Skip to main content

Proximity Extension Assay (PEA) Platform to Detect Vitreous Biomarkers of Diabetic Retinopathy

  • Protocol
  • First Online:
Diabetic Retinopathy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2678))

Abstract

Diabetic retinopathy (DR) is one of the leading causes of blindness, affecting more than 100 million people worldwide. Currently, DR prognosis and management are based mainly on biomarkers identified by direct retinal fundus observation or by imaging devices. The use of molecular biology to discover biomarkers of DR has great potential to impact the standard of care, and the vitreous humor can serve as an indirect source for those molecular biomarkers because it is rich in proteins secreted by the retina. Proximity extension assay (PEA) is a technology that combines antibody-based immunoassays with DNA-coupled methodology to obtain information on the abundance of multiple proteins while using minimal sample volume, with high specificity and sensitivity. Matched antibodies labelled with a complementary sequence of oligonucleotides are used to simultaneously bind a target protein in solution, and when in proximity, the complementary sequences on each antibody hybridize, serving as template for DNA polymerase-dependent extension and the generation of a unique double-stranded DNA “barcode.” PEA works well with vitreous matrix and has great potential to support the identification of novel predictive and prognostic biomarkers of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, Wong IY, Ting DSW, Tan GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY (2021) Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. https://doi.org/10.1016/j.ophtha.2021.04.027

  2. American Diabetes Association (2021) 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 44(Suppl 1):S15–S33. https://doi.org/10.2337/dc21-S002

    Article  Google Scholar 

  3. Lamy R, Stewart JM (2022) Vitreous biomarkers: what they are and how they may be used to advance the management of diabetic retinopathy. In: Patel VB, Preedy VR (eds) Biomarkers in diabetes, Biomarkers in disease: methods, discoveries and applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81303-1_51-1

    Chapter  Google Scholar 

  4. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, Ying GS (2020) Diabetic retinopathy preferred practice pattern(R). Ophthalmology 127(1):P66–P145. https://doi.org/10.1016/j.ophtha.2019.09.025

    Article  PubMed  Google Scholar 

  5. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy Project Group (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

    Article  CAS  PubMed  Google Scholar 

  6. Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H (2019) Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem Rev 119(22):11761–11817. https://doi.org/10.1021/acs.chemrev.9b00437

    Article  CAS  PubMed  Google Scholar 

  7. Laterza OF, Hendrickson RC, Wagner JA (2007) Molecular biomarkers. Ther Innov Regul Sci 41:573–585. https://doi.org/10.1177/009286150704100504

    Article  Google Scholar 

  8. FDA-NIH Biomarker Working Group (2020) BEST (biomarkers, EndpointS, and other tools). Food and Drug Administration (US) 2016-. Contents of a Biomarker Description, Silver Spring

    Google Scholar 

  9. Midena E, Frizziero L, Midena G, Pilotto E (2021) Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 259(12):3549–3560. https://doi.org/10.1007/s00417-021-05285-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Skeie JM, Brown EN, Martinez HD, Russell SR, Birkholz ES, Folk JC, Boldt HC, Gehrs KM, Stone EM, Wright ME, Mahajan VB (2012) Proteomic analysis of vitreous biopsy techniques. Retina 32(10):2141–2149. https://doi.org/10.1097/IAE.0b013e3182562017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Velez G, Tang PH, Cabral T, Cho GY, Machlab DA, Tsang SH, Bassuk AG, Mahajan VB (2018) Personalized proteomics for precision health: identifying biomarkers of vitreoretinal disease. Transl Vis Sci Technol 7(5):12. https://doi.org/10.1167/tvst.7.5.12

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19(3):323–344. https://doi.org/10.1016/s1350-9462(99)00016-6

    Article  CAS  PubMed  Google Scholar 

  13. de Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica 230(4):165–178. https://doi.org/10.1159/000353447

    Article  PubMed  Google Scholar 

  14. Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S (2014) Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One 9(4):e95192. https://doi.org/10.1371/journal.pone.0095192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S (2011) Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res 39(15):e102. https://doi.org/10.1093/nar/gkr424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamy R, Farber-Katz S, Vives F, Ayanoglu G, Zhao T, Chen Y, Laotaweerungsawat S, Ma D, Phone A, Psaras C, Li NX, Sutradhar S, Carrington PE, Stewart JM (2020) Comparative analysis of multiplex platforms for detecting vitreous biomarkers in diabetic retinopathy. Transl Vis Sci Technol 9(10):3. https://doi.org/10.1167/tvst.9.10.3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olink (2022) Olink Target 96 user manual. https://www.olink.com/content/uploads/2022/04/olink-target-96-usermanual.pdf. Accessed 28 Jul 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lamy, R., Ma’ayeh, S., Chlamydas, S., Stewart, J.M. (2023). Proximity Extension Assay (PEA) Platform to Detect Vitreous Biomarkers of Diabetic Retinopathy. In: Liu, GS., Wang, JH. (eds) Diabetic Retinopathy. Methods in Molecular Biology, vol 2678. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3255-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3255-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3254-3

  • Online ISBN: 978-1-0716-3255-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics