Skip to main content

Spermatogonial Dedifferentiation into Germline Stem Cells in Drosophila Testes

  • Protocol
  • First Online:
Germline Stem Cells

Abstract

Stem cell pools are dynamic and capable of reacting to insults like injury and starvation. Recent work has highlighted the key role of dedifferentiation as a conserved mechanism for replenishing stem cell pools after their loss, thereby maintaining tissue homeostasis. The testis of the fruit fly Drosophila melanogaster offers a simple but powerful system to study dedifferentiation, the process by which differentiating spermatogonia can revert their fate to become fully functional germline stem cells (GSCs). Dedifferentiated GSCs show interesting characteristics, such as being more proliferative than their wild-type sibling GSCs. To facilitate the study of the cellular and molecular mechanisms underlying the process of germline dedifferentiation in the Drosophila testis, here we describe techniques for inducing high rates of dedifferentiation and for unambiguously labeling dedifferentiated GSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang L, McLeod CJ, Jones DL (2011) Regulation of adult stem cell behavior by nutrient signaling. Cell Cycle 10(16):2628–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304(5675):1331–1334

    Article  CAS  PubMed  Google Scholar 

  5. Kai T, Spradling A (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428(6982):564–569

    Article  CAS  PubMed  Google Scholar 

  6. Sheng XR, Brawley CM, Matunis EL (2009) Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the drosophila testis. Cell Stem Cell 5(2):191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenspan LJ, de Cuevas M, Matunis E (2015) Genetics of gonadal stem cell renewal. Annu Rev Cell Dev Biol 31:291–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng J et al (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456(7222):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang H, Yamashita YM (2015) The regulated elimination of transit-amplifying cells preserves tissue homeostasis during protein starvation in drosophila testis. Development 142(10):1756–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herrera SC, Bach EA (2018) JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the drosophila testis. elife 7(7):e36095

    Article  PubMed  PubMed Central  Google Scholar 

  11. McLeod CJ et al (2010) Stem cell dynamics in response to nutrient availability. Curr Biol 20(23):2100–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans CJ et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in drosophila. Nat Methods 6(8):603–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKearin D, Ohlstein B (1995) A role for the drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 121(9):2937–2947

    Article  CAS  PubMed  Google Scholar 

  14. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  15. Chen D, McKearin DM (2003) A discrete transcriptional silencer in the bam gene determines asymmetric division of the drosophila germline stem cell. Development 130(6):1159–1170

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Blanco E et al (1998) Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in drosophila. Genes Dev 12(4):557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the Bach lab is supported by grants from the NIH and NYS Department of Health/NYSTEM. Work in the Herrera lab is supported by a grant from the Fundación Bancaria “la Caixa” (ID 100010434) with the code LCF/BQ/PI20/11760005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salvador C. Herrera or Erika A. Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herrera, S.C., Bach, E.A. (2023). Spermatogonial Dedifferentiation into Germline Stem Cells in Drosophila Testes. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 2677. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3259-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3259-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3258-1

  • Online ISBN: 978-1-0716-3259-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics