJ (2021) Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol 22:1–18

    Article  Google Scholar 

  34. Cusanovich DA, Daza R, Adey A, et al (2015) Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science (80- ) 348:910–914. https://doi.org/10.1126/science.aab1601

  35. Hu Y, Huang K, An Q et al (2016) Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol 17. https://doi.org/10.1186/s13059-016-0950-z

  36. Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9:743–748. https://doi.org/10.1038/nmeth.2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stoeckius M, Hafemeister C, Stephenson W et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan L, Zhang KX, Pecot MY et al (2015) Ig superfamily ligand and receptor pairs expressed in synaptic partners in drosophila. Cell 163:1756–1769. https://doi.org/10.1016/j.cell.2015.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berger C, Harzer H, Burkard TR et al (2012) FACS purification and transcriptome analysis of drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep 2:407–418. https://doi.org/10.1016/j.celrep.2012.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abruzzi K, Chen X, Nagoshi E et al (2015) RNA-seq profiling of small numbers of drosophila neurons. Methods Enzymol 551:369–386. https://doi.org/10.1016/bs.mie.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  41. La Manno G, Soldatov R, Zeisel A et al (2018) RNA velocity of single cells. Nature 560:494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stuart T, Butler A, Hoffman P et al (2019) Comprehensive integration of single-cell data resource comprehensive integration of single-cell data. Cell 177:1888–1902.e21. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler A, Hoffman P, Smibert P et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cho B, Yoon SH, Lee D et al (2020) Single-cell transcriptome maps of myeloid blood cell lineages in drosophila. Nat Commun 11:1–18. https://doi.org/10.1038/s41467-020-18135-y

    Article  CAS  Google Scholar 

  46. Tattikota SG, Cho B, Liu Y et al (2020) A single-cell survey of drosophila blood. elife 9:1–35. https://doi.org/10.7554/eLife.54818

    Article  Google Scholar 

  47. Everetts NJ, Worley MI, Yasutomi R et al (2021) Single-cell transcriptomics of the drosophila wing disc reveals instructive epithelium-to-myoblast interactions. elife 10. https://doi.org/10.7554/ELIFE.61276

  48. Griffiths JA, Richard AC, Bach K et al (2018) Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun 9:1–6. https://doi.org/10.1038/s41467-018-05083-x

    Article  CAS  Google Scholar 

  49. Lun ATL, Riesenfeld S, Andrews T et al (2019) EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol 20:1–9. https://doi.org/10.1186/s13059-019-1662-y

    Article  Google Scholar 

  50. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest Neighbors. Cell Syst 8:329–337.e4. https://doi.org/10.1016/j.cels.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DePasquale EAK, Schnell DJ, Van Camp PJ et al (2019) DoubletDecon: Deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep 29:1718–1727.e8. https://doi.org/10.1016/j.celrep.2019.09.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281–291.e9. https://doi.org/10.1016/j.cels.2018.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vallejos CA, Risso D, Scialdone A et al (2017) Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods 14:565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kharchenko PV, Silberstein L (2014) Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 117(11):740–742. https://doi.org/10.1038/nmeth.2967

    Article  CAS  Google Scholar 

  55. Finak G, McDavid A, Yajima M et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:1–13

    Article  Google Scholar 

  56. Grün D, Van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163:799–810. https://doi.org/10.1016/J.CELL.2015.10.039

    Article  PubMed  Google Scholar 

  57. Lun ATL, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17:1–14

    Google Scholar 

  58. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145

    Article  CAS  PubMed  Google Scholar 

  59. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:1–9

    Article  Google Scholar 

  61. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:1–13. https://doi.org/10.1186/1471-2105-11-94

    Article  CAS  Google Scholar 

  62. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dillies MA, Rau A, Aubert J et al (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683. https://doi.org/10.1093/bib/bbs046

    Article  CAS  PubMed  Google Scholar 

  64. Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551. https://doi.org/10.1101/gr.121095.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lytal N, Ran D, An L (2020) Normalization methods on single-cell RNA-seq data: An empirical survey. Front Genet 11:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Perry GH, Melsted P, Marioni JC et al (2012) Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res 22:602–610. https://doi.org/10.1101/gr.130468.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:1–15. https://doi.org/10.1186/s13059-019-1874-1

    Article  CAS  Google Scholar 

  68. Sun S, Zhu J, Ma Y, Zhou X (2019) Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis. Genome Biol 20:1–21

    Article  Google Scholar 

  69. Xiang R, Wang W, Yang L et al (2021) A comparison for dimensionality reduction methods of single-cell RNA-seq data. Front Genet 12:320

    Article  Google Scholar 

  70. Fan J, Salathia N, Liu R et al (2016) Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 13:241–244. https://doi.org/10.1038/nmeth.3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo M, Wang H, Potter SS et al (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol 11:e1004575. https://doi.org/10.1371/JOURNAL.PCBI.1004575

    Article  PubMed  PubMed Central  Google Scholar 

  72. Iacono G, Mereu E, Guillaumet-Adkins A et al (2018) bigSCale: an analytical framework for big-scale single-cell data. Genome Res 28:878–890. https://doi.org/10.1101/GR.230771.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kiselev VY, Kirschner K, Schaub MT et al (2017) (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 145(14):483–486. https://doi.org/10.1038/nmeth.4236

    Article  CAS  Google Scholar 

  74. Wolf FA, Angerer P, Theis FJ (2018) SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol 19:1–5

    Article  Google Scholar 

  75. Van Der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2625

    Google Scholar 

  76. Becht E, McInnes L, Healy J et al (2019) Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 37:38–47. https://doi.org/10.1038/nbt.4314

    Article  CAS  Google Scholar 

  77. Zappia L, Oshlack A (2018) Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7. https://doi.org/10.1093/gigascience/giy083

  78. Korthauer KD, Chu LF, Newton MA et al (2016) A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 17:1–15. https://doi.org/10.1186/s13059-016-1077-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deeptiman Chatterjee or Wu-Min Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chatterjee, D., Deng, WM. (2023). Standardization of Single-Cell RNA-Sequencing Analysis Workflow to Study Drosophila Ovary. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 2677. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3259-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3259-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3258-1

  • Online ISBN: 978-1-0716-3259-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics