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Neuroimaging in Machine Learning for Brain Disorders 

Ninon Burgos 

Abstract 

Medical imaging plays an important role in the detection, diagnosis, and treatment monitoring of brain 
disorders. Neuroimaging includes different modalities such as magnetic resonance imaging (MRI), X-ray 
computed tomography (CT), positron emission tomography (PET), or single-photon emission computed 
tomography (SPECT). 
For each of these modalities, we will explain the basic principles of the technology, describe the type of 

information the images can provide, list the key processing steps necessary to extract features, and provide 
examples of their use in machine learning studies for brain disorders. 
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1 Introduction 

Medical imaging plays a key role in brain disorders. In clinical care, 
it is vital for detection, diagnosis, and treatment monitoring. It is 
also an essential tool for research to characterize the anatomical, 
functional, and molecular alterations in brain disorders, to better 
understand the pathophysiology, or to evaluate the effects of new 
treatments in clinical trials, for instance. Medical imaging of the 
brain is referred to as neuroimaging and involves different modal-
ities such as X-ray computed tomography (CT), magnetic reso-
nance imaging (MRI), positron emission tomography (PET), or 
single-photon emission computed tomography (SPECT). 

Most neuroimaging modalities have been developed in the 
1970s (Fig. 1). The first CT image of a brain was acquired in 
1971 [1, 2]. This technology results from the discovery of X-rays 
by Wilhelm Röntgen in 1895 [3]. A few years later, PET [4] and 
then SPECT [5, 6] cameras were developed. Both modalities result 
from the discovery of natural radioactivity in 1896 by Henri Bec-
querel [7]. The first MR image of a brain goes back to 1978 [8]
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following the discovery of nuclear magnetic resonance in 1946 by 
Felix Bloch [9]. Some of these imaging modalities were later com-
bined into hybrid scanners. The first prototype combining PET and 
CT was introduced into the clinical arena in 1998 [10], while the 
first PET and MR images of a brain simultaneously acquired were 
reported in 2007 [11, 12]. The first commercial SPECT/CT sys-
tem dates back to 1999 [13], while SPECT/MR systems are still 
under development [14].
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Fig. 1 Timeline of the main developments in neuroimaging 

CT and MRI are the modalities of choice when studying brain 
anatomy, while SPECT and PET are used to image particular 
biological processes. Note that MRI is a versatile modality that 
allows studying both the structure and function of the brain, 
through the acquisition of different sequences. The use of these 
imaging modalities differs between clinical practice and research 
contexts. For example, CT is the main modality used in hospitals on 
adults [15], while MRI is by far the modality the most used for the 
study of brain disorders with machine learning (Fig. 2, top). The 
two most studied disorders with machine learning are brain tumors 
and dementia, mainly Alzheimer’s disease (Fig. 2, bottom). 

This chapter will start by shortly describing the nature of 
neuroimages, detailing the type of features that can be extracted 
from them, and listing software tools that can be used to do so. We 
will then briefly describe the principles of the imaging modalities 
the most used in machine learning studies: anatomical, diffusion, 
and functional MRI, CT, PET, and SPECT. For each modality, we 
will report the processing steps often perform to extract features, 
explain the type of information provided, and give examples of their 
use in machine learning studies.
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Fig. 2 Distribution by imaging modality (top) and brain disorder (bottom) of 1327 articles presenting a study 
using machine learning. Note that these numbers should only be taken as rough indicators as they result from 
a non-exhaustive literature search. The Scopus query and the resulting articles (after some manual filtering) 
are available as a public Zotero library (https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_ 
brain_disorders/library) 

2 Manipulating Neuroimages 

In clinical routine, neuroimages are primarily exploited through 
visual inspection by a radiologist (or a neuroradiologist, who is a 
radiologist with an additional specialization in brain imaging, in 
expert hospitals) or a nuclear medicine physician. This results in a 
radiological report that is a written text describing the character-
istics of the brain of the patient, its alterations, and possibly the 
most likely diagnosis. Note that neuroimaging exploration is usu-
ally requested by a neurologist or a psychiatrist and is associated 
with an indication that may correspond to the exploration of a set of 
symptoms (for instance, the exploration of a dementia syndrome) 
or to the confirmation of a potential diagnosis. Neuroimaging

https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_brain_disorders/library
https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_brain_disorders/library


alone will thus usually not provide a diagnosis. It will rather bring 
arguments in favor, or against, a potential diagnosis (for instance, in 
the exploration of a dementia syndrome, MRI can bring positive 
arguments for a diagnosis of Alzheimer’s disease due to the 
observed atrophy in specific areas or on the contrary exclude this 
diagnosis by showing that the syndrome is due to a different cause 
such as a brain tumor). Overall, the diagnosis will generally be made 
by the neurologist or the psychiatrist based on a combination of 
clinical examination and a set of multimodal data (clinical and 
cognitive tests, radiological report, biomarkers, etc.). 
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However, the use of neuroimages goes way beyond visual 
inspection and is subject to quantification using image processing 
procedures. This is particularly true in research even though image 
processing tools are also increasingly used in clinical routine. A 
characteristic of these tools that differentiates them from general 
purpose image processing tools is their ability to handle three-
dimensional (3D) images. 

2.1 The Nature of 3D 

Medical Images 

Most medical imaging devices acquire 3D images. This is the case 
of all the ones presented in this chapter (MRI, CT, PET, and 
SPECT). If 2D images are essentially 2D arrays of elements called 
pixels (for picture elements), 3D images are 3D arrays of elements 
called voxels (for volume elements). Depending on the imaging 
modality, voxel values will represent different properties of the 
underlying tissues. For example, in a CT image, they will be pro-
portional to linear attenuation coefficients. The shape and size of a 
voxel will also depend on the imaging modality (or the type of 
sequence in MRI). When its three dimensions are of equal lengths, 
the voxel is isotropic; otherwise, it is anisotropic (see Fig. 3). For 
instance, a typical voxel size for a T1-weighted MR image is about 
1× 1× 1 mm3 , while it is about 3× 3× 3 mm3 for a functional MR 
image. Most neuroimaging modalities will have a voxel dimension 
between 0.5 mm and 5 mm. 

Even though most neuroimages are 3D, they are visualized as 
2D slices along different planes: axial, coronal, or sagittal (see 
Fig. 4). Multiple tools exist to visualize neuroimages. Several are 
available within suites such as FSLeyes,1 Freeview,2 or medInria,3 

while others are independent such as Vinci,4 Mango,5 or Horos.6 

Note that viewers may interpolate the images they display, which 
may be misleading (see Fig. 5 for an illustration). 

1 FSLeyes: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes. 
2 Freeview: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide. 
3 medInria: https://med.inria.fr. 
4 Vinci: https://vinci.sf.mpg.de. 
5 Mango: http://ric.uthscsa.edu/mango. 
6 Horos: https://horosproject.org.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
https://med.inria.fr
https://vinci.sf.mpg.de
http://ric.uthscsa.edu/mango
https://horosproject.org


2.2 Extracting

Features from

Neuroimages

Neuroimaging in Machine Learning for Brain Disorders 257

Fig. 3 Most neuroimaging modalities are three-dimensional. Left: volume rendering of an excavated 
T1-weighted MR image. Middle: voxel grid with isotropic, i.e., cubic, voxels overlaid on the MRI. Right: 
voxel grid with anisotropic, i.e., rectangular, voxels overlaid on the MRI 

Fig. 4 Axial, coronal, and sagittal slices extracted from a T1-weighted MR image 

When using machine learning to analyze images, one will often 
extract features. These features can be grouped into four categories 
that we will now describe and are illustrated in Fig. 6. Note that 
these features are conceptually the same for the different modalities 
but their actual content will differ (e.g., volume of a region for 
anatomical MRI vs average uptake in this region for PET). 
Modality-specific preprocessing and corrections often need to be 
applied before neuroimages can be analyzed; these will be described 
in Subheadings 3, 4, and 5.
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Fig. 5 Axial slice of a T1-weighted MRI with an isotropic voxel size originally of 1× 1× 1 mm3 (left) and 
downsampled to 2× 2× 2 mm3 (right) displayed without interpolation or with linear interpolation. If the 
difference with or without interpolation is subtle at 1 × 1 × 1 mm3 , it is well visible at 2 × 2 × 2 mm3 

Voxel-Based Features As mentioned previously, all the imaging 
modalities described in this chapter produce volumetric images. 
The whole 3D image can be used as input of a machine learning 
algorithm. In that case, each subject is seen as a collection of values 
at each voxel of the image. These values can simply be the intensity 
of the image at each voxel after some minimal preprocessing (which 
is very often what is used in deep learning) or some more complex 
value extracted from the image (for instance, gray-level density 
from anatomical MRI; see Subheading 3.1). A prerequisite is often 
to align the images studied in a common space, by registering each 
image to a template and/or by performing a group-wise registra-
tion, thus guaranteeing a voxel-wise correspondence across subjects 
[16]. Note that this correspondence becomes particularly impor-
tant when using a machine learning algorithm that takes as input a 
vector in which each element implicitly represents the same infor-
mation for each subject (e.g., logistic regression or support vector 
machine). 

Vertex-Based Features Studying the surface of the cortex is natu-
ral given its shape: it is a convoluted ribbon delimited by inner and 
outer surfaces. Moreover, surface-based characteristics can provide 
useful information such as for developmental or neurodegenerative 
diseases. Surfaces can be represented as meshes consisting of verti-
ces, edges, and faces. The vertices encode position and properties 
such as cortical thickness. In the vertex-based feature scenario, each 
subject is seen as a collection of values at each vertex of the surface. 
Classical values computed at each vertex include cortical thickness 
and local surface area (see Subheading 3.1). As for voxel-based 
features, images studied are usually aligned in a common space to 
ensure a vertex-wise correspondence across subjects [17, 18].
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Fig. 6 Examples of voxel, vertex, regional, and graph features that can be extracted from neuroimages. It is, for 
instance, possible to extract voxel-based features from CT and SPECT images, vertex-based features from 
anatomical T1-weighted (T1w) MRI or PET images, regional features from diffusion MRI, and graph-based 
features from functional MRI. Note that the modalities are just examples. For instance, voxel-based features 
can be extracted for any modality. See Subheadings 3, 4, and 5 for a description of the imaging modalities
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Regional Features The brain can be divided into subregions 
according to different criteria that can be anatomical or functional 
[16]. When considering regional features, each subject is seen as a 
collection of values for each region of the brain defined by an atlas. 
Many atlases exist, either anatomical or functional, with different 
degrees of granularity. A list can be found online.7 Classical values 
include the volume of a given region or the average image signal 
within a region. 

Graph-Based Features A last way to represent an image is 
through a graph where nodes will correspond to brain regions 
and edges will encode a particular property (for instance, anatomi-
cal or functional connections, possibly together with their 
strength). Graphs can directly be used as features, but network 
indices characterizing global and local graph topology, e.g., effi-
ciency or degree, can also be computed [19]. 

2.3 Neuroimaging 

Software Tools 

The features described above can be obtained using neuroimaging 
software tools. However, an important step before any preproces-
sing or analysis is to properly organize data. The neuroimaging 
community proposed the Brain Imaging Data Structure [20], 
which specifies how to organize data in folders and sub-folders on 
disk and how to name the files. It also details the metadata necessary 
to describe neuroimaging experiments. 

Many tools exist to process neuroimages.8 The historical 
generic frameworks include SPM9 [21], FSL10 [22], FreeSurfer11 

[23], or ANTs12 [24]. Some tools are modality-specific such as 
MRtrix13 [25], dedicated to diffusion MRI, or AFNI14 [26], dedi-
cated to functional MRI. Recent initiatives aim to make the use of 
neuroimaging tools easier by distributing them in containers (e.g., 
BIDSApps15 [27]), by providing in a single environment tools from 
preprocessing to machine learning (e.g., Nilearn16 [28]), or by 
providing automatic pipelines that do not require a particular

7 List of atlases: https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources. 
8 List of open source medical imaging software tools: https://idoimaging.com. 
9 SPM: https://www.fil.ion.ucl.ac.uk/spm. 
10 FSL: https://fsl.fmrib.ox.ac.uk. 
11 FreeSurfer: https://surfer.nmr.mgh.harvard.edu. 
12 ANTs: http://stnava.github.io/ANTs. 
13 MRtrix: https://www.mrtrix.org. 
14 AFNI: https://afni.nimh.nih.gov. 
15 BIDSApps: https://bids-apps.neuroimaging.io/apps. 
16 Nilearn: https://nilearn.github.io.

https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources
https://idoimaging.com
https://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk
https://surfer.nmr.mgh.harvard.edu
http://stnava.github.io/ANTs
https://www.mrtrix.org
https://afni.nimh.nih.gov
https://bids-apps.neuroimaging.io/apps
https://nilearn.github.io


expertise in image processing (e.g., Clinica17 [29]). Other tools 
facilitate the application of deep learning approaches to neuroi-
mages or medical images in general: for instance, MONAI,18 

TorchIO19 [30], or ClinicaDL20 [31].
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3 Magnetic Resonance Imaging 

Magnetic resonance imaging is the modality of choice to study 
brain anatomy, thanks to its high-resolution and excellent soft-
tissue contrast, but the applications of MRI go well beyond study-
ing anatomy. This technique can be used to examine tissue micro-
architecture (diffusion MRI, covered in Subheading 3.2) or neuro-
nal activity (functional MRI, covered in Subheading 3.3) but also to 
visualize the brain vasculature (MR angiography), study tissue per-
fusion and permeability (perfusion MRI), assess iron deposits and 
calcifications (susceptibility-based imaging), or measure the levels 
of different metabolites (MR spectroscopy). Note that MRI is an 
extremely versatile modality and that new sequences are constantly 
developed to study other brain characteristics. 

3.1 Anatomical MRI In MRI, most images are obtained by exploiting a magnetic prop-
erty, called spin, of the hydrogen atomic nuclei found in the water 
molecules present in the human body. In the absence of a strong 
external magnetic field, the directions of the proton’s spins are 
random, thus cancelling each other out (Fig. 7a). When the spins 
enter a strong external magnetic field (B0), they align either parallel 
or antiparallel, and they all precess around the B0 axis, referred to as 
the z axis (Fig. 7b). As a result, they cancel each other out in the 
transverse (x, y) plane, but they add up along the z axis. The result 
of this vector addition, called net magnetization M0, is propor-
tional to the proton density (Fig. 7c). With the application of a 
radio frequency pulse denoted as B1, the system of spins and the net 
magnetization are tipped by an angle determined by the strength 
and duration of the radio frequency pulse. For a 90∘ radio fre-
quency pulse, the magnetization along the z axis (Mz) becomes 
zero and the magnetization in the transverse plane (Mxy) becomes 
equal to M0 (Fig. 7d). As this radio frequency pulse provides 
energy, or excites, the spins, we also talk of radio frequency 
excitation. 

3.1.1 Basic Principles 

17 Clinica: https://www.clinica.run. 
18 MONAI: https://monai.io. 
19 TorchIO: https://torchio.readthedocs.io. 
20 ClinicaDL: https://clinicadl.readthedocs.io.

https://www.clinica.run
https://monai.io
https://torchio.readthedocs.io
https://clinicadl.readthedocs.io
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Fig. 7 MRI physics in a nutshell. (a) In the absence of a magnetic field, the directions of the proton’s spins are 
random. (b) When the spins enter a strong external magnetic field (B0), they align either parallel or antiparallel, 
and they all precess around the B0 axis. (c) The net magnetization M0 is proportional to the proton density. (d) 
With the application of a radio frequency pulse, the system of spins is tipped 

When the radio frequency pulse is then turned off, two phe-
nomena occur. First, the system of spins relaxes back to its preferred 
energy state of being parallel with B0 in a time T1, called longitu-
dinal or spin-lattice relaxation time, and the longitudinal magneti-
zation Mz slowly recovers to its original magnitude M0. Second, 
each spin starts precessing at a frequency that is slightly different 
from the one of its neighboring spins because the field of the MRI 
scanner is not uniform and because each spin is influenced by the 
small magnetic fields of the neighboring spins. When the spins are 
completely dephased, they are evenly spread in the transverse plane, 
and Mxy becomes zero. Mxy decreases at a much faster rate than 
that at which Mz recovers to M0. The transverse relaxation time T2, 
also called spin-spin relaxation time, describes the Mxy decrease 
because of interference from neighboring spins, while T2* 
describes the decrease because of both spin-spin interactions and 
nonuniformities of B0. Finally, the MRI signal is obtained by 
measuring the transverse magnetization as an electrical current by 
induction. 

The contrast in MR images depends on three main parameters: 
the proton density, the longitudinal relaxation time T1, and the 
transverse relaxation time T2. These parameters can be adjusted by 
changing the time at which the signal is recorded, called echo time, 
and the interval between successive excitation pulses, called repeti-
tion time. A T1-weighted image is created by choosing a short 
repetition time, a T2-weighted image by choosing a long echo 
time, and a proton density (PD)-weighted image by minimizing 
both T1 and T2 weighting of the image (long repetition time and 
short echo time). The corresponding images are referred to as 
T1-weighted MRI, T2-weighted MRI, and PD-weighted MRI. 
Note that many variations of these sequences exist (for instance, 
gradient-echo vs spin-echo) and the corresponding



3.1.2 Extracting Features

from Anatomical MRI

implementation by different manufacturers usually comes with a 
specific commercial name (e.g., MPRAGE is a T1-weighted 
sequence available on Siemens scanners). Furthermore, many 
more anatomical sequences exist including T2*-weighted, 
T2-FLAIR (fluid-attenuated inversion recovery), or DIR (double 
inversion recovery). Examples are displayed in Fig. 8. The set of 
sequences chosen by the radiologist will depend on the potential 
disease that is being investigated. Some examples in the context of 
machine learning are given in Subheading 3.1.3. 
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Fig. 8 Example of anatomical MR images. T1-weighted, T2-weighted, and T2-FLAIR images of a patient with 
multiple sclerosis from the MSSEG MICCAI 2016 challenge data set [32, 33] 

Several preprocessing steps are often necessary before analyzing 
anatomical MR images to correct imperfections and ease their 
comparison. 

Bias Field Correction MR images can be corrupted by a 
low-frequency and smooth signal caused by magnetic field inho-
mogeneity. This bias field induces variations in the intensity of the 
same tissue in different locations of the image, which deteriorates 
the performance of image analysis algorithms such as registration or 
segmentation. Several methods exist to correct these intensity inho-
mogeneities, the most popular being the N4 algorithm [34] avail-
able in ANTs [24]. 

Intensity Rescaling and Standardization As MRI is usually not a 
quantitative imaging modality, MR images can have different inten-
sity ranges, and the intensity distribution of the same tissue type 
may be different between two images, which might affect the 
subsequent image preprocessing steps. The first point can be dealt 
with by globally rescaling the image, for example, between 0 and



1, using the minimum and maximum intensity values. More robust 
choices exist such as the z-score normalization (at each voxel, one 
subtracts the mean intensity of the image, and the result is divided 
by the standard deviation across the image), which can be made 
even more robust by only considering a percentile of the intensities 
for computing the mean and standard deviation. Intensity standar-
dization, to solve the second point, can be achieved using techni-
ques such as histogram matching [35]. 
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Skull Stripping Extracranial tissues can be an obstacle for image 
analysis algorithms [36]. A large number of methods have been 
developed for brain extraction, also called skull stripping. Some are 
available in neuroimaging software platforms, such as FSL [22] or  
BrainSuite [37], and others as independent tools21,22 

[38, 39]. Note that these methods can be sensitive to the presence 
of noise and artefacts, which can result in over or under segmenta-
tion of the brain. 

Image Registration Medical image registration consists in spa-
tially aligning two or more images, either globally (rigid and affine 
registration) or locally (nonrigid registration), so that voxels in 
corresponding positions contain comparable information. A large 
number of software tools have been developed for MRI-based 
registration [40]. They are available in all the major platforms 
(e.g., SPM [21], FSL [22], FreeSurfer [23], or ANTs [24]). 

Image Segmentation Medical image segmentation consists in 
partitioning an image into a set of nonoverlapping regions. When 
processing brain images, these regions can correspond to tissue 
types, e.g., gray matter, white matter, and cerebrospinal fluid 
[41], but also to anatomical (e.g., hippocampus, pons) or func-
tional (e.g., language network, sensorimotor network) regions 
defined by an atlas [42]. As for registration, many tools have been 
developed for MRI-based segmentation and are available, among 
others, in SPM [21], FSL [22], FreerSurfer [23], or ANTs [24]. 

Resulting Features Based on the combination of one, several, or 
all, of the previously mentioned preprocessing steps, various types 
of features can be extracted that correspond to those described in 
Subheading 2.2. For deep learning algorithms, which usually 
exploit voxel-based features, it is quite common to perform only 
very basic preprocessing. At the simplest, it can be intensity nor-
malization (this step is mandatory for deep learning methods to 
work correctly). It is often combined with a bias field correction

21 HD-BET: https://github.com/MIC-DKFZ/HD-BET. 
22 SynthStrip: https://surfer.nmr.mgh.harvard.edu/docs/synthstrip.

https://github.com/MIC-DKFZ/HD-BET
https://surfer.nmr.mgh.harvard.edu/docs/synthstrip
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and a linear registration to a common space. Another common type 
of voxel-based features is that of tissue density maps (e.g., gray 
matter or white matter density) [43]. Their extraction involves 
bias field correction, registration to a common space, and tissue 
segmentation. Common vertex-based features are the local thick-
ness and the local surface area [44]. Regional features are usually 
the volume of different regions of the brain, but they can also be the 
average intensity within the region or the average of another image-
derived value. They can as well be related to lesions (for instance, 
the volume of multiple sclerosis lesions or of different compart-
ments of a brain tumor) rather than anatomical regions. Finally, 
graph-based features can also be computed from anatomical MRI 
[45] even though this representation is more common for diffusion 
MRI and functional MRI.
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3.1.3 Examples of 

Applications in Machine 

Learning Studies 

T1-weighted MRI is the sequence the most commonly found in 
machine learning studies applied to brain disorders. Several features 
can be extracted from T1-weighted MRI such as the volume of the 
whole brain or of regions of interest; the density of a particular 
tissue, e.g., gray matter; or the local cortical thickness and surface 
area. All these features, as well as the raw T1-weighted MR images, 
have, for example, largely been used for the computer-aided diag-
nosis of dementia, in particular Alzheimer’s disease, as they high-
light atrophy, i.e., the neuronal loss that is a marker of 
neurodegenerative diseases [46–49]. 

T1-weighted MR images acquired with and without the injec-
tion of a contrast agent are often used in the context of brain tumor 
detection and segmentation, progression assessment, and survival 
prediction as they allow distinguishing active tumor structures 
[50]. Such tasks also typically rely on another sequence called 
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) that 
allows visualizing a wide range of lesions on top of tumors [51], 
such as those appearing with multiple sclerosis [52, 53] o  
age-related white matter hyperintensities (also called leukoaraiosis, 
which is linked to small vessel disease). 

3.2 Diffusion-

Weighted MRI 

Diffusion MRI [54, 55] allows visualizing tissue micro-
architecture, thanks to the diffusion of water molecules. Depending 
on their surroundings, water molecules are able to either move 
freely, e.g., in the extracellular space, or move following surround-
ing constraints, e.g., within a neuron. In the former situation, the 
diffusion is isotropic, while in the later it is anisotropic. Contrast in 
a diffusion MR image originates from the fact that following the 
application of an excitation pulse, water molecules that move in a 
particular direction, and so the protons they contain, do not have 
the same magnetic properties as the ones that move randomly but 
not far from their origin point. The excitation pulse is parametrized 
by a weighting coefficient b: the higher the b-value, the more

3.2.1 Basic Principles



sensitive the acquisition is to water diffusion, but the lower the 
signal-to-noise ratio. Several diffusion MRI volumes, each volume 
corresponding to a particular b-value and gradient direction, are 
usually acquired. See examples in Fig. 9 (top row).
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Fig. 9 Example of diffusion-weighted MR images. Top: diffusion volumes acquired using different b-values 
(0 and 1000 s/mm2 ) and gradient directions. Bottom: parametric maps resulting from diffusion tensor 
modeling (fractional anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD; and mean diffusivity, MD) 

3.2.2 Extracting Features 

from Diffusion MRI 

Diffusion MR images are typically acquired with echo-planar imag-
ing, a technique that spatially encodes the MRI signal in a way that 
enables fast acquisitions with a relatively high signal-to-noise ratio. 
However, echo-planar imaging induces geometric distortions and 
signal losses known as magnetic susceptibility artifacts. Other arti-
facts include eddy currents (due to the rapid switching of diffusion 
gradients), intensity inhomogeneities (as for anatomical MRI), and 
potential movements of the subject during the acquisition. These 
artifacts need to be corrected before further analyzing the images. 
Various methods exist to do so; they are reviewed in [56]. Two 
widely used tools enabling the preprocessing of diffusion MR 
images are FSL [22] and MRtrix [25], but others exist23 [56]. 

23 List of tools and software packages to process diffusion MRI: https://github.com/dmripreprocessing/ 
neuroimage-review-2022.

https://github.com/dmripreprocessing/neuroimage-review-2022
https://github.com/dmripreprocessing/neuroimage-review-2022
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Once artifacts have been corrected, diffusion MR images can be 
analyzed in different ways. One of the earliest strategy for modeling 
water diffusion is the diffusion tensor imaging (DTI) model 
[57]. Such model can output parametric maps describing several 
diffusion properties: fractional anisotropy (FA, directional prefer-
ence of diffusion), mean diffusivity (MD, overall diffusion rate, also 
called apparent diffusion coefficient), axial diffusivity (AD, diffu-
sion rate along the main axis of diffusion), and radial diffusivity 
(RD, diffusion rate in the transverse direction). Examples of para-
metric maps are displayed in Fig. 9 (bottom row). DTI tractogra-
phy [58] goes one step further by reconstructing white matter 
tracts. Other diffusion models have been developed to better char-
acterize tissue micro-architecture. This is, for example, the case of 
neurite orientation dispersion and density imaging (NODDI) [59], 
which enables the study of neurite morphology by disentangling 
neurite density and orientation dispersion that both independently 
influence fractional anisotropy. 

One can then again compute most of the different types of 
features covered in Subheading 2.2. Voxel-based features will rep-
resent the value of a given parametric map (e.g., FA, MD). Surface-
based features are seldom used because diffusion MRI often focuses 
on the white matter even though it is in principle possible to project 
maps that are of interest in the gray matter onto the cortical surface. 
Regional features represent the average of a given map (e.g., FA, 
MD) in a set of anatomical regions. Graph-based features can be 
computed as follows, vertices are often regions of the cortex, and 
edges correspond to the connection strength, which can be 
derived, for instance, from the number of tracts connecting two 
regions or the average FA within those tracts. 

3.2.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly used diffusion MRI to assess 
white matter integrity. This has been done in a very wide variety of 
disorders. For example, fractional anisotropy and mean diffusivity 
have been used to differentiate cognitively normal subjects from 
patients with mild cognitive impairment or Alzheimer’s disease 
[60, 61]. Diffusion MRI has also been exploited to perform 
tumor grading or subtyping [62] following the assumption that 
the cellular structure may differ between cancerous and healthy 
tissues. 

3.3 Functional MRI When a region of the brain gets activated by a cognitive task, two 
phenomena occur: a local increase in cerebral blood flow and 
changes in oxygenation concentration [63]. Functional MRI 
(fMRI) is used to measure the latter phenomenon. The blood-
oxygen-level-dependent (BOLD) contrast originates from the fact 
that hemoglobin molecules that carry oxygen have different mag-
netic properties than hemoglobin molecules that do not carry 
oxygen. 

3.3.1 Basic Principles
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Task fMRI consists in inducing particular neural states, for 
example, by performing tasks involving the visual or auditory sys-
tems and then comparing the signals recorded during the different 
states. As the differences observed are small, it is important to 
preserve at best the signal-to-noise ratio that could be degraded 
because of head motion or polluted by fluctuations of the cardiac 
and respiratory cycles. This is done by quickly acquiring multiple 
image volumes with echo-planar imaging. The BOLD signal also 
varies when the brain is not performing any particular task 
[64]. These spontaneous fluctuations are studied with resting-
state fMRI. 

3.3.2 Extracting Features 

from Functional MRI 

The preprocessing of functional MR images has two main objec-
tives: limit the effect of nonneural sources of variability and correct 
acquisition-related artifacts [65]. Preprocessing steps can, for 
example, include susceptibility distortion correction (as for diffu-
sion MRI); head motion correction, by registering each volume in 
the time series to a reference volume (e.g., the first volume); slice-
timing correction, to eliminate differences between the time of 
acquisition of each slice in the volume; or physiologic noise correc-
tion, by temporal filtering [63, 65]. These preprocessing steps can 
be performed using tools such as SPM [21], FSL [22], or AFNI 
[26], but also using the dedicated fMRIPrep workflow [65]. 

The majority of machine learning studies in brain disorders 
focuses on resting-state rather than task fMRI [66]. This can be 
explained by the fact that the resting-state protocol is simpler and 
allows multi-site studies (as it is less sensitive to changes in local 
experimental settings) [66], which should result in larger samples. 
Depending on the application, preprocessed resting-state fMRI 
data may be further processed to extract features. One can directly 
use voxel-based features (or vertex-based features by projecting the 
functional MRI signal onto the cortical surface) [67]. Nevertheless, 
to the best of our knowledge, the most common features are graph-
based. Indeed, most supervised algorithms for classification or 
regression use brain networks extracted from resting-state time 
series. In these networks, also called connectomes, the vertices 
correspond to brain regions, which size may vary, and the edges 
encode the functional connectivity strength, which corresponds to 
the correlation between time series. 

3.3.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning methods exploiting resting-state fMRI data have 
been used to investigate brain development and aging, but also 
neurodegenerative and psychiatric disorders [66]. Functional con-
nectivity patterns have, for instance, been used to distinguish 
patients with schizophrenia from healthy controls [68] or discrimi-
nate schizophrenia and bipolar disorder from healthy controls [69].
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4 X-Ray Imaging 

X-ray imaging is built on the work of Röntgen who observed that if 
a “hand be held before the fluorescent screen, the shadow shows 
the bones darkly, with only faint outlines of the surrounding 
tissues” [3]. 

4.1 X-Ray and 

Angiography 

When an X-ray beam passes through the body, part of its energy is 
absorbed or scattered: the number of X-ray photons is reduced by 
attenuation (Fig. 10, left). On the opposite side of the body, 
detectors capture the remaining X-ray photons, and an image is 
generated. In an X-ray image, the contrast, defined as the relative 
intensity change produced by an object, originates from the varia-
tions in linear attenuation coefficient with tissue type and density. 

X-ray imaging provides excellent contrast between bone, air, 
and soft tissue but very little contrast between the different types of 
soft tissue, hence its limited use when studying brain disorders. 
However, coupled with the injection of an iodine-based contrast 
agent, X-ray imaging enables visualizing cerebral blood vessels and 
detecting potential abnormalities such as an aneurysm. This tech-
nique is called X-ray angiography. 

4.2 Computed 

Tomography 

Although the X-ray images produced were originally in 2D, X-ray 
computed tomography enables the reconstruction of 3D images by 
rotating the X-ray source and detectors around the body (Fig. 10, 
right). Rather than using the absolute values of the linear attenua-
tion coefficients, CT image intensities are expressed in a standard

4.2.1 Basic Principles 

Fig. 10 Left: attenuation of X-rays by matter. As it passes through a material of thickness Δx and linear 
attenuation coefficient μ, the X-ray beam is attenuated. Its intensity decreases exponentially with the distance 
travelled: Io= Ii e

-μΔx , where Ii and Io are the input and output X-ray intensities. Right: third-generation CT. A 
3D image is created by rotating the X-ray source and detectors around the body



unit, the Hounsfield unit (HU). The tissue attenuation coefficient 
is compared to the attenuation value of water and displayed on the 
Hounsfield scale:
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xHU  =1000× 
xμ - μwater 
μwater - μair 

where μwater and μair are the linear attenuation coefficients of water 
and air, respectively. For example, air has an attenuation of -1000 
HU, water of 0 HU, and cortical bone between 500 and 1900 HU. 

As for 2D X-ray imaging, the injection of an iodine-based 
contrast agent improves the visualization of cerebral blood vessels. 
This technique, called CT angiography, is not the only one relying 
on a contrast agent. CT perfusion tracks the bolus of contrast agent 
over time and measures the resulting change in signal intensity. 
Perfusion parameters such as the cerebral blood flow or volume 
can then be derived [70]. 

4.2.2 Extracting Features 

from CT Images 

Contrary to MRI, CT images usually do no require extensive pre-
processing steps [71]. It can however be useful to extract the head 
from the hardware elements visible on the image (e.g., the bed or 
pillow) or extract the brain. This can be done using thresholding 
and morphological operators. Another common step is spatial 
normalization. 

In the context of stroke, non-contrast CT is useful to detect an 
intracranial hemorrhage, which appears brighter than the sur-
rounding tissues, or to estimate the extent of early ischemic injury, 
which results in a loss of gray-white matter differentiation. CT 
angiography can help identify a potential intracranial arterial occlu-
sion, and CT perfusion allows differentiating the regions with 
nonviable/non-salvageable tissue, which have very low cerebral 
blood flow and volume, from the viable and potentially salvageable 
regions [70]. These techniques may also be employed in the con-
text of brain tumors. In particular, contrast-enhanced CT can 
detect areas presenting a blood-brain barrier breakdown [72]. An 
example of CT acquired before and after contrast injection is dis-
played in Fig. 11. 

To the best of our knowledge, CT is most often used in 
machine learning in the form of voxel-based features (the image 
intensities after some minimal preprocessing steps). 

4.2.3 Examples of 

Applications in Machine 

Learning Studies 

The vast majority of machine learning studies relying on CT 
images, particularly non-contrast CT, focus on cerebrovascular 
disorders [73, 74]. Non-contrast CT images were, for example, 
used for the detection of intracranial hemorrhage and its five sub-
types [75]. A first neural network was in charge of identifying the 
presence or absence of intracranial hemorrhage and a second of 
determining the intracranial hemorrhage subtype, which depends



on the bleeding location [75]. In [76], non-contrast CT and CT 
perfusion images were used to segment the core of stroke lesions, as 
the lesion volume is a key measurement to assess the prognosis of 
acute ischemic stroke patients. 
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Fig. 11 Example of CT images. Non-contrast CT images, whose window levels were adjusted to better 
visualize bone or brain tissues and contrast-enhanced CT image of a patient with lymphoma. Case courtesy of 
Dr Yair Glick, Radiopaedia.org, rID: 94844 

5 Nuclear Imaging 

In X-ray CT imaging, the photons that are detected originate from 
an X-ray source. In nuclear imaging, and more precisely emission 
computed tomography, the photons detected are emitted from a 
radiopharmaceutical that has been intravenously injected to the 
patient. 

5.1 Positron 

Emission Tomography 

Positron emission tomography is an imaging technique that 
requires the injection of a substance labeled with a positron-
emitting radioactive isotope [77]. The labeled substance is 
distributed throughout the patient’s body by the blood circulation 
and accumulates in target regions. The positrons emitted by the 
radioactive isotope combine with the electrons present in the tis-
sues and annihilate. Each annihilation produces two nearly collinear 
photons (Fig. 12). The two photons are simultaneously detected by 
two opposing detectors, and a coincidence event is assigned to a 
line of response connecting the two detectors. 

5.1.1 Basic Principles 

Note that the most common isotope in clinical routine is 
fluorine-18 (18 F), which has the advantage of a relatively long 
half-life (110 min) and thus does not require the presence of a 
cyclotron at the scanning site. Nevertheless, other isotopes are

https://radiopaedia.org
https://radiopaedia.org/cases/94844


used. In particular, carbon-11 (11 C), which has a shorter half-life 
(20 min), is often used in research facilities equipped with a 
cyclotron. 

272 Ninon Burgos

Fig. 12 PET annihilation. When a positron (e+ ) and an electron (e-) collide, they 
annihilate and create a pair of collinear gamma rays (γ) 

Fig. 13 Illustration of PET data detection. Without time-of-flight, the annihilation is located with equal 
probability along the line of response, while with time-of-flight it is located in a limited portion of the line of 
response 

In a time-of-flight PET system, the difference in arrival times 
between the two coincident photons is measured. Without time-of-
flight information, the annihilation is located with equal probability 
along the line of response, while with time-of-flight information, 
the annihilation site can be reduced to a limited range (Fig. 13), 
thus decreasing the spatial uncertainty and increasing the signal-to-
noise ratio. Once reconstructed, the PET image is a map of the 
radioactivity distribution throughout the body. 

Two main protocols exist when acquiring PET data. Most 
acquisitions are static: the radiotracer is injected several minutes 
before the acquisition (e.g., between 30 and 60 min), which gives



the tracer time to diffuse in the body and accumulate in the target 
regions. The subject is then placed in the scanner and the acquisi-
tion lasts typically around 15 min. In the dynamic protocol, the 
subject is first installed in the scanner, and the acquisition starts at 
the same time the tracer is being injected. This allows recording 
how the tracer diffuses in the body. Dynamic acquisitions are less 
common than static ones because of their duration of 60–90 min, 
which reduces patient throughput. In both static and dynamic 
protocols, the acquisition is often split in frames of fix (in the static 
case) or increasing (in the dynamic case) duration. A static acquisi-
tion of 15 min can typically be split into three frames of 5 min, 
resulting in three PET volumes, each corresponding to the average 
amount of radioactivity detected at each voxel during the time 
frame. 
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18 F-fluorodeoxyglucose (FDG) is the most widely used PET 
radiopharmaceutical [77, 78]. As an analogue of glucose, FDG is 
transported to a cell, but, unlike glucose, it remains trapped in the 
cell. This radiopharmaceutical is an excellent marker of changes in 
glucose metabolism. In the brain, FDG acts as an indirect marker of 
synaptic dysfunction and is part of the diagnosis of epilepsy and 
neurodegenerative diseases, such as Alzheimer’s disease [79]. 

If 18 F-FDG is a nonspecific tracer, other radiopharmaceuticals 
target specific molecular or biological processes and are thus pref-
erentially used for studying specific diseases. Amyloid tracers, such 
as the 11 C Pittsburgh compound B, 18 F-florbetapir, 18 F-florbeta-
ben and 18 F-flutemetamol, which bind to fibrillar Aβ plaques, or 
tau tracers, such as 18 F-flortaucipir, and 18 F-MK-6240, which bind 
to neurofibrillary tangles, are, for example, used in the diagnosis of 
dementia syndromes [80]. Examples are displayed in Fig. 14. Of  
note, the so-called amyloid tracers are in fact not specific of amyloid 
and also bind to myelin in the white matter, making them of

Fig. 14 Example of PET images. Left: 18 F-FDG PET displaying brain glucose metabolism. Middle: 18 F-flortau-
cipir PET displaying the presence of tau neurofibrillary tangles. Right: 18 F-florbetapir PET displaying the 
presence of amyloid plaques. All the images correspond to the same Alzheimer’s disease patient from the 
ADNI study [83]



interest for demyelinating disorders such as multiple sclerosis 
[81]. 11 C-methionine and 18 F-fluoroethyltyrosine are both used 
in neuro-oncology [82]. Note that these are just examples of tracers 
and dozens of tracers exist for imaging specific molecular or 
biological processes.
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5.1.2 Extracting Features 

from PET Images 

The reconstruction procedure of the PET signal already includes 
several corrections (e.g., attenuation and scatter corrections), but 
several processing steps can be performed before further analyzing 
PET images. The first one is often motion correction. This is 
typically done by rigidly registering each frame to a reference 
frame. The registered frames are then averaged to form a single 
volume. To allow for intersubject comparison, brain PET images 
need to be intensity normalized, for example, to compensate for 
variations in the patients’ weight or dose injected. Standardized 
uptake value ratios (SUVRs) are generated by dividing a PET image 
by the mean uptake in a reference region. This region can be 
obtained from an atlas, and in this case chosen depending on the 
tracer and disorder suspected, or in a data-driven manner [84]. Par-
tial volume correction can be performed to limit the spill out of 
activity outside of the region where the tracer is meant to accumu-
late [85] using tools such as PETPVC [86]. Finally, PET images 
can also be spatially normalized. If an anatomical image (preferably 
MRI but also CT) of the subject is available, the PET image is 
rigidly registered to the anatomical image, and the anatomical 
image is registered to a template, often in standard space. By 
composing the two transformations, the PET image is spatially 
normalized. Alternatively, if no anatomical image is available, the 
PET image can directly be registered to a PET template, for exam-
ple, as implemented in SPM [87]. Dynamic PET images are further 
processed to extract quantitative physiological data using kinetic 
modeling, which is introduced in [77, 78]. 

One can then obtain different types of features, as described in 
Subheading 2.2. Voxel-based features will very often be the SUVR 
at each voxel, usually after spatial normalization. Vertex-based fea-
tures will generally be the SUVR projected onto the cortical surface 
[88]. Regional features will usually correspond to the average 
SUVR in each region of a parcellation. Graph-based features are 
less used than for diffusion or functional MRI but are still employed 
to study the so-called metabolic connectivity [89]. 

5.1.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly exploited brain PET images 
in the context of dementia [90]. For example, the usefulness of 
18 F-FDG PET to differentiate patients with Alzheimer’s disease 
from healthy controls and patients with stable mild cognitive 
impairment from those who subsequently progressed to Alzhei-
mer’s disease has been shown in [48, 91, 92]. 18 F-FDG PET has 
also been used to differentiate frontotemporal dementia from



Alzheimer’s disease [93]. In neuro-oncology, 11 C-methionine has 
been used to predict glioma survival [94] or to differentiate recur-
rent brain tumor from radiation necrosis [95]. 
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Fig. 15 Illustration of a two-head SPECT system with a parallel hole collimator. 
The photons whose emission direction is perpendicular to the detector heads 
have a higher probability of being detected (solid lines) 

5.2 Single-Photon 

Emission Computed 

Tomography 

Single-photon emission computed tomography is an imaging tech-
nique that requires the injection of a substance labeled with an 
isotope that directly emits gamma radiation. Typical isotopes 
employed in neurology are technetium-99m (99m Tc) and iodine-
123 (123 I). As for PET, the labeled substance is distributed 
throughout the patient’s body by the blood circulation and accu-
mulates in target regions. The photons emitted are detected by one 
to three detector heads, called gamma cameras, that rotate around 
the patient. Having multiple heads allows reducing image acquisi-
tion time and improving sensitivity as more photons can be 
detected. Collimators are placed in front of the detector heads to 
localize the origin of the gamma rays: a gamma ray moving from the 
patient toward the camera has a higher probability of being 
detected if its direction aligns with the collimator (Fig. 15) 
[96]. Once reconstructed, the SPECT image is a map of the radio-
activity distribution throughout the body. Both dynamic and static 
protocols exist when acquiring SPECT data. 

5.2.1 Basic Principles 

SPECT is able to visualize and quantify changes in cerebral 
blood flow and neurotransmitter systems, such as the dopamine 
system [97, 98]. To image cerebral blood flow, the two most widely 
used tracers are 99m Tc-HMPAO and 99m Tc-ECD [97, 99]. These 
tracers can, for example, be employed in the context of dementia as 
a decrease in neural function will result in a decrease in cerebral 
blood flow in different regions. SPECT plays a key role when 
studying Parkinsonian syndromes, which are characterized by a 
loss of dopaminergic neurons. In this context, tracers targeting 
the dopaminergic system, such as 123 I-β-CIT and 123 I-FP-CIT



(also called DaTscan), are employed to differentiate essential 
tremor from neurodegenerative Parkinsonian syndromes or distin-
guish dementia with Lewy bodies from other dementias 
[98]. Examples of SPECT images are displayed in Fig. 16. 
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Fig. 16 Examples of SPECT images. Left: 99m Tc-HMPAO SPECT images of a normal control and an epileptic 
patient (http://spect.yale.edu) [100]. Right: 123 I-FP-CIT SPECT images of a normal control and a patient with 
Parkinson’s disease from the PPMI study [101] 

5.2.2 Extracting Features 

from SPECT Images 

After the reconstruction of a SPECT image, which includes several 
corrections, two processing steps are typically performed: intensity 
normalization and spatial normalization [97, 98]. As for PET, the 
intensity of a SPECT image can be normalized using a reference 
region, and the image can be spatially normalized by directly regis-
tering it to a SPECT template or by registering it first to an 
anatomical image. 

As for PET, the most common feature types are voxel-based 
(the normalized signal at each voxel) and regional features (often 
the average normalized signal within a region). To the best of our 
knowledge, vertex-based and graph-based features are rarely used 
although they could in principle be computed. 

5.2.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly exploited brain SPECT 
images for the computer-aided diagnosis of Parkinsonian syn-
dromes [102]. 123 I-FP-CIT SPECT was, for instance, used to 
distinguish Parkinson’s disease from healthy controls [103, 104], 
predict future motor severity [105], discriminate Parkinson’s dis-
ease from non-Parkinsonian tremor [104], or identify patients 
clinically diagnosed with Parkinson’s disease but who have scans 
without evidence of dopaminergic deficit [104]. 

In studies targeting dementia, both 99m Tc-HMPAO [106] and 
99m Tc-ECD [107] tracers were used to differentiate between 
images from healthy subjects and images from Alzheimer’s disease 
patients.

http://spect.yale.edu
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Fig. 17 Example of 18 F-FDG PET, CT, T1-weighted MRI, and fused images 

6 Conclusion 

Neuroimaging plays a key role for the study of brain disorders. If 
some modalities provide information regarding the anatomy of the 
brain (CT and MRI), others provide functional or molecular infor-
mation (MRI, PET, and SPECT). To provide a complete picture of 
biological processes and their alterations, it is often necessary to 
combine multiple brain imaging modalities (Fig. 17). This can be 
done by acquiring images with multiple standalone systems or with 
hybrid systems such as SPECT/CT, PET/CT, or PET/MRI 
scanners [108]. 

When analyzing neuroimages, both modality-specific and 
modality-agnostic processing steps must often be performed. 
These should be performed with care to obtain reliable features. 
Machine learning and deep learning are widely used to analyze 
neuroimaging data. The most common tasks are classification for 
computer-aided diagnosis, prognosis and disease subtyping, and 
segmentation to characterize anatomical structures and lesions. 
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Oliver A, Lladó X (2019) Acute ischemic 
stroke lesion core segmentation in CT perfu-
sion images using fully convolutional neural 
networks. Comput Biol Med 115:103487. 
h t t p s : //  d o i  .  o r g / 1  0  . 1  0 1 6  /  j . c o  m  
pbiomed.2019.103487 

77. Hooker JM, Carson RE (2019) Human posi-
tron emission tomography neuroimaging. 
Annu Rev Biomed Eng 21:551–581. 
https://doi.org/10.1146/annurev-bioeng-
062117-121056 

78. Heurling K, Leuzy A, Jonasson M, Frick A, 
Zimmer ER, Nordberg A, Lubberink M 
(2017) Quantitative positron emission 
tomography in brain research. Brain Res 
1670:220–234. https://doi.org/10.1016/j. 
brainres.2017.06.022 

79. Guedj E, Varrone A, Boellaard R, Albert NL, 
Barthel H, van Berckel B, Brendel M, 
Cecchin D, Ekmekcioglu O, Garibotto V, 
Lammertsma AA, Law I, Peñuelas I, 
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84. López-González FJ, Silva-Rodrı́guez J, 
Paredes-Pacheco J, Niñerola-Baizán  
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