Skip to main content

Analysis of the C. elegans Germline Stem Cell Pool

  • Protocol
  • First Online:
Germline Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2677))

Abstract

The Caenorhabditis elegans germline is an excellent model for studying the genetic and molecular regulation of stem cell self-renewal and progression of cells from a stem cell state to a differentiated state. The germline tissue is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated gametes at the other. A simple mesenchymal niche caps the GSC pool and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Notch signaling activates transcription of the key GSC regulators lst-1 and sygl-1 proteins in a gradient through the GSC pool. LST-1 and SYGL-1 proteins work with PUF RNA regulators in a self-renewal hub to maintain the GSC pool. In this chapter, we present methods for characterizing the C. elegans GSC pool and early stages of germ cell differentiation. The methods include examination of germlines in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutant phenotypes that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kershner A, Crittenden SL, Friend K, Sorensen EB, Porter DF, Kimble J (2013) Germline stem cells and their regulation in the nematode Caenorhabditis elegans. Adv Exp Med Biol 786:29–46. https://doi.org/10.1007/978-94-007-6621-1_3

    Article  CAS  PubMed  Google Scholar 

  2. Kimble J, Seidel H (2013) C. elegans germline stem cells and their niche. Stembook. https://doi.org/10.3824/stembook.1.95.1

    Book  Google Scholar 

  3. Hubbard EJA, Schedl T (2019) Biology of the Caenorhabditis elegans germline stem cell system. Genetics 213(4):1145–1188. https://doi.org/10.1534/genetics.119.300238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17(7):3051–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci U S A 107(5):2048–2053. https://doi.org/10.1073/pnas.0912704107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crittenden SL, Lee C, Mohanty I, Battula S, Knobel K, Kimble J (2019) Sexual dimorphism of niche architecture and regulation of the Caenorhabditis elegans germline stem cell pool. Mol Biol Cell 30(14):1757–1769. https://doi.org/10.1091/mbc.E19-03-0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosu S, Cohen-Fix O (2017) Live-imaging analysis of germ cell proliferation in the C. elegans adult supports a stochastic model for stem cell proliferation. Dev Biol 423 (2):93-100:93. https://doi.org/10.1016/j.ydbio.2017.02.008

    Article  CAS  Google Scholar 

  8. Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219

    Article  CAS  PubMed  Google Scholar 

  9. Kershner AM, Shin H, Hansen TJ, Kimble J (2014) Discovery of two GLP-1/notch target genes that account for the role of GLP-1/notch signaling in stem cell maintenance. Proc Natl Acad Sci U S A 111(10):3739–3744. https://doi.org/10.1073/pnas.1401861111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin H, Haupt KA, Kershner AM, Kroll-Conner P, Wickens M, Kimble J (2017) SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet 13(12):e1007121. https://doi.org/10.1371/journal.pgen.1007121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee C, Sorensen EB, Lynch TR, Kimble J (2016) C. elegans GLP-1/notch activates transcription in a probability gradient across the germline stem cell pool. elife 5:e18370. https://doi.org/10.7554/eLife.18370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee C, Shin H, Kimble J (2019) Dynamics of notch-dependent transcriptional bursting in its native context. Dev Cell 50(4):426–435. e424. https://doi.org/10.1016/j.devcel.2019.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Mohammad A, Pazdernik N, Huang H, Bowman B, Tycksen E, Schedl T (2020) GLP-1 notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genet 16(3):e1008650. https://doi.org/10.1371/journal.pgen.1008650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J (2022) Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 149(7):dev200332. https://doi.org/10.1242/dev.200332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haupt KA, Law KT, Enright AL, Kanzler CR, Shin H, Wickens M, Kimble J (2020) A PUF hub drives self-renewal in Caenorhabditis elegans germline stem cells. Genetics 214(1):147–161. https://doi.org/10.1534/genetics.119.302772

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Voronina E (2020) Diverse roles of PUF proteins in germline stem and progenitor cell development in C. elegans. Front cell. Dev Biol 8:29. https://doi.org/10.3389/fcell.2020.00029

    Article  Google Scholar 

  17. Bigas A, Espinosa L (2018) The multiple usages of notch signaling in development, cell differentiation and cancer. Curr Opin Cell Biol 55:1–7. https://doi.org/10.1016/j.ceb.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  18. Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3’UTR regulation as a way of life. Trends Genet 18(3):150–157

    Article  CAS  PubMed  Google Scholar 

  19. Nishanth MJ, Simon B (2020) Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 47(1):785–807. https://doi.org/10.1007/s11033-019-05142-6

    Article  CAS  PubMed  Google Scholar 

  20. Mercer M, Jang S, Ni C, Buszczak M (2021) The dynamic regulation of mRNA translation and ribosome biogenesis during germ cell development and reproductive aging. Front Cell Dev Biol 9:710186. https://doi.org/10.3389/fcell.2021.710186

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kimble J, Sulston J, White J (1979) Regulative development in the post-embryonic lineages of Caenorhabditis elegans. In: LeDouarin N (ed) Cell lineage, stem cells and cell determination, INSERM Symposium, vol 10. Elsevier/North Holland Biomedical Press, New York, pp 59–68

    Google Scholar 

  22. Angelo G, Van Gilst MR (2009) Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326 (5955):954-958:954. https://doi.org/10.1126/science.1178343

    Article  CAS  Google Scholar 

  23. Salinas LS, Maldonado E, Navarro RE (2006) Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ 13(12):2129–2139. https://doi.org/10.1038/sj.cdd.4401976

    Article  CAS  PubMed  Google Scholar 

  24. Seidel HS, Kimble J (2011) The oogenic germline starvation response in C. elegans. PLoS One 6(12):e28074. https://doi.org/10.1371/journal.pone.0028074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA (2017) Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 144(16):2896–2906. https://doi.org/10.1242/dev.147660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gracida X, Eckmann CR (2013) Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 23 (7):607-613:607. https://doi.org/10.1016/j.cub.2013.02.034

    Article  CAS  Google Scholar 

  27. Chi C, Ronai D, Than MT, Walker CJ, Sewell AK, Han M (2016) Nucleotide levels regulate germline proliferation through modulating GLP-1/notch signaling in C. elegans. Genes Dev 30 (3):307-320:307. https://doi.org/10.1101/gad.275107.115

    Article  CAS  Google Scholar 

  28. Qin Z, Hubbard EJ (2015) Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells. Nat Commun 6:7107. https://doi.org/10.1038/ncomms8107

    Article  CAS  PubMed  Google Scholar 

  29. Tolkin T, Hubbard EJA (2021) Germline stem and progenitor cell aging in C. elegans. Front cell. Dev Biol 9:699671. https://doi.org/10.3389/fcell.2021.699671

    Article  Google Scholar 

  30. Seidel HS, Kimble J (2015) Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/notch. elife 4:e10832. https://doi.org/10.7554/eLife.10832

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morgan DE, Crittenden SL, Kimble J (2010) The C. elegans adult male germline: stem cells and sexual dimorphism. Dev Biol 346 (2):204-214:204. https://doi.org/10.1016/j.ydbio.2010.07.022

    Article  CAS  Google Scholar 

  32. Lopez AL 3rd, Chen J, Joo HJ, Drake M, Shidate M, Kseib C, Arur S (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev Cell 27(2):227–240. https://doi.org/10.1016/j.devcel.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  33. Seidel HS, Smith TA, Evans JK, Stamper JQ, Mast TG, Kimble J (2018) C. elegans germ cells divide and differentiate in a folded tissue. Dev Biol 442 (1):173-187:173. https://doi.org/10.1016/j.ydbio.2018.07.013

    Article  CAS  Google Scholar 

  34. Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D (2015) Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 142 (2):291-302:291. https://doi.org/10.1242/dev.115147

    Article  CAS  Google Scholar 

  35. Millonigg S, Minasaki R, Nousch M, Eckmann CR (2014) GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS Genet 10(9):e1004647. https://doi.org/10.1371/journal.pgen.1004647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Starich TA, Hall DH, Greenstein D (2014) Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 198:1127–1153. https://doi.org/10.1534/genetics.114.168815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Novak P, Wang X, Ellenbecker M, Feilzer S, Voronina E (2015) Splicing machinery facilitates post-transcriptional regulation by FBFs and other RNA-binding proteins in Caenorhabditis elegans germline. G3 (Bethesda) 5:2051. https://doi.org/10.1534/g3.115.019315

    Article  CAS  PubMed  Google Scholar 

  38. Gutnik S, Thomas Y, Guo Y, Stoecklin J, Neagu A, Pintard L, Merlet J, Ciosk R (2018) PRP-19, a conserved pre-mRNA processing factor and E3 ubiquitin ligase, inhibits the nuclear accumulation of GLP-1/notch intracellular domain. Biol Open 7(7):bio034066. https://doi.org/10.1242/bio.034066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gopal S, Amran A, Elton A, Ng L, Pocock R (2021) A somatic proteoglycan controls notch-directed germ cell fate. Nat Commun 12(1):6708. https://doi.org/10.1038/s41467-021-27039-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao W, Tran C, Archer SK, Gopal S, Pocock R (2021) Functional recovery of the germ line following splicing collapse. Cell Death Differ 29:772. https://doi.org/10.1038/s41418-021-00891-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jaramillo-Lambert A, Ellefson M, Villeneuve AM, Engebrecht J (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308 (1):206-221:206. https://doi.org/10.1016/j.ydbio.2007.05.019

    Article  CAS  Google Scholar 

  42. Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T (2011) Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 138 (11):2223-2234:2223. https://doi.org/10.1242/dev.059535

    Article  CAS  Google Scholar 

  43. Chiang M, Cinquin A, Paz A, Meeds E, Price CA, Welling M, Cinquin O (2015) Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biol 13(1):51. https://doi.org/10.1186/s12915-015-0148-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sorensen EB, Seidel HS, Crittenden SL, Ballard JH, Kimble J (2020) A toolkit of tagged glp-1 alleles reveals strong glp-1 expression in the germline. embryo, and spermatheca. MicroPubl Biol 2020. https://doi.org/10.17912/micropub.biology.000271

  45. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663. https://doi.org/10.1038/nature754

    Article  CAS  PubMed  Google Scholar 

  46. Byrd DT, Knobel K, Affeldt K, Crittenden SL, Kimble J (2014) A DTC niche plexus surrounds the germline stem cell pool in Caenorhabditis elegans. PLoS One 9(2):e88372. https://doi.org/10.1371/journal.pone.0088372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morgan CT, Noble D, Kimble J (2013) Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. Proc Natl Acad Sci U S A 110(9):3411–3416. https://doi.org/10.1073/pnas.1300928110

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131:93–104. https://doi.org/10.1242/dev.00916

    Article  CAS  PubMed  Google Scholar 

  49. Hansen D, Hubbard EJA, Schedl T (2004) Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev Biol 268(2):342–357

    Article  CAS  PubMed  Google Scholar 

  50. Zetka MC, Kawasaki I, Strome S, Müller F (1999) Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13(17):2258–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fox PM, Schedl T (2015) Analysis of germline stem cell differentiation following loss of GLP-1 notch activity in Caenorhabditis elegans. Genetics 201:167–184. https://doi.org/10.1534/genetics.115.178061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brenner JL, Schedl T (2016) Germline stem cell differentiation entails regional control of cell fate regulator GLD-1 in Caenorhabditis elegans. Genetics 202(3):1085–1103. https://doi.org/10.1534/genetics.115.185678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J (2019) Toward identifying subnetworks from FBF binding landscapes in Caenorhabditis spermatogenic or oogenic germlines. G3 (Bethesda) 9(1):153–165. https://doi.org/10.1534/g3.118.200300

    Article  CAS  PubMed  Google Scholar 

  54. Theil K, Imami K, Rajewsky N (2019) Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 10(1):4205. https://doi.org/10.1038/s41467-019-12050-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diag A, Schilling M, Klironomos F, Ayoub S, Rajewsky N (2018) Spatiotemporal m(i)RNA architecture and 3' UTR regulation in the C. elegans germline. Dev Cell 47 (6):785-800.e788:785. https://doi.org/10.1016/j.devcel.2018.10.005

    Article  CAS  Google Scholar 

  56. Ebbing A, Vértesy Á, Betist MC, Spanjaard B, Junker JP, Berezikov E, van Oudenaarden A, Korswagen HC (2018) Spatial transcriptomics of C. elegans males and hermaphrodites identifies sex-specific differences in gene expression patterns. Dev Cell 47(6):801–813. https://doi.org/10.1016/j.devcel.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E (2020) Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. elife 9:e52788. https://doi.org/10.7554/eLife.52788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gordon KL, Zussman JW, Li X, Miller C, Sherwood DR (2020) Stem cell niche exit in C. elegans via orientation and segregation of daughter cells by a cryptic cell outside the niche. elife 9:56383. https://doi.org/10.7554/eLife.56383

    Article  Google Scholar 

  59. Day NJ, Wang X, Voronina E (2020) In situ detection of ribonucleoprotein complex assembly in the C. elegans germline using proximity ligation assay. J Vis Exp 159. https://doi.org/10.3791/60982

  60. Hillers KJ, Jantsch V, Martinez-Perez E, Yanowitz JL (2017) Meiosis WormBook 2017:1–43. https://doi.org/10.1895/wormbook.1.178.1

    Article  PubMed  Google Scholar 

  61. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126(5):1011–1022

    Article  CAS  PubMed  Google Scholar 

  62. Raiders SA, Eastwood MD, Bacher M, Priess JR (2018) Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genet 14(7):e1007417. https://doi.org/10.1371/journal.pgen.1007417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crittenden SL, Lee C, Mohanty I, Battula S, Kimble J (2018) Niche maintenance of germline stem cells in C. elegans males. BioRxiv. https://doi.org/10.1101/428235

  64. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Ceron J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:e4019. https://doi.org/10.3791/4019

    Article  CAS  Google Scholar 

  65. Hutter H (2012) Fluorescent protein methods: strategies and applications. Methods Cell Biol 107:67–92. https://doi.org/10.1016/B978-0-12-394620-1.00003-5

    Article  CAS  PubMed  Google Scholar 

  66. McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128

    Article  CAS  PubMed  Google Scholar 

  67. Rothman JH, Singson A (2011) Caenorhabditis elegans: molecular genetics and development. Methods Cell Biol 106:xv–xviii

    Article  PubMed  Google Scholar 

  68. Shakes DC, Miller DM 3rd, Nonet ML (2012) Immunofluorescence microscopy. Methods Cell Biol 107:35–66. https://doi.org/10.1016/B978-0-12-394620-1.00002-3

    Article  CAS  PubMed  Google Scholar 

  69. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  70. Haupt KA, Enright AL, Ferdous AS, Kershner AM, Shin H, Wickens M, Kimble J (2019) The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Development 146(20). https://doi.org/10.1242/dev.181644

  71. Gopal S, Pocock R (2018) Computational analysis of the Caenorhabditis elegans germline to study the distribution of nuclei, proteins, and the cytoskeleton. J Vis Exp 134. https://doi.org/10.3791/57702

  72. Vogel JL, Michaelson D, Santella A, Hubbard EJ, Bao Z (2014) Irises: a practical tool for image-based analysis of cellular DNA content. Worm 3:e29041. https://doi.org/10.4161/worm.29041

    Article  PubMed  PubMed Central  Google Scholar 

  73. Toraason E, Adler VL, Kurhanewicz NA, DiNardo A, Saunders AM, Cahoon CK, Libuda DE (2021) Automated and customizable quantitative image analysis of whole Caenorhabditis elegans germlines. Genetics 217(3). https://doi.org/10.1093/genetics/iyab010

  74. Rosu S, Cohen-Fix O (2020) Tracking germline stem cell dynamics in vivo in C. elegans using Photoconversion. Methods Mol Biol 2150:11–23. https://doi.org/10.1007/7651_2019_225

    Article  CAS  PubMed  Google Scholar 

  75. Shaffer JM, Greenwald I (2022) SALSA, a genetically encoded biosensor for spatiotemporal quantification of notch signal transduction in vivo. Dev Cell 57 (7):930-944 e936:930. https://doi.org/10.1016/j.devcel.2022.03.008

    Article  CAS  Google Scholar 

  76. Gerhold AR, Ryan J, Vallee-Trudeau JN, Dorn JF, Labbe JC, Maddox PS (2015) Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging. Curr Biol 25(9):1123–1134. https://doi.org/10.1016/j.cub.2015.02.054

    Article  CAS  PubMed  Google Scholar 

  77. Gordon KL, Payne SG, Linden-High LM, Pani AM, Goldstein B, Hubbard EJA, Sherwood DR (2019) Ectopic germ cells can induce niche-like Enwrapment by neighboring Body Wall muscle. Curr Biol 29(5):823–833.e825. https://doi.org/10.1016/j.cub.2019.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wolff ID, Divekar NS, Wignall SM (2022) Methods for investigating cell division mechanisms in C. elegans. Methods Mol Biol 2415:19–35. https://doi.org/10.1007/978-1-0716-1904-9_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee C, Seidel HS, Lynch TR, Sorensen EB, Crittenden SL, Kimble J (2017) Single-molecule RNA fluorescence in situ hybridization (smFISH) in Caenorhabditis elegans. Bio-protocol 7(12):e2357. https://doi.org/10.21769/BioProtoc.2357

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J (2021) Notch-dependent DNA cis regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. BioRxiv 2021:467950. https://doi.org/10.1101/2021.11.09.467950

    Article  Google Scholar 

  81. Lee C, Lynch T, Crittenden SL, Kimble J (2022) Image-based single-molecule analysis of notch-dependent transcription in its natural context. Methods Mol Biol 2472:131–149. https://doi.org/10.1007/978-1-0716-2201-8_11

    Article  PubMed  Google Scholar 

  82. Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr, Mello CC (2012) piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150 (1):65-77:65. https://doi.org/10.1016/j.cell.2012.06.015

    Article  CAS  Google Scholar 

  83. Wedeles CJ, Wu MZ, Claycomb JM (2013) A multitasking Argonaute: exploring the many facets of C. elegans CSR-1. Chromosom Res 21 (6-7):573-586:573. https://doi.org/10.1007/s10577-013-9383-7

    Article  CAS  Google Scholar 

  84. Wedeles CJ, Wu MZ, Claycomb JM (2014) Silent no more: endogenous small RNA pathways promote gene expression. Worm 3:e28641. https://doi.org/10.4161/worm.28641

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kocsisova Z, Kornfeld K, Schedl T (2019) Rapid population-wide declines in stem cell number and activity during reproductive aging in C. elegans. Development 146(8):173195. https://doi.org/10.1242/dev.173195

    Article  CAS  Google Scholar 

  86. Crittenden SL, Troemel ER, Evans TC, Kimble J (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120:2901–2911

    Article  CAS  PubMed  Google Scholar 

  87. Schumacher B, Hanazawa M, Lee M-H, Nayak S, Volkmann K, Hofmann ER, Hengartner M, Schedl T, Gartner A (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120 (3):357-368:357. https://doi.org/10.1016/j.cell.2004.12.009

    Article  CAS  Google Scholar 

  88. Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, Schedl T (2018) Initiation of meiotic development is controlled by three post-transcriptional pathways in Caenorhabditis elegans. Genetics 209(4):1197–1224. https://doi.org/10.1534/genetics.118.300985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D (2009) MSP and GLP-1/notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136 (13):2223-2234:2223. https://doi.org/10.1242/dev.034603

    Article  CAS  Google Scholar 

  90. Blelloch R, Kimble J (1999) Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399:586–590

    Article  CAS  PubMed  Google Scholar 

  91. Linden LM, Gordon KL, Pani AM, Payne SG, Garde A, Burkholder D, Chi Q, Goldstein B, Sherwood DR (2017) Identification of regulators of germ stem cell enwrapment by its niche in C. elegans. Dev Biol 429 (1):271-284:271. https://doi.org/10.1016/j.ydbio.2017.06.019

    Article  CAS  Google Scholar 

  92. Wong BG, Paz A, Corrado MA, Ramos BR, Cinquin A, Cinquin O, Hui EE (2013) Live imaging reveals active infiltration of mitotic zone by its stem cell niche. Integr Biol (Camb) 5(7):976–982. https://doi.org/10.1039/c3ib20291g

    Article  CAS  PubMed  Google Scholar 

  93. Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D (1999) Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 212(1):101–123. https://doi.org/10.1006/dbio.1999.9356

    Article  CAS  PubMed  Google Scholar 

  94. Kimble J (1981) Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev Biol 87(2):286–300

    Article  CAS  PubMed  Google Scholar 

  95. Korta DZ, Hubbard EJ (2010) Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dyn 239(5):1449–1459. https://doi.org/10.1002/dvdy.22268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tolkin T, Mohammed A, Starich T, Nguyen KCQ, Hall DH, Schedl T, Albert Hubbard EJ, Greenstein D (2022) Innexin function dictates the spatial relationship between distal somatic cells in the Caenorhabditis elegans gonad without impacting the germline stem cell pool. elife. in press

    Google Scholar 

  97. Li X, Singh N, Miller C, Washington I, Sosseh B, Gordon KL (2021) The C. elegans gonadal sheath Sh1 cells extend asymmetrically over a differentiating germ cell population in the proliferative zone. BioRxiv 2021:467787. https://doi.org/10.1101/2021.11.08.467787

    Article  Google Scholar 

  98. Kipreos ET, van den Heuvel S (2019) Developmental control of the cell cycle: insights from Caenorhabditis elegans. Genetics 211(3):797–829. https://doi.org/10.1534/genetics.118.301643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360

    Article  CAS  PubMed  Google Scholar 

  100. Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJA (2006) Quantitative analysis of germline mitosis in adult C. elegans. Dev Biol 292:142–151. https://doi.org/10.1016/j.ydbio.2005.12.046

    Article  CAS  PubMed  Google Scholar 

  101. Jeong J, Verheyden JM, Kimble J (2011) Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 7(3):e1001348. https://doi.org/10.1371/journal.pgen.1001348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kocsisova Z, Mohammad A, Kornfeld K, Schedl T (2018) Cell cycle analysis in the C. elegans germline with the thymidine analog EdU. J Vis Exp 140. https://doi.org/10.3791/58339

  103. Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Edward Arnold Ltd, London

    Google Scholar 

  104. Fay DS (2013) Classical genetic methods. WormBook, pp 1–58. https://doi.org/10.1895/wormbook.1.165.1

    Book  Google Scholar 

  105. Je A (2006) Reverse genetics. WormBook, WormBook. https://doi.org/10.1895/wormbook.1.47.1

    Book  Google Scholar 

  106. Dokshin GA, Ghanta KS, Piscopo KM, Mello CC (2018) Robust genome editing with short single-stranded and Long, partially single-stranded DNA donors in Caenorhabditiselegans. Genetics 210:781. https://doi.org/10.1534/genetics.118.301532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghanta KS, Ishidate T, Mello CC (2021) Microinjection for precision genome editing in Caenorhabditis elegans. STAR Protoc 2(3):100748. https://doi.org/10.1016/j.xpro.2021.100748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7 (5):697-707:697

    Article  Google Scholar 

  109. Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168:147–160. https://doi.org/10.1534/genetics.104.029264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang L, Sternberg PW (2006) Genetic dissection of developmental pathways. WormBook. https://doi.org/10.1895/wormbook.1.88.2

    Book  Google Scholar 

  111. Kemphues K (2005) Essential genes. WormBook, pp 1–7. https://doi.org/10.1895/wormbook.1.57.1

    Book  Google Scholar 

  112. Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112:231–240

    Article  CAS  PubMed  Google Scholar 

  113. Zeiser E, Frøkjær-Jensen C, Jorgensen E, Ahringer J (2011) MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PLoS One 6(5):e20082. https://doi.org/10.1371/journal.pone.0020082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hubbard EJ (2014) FLP/FRT and Cre/lox recombination technology in C. elegans. Methods 68 (3):417-424:417. https://doi.org/10.1016/j.ymeth.2014.05.007

    Article  CAS  Google Scholar 

  115. Monsalve GC, Yamamoto KR, Ward JD (2019) A new tool for inducible gene expression in Caenorhabditis elegans. Genetics 211(2):419–430. https://doi.org/10.1534/genetics.118.301705

    Article  CAS  PubMed  Google Scholar 

  116. Kage-Nakadai E, Imae R, Suehiro Y, Yoshina S, Hori S, Mitani S (2014) A conditional knockout toolkit for Caenorhabditis elegans based on the Cre/loxP recombination. PLoS One 9(12):e114680. https://doi.org/10.1371/journal.pone.0114680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dickinson DJ, Pani AM, Heppert JK, Higgins CD, Goldstein B (2015) Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200(4):1035–1049. https://doi.org/10.1534/genetics.115.178335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen J, Mohammad A, Schedl T (2020) Comparison of the efficiency of TIR1 transgenes to provoke auxin induced LAG-1 degradation in Caenorhabditis elegans germline stem cells. MicroPubl Biol 2020. https://doi.org/10.17912/micropub.biology.000310

  119. Ashley GE, Duong T, Levenson MT, Martinez MAQ, Johnson LC, Hibshman JD, Saeger HN, Palmisano NJ, Doonan R, Martinez-Mendez R, Davidson BR, Zhang W, Ragle JM, Medwig-Kinney TN, Sirota SS, Goldstein B, Matus DQ, Dickinson DJ, Reiner DJ, Ward JD (2021) An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics 217(3). https://doi.org/10.1093/genetics/iyab006

  120. Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155(6):1422–1434. https://doi.org/10.1016/j.cell.2013.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yumerefendi H, Dickinson DJ, Wang H, Zimmerman SP, Bear JE, Goldstein B, Hahn K, Kuhlman B (2015) Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS One 10(6):e0128443. https://doi.org/10.1371/journal.pone.0128443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aljohani MD, El Mouridi S, Priyadarshini M, Vargas-Velazquez AM, Frøkjær-Jensen C (2020) Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans. Nat Commun 11 (1):6300:6300. https://doi.org/10.1038/s41467-020-19898-0

    Article  CAS  Google Scholar 

  123. Aoki ST, Lynch TR, Crittenden SL, Bingman CA, Wickens M, Kimble J (2021) C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nat Commun 12 (1):996:996. https://doi.org/10.1038/s41467-021-21278-1

    Article  CAS  Google Scholar 

  124. Grimm JB, Lavis LD (2021) Caveat fluorophore: an insiders' guide to small-molecule fluorescent labels. Nat Methods 19:149. https://doi.org/10.1038/s41592-021-01338-6

    Article  CAS  PubMed  Google Scholar 

  125. Merritt C, Seydoux G (2010) Transgenic solutions for the germline. WormBook, p 1. https://doi.org/10.1895/wormbook.1.148.1

    Book  Google Scholar 

  126. Green RA, Audhya A, Pozniakovsky A, Dammermann A, Pemble H, Monen J, Portier N, Hyman A, Desai A, Oegema K (2008) Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol 85:179–218. https://doi.org/10.1016/S0091-679X(08)85009-1

    Article  CAS  PubMed  Google Scholar 

  127. Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the notch family of receptors. Development 124(4):925–936

    Article  CAS  PubMed  Google Scholar 

  128. Kadyk LC, Kimble J (1998) Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125(10):1803–1813

    Article  CAS  PubMed  Google Scholar 

  129. Marchal I, Tursun B (2021) Induced neurons from germ cells in Caenorhabditis elegans. Front Neurosci 15:771687. https://doi.org/10.3389/fnins.2021.771687

    Article  PubMed  PubMed Central  Google Scholar 

  130. Killian DJ, Hubbard EJA (2004) C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development 131(6):1267–1278

    Article  CAS  PubMed  Google Scholar 

  131. Pepper AS-R, Lo T-W, Killian DJ, Hall DH, Hubbard EJA (2003) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 259(2):336–350

    Article  CAS  PubMed  Google Scholar 

  132. McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ (2009) A "latent niche" mechanism for tumor initiation. Proc Natl Acad Sci U S A 106(28):11617–11622. https://doi.org/10.1073/pnas.0903768106

    Article  PubMed  PubMed Central  Google Scholar 

  133. Francis R, Barton MK, Kimble J, Schedl T (1995) Gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139(2):579–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the Pumilio-like protein PUF-8. Curr Biol 13(2):134–139

    Article  CAS  PubMed  Google Scholar 

  135. Pepper AS-R, Killian DJ, Hubbard EJA (2003) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163(1):115–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Subramaniam K, Seydoux G (1999) Nos-1 and nos-2, two genes related to drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126(21):4861–4871

    Article  CAS  PubMed  Google Scholar 

  137. Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    Article  CAS  PubMed  Google Scholar 

  138. Kimble J, Crittenden SL (2005) Germline proliferation and its control. WormBook. https://doi.org/10.1895/wormbook.1.13.1

    Book  Google Scholar 

  139. Ortiz MA, Noble D, Sorokin EP, Kimble J (2014) A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda) 4(9):1765–1772. https://doi.org/10.1534/g3.114.012351

    Article  CAS  PubMed  Google Scholar 

  140. Qi W, Gromoff EDV, Xu F, Zhao Q, Yang W, Pfeifer D, Maier W, Long L, Baumeister R (2021) The secreted endoribonuclease ENDU-2 from the soma protects germline immortality in C. elegans. Nat Commun 12(1):1262. https://doi.org/10.1038/s41467-021-21516-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Suh N, Crittenden SL, Goldstrohm AC, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181(4):1249–1260. https://doi.org/10.1534/genetics.108.099440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kumsta C, Hansen M (2012) C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 7(5):e35428. https://doi.org/10.1371/journal.pone.0035428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8(1):e53419. https://doi.org/10.1371/journal.pone.0053419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rog O, Dernburg AF (2015) Direct visualization reveals kinetics of meiotic chromosome synapsis. Cell Rep 10:1639. https://doi.org/10.1016/j.celrep.2015.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. San-Miguel A, Lu H (2013) Microfluidics as a tool for C. elegans research. WormBook, pp 1–19. https://doi.org/10.1895/wormbook.1.162.1

    Book  Google Scholar 

  146. Shaham S (2006) WormBook: methods in cell biology. WormBook. https://doi.org/10.1895/wormbook.1.41.1

    Book  Google Scholar 

  147. Lee M-H, Schedl T (2006) RNA in situ hybridization of dissected gonads. WormBook. https://doi.org/10.1895/wormbook.1.107.1

    Book  Google Scholar 

  148. Ji N, van Oudenaarden A (2012) Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. WormBook, pp 1–16. https://doi.org/10.1895/wormbook.1.153.1

    Book  Google Scholar 

  149. Cinquin O (2009) Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line. J Pathol 217(2):186–198. https://doi.org/10.1002/path.2481

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kawasaki I, Shim Y-H, Kirchner J, Kaminker J, Wood WB, Strome S (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94 (5):635-645:635

    Article  Google Scholar 

  151. Ward S, Roberts TM, Strome S, Pavalko FM, Hogan E (1986) Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J Cell Biol 102(5):1778–1786

    Article  CAS  PubMed  Google Scholar 

  152. Kulkarni M, Shakes DC, Guevel K, Smith HE (2012) SPE-44 implements sperm cell fate. PLoS Genet 8(4):e1002678. https://doi.org/10.1371/journal.pgen.1002678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sorokin EP, Gasch AP, Kimble J (2014) Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans. Genetics 198(2):561–575. https://doi.org/10.1534/genetics.114.169409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Noble DC, Aoki ST, Ortiz MA, Kim KW, Verheyden JM, Kimble J (2016) Genomic analyses of sperm fate regulator targets reveal a common set of oogenic mRNAs in Caenorhabditis elegans. Genetics 202(1):221–234. https://doi.org/10.1534/genetics.115.182592

    Article  CAS  PubMed  Google Scholar 

  155. Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180(1):165–183

    Article  CAS  PubMed  Google Scholar 

  156. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10(12):4311–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hadwiger G, Dour S, Arur S, Fox P, Nonet ML (2010) A monoclonal antibody toolkit for C. elegans. PLoS One 5(4):e10161. https://doi.org/10.1371/journal.pone.0010161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Crittenden .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Z-stack image of an adult hermaphrodite germline stained with DAPI to visualize DNA (magenta) and labeled with a 15-minute pulse of EdU to mark S-phase cells (green). Examples of cells in each stage of the cell cycle are marked. Note that G1 cells occur in pairs (MP4 684 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crittenden, S.L., Seidel, H.S., Kimble, J. (2023). Analysis of the C. elegans Germline Stem Cell Pool. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 2677. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3259-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3259-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3258-1

  • Online ISBN: 978-1-0716-3259-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics