Skip to main content

Mass Spectrometry-Based Vitreous Proteomics: Validated Methods and Analysis Pipeline

  • Protocol
  • First Online:
Diabetic Retinopathy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2678))

Abstract

Retinal diseases like diabetic retinopathy and age-related macular degeneration affect millions of individuals worldwide and often lead to vision loss. Vitreous fluid abuts the retina, is accessible for sampling, and contains many proteins related to retinal disease. Therefore, analysis of vitreous is an important tool for studying retinal disease. Because it is rich in proteins and extracellular vesicles, mass spectrometry-based proteomics is an excellent method for vitreous analysis. Here, we discuss important variables to consider when performing vitreous proteomics via mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gardner TW, Sundstrom JM (2017) A proposal for early and personalized treatment of diabetic retinopathy based on clinical pathophysiology and molecular phenotyping. Vis Res. https://doi.org/10.1016/j.visres.2017.03.006

  2. Zhao Y, Weber SR, Lease J, Russo M, Siedlecki CA, Xu LC, Chen H, Wang W, Ford M, Simo R, Sundstrom JM (2018) Liquid biopsy of vitreous reveals an abundant vesicle population consistent with the size and morphology of exosomes. Transl Vis Sci Technol 7(3):6. https://doi.org/10.1167/tvst.7.3.6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skeie JM, Roybal CN, Mahajan VB (2015) Proteomic insight into the molecular function of the vitreous. PLoS One 10(5):e0127567. https://doi.org/10.1371/journal.pone.0127567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loukovaara S, Nurkkala H, Tamene F, Gucciardo E, Liu X, Repo P, Lehti K, Varjosalo M (2015) Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Proteome Res 14(12):5131–5143. https://doi.org/10.1021/acs.jproteome.5b00900

    Article  CAS  PubMed  Google Scholar 

  5. Weber SR, Zhao Y, Ma J, Gates C, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM (2021) A validated analysis pipeline for mass spectrometry-based vitreous proteomics: new insights into proliferative diabetic retinopathy. Clin Proteomics 18(1):28. https://doi.org/10.1186/s12014-021-09328-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghodasra DH, Fante R, Gardner TW, Langue M, Niziol LM, Besirli C, Cohen SR, Dedania VS, Demirci H, Jain N, Jayasundera KT, Johnson MW, Kalyani PS, Rao RC, Zacks DN, Sundstrom JM (2016) Safety and feasibility of quantitative multiplexed cytokine analysis from office-based vitreous aspiration. Invest Ophthalmol Vis Sci 57(7):3017–3023. https://doi.org/10.1167/iovs.15-18721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867. https://doi.org/10.1074/mcp.r200007-mcp200

    Article  CAS  PubMed  Google Scholar 

  8. Pfahler SM, Brandford AN, Glaser BM (2009) A prospective study of in-office diagnostic vitreous sampling in patients with vitreoretinal pathology. Retina 29:1032–1035. https://doi.org/10.1097/IAE.0b013e3181a2c1eb

    Article  PubMed  Google Scholar 

  9. Sebag J (1987) Ageing of the vitreous. Eye 1(Pt 2):254–262. https://doi.org/10.1038/eye.1987.45

    Article  PubMed  Google Scholar 

  10. Sebag J (1989) Development and aging of the vitreous. In: The vitreous: structure, function, and pathobiology. Springer, New York, pp 73–95

    Chapter  Google Scholar 

  11. Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, Wall RV, Hone E, Deng L, Dheer Y, Abbasi M, Rezaeian M, Braidy N, You Y, Salekdeh GH, Haynes PA, Molloy MP, Martins R, Cristea IM, Gygi SP, Graham SL, Gupta VK (2017) Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep 7(1):12685. https://doi.org/10.1038/s41598-017-12858-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Angi M, Kalirai H, Coupland SE, Damato BE, Semeraro F, Romano MR (2012) Proteomic analyses of the vitreous humour. Mediat Inflamm 2012:148039. https://doi.org/10.1155/2012/148039

    Article  CAS  Google Scholar 

  13. Walia S, Clermont AC, Gao B-B, Aiello LP, Feener EP (2010) Vitreous proteomics and diabetic retinopathy. Semin Ophthalmol 25:289–294. https://doi.org/10.3109/08820538.2010.518912

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weber SR, Zhao Y, Gates C, Ma J, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM (2021) Proteomic analyses of vitreous in proliferative diabetic retinopathy: prior studies and future outlook. J Clin Med 10(11). https://doi.org/10.3390/jcm10112309

  15. Nobl M, Reich M, Dacheva I, Siwy J, Mullen W, Schanstra JP, Choi CY, Kopitz J, Kretz FT, Auffarth GU, Koch F, Koss MJ (2016) Proteomics of vitreous in neovascular age-related macular degeneration. Exp Eye Res 146:107–117. https://doi.org/10.1016/j.exer.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Pfahler SM, Brandford AN, Glaser BM (2009) A prospective study of in-office diagnostic vitreous sampling in patients with vitreoretinal pathology. Retina 29(7):1032–1035

    Article  PubMed  Google Scholar 

  17. Kasudhan KS, Sarkar S, Gupta V, Gupta A, Chakraborti A (2018) Identification of unique proteins in vitreous fluid of patients with noninfectious uveitis. Acta Ophthalmol 96(8):e989–e1003. https://doi.org/10.1111/aos.13801

    Article  CAS  PubMed  Google Scholar 

  18. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19(3):323–344

    Article  CAS  PubMed  Google Scholar 

  19. Koyama R, Nakanishi T, Ikeda T, Shimizu A (2003) Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J Chromatogr B Anal Technol Biomed Life Sci 792(1):5–21

    Article  CAS  Google Scholar 

  20. Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11(11):5145–5156. https://doi.org/10.1021/pr300273g

    Article  CAS  PubMed  Google Scholar 

  21. Gross JH (2017) Mass spectrometry: a textbook, 3rd edn. Springer, Cham

    Book  Google Scholar 

  22. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  PubMed  Google Scholar 

  23. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015. https://doi.org/10.1074/mcp.M111.011015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Hou J, Tanner JJ, Cheng J (2020) Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci 21(8). https://doi.org/10.3390/ijms21082873

  25. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. https://doi.org/10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  26. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(Database issue):D61–D65. https://doi.org/10.1093/nar/gkl842

    Article  CAS  PubMed  Google Scholar 

  27. UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  28. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658. https://doi.org/10.1021/ac0341261

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30(17):2524–2526. https://doi.org/10.1093/bioinformatics/btu305

    Article  CAS  PubMed  Google Scholar 

  31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt A, Forne I, Imhof A (2014) Bioinformatic analysis of proteomics data. BMC Syst Biol 8(Suppl 2):S3. https://doi.org/10.1186/1752-0509-8-S2-S3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  34. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697. https://doi.org/10.1093/nar/gkq1018

    Article  CAS  PubMed  Google Scholar 

  35. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109–D114. https://doi.org/10.1093/nar/gkr988

    Article  CAS  PubMed  Google Scholar 

  37. Mi H, Guo N, Kejariwal A, Thomas PD (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35(Database issue):D247–D252. https://doi.org/10.1093/nar/gkl869

    Article  CAS  PubMed  Google Scholar 

  38. Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR (2007) GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8:217. https://doi.org/10.1186/1471-2105-8-217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burton JB, Carruthers NJ, Stemmer PM (2021) Enriching extracellular vesicles for mass spectrometry. Mass Spectrom Rev. https://doi.org/10.1002/mas.21738

  40. Burton JB, Carruthers NJ, Hou Z, Matherly LH, Stemmer PM (2022) Pattern analysis of organellar maps for interpretation of proteomic data. Proteomes 10(2). https://doi.org/10.3390/proteomes10020018

  41. Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, Hauck SM (2021) Multiplatform approach for plasma proteomics: complementarity of Olink proximity extension assay technology to mass spectrometry-based protein profiling. J Proteome Res 20(1):751–762. https://doi.org/10.1021/acs.jproteome.0c00641

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Sundstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weber, S., Carruthers, N., Gates, C., Zhao, Y., Sundstrom, J. (2023). Mass Spectrometry-Based Vitreous Proteomics: Validated Methods and Analysis Pipeline. In: Liu, GS., Wang, JH. (eds) Diabetic Retinopathy. Methods in Molecular Biology, vol 2678. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3255-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3255-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3254-3

  • Online ISBN: 978-1-0716-3255-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics