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Abstract 

Transformers were initially introduced for natural language processing (NLP) tasks, but fast they were 
adopted by most deep learning fields, including computer vision. They measure the relationships between 
pairs of input tokens (words in the case of text strings, parts of images for visual transformers), termed 
attention. The cost is exponential with the number of tokens. For image classification, the most common 
transformer architecture uses only the transformer encoder in order to transform the various input tokens. 
However, there are also numerous other applications in which the decoder part of the traditional trans-
former architecture is also used. Here, we first introduce the attention mechanism (Subheading 1) and then 
the basic transformer block including the vision transformer (Subheading 2). Next, we discuss some 
improvements of visual transformers to account for small datasets or less computation (Subheading 3). 
Finally, we introduce visual transformers applied to tasks other than image classification, such as detection, 
segmentation, generation, and training without labels (Subheading 4) and other domains, such as video or 
multimodality using text or audio data (Subheading 5). 
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1 Attention 

Attention is a technique in Computer Science that imitates the way 
in which the brain can focus on the relevant parts of the input. In 
this section, we introduce attention: its history (Subheading 1.1), 
its definition (Subheading 1.2), its types and variations (Subhead-
ings 1.3 and 1.4), and its properties (Subheading 1.5). 

To understand what attention is and why it is so useful, con-
sider the following film review: 

While others claim the story is boring, I found it fascinating. 

Is this film review positive or negative? The first part of the 
sentence is unrelated to the critic’s opinion, while the second part 
suggests a positive sentiment with the word ‘fascinating’. To a 
human, the answer is obvious; however, this type of analysis is not 
necessarily obvious to a computer. 
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1.2 Definition of

Attention
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Typically, sequential data require context to be understood. In 
natural language, a word has a meaning because of its position in 
the sentence, with respect to the other words: its context. In our 
example, while “boring” alone suggests that the review is negative, 
its contextual relationship with other words allows the reader to 
reach the appropriate conclusion. In computer vision, in a task like 
object detection, the nature of a pixel alone cannot be identified: we 
need to account for its neighborhood, its context. So, how can we 
formalize the concept of context in sequential data? 

1.1 The History of 

Attention 

This notion of context is the motivation behind the introduction of 
the attention mechanism in 2015 [1]. Before this, language trans-
lation was mostly relying on encoder-decoder architectures: recur-
rent neural networks (RNNs) [2] and in particular long-short-term 
memory (LSTMs) networks were used to model the relationship 
among words [3]. Specifically, each word of an input sentence is 
processed by the encoder sequentially. At each step, the past and 
present information are summarized and encoded into a fixed-
length vector. In the end, the encoder has processed every word 
and outputs a final fixed-length vector, which summarizes all input 
information. This final vector is then decoded and finally translates 
the input information into the target language. 

However, the main issue of such structure is that all the infor-
mation is compressed into one fixed-length vector. Given that the 
sizes of sentences vary and as the sentences get longer, a fixed-
length vector is a real bottleneck: it gets increasingly difficult not to 
lose any information in the encoding process due to the vanishing 
gradient problem [1]. 

As a solution to this issue, Bahdanue et al. [1] proposed the 
attention module in 2015. The attention module allows the model 
to consider the parts of the sentence that are relevant to predicting 
the next word. Moreover, this facilitates the understanding of 
relationships among words that are further apart. 

Given two lists of tokens, X ∈ N × dx and Y ∈ N × dy , attention 
encodes information from Y into X, where N is the length of inputs 
X and Y and dx and dy are their respective dimensions. For this, we 
first define three linear mappings, query mapping W Q ∈ dx × dq , 
key mapping W K ∈ dy × dk , and value mapping W V ∈ dy × dv , 
where dq, dk, and dv are the embedding dimensions in which the 
query, key, and value are going to be computed, respectively. 

Then, we define the query Q, key K, and value V [4] as: 

Q =XW Q 

K =YW K 

V =YW V
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Next, the attention matrix is defined as: 

AðQ ,K Þ= Softmax 
QK⊤ 

dk 

p : ð1Þ 

This is illustrated in the left part of Fig. 1. The nominator 

QKT ∈N ×N represents how each part of the input in X attends 
to each part of the input in Y.1 This dot product is then put 
through the softmax function to normalize its values and get posi-
tive values that add to 1. However, for large values of dk, this may 
result in the softmax to have incredibly small gradients, so it is 
scaled down by dk 

p 
. 

The resulting N×N matrix encodes the relationship between X 
with respect to Y : it measures how important a token in X is with 
respect to another one in Y . 

Finally, the attention output is defined as: 

AttentionðQ ,K ,V Þ=AðQ ,K ÞV : ð2Þ 
Figure 1 displays this. The attention output encodes the infor-

mation of each token by taking into account the contextual infor-
mation. Therefore, through the learnable parameters—queries, 
keys, and values—the attention layers learn a token embedding 
that takes into account their relationship. 

Contextual Relationships How does Eq. 2 encode contextual 
relationships? To answer this question, let us reconsider analyzing 
the sentiment of film reviews. To encode contextual relationships 
into the word embedding, we first want a matrix representation of 
the relationship between all words. To do so, given a sentence of 
length N, we take each word vector and feed it to two different 
linear layers, calling one output “query” and the other output 
“key”. We pack the queries into the matrix Q and the keys into 
the matrix K, by taking their product (QKT ). The result is a N×N 
matrix that explains how important the i-th word (row-wise) is to 
understand the j-th word (column-wise). This matrix is then scaled 
and normalized by the division and softmax. Next, we feed the 
word vectors into another linear layer, calling its output “value”. 
We multiply these two matrices together. The results of their prod-
uct are attention vectors that encode the meaning of each word, by 
including their contextual meaning as well. Given that each of these 
queries, keys, and values is learnable parameter, as the attention 
layer is trained, the model learns how relationships among words 
are encoded in the data. 

1 Note that in the literature, there are two main attention functions: additive attention [1] and dot-product 
attention (Eq. 1). In practice, the dot product is more efficient since it is implemented using highly optimized 
matrix multiplication, compared to the feed-forward network of the additive attention; hence, the dot product is 
the dominant one.
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Fig. 1 Attention block. Next to each element, we denote its dimensionality. 
Figure inspired from [4] 

1.3 Types of 

Attention 

There exist two dominant types of attention mechanisms: self-
attention and cross attention [4]. In self-attention, the queries, 
keys, and values come from the same input, i.e., X=Y; in  cross 
attention, the queries come from a different input than the key and 
value vectors, i.e., X≠Y. These are described below in Subheadings 
1.3.1 and 1.3.2, respectively. 

1.3.1 Self-Attention In self-attention, the tokens of X attend to themselves (X=Y). 
Therefore, it is modeled as follows: 

SAðX Þ=AttentionðXW Q ,XW K ,XW V Þ: ð3Þ 
Self-attention formalizes the concept of context. It learns the 

patterns underlying how parts of the input correspond to each 
other. By gathering information from the same set, given a 
sequence of tokens, a token can attend to its neighboring tokens 
to compute its output. 

1.3.2 Cross Attention Most real-world data are multimodal—for instance, videos contain 
frames, audios, and subtitles, images come with captions, etc. 
Therefore, models that can deal with such types of multimodal 
information have become essential.



1.4 Variation of

Attention
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Cross attention is an attention mechanism designed to handle 
multimodal inputs. Unlike self-attention, it extracts queries from 
one input source and key-value pairs from another one (X≠Y ). It 
answers the following question: “Which parts of input X and input 
Y correspond to each other?” Cross attention (CA) is defined as: 

CAðX ,Y Þ=AttentionðXW Q ,YW K ,YW V Þ: ð4Þ 

Attention is typically employed in two ways: (1) multi-head self-
attention (MSA, Subheading 1.4) and (2) masked multi-head 
attention (MMA, Subheading 1.4). 

Attention Head We call attention head the mechanism presented 
in Subheading 1.2, i.e., query-key-value projection, followed by 
scaled dot product attention (Eqs. 1 and 2). 

When employing an attention-based model, relying only on a 
single attention head can inhibit learning. Therefore, the multi-
head attention block is introduced [4]. 

Multi-head Self-Attention (MSA) MSA is shown in Fig. 2 and is 
defined as: 

MSAðX Þ =Concatðhead1ðX Þ, . . . , headhðX ÞÞW O , 

headiðX Þ = SAðX Þ , 8i ∈f1, hg, ð5Þ 

where Concat is the concatenation of h attention heads and 

W O ∈ hdv × d is projection matrix. This means that the initial 
embedding dimension dx is decomposed into h× dv and the com-
putation per head is carried out independently. The independent 
attention heads are usually concatenated and multiplied by a linear 
layer to match the desired output dimension. The output dimen-
sion is often the same as the input embedding dimension d. This 
allows an easier stacking of multiple blocks. 

Multi-head Cross Attention (MCA) Similar to MSA, MCA is 
defined as: 

MCAðX ,Y Þ =Concatðhead1ðX ,Y Þ, . . . , headhðX ,Y ÞÞW O , 

headiðX ,Y Þ =CAðX ,Y Þ , 8i ∈f1, hg: 
ð6Þ 

Masked Multi-head Self-Attention (MMSA) The MMSA layer 
[4] is another variation of attention. It has the same structure as the 
multi-head self-attention block (Subheading 1.4), but all the later 
vectors in the target output are masked. When dealing with sequen-
tial data, this can help make training parallel.
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Fig. 2 Multi-head self-attention block (MSA). First, the input X is projected to 
queries, keys, and values and then passed through h attention blocks. The 
h resulting attention outputs are then concatenated together and finally 
projected to a d-dimensional output vector. Next to each element, we denote 
its dimensionality. Figure inspired from [4] 

1.5 Properties of 

Attention 

While attention encodes contextual relationships, it is permutation 
equivalent, as the mechanism does not account for the order of the 
input data. As shown in Eq. 2, the attention computations are all 
matrix multiplication and normalizations. Therefore, a permuted 
input results in a permuted output. In practice, however, this may 
not be an accurate representation of the information. For instance, 
consider the sentences “the monkey ate the banana” and “the 
banana ate the monkey.” They have distinct meanings because of 
the order of the words. If the order of the input is important, 
various mechanisms, such as the positional encoding, discussed in 
Subheading 2.1.2, are used to capture this subtlety. 

2 Visual Transformers 

The transformer architecture was introduced in [4] and is the first 
architecture that relies purely on attention to draw connections 
between the inputs and outputs. Since its debut, it revolutionized 
deep learning, making breakthroughs in numerous fields, including



2.1 Basic

Transformers

natural language processing, computer vision, chemistry, and biol-
ogy, thus making its way to becoming the default architecture for 
learning representations. Recently, the standard transformer [4] has 
been adapted for vision tasks [5]. And again, visual transformer has 
become one of the central architectures in computer vision. 
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In this section, we first introduce the basic architecture of 
transformers (Subheading 2.1) and then present its advantages 
(Subheading 2.2). Finally, we describe the vision transformer (Sub-
heading 2.3). 

As shown in Fig. 3, the transformer architecture [4] is an encoder-
decoder model. First, it embeds input tokens X= (x1, . . ., xN) into 
a latent space, resulting in latent vectors Z= (z1, . . ., zN), which are 
fed to the decoder to output Y = (y1, . . ., yM). The encoder is a 
stack of L layers, with each one consisting of two sub-blocks: multi-
head self-attention (MSA) layers and a multilayer perceptron 
(MLP). The decoder is also a stack of L layers, with each one 
consisting of three sub-blocks: masked multi-head self-attention 
(MMSA), multi-head cross attention (MCA), and MLP. 

Overview Below, we describe the various parts of the transformer 
architecture, following Fig. 3. First, the input tokens are converted 
into the embedding tokens (Subheading 2.1.1). Then, the posi-
tional encoding adds a positional token to each embedding token 
to denote the order of tokens (Subheading 2.1.2). Then, the 
transformer encoder follows (Subheading 2.1.3). This consists of 
a stack of L multi-head attention, normalization, and MLP layers 
and encodes the input to a set of semantically meaningful features. 
After, the decoder follows (Subheading 2.1.4). This consists of a 
stack of L masked multi-head attention, multi-head attention, and 
MLP layers followed by normalizations and decodes the input 
features with respect to the output embedding tokens. Finally, the 
output is projected to linear and softmax layers. 

2.1.1 Embedding The first step of transformers consists in converting input tokens2 

into embedding tokens, i.e., vectors with meaningful features. To 
do so, following standard practice [6], each input is projected into 
an embedding space to obtain embedding tokens Ze . The embed-
ding space is structured in a way that the distance between a pair of 
vectors is relative to the semantic similarity of their associated 
words. For the initial NLP case, this means that we get a vector of 
each word, such that the vectors that are closer together have 
similar meanings. 

2 Note the initial transformer architecture was proposed for natural language processing (NLP), and therefore the 
inputs were words.



200 Robin Courant et al.

Fig. 3 The transformer architecture. It consists of an encoder (left) and a decoder 
(right) block, each one consisting from a series of attention blocks (multi-head 
and masked multi-head attention) and MLP layers. Next to each element, we 
denote its dimensionality. Figure inspired from [4] 

2.1.2 Positional Encoding As discussed in Subheading 1.5, the attention mechanism is posi-
tional agnostic, which means that it does not store the information 
on the position of each input. However, in most cases, the order of 
input tokens is relevant and should be taken into account, such as 
the order of words in a sentence matter as they may change its 
meaning. Therefore, [4] introduced the Positional Encoding 

PE ∈N × dx , which adds a positional token to each embedding 
token Z e ∈ N × dx .
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Sinusoidal Positional 

Encoding 

The sinusoidal positional encoding [4] is the main positional 
encoding method, which encodes the position of each token with 
sinusoidal waves of multiple frequency. For an embedding token 

Z e ∈ N × dx , its positional encoding PE ∈ N × dx is defined as: 

PEði, 2jÞ = sin 
i 

100002j=d 

PEði, 2j þ 1Þ = cos 
i 

100002j=d 
, 8i, j ∈½j1,nj�× ½j1, dj�: 

ð7Þ 

Learnable Positional 

Encoding 

An orthogonal approach is to let the model learn the positional 
encoding. In this case, PE ∈ N × dx becomes a learnable parameter. 
This, however, increases the memory requirements, without neces-
sarily bringing improvements over the sinusoidal encoding. 

Positional Embedding After its computation, either the positional encoding PE is added 
to the embedding tokens or they are concatenated as follows: 

Z pe =Ze þ PE, or  

Z pe =ConcatðZe ,PEÞ, 
ð8Þ 

where Concat denotes vector concatenation. Note that the concat-
enation has the advantage of not altering the information contained 
in Ze , since the positional information is only added to the unused 
dimension. Nevertheless, it augments the input dimension, leading 
to higher memory requirements. Instead, the addition does pre-
serve the same input dimension while altering the content of the 
embedding tokens. When the input dimension is high, this content 
altering is trivial, as most of the content is preserved. Therefore, in 
practice, for high dimension, summing positional encodings is 
preferred, whereas for low dimensions concatenating them prevails. 

2.1.3 Encoder Block The encoder block takes as input the embedding and positional 
tokens and outputs features of the input, to be decoded by the 
decoder block. It consists of a stack of L multi-head self-attention 
(MSA) layers and a multilayer perceptron (MLP). Specifically, the 
embedding and positional tokens, Z pe 

x ∈ N × d , go through a 
multi-head self-attention block. Then, a residual connection with 
layer normalization is deployed. In the transformer, this operation 
is performed after each sub-layer. Next, we feed its output to an 
MLP and a normalization layer. This operation is performed 
L times, and each time the output of each encoder block (of size 
N× d) is the input of the subsequent block. In the L-th time, the 
output of the normalization is the input of the cross-attention 
block in the decoder (Subheading 2.1.4).
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2.1.4 Decoder Block The decoder has two inputs: first, an input that constitutes the 
queries Q ∈ N × d of the encoder, and, second, the output of the 
encoder that constitutes the key-value K ,V ∈N × d pair. Similar 
to Subheadings 2.1.1 and 2.1.2, the first step constitutes encoding 
the output token to output embedding token and output positional 
token. These tokens are fed into the main part of the decoder, 
which consists of a stack of L masked multi-head self-attention 
(MMSA) layers, multi-head cross-attention (MCA) layers, and 
multilayer perceptron (MLP) followed by normalizations. Specifi-
cally, the embedding and positional tokens, Z pe 

y ∈ N × d , g  
through a MMSA block. Then, a residual connection with layer 
normalization follows. Next, an MCA layer (followed by normali-
zation) maps the queries to the encoded key values before forward-
ing the output to an MLP. Finally, we project the output of the 
L decoder blocks (of dimension N × dy) through a linear layer and 
get output probability through a softmax layer. 

2.2 Advantages of 

Transformers 

Since their introduction, the transformers have had a significant 
impact on deep learning approaches. 

In natural language processing (NLP), before transformers, 
most architectures used to rely on recurrent modules, such as 
RNNs [2] and in particular LSTMs [3]. However, recurrent models 
process the input sequentially, meaning that, to compute the cur-
rent state, they require the output of the previous state. This makes 
them tremendously inefficient, as they are impossible to parallelize. 
On the contrary, in transformers, each input is processed indepen-
dent of the others, and the multi-head attention can perform 
multiple attention computations at once. This makes transformers 
highly efficient, as they are highly parallelizable. 

This results in not only exceptional scalability, both in the 
complexity of the model and the size of datasets, but also relatively 
fast training. Notably, the recent switch transformers [7] was pre-
trained on 34 billion tokens from the C4 dataset [8], scaling the 
model to over 1 trillion parameters. 

This scalability [7] is the principal reason for the power of the 
transformer. While it was originally introduced for translation, it 
refrains from introducing many inductive biases, i.e., the set of 
assumptions that the user makes about the structure of the model 
input. In doing so, the transformer relies on data to learn how they 
are structured. Compared to its counterparts with more biases, the 
transformer requires much more data to produce comparable 
results [5]. However, if a sufficient amount of data is available, 
the lack of inductive bias becomes a strength. By learning the 
structure of the data from the data, the transformer is able to 
learn better without human assumptions hindering [9]. 

In most tasks involving transformers, the model is first pre-
trained on a large dataset and then fine-tuned for the task at hand 
on a smaller dataset. The pretraining phase is essential for



transformers to learn the global structure of the specific input 
modality. For fine-tuning, typically fewer data suffice as the model 
is already rich. For instance, in natural language processing, BERT 
[10], a state-of-the-art language model, is pretrained on a 
Wikipedia-based dataset [11], with over 6 million articles and 
Book Corpus [12] with over 10,000 books. Then, this model can 
be fine-tuned on much more specific tasks. In computer vision, the 
vision transformer (ViT) is pretrained on the JFT-300M dataset, 
containing over 1 billion labels for 300 million images [5]. Hence, 
with a sufficient amount of data, transformers achieve results that 
were never possible before in various areas of machine learning. 
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2.3 Vision 

Transformer 

Transformers offer an alternative to CNNs that have long held a 
stranglehold on computer vision. Before 2020, most attempts to 
use transformers for vision tasks were still highly reliant on CNNs, 
either by using self-attention jointly with convolutions [13, 14] or  
by keeping the general structure of CNNs while using self-attention 
[15, 16]. 

The reason for this is rooted in the two main weaknesses of the 
transformers. First, the complexity of the attention operation is 
high. As attention is a quadratic operation, the number of para-
meters skyrockets quickly when dealing with visual data, i.e., 
images—and even more so with videos. For instance, in the case 
of ImageNet [17], inputting a single image with 256×256=65, 
536 pixels in an attention layer would be too heavy computation-
ally. Second, transformers suffer from lack of inductive biases. Since 
CNNs were specifically created for vision tasks, their architecture 
includes spatial inductive biases, like translation equivariance and 
locality. Therefore, the transformers have to be pretrained on a 
significantly large dataset to achieve similar performances. 

The vision transformer (ViT) [5] is the first systematic 
approach that uses directly transformers for vision tasks by addres-
sing both aforementioned issues. It rids the concept of convolu-
tions altogether, using purely a transformer-based architecture. In 
doing so, it achieves the state of the art on image recognition on 
various datasets, including ImageNet [17] and CIFAR-100 [18]. 

Figure 4 illustrates the ViT architecture. The input image is first 
split into 16×16 patches, flattened, and mapped to the expected 
dimension through a learnable linear projection. Since the image 
size is reduced to 16× 16, the complexity of the attention mecha-
nism is no longer a bottleneck. Then, ViT encodes the positional 
information and attaches a learnable embedding to the front of the 
sequence, similarly to BERT’s classification token [10]. The output 
of this token represents the entirety of the input—it encodes the 
information from each part of the input. Then, this sequence is fed 
into an encoder block, with the same structure as in the standard 
transformers [4]. The output of the classification token is then fed 
into an MLP that outputs class probabilities.
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Fig. 4 The vision transformer architecture (ViT). First, the input image is split into patches (bottom), which are 
linearly projected (embedding), and then concatenated with positional embedding tokens. The resulting tokens 
are fed into a transformer, and finally the resulting classification token is passed through an MLP to compute 
output probabilities. Figure inspired from [5] 

Due to the lack of inductive biases, when ViT is trained only on 
mid-sized datasets such as ImageNet, it scores some percentage 
points lower than the state of the art. Therefore, the proposed 
model is first pretrained on the JFT-300M dataset [19] and then 
fine-tuned on smaller datasets, thereby increasing its accuracy by 
13%. 

For a complete overview of visual transformers and follow-up 
works, we invite the readers to study [9, 20]. 

3 Improvements over the Vision Transformer 

In this section, we present transformer-based methods that 
improve over the original vision transformer (Subheading 2.3)  in  
two main ways. First, we introduce approaches that are trained on 
smaller datasets, unlike ViT [5] that requires pretraining on 
300 million labeled images (Subheading 3.1). Second, we present 
extensions over ViT that are more computational-efficient than 
ViT, given that training a ViT is directly correlated to the image 
resolution and the number of patches (Subheading 3.2).



3.1 Data Efficiency
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As discussed in Subheading 2.3, the vision transformer (ViT) [5] is  
pretrained on a massive proprietary dataset (JFT-300M) which 
contains 300 million labeled images. This need arises with trans-
formers because we remove the inductive biases from the architec-
ture compared to convolutional-based networks. Indeed, 
convolutions contain some translation equivariance. ViT does not 
benefit from this property and thus has to learn such biases, requir-
ing more data. JFT-300M is an enormous dataset, and to make ViT 
work in practice, better data-efficiency is needed. Indeed, collecting 
that amount of data is costly and can be infeasible for most tasks. 

Data-Efficient Image Transformers (DeiT) [21] The first work 
to achieve an improved data efficiency is DeiT [21] . The main idea 
of DeiT is to distil the inductive biases from a CNN into a trans-
former (Fig. 5). DeiT adds another token that works similarly to the 
class token. When training, ground truth labels are used to train the 
network according to the class token output with a cross-entropy 
(CE) loss. However, for the distillation network, the output labels 
are compared to the labels provided from a teacher network with a

Fig. 5 The DeiT architecture. The architecture features an extra token, the 
distillation token. This token is used similarly to the class token. 
Figure inspired from [21]



cross-entropy loss. The final loss for a N-categorical classification 
task is defined as follows:
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LhardDistill 
global = 

1 
2
ðLCEðΨðZ classÞ, yÞ þ  LCEðΨðZ distillÞ, yT ÞÞ, 

LCEðŷ, yÞ = -
1 
N 

N 

i =1 

yi log ŷ i þ ð1- yiÞ log ð1- ŷ iÞ 
ð9Þ 

withΨ the softmax function, Zclass the class token output, Zdistill the 
class token output, y the ground truth label, and yT the teacher label 
prediction. 

The teacher network is a Convolutional Neural Network 
(CNN). The main idea is that the distillation head will provide 
the inductive biases needed to improve the data efficiency of the 
architecture. By doing this, DeiT achieves remarkable performance 
on the ImageNet dataset, by training “only” on ImageNet-1K 
[17], which contains 1.3 million images. 

Convit [22] The main disadvantage of DeiT [21] is that it 
requires a pretrained CNN, which is not ideal, and it would be 
more convenient to not have this requirement. The CNN has a 
hard inductive bias constraint that can be a major limitation. 
Indeed, if enough data is available, learning the biases from the 
data can result in better representations. 

Convit [22] overpasses this issue by including the inductive bias 
of CNNs into a transformer in a soft way. Specifically, if the induc-
tive bias is limiting the training, the transformer can discard it. The 
main idea is to include the inductive bias into the ViT initialization. 
Therefore, before beginning training, the ViT is equivalent to a 
CNN. Then, the network can progressively learn the needed biases 
and diverge from the CNN initialization. 

Compact Convolutional Transformer [23], DeiT [21], and 
Convit [22] successfully achieve data efficiency at the ImageNet 
scale. However, ImageNet is a big dataset with 1.3 million images, 
whereas most datasets are significantly smaller. 

To reach higher data efficiency, the compact convolutional 
transformer [23] uses a CNN operation to extract the patches and 
then uses these patches in a transformer network (Fig. 6). The 
compact convolutional transformer comes with some modifications 
that lead to major improvements. First, by having a more complex 
encoding of patches, the system relies on the convolutional induc-
tive biases at the lower scales and then uses a transformer network 
to remove the locality constraint of the CNN. Second, the authors 
show that discarding the “class” token results in higher efficiency. 
Specifically, instead of the class token, the compact convolutional 
transformer pools together all the patches token and classifies on 
top of this pooled token. These two modifications enable using



3.2 Computational

Efficiency

smaller transformers while improving both the data efficiency and 
the computational efficiency. Therefore, these improvements allow 
the compact convolutional transformer to be successfully trained 
on smaller datasets, such as CIFAR or MNIST. 
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Fig. 6 Compact convolutional transformers. This architecture features a convolutional-based patch extraction 
to leverage a smaller transformer network, leading to higher data efficiency. Figure inspired from [23] 

The vision transformer architecture (Subheading 2.3) suffers from 
a Oðn2Þ complexity with respect to the number of tokens. When 
considering small resolution images or big patch size, this is not a 
limitation; for instance, for an image of 224×224 resolution with 
16× 16 patches, this amounts to 196 tokens. However, when 
needing to process larger images (for instance, 3D images in medi-
cal imaging) or when considering smaller patches, using and train-
ing such models becomes prohibitive. For instance, in tasks such as 
segmentation or image generation, it is needed to have more 
granular representations than 16× 16 patches; hence, it is crucial 
to solve this issue to enable more applications of vision transformer. 

Swin Transformer [24] One idea to make transformers more 
computation-efficient is the Swin transformer [24]. Instead of 
attending every patch in the image, the Swin transformer proposes 
to add a locality constraint. Specifically, the patches can only attend 
other patches that are limited to a vicinity window K. This restores 
the local inductive bias of CNNs. To allow communication across



patches throughout the network, the Swin transformer shifts the 
attention windows from one operation to another (Fig. 7). There-
fore, the Swin transformer is quadratic with regard to the size of the 
window K but linear with respect to the number of tokens n with 
complexityOðnK 2Þ. In practice, however, K is small, and this solves 
the quadratic complexity problem of attention. 
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Fig. 7 Shifting operation in the Swin transformer [24]. Between each attention operation, the attention window 
is shifted so that each patch can communicate with different patches than before. This allows the network to 
gain more global knowledge with the network’s depth. Figure inspired from [24] 

Perceiver [25, 26] Another idea for more computation-efficient 
visual transformers is to make a more drastic change to the archi-
tecture. If instead of using self-attention the model uses cross 
attention, the problem of the quadratic complexity with regard to 
the number of tokens can be solved. Indeed, computing the cross 
attention between two sets of length m and n, respectively, has 
complexity OðmnÞ. This idea is introduced in the perceiver 
[25, 26]. The key idea is to have a smaller set of latent variables 
that will be used as queries and that will retrieve information in the 
image token set (Fig. 8). Since this solves the quadratic complexity 
issue, it also removes the need of using patches; hence, in the case of 
transformers, each pixel is mapped to a single token. 

4 Vision Transformers for Tasks Other than Classification 

Subheadings 1–3 introduce visual transformers for one main appli-
cation: classification. Nevertheless, transformers can be used for 
numerous other tasks than classification. 

In this section, we present some fundamental vision tasks where 
transformers have had a major impact: object detection in images 
(Subheading 4.1), image segmentation (Subheading 4.2), training



4.1 Object Detection

with Transformers

visual transformers without labels (Subheading 4.3), and image 
generation using generative adversarial networks (GANs) (Sub-
heading 4.4). 
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Fig. 8 The perceiver architecture [25, 26]. A set of latent tokens retrieve information from the image through 
cross attention. Self-attention is performed between the tokens to refine the learned representation. These 
operations are linear with respect to the number of image tokens. Figure inspired from [25, 26] 

Detection is one of the early tasks that have seen improvements 
thanks to transformers. Detection is a combined recognition and 
localization problem; this means that a successful detection system 
should both recognize whether an object is present in an image and 
localize it spatially in the image. Carion et al. [14] is the first 
approach that uses transformers for detection. 

DEtection TRansformer (DETR) [14] DETR first extracts 
visual representations with a convolutional network (Fig. 9).3 

Then, the encodings are processed by a transformer network. 
Finally, the processed tokens are provided to a transformer decoder. 
The decoder uses cross attention between a set of learned tokens 
and the image tokens encoded by the encoder and outputs a set of 
tokens. Each output token is then passed through a feed-forward 
network that predicts if an object is present in an image or not; if 
the object is indeed present, the network also predicts the class and 
spatial location of the object, i.e., coordinates within the image. 

4.2 Image 

Segmentation with 

Transformers 

The goal of image segmentation is to assign to each pixel of an image 
the label of the object it belongs to. The segmenter [27] is a purely 
ViT approach addressing image segmentation. The idea is to first use 
ViT to encode the image. Then, the segmenter learns a token per

3 Note that, in DETR, the transformer is not directly used to extract the visual representation. Instead, it focuses 
on refining the visual representation to extract the object information.



4.3 Training

Transformers Without

Labels

semantic label. The encoded patch tokens and the semantic tokens 
are then fed to a second transformer. Finally, by computing the scalar 
product between the semantic tokens and the image tokens, the 
network assigns a label to each patch. Figure 10 displays this.
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Fig. 9 The DETR architecture. It refines a CNN visual representation to extract object localization and classes. 
Figure inspired from [14] 

Fig. 10 The segmenter architecture. It is a purely ViT-based approach to perform semantic segmentation. 
Figure inspired from [27] 

Visual transformers have initially been trained for classification 
tasks. However, this tasks requires having access to massive 
amounts of labeled data, which can be hard to obtain 
(as discussed in Subheading 3.1). Subheadings 3.1 and 3.2 present 
ways to train ViT more efficiently. However, it would also be 
interesting to be able to train this type of networks with “cheaper” 
data. Therefore, the goal of this part is to introduce unsupervised 
learning with transformers, i.e., training transformers without any 
labels.
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Fig. 11 The DINO training procedure. It consists in matching the outputs between 
two networks (p1 and p2) having two different augmentations (X1 and X2) of the 
same image as input (X). The parameters of the teacher model are updated with 
an exponential moving average (ema) of the student parameters. Figure inspired 
from [28] 

Self-DIstillation with NO labels (DINO) [28] DINO is one of 
the first works that trains a ViT with self-supervised learning 
(Fig. 11). The main idea is to have two ViT models following the 
teacher-student paradigm: the first model is updated through gra-
dient descent, and the second is an exponential moving average of 
the first one. Then, the whole two-stream DINO network is trained 
using two augmentations of the same image, which are each passed 
to one of the two networks. The goal of the training is to match the 
output between the two networks, i.e., no matter the augmenta-
tion in the input data, both networks should produce the same 
result. The main finding of DINO is that the ViT is capable of 
learning a semantic understanding of the image, as the attention 
matrices display some semantic information. Figure 12 visualizes 
the attention matrix of the various ViT heads trained with DINO. 

Masked Autoencoders (MAE) [29] Another way to train a ViT 
without supervision is by using an autoencoder architecture. 
Masked autoencoders (MAE) [29] perform a random masking of 
the input token and give the task to reconstruct the original image 
to a decoder. The encoder learns a representation that performs



4.4 Image

Generation with

Transformers and

Attention

well in a given downstream task. This is illustrated in Fig. 13. One 
of the key observations of the MAE work [29] is that the decoder 
does not need to be very good for the encoder to achieve good 
performance: by using only a small decoder, MAE successfully 
trains a ViT in an autoencoder fashion. 
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Fig. 12 DINO samples. Visualization of the attention matrix of ViT heads trained with DINO. The ViT discovers 
the semantic structure of an image in an unsupervised way 

Fig. 13 The MAE training procedure. After masking some tokens of an image, the remaining tokens are fed to 
an encoder. Then a decoder tries to reconstruct the original image from this representation. Figure inspired 
from [29] 

Attention and vision transformers have also helped in developing 
fresh ideas and creating new architectures for generative models 
and in particular for generative adversarial networks (GANs). 

GANsformers [30] GANsformers are the most representative 
work of GANs with transformers, as they are a hybrid architecture 
using both attention and CNNs. The GANsformer architecture is 
illustrated in Fig. 14. The model first splits the latent vector of a 
GAN into multiple tokens. Then, a cross-attention mechanism is 
used to improve the generated feature maps, and at the same time, 
the GANsformer architecture retrieves information from the gen-
erated feature map to enrich the tokens. This mechanism allows the 
GAN to have better and richer semantic knowledge, which is 
showed to be useful for generating multimodal images. 

StyleSwin [31] Another approach for generative modeling is to 
purely use a ViT architecture like StyleSwin [31]. StyleSwin is a 
GAN that leverages a similar type of attention as the Swin trans-
former [24]. This allows to generate high-definition images with-
out having to deal with the quadratic cost problem.



Transformers and Visual Transformers 213

Latents Image 

Cross-Attention 

Latents 

Image 

Image 

Convolutions 

Cross-Attention 

Fig. 14 GANsformer architecture. A set of latents contribute to bring information 
to a CNN feature map. Figure inspired from [30] 

5 Vision Transformers for Other Domains 

In this section, we present applications of visual transformers to 
other domains. First, we describe multimodal transformers 
operating with vision and language (Subheading 5.1), then we 
describe video-level attention and video transformers (Subheadings 
5.2 and 5.3), and finally we present multimodal video transformers 
operating with vision, language, and audio (Subheading 5.4). 

5.1 Multimodal 

Transformers: Vision 

and Language 

As transformers have found tremendous success in both natural 
language processing and computer vision, their use in vision-
language tasks is also of interest. In this section, we describe some 
representative multimodal methods for vision and language: ViL-
BERT (Subheading 5.1.1), DALL-E (Subheading 5.1.3), and 
CLIP (Subheading 5.1.2). 

5.1.1 ViLBERT Vision-and-language BERT (VilBERT) [32] is an example of archi-
tecture that fuses two modalities. It consists of two parallel streams, 
each one working with one modality. The vision stream extracts



bounding boxes from images via an object detection network, by 
encoding their position. The language stream embeds word vectors 
and extracts feature vectors using the basic transformer encoder 
block [4] (Fig. 3 left). These two resulting feature vectors are then 
fused together by a cross-attention layer (Subheading 1.3.2). This 
follows the standard architecture of the transformer encoder block, 
where the keys and values of one modality are passed onto the MCA 
block of the other modality. The output of the cross-attention layer 
is passed into another transformer encoder block, and these two 
layers are stacked multiple times. 
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The language stream is initialized with BERT trained on Book 
Corpus [12] and Wikipedia [11], while the visual stream is initi-
alized with Faster R-CNN [33]. On top of the pretraining of each 
stream, the whole architecture is pretrained on the Conceptual 
Captions dataset [34] on two pretext tasks. 

ViLBERT has been proven powerful for a variety of multimodal 
tasks. In the original paper, ViLBERT was fined-tuned to a variety 
of tasks, including visual question answering, visual commonsense 
reasoning, referring expressions, and caption-based image retrieval. 

5.1.2 CLIP Connecting Text and Images (CLIP) [35] is designed to address 
two major issues of deep learning models: costly datasets and 
inflexibility. While most deep learning models are trained on labeled 
datasets, CLIP is trained on 400 million text-image pairs that are 
scraped from the Internet. This reduces the labor of having to 
manually label millions of images that are required to train powerful 
deep learning models. When models are trained on one specific 
dataset, they also tend to be difficult to extend to other applica-
tions. For instance, the accuracy of a model trained on ImageNet is 
generally limited to its own dataset and cannot be applied to real-
world problems. To optimize training, CLIP models learn to per-
form a wide variety of tasks during pretraining, and this task allows 
for zero-shot transfer to many existing datasets. While there are still 
several potential improvements, this approach is competitive to 
supervised models that are trained on specific datasets. 

CLIP Architecture and 

Training 

CLIP is used to measure the similarity between the text input and 
the image generated from a latent vector. At the core of the 
approach is the idea of learning perception from supervision 
contained in natural language. Methods which work on natural 
language can learn passively from the supervision contained in the 
vast amount of text on the Internet. 

Given a batch of N (image, text) pairs, CLIP is trained to 
predict which of the N×N possible (image, text) pairings across a 
batch actually occurred. To do this, CLIP learns a multimodal 
embedding space by jointly training an image encoder and a text 
encoder to maximize the cosine similarity of the image and text



embeddings of the N real pairs in the batch while minimizing the 
cosine similarity of the embeddings of the N2-N incorrect pair-
ings. A symmetric cross-entropy loss over these similarity scores is 
optimized. 
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Two different architectures were considered for the image 
encoder. For the first, ResNet-50 [36] is used as the base architec-
ture for the image encoder due to its widespread adoption and 
proven performance. Several modifications were made to the origi-
nal version of ResNet. For the second architecture, ViT is used with 
some minor modifications: first, adding an extra layer normaliza-
tion to the combined patch and position embeddings before the 
transformer and, second, using a slightly different initialization 
scheme. 

The text encoder is a standard transformer [4] (Subheading 
2.1) with the architecture modifications described in [35]. As a base 
size, CLIP uses a 63M-parameter 12-layer 512-wide model with 
eight attention heads. The transformer operates on a lowercased 
byte pair encoding (BPE) representation of the text with a 49,152 
vocab size [37]. The max sequence length is capped at 76. The text 
sequence is bracketed with [SOS] and [EOS] tokens,4 and the 
activations of the highest layer of the transformer at the [EOS] 
token are treated as the feature representation of the text which is 
layer normalized and then linearly projected into the multimodal 
embedding space. 

5.1.3 DALL-E and 

DALL-E 2 

DALL-E [38] is another example of the application of transformers 
in vision. It generates images from a natural language prompt— 
some examples include “an armchair in the shape of an avocado” 
and “a penguin made of watermelon.” It uses a decoder-only 
model, which is similar to GPT-3 [39]. DALL-E uses 12 billion 
parameters and is pretrained on Conceptual Captions [34] with 
over 3.3 million text-image pairs. DALL-E 2 [40] is the upgraded 
version of DALL-E, based on diffusion models and CLIP (Sub-
heading 5.1.2), and allows better performances with more realistic 
and accurate generated images. In addition to producing more 
realistic results with a better resolution than DALL-E, DALL-E 
2 is also able to edit the outputs. Indeed, with DALL-E 2, one can 
add or remove realistically an element in the output and can also 
generate different variations of the same output. These two models 
clearly demonstrate the powerful nature and scalability of transfor-
mers that are capable of efficiently processing a web-scale amount 
of data. 

4 [SOS], start of sequence; [EOS], end of sequence
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5.1.4 Flamingo Flamingo [41] is a visual language model (VLM) tackling a wide 
range of multimodal tasks based on few-shot learning. This is an 
adaptation of large language models (LLMs) handling an extra 
visual modality with 80B parameters. 

Flamingo consists of three main components: a vision encoder, 
a perceiver resampler, and a language model. First, to encode 
images or videos, a vision convolutional encoder [42] is pretrained 
in a contrastive way, using image and text pairs.5 Then, inspired by 
the perceiver architecture [25] (detailed in Subheading 1.3.2), the 
perceiver resampler takes a variable number of encoded visual fea-
tures and outputs a fixed-length latent code. Finally, this visual 
latent code conditions the language model by querying language 
tokens through cross-attention blocks. Those cross-attention 
blocks are interleaved with pretrained and frozen language model 
blocks. 

The whole model is trained using three different kinds of 
datasets without annotations (text with image content from web-
pages [41], text and image pairs [41, 43], and text and video pairs 
[41]). Once the model is trained, it is fine-tuned using few-shot 
learning techniques to tackle specific tasks. 

5.2 Video Attention Video understanding is a long-standing problem, and despite 
incredible computer vision advances, obtaining the best video rep-
resentation is still an active research area. Videos require employing 
effective spatiotemporal processing of RGB and time streams to 
capture long-range interactions [44, 45] while focusing on impor-
tant video parts [46] with minimum computational resources [47]. 

Typically, video understanding benefits from 2D computer 
vision, by adapting 2D image processing methods to 3D spatio-
temporal methods [48]. And through the Video Vision Trans-
former (ViViT) [49], history repeats itself. Indeed, with the rise 
of transformers [4] and the recent advances in image classification 
[5], video transformers appear as logical successors of CNNs. 

However, in addition to the computationally expensive video 
processing, transformers also require a lot of computational 
resources. Thus, developing efficient spatiotemporal attention 
mechanisms is essential [25, 49, 50]. 

In this section, we first describe the general principle of video 
transformers (Subheading 5.2.1), and then, we detail three differ-
ent attention mechanisms used for video representation (Subhead-
ings 5.2.2, 5.2.3, and 5.2.4). 

5 The text is encoded using a pretrained BERT model [10].
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5.2.1 General Principle Generally, inputs of video transformers are RGB video clips 

X ∈ F ×H ×W ×3 , with F frames of size H×W. 
To begin with, video transformers split the input video clip 

X into ST tokens x i ∈ K , where S and T are, respectively, the 
number of tokens along the spatial and temporal dimension and 
K is the size of a token. 

To do so, the simplest method extracts nonoverlapping 2D 
patches of size P×P from each frame [5], as used in TimeSformer 
[50]. This results in S=HW/P2 , T=F, and K=P2 . 

However, there exist more elegant and efficient token extrac-
tion methods for videos. For instance, in ViViT [49], the authors 
propose to extract 3D volumes from videos (involving T≠F) t  
capture spatiotemporal information within tokens. In TokenLear-
ner [47], they propose a learnable token extractor to select the 
most important parts of the video. 

Once raw tokens xi are extracted, transformer architectures aim 
to map them into d-dimensional embedding vectors Z ∈ ST × d 

using a linear embedding E ∈ d ×K : 

Z = ½zcls ,Ex1,Ex2, . . .,ExST � þ  PE, ð10Þ 
where zcls  ∈ d is a classification token that encodes information 
from all tokens of a single sample [10] and PE ∈ ST × d is a 
positional embedding that encodes the spatiotemporal position of 
tokens, since the subsequent attention blocks are permutation 
invariant [4]. 

In the end, embedding vectors Z pass through a sequence of 
L transformer layers. A transformer layer ℓ is composed of a series of 
multi-head self-attention (MSA) [4], layer normalization 
(LN) [51], and MLP blocks: 

Y ℓ =MSAðLNðZ ℓÞÞ þ Z ℓ , 

Z ℓþ1 =MLPðLNðY ℓÞÞ þ Y ℓ :
ð11Þ 

In this way, as shown in Fig. 2, we denote four different 
components in a video transformer layer: the query-key-value 
(QKV) projection, the MSA block, the MSA projection, and the 
MLP. For a layer with h heads, the complexity of each component is 
[4]:

• QKV projection: Oðh:ð2ST ddk þ ST ddvÞ
• MSA: OðhS2 T 2 :ðdk þ dvÞÞ
• MSA projection: OðST hdvdÞ
• MLP: OðST d2Þ 

We note that the MSA complexity is the most impacting com-
ponent, with a quadratic complexity with respect to the number of 
tokens. Hence, for comprehension and clarity purposes, in the rest 
of the section, we consider the global complexity of a video trans-
former with L layers to equal to OðLS2 T 2Þ.
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Fig. 15 Full space-time attention mechanism. Embedding tokens at layer ℓ- 1, 
Z(ℓ-1) are all fed simultaneously through a unique spatiotemporal attention 
block. Finally, the spatiotemporal embedding is passed through an MLP and 
normalized to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [50] 

5.2.2 Full Space-Time 

Attention 

As described in [49, 50], full space-time attention mechanism is the 
most basic and direct spatiotemporal attention mechanism. As 
shown in Fig. 15, it consists in computing self-attention across all 
pairs of extracted tokens. 

This method results in a heavy complexity of OðLS2 T 2Þ 
[49, 50]. This quadratic complexity can fast be memory-
consuming, in which it is especially true when considering videos. 
Therefore, using full space-time attention mechanism is 
impractical [50]. 

5.2.3 Divided Space-

Time Attention 

A smarter and more efficient way to compute spatiotemporal atten-
tion is the divided space-time attention mechanism, first described 
in [50]. 

As shown in Fig. 16, it relies on computing spatial and temporal 
attention separately in each transformer layer. Indeed, we first 
compute the spatial attention, i.e., self-attention within each tem-
poral index, and then the temporal attention, i.e., self-attention 
across all temporal indices.
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Fig. 16 Divided space-time attention mechanism. Embedding tokens at layer 
ℓ- 1, Z(ℓ-1) are first processed along the temporal dimension through a first 
MSA block, and the resulting tokens are processed along the spatial dimension. 
Finally, the spatiotemporal embedding is passed through an MLP and normalized 
to output embedding tokens of the next layer, Zℓ . Figure inspired from [50] 

The complexity of this attention mechanism is OðLST :ðS þ 
T ÞÞ [50]. By separating the calculation of the self-attention over 
the different dimensions, one tames the quadratic complexity of the 
MSA module. This mechanism highly reduces the complexity of a 
model with respect to the full space-time complexity. Therefore, it 
is reasonable to use it to process videos [50]. 

5.2.4 Cross-Attention 

Bottlenecks 

An even more refined way to reduce the computational cost of 
attention calculation consists of using cross attention as a bottle-
neck. For instance, as shown in Fig. 17 and mentioned in Subhead-
ing 3.2, the perceiver [25] projects the extracted tokens xi into a



very low-dimensional embedding through a cross-attention block 
placed before the transformer layers. 
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Fig. 17 Attention bottleneck mechanism. Raw input patches and embedding 
tokens at layer ℓ- 1, Z(ℓ-1) are fed to a cross-attention block (CA) and then 
normalized and projected. Finally, the resulting embedding is passed through a 
transformer to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [25] 

Here, the cross-attention block placed before the L transformer 
layers reduce the input dimension from ST to N, where N≪ ST,6 

thus resulting in a complexity of OðSTN Þ. Hence, the total com-
plexity of this attention block is OðSTN þ LN 2Þ. It reduces again 
the complexity of a model with respect to the divided space-time 
attention mechanism. We note that it enables to design deep archi-
tectures, as in the perceiver [25], and then it enables the extraction 
of higher-level features. 

5.2.5 Factorized Encoder Lastly, the factorized encoder [49] architecture is the most efficient 
with respect to the complexity/performance trade-off. 

As in divided space-time attention, the factorized encoder aims 
to compute spatial and temporal attention separately. Nevertheless, 
as shown in Fig. 18, instead of mixing spatiotemporal tokens in 
each transformer layer, here, there exist two separate encoders:

6 In practice, N≤512 for perceiver [25], against ST=16×16× (32/2)=4096 for ViViT-L [49]



First, a representation of each temporal index is obtained, thanks to 
a spatial encoder with Ls layers. Second, these tokens are passed 
through a temporal encoder with Lt layers (i.e., L=Ls +Lt).
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Fig. 18 Factorized encoder mechanism. First, a spatial transformer processes input tokens along the spatial 
dimension. Then, a temporal transformer processes the resulting spatial embedding along the temporal 
dimension. Figure inspired from [25] 

Hence, the complexity of a such architecture has two main 
components: the spatial encoder complexity of OðLsS

2Þ and the 
temporal encoder complexity of OðLtT

2Þ. It results in a global 
complexity of OðLsS

2 þ LtT
2Þ. Thus, it leads to very lightweight 

models. However, as it first extracts per-frame features and then 
aggregates them to a final representation, it corresponds to a late-
fusion mechanism, which can sometimes be a drawback as it does 
not mix spatial and temporal information simultaneously [52]. 

5.3 Video 

Transformers 

In this section, we present two modern transformer-based archi-
tectures for video classification. We start by introducing the Time-
Sformer architecture in Subheading 5.3.1 and then the ViViT 
architecture in Subheading 5.3.2. 

5.3.1 TimeSformer TimeSformer [50] is one of the first architectures with space-time 
attention that impacted the video classification field. It follows the 
same structure and principle described in Subheading 5.2.1. 

First, it takes as input an RGB video clip sampled at a rate of 
1/32 and decomposed into 2D 16 ×16 patches. 

As shown in Fig. 19, the TimeSformer architecture is based on 
the ViT architecture (Subheading 2.3), with 12 12-headed MSA 
layers. However, the added value compared to the ViT is that 
TimeSfomer uses the divided space-time attention mechanism (Sub-
heading 5.2.3). Such attention mechanism enables to capture high-
level spatiotemporal features while taming the complexity of the 
model. Moreover, the authors introduce three variants of the archi-
tecture: (i) TimeSformer, the standard version of the model, that 
operates on 8 frames of 224×224; (ii) TimeSformer-L, a configu-
ration with high spatial resolution, that operates on 16 frames of 
448×448; and (iii) TimeSformer-HR, a long temporal range setup, 
that operates on 96 frames of 224× 224.
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Fig. 19 TimeSformer architecture. The TimeSformer first projects input to 
embedding tokens, which are summed to positional embedding tokens. The 
resulting tokens are then passed through L divided space-time attention blocks 
and then linearly projected to obtain output probabilities 

Finally, the terminal classification token embedding is passed 
through an MLP to output a probability for all video classes. 
During inference, the final prediction is obtained by averaging the 
output probabilities from three different spatial crops of the input 
video clip (top left, center, and bottom right). 

TimeSformer achieves similar state-of-the-art performances as 
the 3D CNNs [53, 54] on various video classification datasets, such 
as Kinetics-400 and Kinetics-600 [55]. Note the TimeSformer is 
much faster to train (416 training hours against 3840 hours [50] 
for a SlowFast architecture [54]) and, also, more efficient (0.59 
TFLOPs against 1.97 TFLOPs [50] for a SlowFast architecture 
[53]). 

5.3.2 ViViT ViViT [49] is the main extension of the ViT [5] architecture 
(Subheading 2.3) for video classification. 

First, the authors use a 16 tubelet embedding instead of a 2D 
patch embedding, as mentioned in Subheading 5.2.1. This alter-
nate embedding method aims to capture the spatiotemporal



information from the tokenization step, unlike standard architec-
tures that fuse spatiotemporal information from the first attention 
block. 
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Fig. 20 ViViT architecture. The ViViT first projects input to embedding tokens, 
which are summed to positional embedding tokens. The resulting tokens are first 
passed through Ls spatial attention blocks and then through Lt temporal attention 
blocks. The resulting output is linearly projected to obtain output probabilities 

As shown in Fig. 20, the ViViT architecture is based on factor-
ized encoder architecture (Subheading 5.2.5) and consists of one 
spatial and one temporal encoder operating on input clips with 
32 frames of 224×224. The spatial encoder uses one of the three 
ViT variants as backbone.7 For the temporal encoder, the number

7 ViT-B: 12 12-headed MSA layers; ViT-L: 24 16-headed MSA layers; and ViT-H: 32 16-headed MSA layers.



of layers does not impact much the performance, so that, according 
to the performance/complexity trade-off, the number MSA layers 
is fixed at 4. The authors show that such architecture reaches high 
performances while reducing drastically the complexity.
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Finally, as in TimeSformer (Subheading 5.3.1), ViViT outputs 
probabilities for all video classes through the last classification token 
embedding and averages the obtained probabilities across three 
crops of each input clip (top left, center, and bottom right). 

ViViT outperforms both 3D CNNs [53, 54] and TimeSformer 
[50] on the Kinetics-400 and Kinetics-600 datasets [55]. Note the 
complexity of this architecture is highly reduced in comparison to 
other state-of-the-art models. For instance, the number of FLOPs 
for a ViViT-L/16×16× 2 is 3.89 ×1012 against 7.14 ×1012 for a 
TimeSformer-L [50] and 7.14× 1012 for a SlowFast [53] 
architecture. 

5.4 Multimodal Video 

Transformers 

Nowadays, one of the main gaps between artificial and human 
intelligence is the ability for us to process multimodal signals and 
to enrich the analysis by mixing the different modalities. Moreover, 
until recently, deep learning models have been focusing mostly on 
very specific visual tasks, typically based on a single modality, such as 
image classification [5, 17, 18, 56, 57], audio classification [25, 52, 
58, 59], and machine translation [10, 60–63]. These two factors 
combined have pushed researchers to take up multimodal 
challenges. 

The default solution for multimodal tasks consists in first cre-
ating an individual model (or network) per modality and then in 
fusing the resulting single-modal features together [64, 65]. Yet, 
this approach fails to model interactions or correlations among 
different modalities. However, the recent rise of attention [4, 5, 
49] is promising for multimodal applications, since attention per-
forms very well at combining multiple inputs [25, 52, 66, 67]. 

Here, we present two main ways of dealing with several 
modalities: 

1. Concatenating tokens from different modalities into one 
vector [25, 66]. The multimodal video transformer 
(MM-ViT) [66] combines raw RGB frames, motion features, 
and audio spectrogram for video action recognition. To do so, 
the authors fuse tokens from all different modalities into a 
single-input embedding and pass it through transformer layers. 
However, a drawback of this method is that it fails to distin-
guish well one modality to another. To overcome this issue, the 
authors of the perceiver [25] propose to learn a modality 
embedding in addition to the positional embedding (see Sub-
headings 3.2 and 5.2.1). This allows associating each token
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with its modality. Nevertheless, given that (i) the complexity of 
a transformer layer is quadratic with respect to the number of 
tokens (Subheading 5.2.1) and (ii), with this method, the 
number of tokens is multiplied by the number of modalities, 
it may lead to skyrocketing computational cost [66]. 

2. Exploiting cross attention [52, 67, 68]. Several modern 
approaches exploit cross attention to mix multiple modalities, 
such as [52] for audio and video, [67] for text and video, and 
[68] for audio, text, and video. The commonality among all 
these methods is that they exploit the intrinsic properties of 
cross attention by querying one modality with a key-value pair 
from the other one [52, 67]. This idea can be easily generalized 
to more than two modalities by computing cross attention 
across each combination of modalities [68]. 

6 Conclusion 

Attention is an intuitive and efficient technique that enables 
handling local and global cues. 

On this basis, the first pure attention architecture, the trans-
former [4], has been designed for NLP purposes. Quickly, the 
computer vision field has adapted the transformer architecture for 
image classification, by designing the first visual transformer model: 
the vision transformer (ViT) [5]. 

However, even if transformers naturally lead to high perfor-
mances, the raw attention mechanism is a computationally greedy 
and heavy technique. For this reason, several enhanced and refined 
derivatives of attention mechanisms have been proposed [21–26]. 

Then, rapidly, a wide variety of other tasks have been con-
quered by transformer-based architectures, such as object detection 
[14], image segmentation [27], self-supervised learning [28, 29], 
and image generation [30, 31]. In addition, transformer-based 
architectures are particularly well suited to handle multidimen-
sional tasks. This is because multimodal signals are easily combined 
through attention blocks, in particular vision and language cues 
[32, 35, 38] and spatiotemporal signals are also easily tamed, as in 
[25, 49, 50]. 

For these reasons, transformer-based architectures enabled 
many fields to make tremendous progresses in the last few years. 
In the future, transformers will need to become more and more 
computationally efficient, e.g., to be usable on cellphones, and will 
play a huge role to tackle multimodal challenges and bridge 
together most AI fields.
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