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Abstract 

Generative networks are fundamentally different in their aim and methods compared to CNNs for classifi-
cation, segmentation, or object detection. They have initially been meant not to be an image analysis tool 
but to produce naturally looking images. The adversarial training paradigm has been proposed to stabilize 
generative methods and has proven to be highly successful—though by no means from the first attempt. 
This chapter gives a basic introduction into the motivation for generative adversarial networks (GANs) 

and traces the path of their success by abstracting the basic task and working mechanism and deriving the 
difficulty of early practical approaches. Methods for a more stable training will be shown, as well as typical 
signs for poor convergence and their reasons. 

Though this chapter focuses on GANs that are meant for image generation and image analysis, the 
adversarial training paradigm itself is not specific to images and also generalizes to tasks in image analysis. 
Examples of architectures for image semantic segmentation and abnormality detection will be acclaimed, 
before contrasting GANs with further generative modeling approaches lately entering the scene. This will 
allow a contextualized view on the limits but also benefits of GANs. 

Key words Generative models, Generative adversarial networks, GAN, CycleGAN, StyleGAN, 
VQGAN, Diffusion models, Deep learning 

1 Introduction 

Generative adversarial networks are a type of neural network archi-
tecture, in which one network part generates solutions to a task and 
another part compares and rates the generated solutions against a 
priori known solutions. While at first glimpse this does not sound 
much different from any loss function, which essentially also com-
pares a generated solution with the gold standard, there is one 
fundamental difference. A loss function is static, but the “judge” 
or “discriminator” network part is trainable (Fig. 1). This means 
that it can be trained to distinguish the generated from the true 
solutions and, as long as it succeeds in its task, a training signal for 
the generative part can be derived. This is how the notion of 
adversaries came into the name GAN. The discriminator part is
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trained to distinguish true from generated solutions, while the 
generative part is trained to arrive at the most realistic-appearing 
solutions, making them adversaries with regard to their aims.
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Fig. 1 The fundamental GAN setup for image generation consisting of a genera-
tor and a discriminator network; here, CNNs 

Generative adversarial networks are now among the most pow-
erful tools to create naturally looking images from many domains. 
While they have been created in the context of image generation, 
the original publication describes the general idea of how to make 
two networks learn by competing, regardless of the application 
domain. This key idea can be applied to generative tasks beyond 
image creation, including text generation, music generation, and 
many more. 

The research interest skyrocketed in the years after the first 
publication proposing an adversarial training paradigm [1]. Look-
ing at the number of web searches for the topic “generative adver-
sarial networks” shows how the interest in the topic has rapidly 
grown but also the starting decline of the last years. Authors since 
2014 have cast all kinds of problems into the GAN framework, to 
enable this powerful training mechanism for a variety of tasks, 
including image analysis tasks as well. This is surprising at first, 
since there is no immediate similarity between a generative task 
and, for example, a segmentation or detection task. Still, as evi-
denced by the success in these application areas, the adversarial 
training approach can be applied with benefits. Clearly, the decline 
in interest can to some degree be attributed to the emergence of 
best practices and proven implementations, while simultaneously 
the scientific interest has recently shifted to successor approaches. 
However, similar to the persistent relevance of CNN architectures 
like ResNets for classification, Mask R-CNNs for detection, or basic 
transformer architectures for sequence processing, GANs will



remain an important tool for image creation and image analysis. 
The adversarial training paradigm has become an ingredient to 
models apart from generative aims, providing flexible ways to -
custom-tailor loss components for given tasks (compare Figs. 2 
and 3). 
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Fig. 2 Google web search-based interest estimate for “generative adversarial networks” since 2014. Relative 
scale 

Fig. 3 Some of the most-starred shared GAN code repositories on Github, until 2018. Ranking within this 
selection in brackets 

2 Generative Models 

Generative processes are fundamentally hard to grasp computation-
ally. Their nature and purpose is to create something “meaningful” 
out of something less meaningful (even random). The first question 
to ask therefore is how this can even be possible for a computer 
program since, intuitively, creation requires an inventive spirit—call 
it creativity, to use the term humans tend to associate with this. To 
introduce some of the terminology and basic concepts that we will 
use in the remainder of this section, some remarks on human 
creativity will set the scene. 

In fact, creative human acts are inherently limited by our con-
cepts of the world, acquired by learning and experience through the



sensory means we have available, and by the available expressive 
means (tools, instruments, . . .) with which we can even conceive of 
creating something. This is true for any kind of creative act, includ-
ing writing, painting, wood carving, or any other art, and similarly 
also for computer programming, algorithm development, or sci-
ence in general. Our limited internal representation of the world 
around us frames our creative scope. 
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This is very comparable to the way computerized, pro-
grammed, or learned generative processes create output. They 
have either an in-build mechanism, or a way to acquire such a 
mechanism, that represents the tools by which creation is possible, 
as well as a model of the world that defines the scope of outputs. 
Practically, a CNN-based generative process uses convolutions as 
the in-built tool and is by this tool geared to produce image-like 
outputs. The convolutional layers, if not a priori defined, will 
represent a set of operations defined by a training process and 
limited in their expressiveness by the training material—by the 
fraction of the world that was presented. This will lead us to the 
fundamental notion of how to capture the variability of the “frac-
tion of the world” that is interesting and how to make a neural 
network represent this partial world knowledge. It is interesting to 
note at this point that neither for human creative artists nor for 
neural networks the ability to (re)create convincing results implies 
an understanding of the way the templates (in the real world) have 
come into existence. Generating convincing artifacts does not 
imply understanding nature. Therefore, GANs cannot explain the 
parts of nature they are able to generate. 

2.1 The Language of 

Generative Models: 

Distributions, Density 

Estimation, and 

Estimators 

Understanding the principles of generative models requires a basic 
knowledge of distributions. The reason is that—as already hinted at 
in the previous section—the “fraction of the world” is in fact 
something that can be thought of as a distribution in a parameter 
space. If you were to describe a part of the world in a computer-
interpretable way, you would define descriptive parameters. To 
describe persons, you could characterize them by simple measures 
like age, height, weight, hair and eye color, and many more. You 
could add blood pressure, heart rate, muscle mass, maximum 
strength, and more, and even a whole-genome sequencing result 
might be a parameter. Each of the parameters individually can be 
collected for the world population, and you will obtain a picture of 
how this parameter is “distributed” worldwide. In addition, para-
meters will be in relation with each other, for example, age and 
maximum strength. Countless such relationships exist, of which the 
majority are and probably will remain unknown. Those interrela-
tionships are called a joint distribution. Would you know the joint 
distribution, you could “create” a plausible parameter combination 
of a nonexisting human. Let us formalize these thoughts now.
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2.1.1 Distributions A distribution describes the frequency of particular observations 
when watching a random process. Plotting the number of occur-
rences over an axis of all possible observations creates a histogram. 
If the possible observations can be arranged on a continuous scale, 
one can see that observations cluster in certain areas, and we say 
that they create a “density” or are “dense” there. Hence, when 
trying to describe where densities are in parameter space, this is 
associated with the desire to reproduce or sample from distribu-
tions, like we want to do it to generate instances from a domain. 
Before being able to reproduce the function that generates obser-
vations, estimating where the dense areas are is required. This will 
in the most general sense be called density estimation. 

Sometimes, the shape of the distribution follows an analytical 
formula, for example, the normal distribution. If such a closed-
form description of the distribution can be given, for instance, the 
normal distribution, this distribution generalizes the shape of the 
histogram of observations and makes it possible to produce new 
observations very easily, by simply sampling from the distribution. 
When our observations follow a normal distribution, we mean that 
we expect to observe instances more frequently around the mean of 
the normal distribution than toward the tails. In addition, the 
standard deviation quantifies how much more likely observations 
close to the mean are compared to observations in the tails. We 
describe our observations with a parametric description of the 
observed density. 

In the remainder of this section, rather than providing a rigor-
ous mathematical definition and description of the mathematics of 
distributions and (probability) density estimation, we will intro-
duce the basic concepts and terminology in an intuitive way (also 
compare Box 1). Readers with the wish for a more in-depth treat-
ment can find tutoring material in the references [2–6]. 

Box 1: Probability Distributions: Terminology 

Several common terms regarding distributions have intuitive 
interpretations which are given in the following. Let a be an 
event from the probability distribution A, written as a�A, 
and b B an event from another probability distribution. 

In a medical example, A might be the distribution of 
possible neurological diseases and B the distribution of all 
possible variations of smoking behavior. 

Conditional Probability P(A|B) The conditional probability 
of a certain a�A, for exam-
ple, a stroke, might depend 
on the concrete smoking 
history of a person,

(continue



Box 1 (continued) 
described by b�B. The 
conditional probability is 
written as p(a|b) for the 
concrete instances or P(A| 
B) if talking about the 
entire probability distribu-
tions A and B. 

Joint Probability P(A, B) The probability of seeing 
instantiations of A and 
B together is termed the 
joint probability. Notably, 
if expanded, this will lead 
to a large table of probabil-
ities, joining each possible 
a�A (e.g., stroke, demen-
tia, Parkinson’s disease, 
etc.) with each possible 
b�B (casual smoker, fre-
quent smoker, nonsmoker, 
etc.). 

Marginal Probability The marginal probabilities 
of A and B (denoted, 
respectively, P(A) and 
P(B)) are the probabilities 
of each possible outcome 
across (and independent 
of) all of the possible out-
comes of the other distribu-
tion. For example, it is the 
probability of seeing non-
smokers across all neuro-
logical diseases or seeing a 
specific disease regardless of 
smoking status. It is said to 
be the probability of one 
distribution marginalized 
over the other probability 
distributions.
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2.1.2 Density Estimation We assume in the following that our observations have been pro-
duced by a function or process that is not known to us and that 
cannot be guessed from an arrangement of the observations. In a 
practical example, the images from a CT or MRI scanner are pro-
duced by such a function. Notably, the concern is less about the 
intractability of the imaging physics but about the appearance of the 
human body. The imaging physics might be modeled analytically 
up to a certain error. But the outer shape and inner structure of the



human body and its organs depend on a large amount of mutually 
influencing factors. Some of these factors are known and can even 
be modeled, but many are not. In particular, the interdependence 
of factors must be assumed to be intractable. What we can accumu-
late is measured data providing information about the body, its 
shape, and its function. While many measurement instruments 
exist in medicine, for this chapter, we will be concerned with images 
as our observations. In the following thought experiment, we will 
explore a naı̈ve way to model the distribution and try to generate 
images. 
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The first step is to examine the gray value distribution or, in 
other words, estimate the density of values. The most basic way for 
estimating a density is plotting a histogram. Let the value on the x 
axis be the image gray value of the medical image in question (in CT 
expressed in Hounsfield units (HU) and in arbitrary units for 
MRI). Two plots show histograms of a head MRI (Fig. 4) and an 
abdominal CT (Fig. 5). While the brain MRI suggests three or four 
major “bumps” of the histogram at about values 25, 450, and 
600, the abdominal CT doesn’t lend itself to such a description. 

In the next step, we want to describe the histograms through 
analytical functions, to make them amenable for computational

Fig. 4 Brain MRI (left) and histogram of gray values for one slice of a brain MRI 
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Fig. 5 Abdominal CT (left) and histogram of gray values for one slice of an abdominal CT



ends. This means we will aim to estimate an analytical description of 
the observations.
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Expectation maximization (EM; see Box 2) is an algorithm 
suitable for this task. EM enables us to perform maximum likeli-
hood estimation in the presence of unobserved (“latent) variables 
and incomplete data—this being the default assumption when 
dealing with real data. Maximum likelihood estimation (MLE) is 
the process of finding parameters of a parametric distribution to 
most accurately match the distribution to the observations. In 
MLE, this is achieved by adapting the parameters steered by an 
error metric that indicates the closeness of the fit; in short, a 
parameter optimization algorithm. 

Box 2: Expectation Maximization—Example 
Focusing on our density estimate of the MRI data, we want to 
use expectation maximization (EM) to optimize the para-
meters of a fixed number of Gaussian functions adding up to 
the closest possible fit to the empirical shape of the histogram. 

In our data, we observe “bumps” of the histogram. We 
can by image analysis determine that certain organs imaged by 
MRI lead to certain bumps in the histogram, since they are of 
different material and create different signal intensities. This, 
however, is unknown to EM—the so-called “latent” variables. 

The EM algorithm has two parts, the expectation step and 
the maximization step. They can, with quite far-reaching 
omission of details, be sketched as follows: 

Expectation takes each point (or a number of sampled 
points) of the distribution and estimates the 
expectation to which of the parameterized dis-
tribution to assign it to. Figuring out this 
assignment is the step of dealing with the 
“latent” variable of the observations. 

Maximization iterates over all parameterized distributions 
and adjusts their parameters to match the 
assigned points as well as possible. 

This process is iterated until a fitting error cannot be 
improved anymore. 

A short introductory treatment of EM with examples and 
applications is presented in [7]. The standard reference for the 
algorithm is [8].
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Fig. 6 A Gaussian mixture model (GMM) of four Gaussians was fit to the brain MRI data we have visualized as a 
histogram in Fig. 4 

In Fig. 6, a mixture of four Gaussian distributions has been fit 
to the brain MRI voxel value data seen before. 

It is tempting to model even more complex observations by 
mixing simple analytical distributions (e.g., Gaussian mixture mod-
els (GMMs)), but in general this will be intractable for two reasons. 
Firstly, realistic joint distributions will have an abundance of mixed 
maxima and therefore require a vast number of basic distributions 
to fit. Even basic normal distributions in high-dimensional param-
eter spaces are no longer functions with two parameters (μ, σ), but 
with a vector of means and a covariance matrix. Secondly, it is no 
longer trivial to sample from such high-dimensional joint distribu-
tions, and while some methods, among others Markov chain 
Monte Carlo methods, allow to sample from them, such numerical 
approaches are of such high computational complexity that it makes 
their use difficult in the context of deep neural network parameter 
estimation. 

We will learn about alternatives. In principle, there are different 
approaches for density (distribution) estimation, direct distribution 
estimation, distribution approximation, or even more indirectly, by



using a simple surrogate distribution that is made to resemble the 
unknown distribution as good as possible through a mapping 
function. We will see this in the further elaboration of generative 
modeling approaches. 
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2.1.3 Estimators and the 

Expected Value 

Assume we have found suitable mean values and standard devia-
tions for three normal distributions that together approximate the 
shape of the MRI data density estimate to our satisfaction. Such a 
combination of normal (Gaussian) distributions is called a Gaussian 
mixture model (GMM), and sampling from such a GMM is 
straightforward. We are thus able to sample single pixels in any 
number, and over time we will sample them such that their density 
estimate or histogram will look similar to the one we started with. 

However, if we want to generate a brain MRI image using a 
sampling process from our closed-form GMM representation of the 
distribution, we will notice that a very important notion wasn’t 
respected in our approach. We start with one slice of 512×512 
voxels and therefore randomly draw the required number of voxel 
values from the distribution. However, this will not yield an image 
that resembles one slice of a brain MRI, but will almost look like 
random noise, because we did not model the spatial relation of the 
gray values with respect to each other. Since the majority of voxels 
of a brain MRI are not independent of each other, drawing one new 
voxel from the distribution needs to depend on the spatial locations 
and gray values of all voxels drawn before. Neighboring voxels will 
have a higher likelihood of similar gray values than voxels far apart 
from each other, for example. More crucially, underneath the inter-
dependence lies the image generation process: the image values 
observed in a real brain MRI stem from actual tissue—and this is 
what defines their interdependence. This means the anatomy of the 
brain indirectly reflects itself in the rules describing the dependency 
of gray values of one another. 

For the modeling process, this implies that we cannot argue 
about single-voxel values and their likelihood, but we need to 
approach the generative process differently. One idea for a genera-
tive process has been implied in the above description already: pick 
a random location of the to-be-generated image and predict the 
gray value depending on all existing voxel values. Implemented 
with the method of mixture models, this results in unfathomably 
many distributions to be estimated, as for each possible “next 
voxel” location, any possible combination of already existing 
voxel numbers and positions needs to be considered. We will see 
in Subheading 5.1 on diffusion models how this general approach 
to image generation can still be made to work. 

A different sequential approach to image generation has also 
been attempted, in which pixels are generated in a defined order, 
starting at the top left and scanning the image row by row across 
the columns. Again, the knowledge about the already produced



pixels is memorized and used to predict the next voxel. This has 
been dubbed the PixelRNN (Pixel Recurrent Neural Network), 
which lends its general idea from text processing networks [9]. 
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Lastly, a direct approach to image generation could be formu-
lated by representing or approximating the full joint distribution of 
all voxels in one distribution that is tangible and to sample all voxels 
at once from this. The full joint distribution in this approach 
remains implicit, and we use a surrogate. This will actually be the 
approach implemented in GANs, though not in a naı̈ve way. 

Running the numbers of what a likelihood-based naı̈ve 
approach implies, the difficulties of making it work will become 
obvious. Consider an MRI image as the joint distribution of 
512×512 voxels (one slice of our brain MRI), where we approxi-
mated the gray value distribution of one voxel with a GMM with six 
parameters. This results in a joint distribution of 512×512×6=1, 
572, 864 parameters. Conceptually, this representation therefore 
spans a 1,572,864-dimensional space, in which every one brain 
MRI slice will be one data point. Referring back to the histograms 
of CT and MRI images in the figures above, we have seen continu-
ous lines with densities because we have collected all voxels of an 
entire medical image, which are many million. Still, we only covered 
one single dimension out of the roughly 1.5 million. Searching for 
the density in the 1,572,864-dimensional MRI-slice-space that is 
given by all collected brain MRI slices is the difficult task any 
generative algorithm has to solve. In this vastly large space, the 
brain MRI slices “live” in a very tiny region that is extremely hard to 
find. We say the images occupy a low-dimensional manifold within 
the high-dimensional space. 

Consider the maximum likelihood formulation 

θ̂ = argmax 
θ 

x�Pdata 
logQ θðxjθÞ ð1Þ 

where Pdata is the unknown data distribution and Qθ the distribu-
tion generated by the model which is parameterized by θ. θ can, for 
example, be the weights and biases of a deep neural network.1 In 
other words, the result of maximum likelihood estimation is para-
meters θ̂ so that the product of two terms, out of which only the 
second depends on the choice of θ, is maximal. The first term is the 
expectation of x with regard to the real data distribution. The 
second term is the (log of) the conditional probability (likelihood) 
of seeing the example x given the choice of θ under the model Qθ. 
Hence, maximizing the likelihood function means maximizing the 
probability that x is seen in Qθ, which will be the case when 
Q matches P as closely as possible given the parametric form of Q. 

1 We will use θ when referring to parameters of models in general but designate parameters of neural networks 
with w in accordance with literature.
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The maximum likelihood mechanism is very nicely illustrated in 
[10]. Here, it is also visually shown how finding the maximum 
likelihood estimate of parameters of the distribution can be done 
by working with partial derivatives of the likelihood function with 
respect to μ and σ2 and seeking their extrema. The partial deriva-
tives are called the score function and will make a reappearance 
when we discuss score-based and diffusion models later in Sub-
heading 5.1 on advanced generative models. 

2.1.4 Sampling from 

Distributions 

When a distribution is a model of how observed values occur, then 
sampling from this distribution is the process of generating random 
new values that could have been observed, with a probability similar 
to the probability to observe this value in reality. There are two 
basic approaches to sampling from distributions: generating a ran-
dom number from the uniform distribution (this is what a random 
number generator is always doing underneath) and feeding this 
number through the inverse cumulative density function (iCDF) 
of the distribution, which is the function that integrates the proba-
bility density function (PDF) of the distribution. This can only be 
achieved if the CDF is given in closed form. If it is not, the second 
approach to sampling can be used, which is called acceptance 
(or rejection) sampling. With f being the PDF, two random num-
bers x and y are drawn from the uniform distribution. The random 
x is accepted, if f(x)> y, and rejected otherwise. 

Our use case, as we have seen, involves not only high-
dimensional (multivariate) distributions but even more their joints, 
and they are not given in closed form. In such scenarios, sampling 
can be done still, using Markov chain Monte Carlo (MCMC) 
sampling, which is a framework using rejection sampling with 
added mechanisms to increase efficiency. While MCMC has favor-
able theoretic properties, it is still computationally very demanding 
for complex joint distributions, which leads to important difficul-
ties in the context of sampling from distributions we are facing in 
the domain of image analysis and generation. 

We are therefore at this point facing two problems: we can 
hardly hope to be able to estimate the density, and even if we 
could, we could practically not sample from it. 

3 Generative Adversarial Networks 

3.1 Generative vs. 

Discriminative Models 

To emphasize the difficulty that generative models are facing, com-
pare them to discriminative models. Discriminative models solve 
tasks like classification, detection, and segmentation, to name some 
of the most prominent examples. How classification models are in 
the class of discriminative models is obvious: discriminating exam-
ples is exactly classifying them. Detection models are also discrimi-
native models, though in a broader sense, in that they classify the



detection proposals into accepted object detections or rejected 
proposals, and even the bounding box estimation, which is often 
solved through bounding box regression, typically involves the 
discriminative prediction of template boxes. Segmentation, on the 
other hand, for example, using a U-Net, is only the extension of 
classic discriminative approaches into a fast framework that avoids 
pixel-wise inference through the model. It is common to all these 
models that they yield output corresponding to their input, in the 
sense that they extract information from the input image (e.g., an 
organ segmentation, a classification, or even a textual description of 
the image content) or infer additional knowledge about it (e.g., a 
volume measurement or an assessment or prediction of a treatment 
success given the appearance of the image). 
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Generative models are fundamentally different, in that they 
generate output potentially without any concrete input, out of 
randomness. Still, they are supposed to generate output that con-
forms to certain criteria. In the most general form and intuitive 
formulation, their output should “look natural.” We want to fur-
ther formalize the difference between the models in the following 
by using the perspective of distributions again. Figure 7 shows how 
discriminative and generative models have to construct differently 
complex boundaries in the representation space of the domain to 
accomplish their tasks. 

Discriminative models take one example and map it to a label— 
e.g., the class. This is also true for segmentation models: they do 
this for each image voxel. The conceptual process is that the model 
has to estimate the probabilities that the example (or the voxel) 
comes from the distribution of the different available classes. The 
distributions of all possible appearances of objects of all classes do

Fig. 7 The discriminative task compared to the generative task. Discriminative models only need to find the 
separating line between classes, while generative models need to delineate the part of space covering the 
classes (figure inspired by: https://developers.google.com/machine-learning/gan/generative)

https://developers.google.com/machine-learning/gan/generative


not need to be modeled analytically for this to be successful. It is 
only important to know them locally—for example, it is sufficient 
to delineate their borders or overlaps with other distributions of 
other classes, but not all boundaries are important.
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Generative models, on the other hand, are tasked to produce an 
example that is within a desired distribution. For this to work, the 
network has to learn the complete shape of this distribution. This is 
immensely complex, since all domains of practical importance in 
medical imaging are extremely high-dimensional and the distribu-
tions defining examples of interest within these domains are very 
small and hard to find. Also, they are neither analytically given nor 
normally distributed in their multidimensional space. But they have 
as many parameters as the output image of interest has voxels. 

As already remarked, different other approaches were devised 
to generate output before GANs entered the scene. Among the 
trainable ones, approaches comprised (restricted) Boltzmann 
machines, deep belief networks, or generative stochastic networks, 
variational autoencoders, and others. Some of them involved feed-
back loops in the inference process (the prediction of a generated 
example) and were therefore unstable to train using 
backpropagation. 

This was solved with the adversarial net framework proposed in 
2014 by Goodfellow et al. [1]. They tried to solve the downsides 
like computational intractability or instability of such previous gen-
erative models by introducing the adversarial training framework. 

To understand how GANs relate to one of the closest prede-
cessors, the variational autoencoder, we will review their basic 
layout next. We will learn how elegantly the GAN paradigm turns 
the previously unsupervised approach to generative modeling into a 
supervised one, with the benefit of much more control over the 
training process. 

3.2 Before GANs: 

Variational 

Autoencoders 

Generative adversarial networks (GANs) haven’t been the first or 
only attempt at generating realistically looking images (or any type 
of output, generally speaking). Apart from GANs, a related neural 
network-based approach to generative modeling is the variational 
autoencoder, which will be treated in more details below. Among 
other generative models with different approaches are as follows: 

Flow-based models This category of generative models attempt 
to model the data-generating distribution 
explicitly through an iterative process 
known as the normalizing flow [11], in 
which through repeated changes of variables 
a sequence of differentiable basis distribu-
tions is stacked to model the target distribu-
tion. The process is fully invertible, yielding 
models with desirable properties, since an



analytical solution to the data-generating dis-
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tribution allows to directly estimate densities 
to predict the likelihood of future events, 
impute missing data points, and of course 
generate new samples. Flow-based models 
are computation-intensive. They can be cate-
gorized as a method that returns an explicit, 
tractable density. Another method in this 
category is, for example, the PixelRNN [9] 
or the PixelCNN [12] which also serves for 
conditional image generation. RealNVP [13] 
also uses a chain of invertible functions. 

Boltzmann machines work fundamentally differently. They also 
return explicit densities but this time only 
approximate the true target distribution. In 
this regard, they are similar to variational 
autoencoders, though their method is based 
on Markov chains, and not a variational 
approach. Deep Boltzmann machines have 
been proposed already in 2009, uniting a 
Markov chain-based loss component with a 
maximum likelihood-based component and 
showing good results on, at that time, highly 
complex datasets. [14] Boltzmann machines 
are very attractive but harder to train and use 
than other comparably powerful alternatives 
that exist today. This might change with 
future research, however. 

Variational autoencoders (VAE) are a follow-up development 
of plain autoencoders, autoregressive models that in their essence 
try to reconstruct their input after transforming it, usually into a 
low-dimensional representation (see Fig. 8). This low-dimensional

Fig. 8 Schematic of an autoencoder network. The encoder, for images, for 
example, a CNN with a number of convolutional and pooling layers, condenses 
the defining information of the input image into the variables of the latent space. 
The decoder, again convolutions, but this time with upsampling layers, recreates 
a representation in image space. Input and output images are compared in the 
loss function, which drives the gradient descent



representation is often termed the “latent space,” implying that 
here hidden traits of the data-generating process are coded, which 
are essential to the reconstruction process. This is very akin to the 
latent variables estimated by EM. In the autoencoder, the encoder 
will learn to code its input in terms of these latent variables, while 
the decoder will learn to represent them again in the source 
domain. In the following, we will be discussing the application to 
images though, in principle, both autoencoders and their varia-
tional variant are general mechanisms working for any domain.
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We will later be interested in a behind-the-scene understanding 
of their modeling approach, which will be related to the employed 
loss function. We will then look at VAEs more extensively from the 
same vantage point: to understand their loss function—which is 
closest to the loss formulation of early GANs, the Kullback-Leibler 
divergence or KL divergence, DKL. 

With this tool in hand, we will examine how to optimize (train) 
a network with regard to KL divergence as the loss and understand 
key problems with this particular loss function. This will lead us to 
the motivation for a more powerful alternative. 

3.2.1 From AE to VAE VAEs are an interesting subject to study to emphasize the limits a 
loss function like KL divergence may place on a model. We will 
begin with a recourse to plain autoencoders to introduce the con-
cept of learning a latent representation. We will then proceed to 
modify the autoencoder into a variational formulation which brings 
about the switch to a divergence measure as a loss function. From 
these grounds, we will then show how GANs again modified the 
loss function to succeed in high-quality image generation. 

Figure 8 shows the schematic of a plain autoencoder (AE). As 
indicated in the sketch, input and output are of potentially very 
high dimensionality, like images. In between the encoder and 
decoder networks lies a “bottleneck” representation, which is, for 
example, a convolutional layer of orders of magnitude lower 
dimensionality (represented, for example, by a convolutional layer 
with only a few channels or a dense layer with a given low number 
of weights), which forces the network to find an encoding that 
preserves all information required for reconstruction. 

A typical loss function to use when training the autoencoder is, 
for example, cross entropy, which is applicable for sigmoid activa-
tion functions, or simply the mean squared error (MSE). Any loss 
shall essentially force the AE to learn the identity function between 
input and output. 

Let us introduce the notation for this. Let X be the input image 
tensor and X′ the output image tensor. With fw being the encoder 
function given as a neural network parameterized by weights and 
biases w and gv the decoder function parameterized by v, the loss 
hence works to make X=X′= gv( fw(X)).
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In a variational autoencoder,2 things work differently. Auto-
encoders like before use a fixed (deterministic) latent code to map 
the input to, while variational autoencoders will replace this with a 
distribution. We can call this distribution pw, indicating the param-
eterization by w. It is crucial to understand that a choice was made 
here that imposes conditions on the latent code. It is meant to 
represent the input data in a variational way: in a way following 
Bayes’ laws. Our mapping of the input image tensor X to the latent 
variable z is by this choice defined by

• The prior probability pw(z)

• The likelihood (conditional probability) pw(X|z)

• The posterior probability pw(z|X) 

Therefore, once we have obtained the correct parameters ŵ by 
training the VAE, we can produce a new output X′ by sampling a 
z(i) from the prior probability pŵðzÞ and then generate the example 
from the conditional probability through X ðiÞ = pŵ X z= zðiÞ . 

Obtaining the optimal parameters, however, isn’t possible 
directly. The searched optimal parameters are those that maximize 
the probability that the generated example X′ looks real. This 
probability can be rewritten as the aggregated conditional 
probabilities: 

pwðX ðiÞÞ= pwðX ðiÞjzÞpwðzÞdz: 

This, however, does not make the search any easier since we 
need to enumerate and sum up all z. Therefore, an approximation is 
made through a surrogate distribution, parameterized by another 
set of parameters, qv . Weng [15] shows in her explanation of the 
VAE the graphical model highlighting how qv is a stand-in for the 
unknown searched pw (see Fig. 9). 

The reason to introduce this surrogate distribution actually 
comes from our wish to train neural networks for the decoding/ 
encoding functions, and this requires us to back-propagate through 
the random variable, z, which of course cannot be done. Instead, if 
we have control over the distribution, we can select it such that the 
reparameterization trick can be employed. We define qv to be a 
multivariate Gaussian distribution with means and a covariance 
matrix that can be learned and a stochastic element multiplied to 
the covariance matrix for sampling [15, 16]. With this, we can back-
propagate through the sampling process. 

2 Though variational autoencoders are in general not necessarily neural networks, in our context, we restrict 
ourselves to this implementation and stick to the notation with parameters w and v, where in many publications 
they are denoted θ and ϕ.
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Fig. 9 The graphical model of the variational autoencoder. In a VAE, the variational decoder is pw(X|z), while 
the variational encoder is qv(z|X) (Figure after [15]) 

At this point, the two distributions need to be made to match: 
qv should be as similar to pw as possible. Measuring their similarity 
can be done in a variety of ways, of which Kulback-Leibler diver-
gence (KL divergence or KLD) is one. 

3.2.2 KL Divergence A divergence can be thought of as an asymmetric distance function 
between two probability distributions, P and Q, measuring the 
similarity between them. It is a statistical distance which is not 
symmetric, which means it will not yield the same value if measured 
from P to Q or the other way around: 

DKLðPkQ Þ≠DKLðQ kPÞ 

This can be seen when looking at the definition of KL 
divergence: 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ ð2Þ 

Sometimes, the measure DKL is also called the relative entropy 
or information gain of P over Q, which also indicates the 
asymmetry. 

To give the two distributions more meaning, let us associate 
them with a use case. P is usually the probability distribution of the 
example data, which can be our real images we wish to model, and 
is assumed to be unknown and high-dimensional. Q, on the other 
hand, is the modeled distribution, for example, parameterized by θ, 
similar to Eq. 1. Hence, Q is the distribution we can play with 
(in our case, optimize its parameters) to make them more similar to 
P. This means Q will get more informative with respect to the true 
P when we approach the optimal parameters.
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Box 3: Example: Calculating DKL 

When comparing the two distributions given in Fig. 10, the 
calculation of the Kullback-Leibler divergence, DKL, can 
explicitly be given by reading off the y values of the nine 
elements (columns) from Fig. 11 and inserting them into 
Eq. 2. 

The result of this calculation is for 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ 

=0:02 � log 
:02 
:01 

þ 0:04 � log 
:04 
:12

þ � � � þ  0:02 � log 
:02 
:022 

=0:004- 0:01 þ � � �- 0:0002 

=0:0801 

which we call “forward KL” as it calculates in the direction 
from the actual distribution P to the model distribution Q and 
for 

DKLðQ kPÞ = 
x 
Q ðxÞ log Q ðxÞ 

PðxÞ 

=0:01 � log 
0:01 
0:02

þ 0:12 � log 
0:12 
0:04

þ � � � þ  0:022 � log 
0:022 
0:02 

= -0:002-0:05þ � � � þ  0:0002 
=0:0899 

which we call “reverse KL.” 

Note that in the example in Box 3, there is both a P(X= xi) and 
Q(X= xi) for each i∈{0, 1, . . ., 8}. This is crucial for KL divergence 
to work as a loss function. 

3.2.3 Optimizing the KL 

Divergence 

Examine what happens in forward and reverse KL if this condition 
is not satisfied for some i. If in forward KL P has values everywhere 
but Q has not (or extremely small values), the quotient in the log

Fig. 10 Two distributions P and Q, here scaled to identical height



function will tend to infinity by means of the division by almost 
zero, and the term will be very large.
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Fig. 11 The distributions P and Q, scaled to unit density, with added labels 

Fig. 12 The distributions P (solid) and Qθ (dashed), in the initial configuration and after minimizing reverse KL 
DKL(Qθ|P). This time, in the initial configuration, Qθ has values greater than 0 where P has not (marked with 
green shading) 

In Fig. 12, we assume Qθ to be a unimodal normal distribution, 
i.e., a Gaussian, while P is any empirical distribution. In the left 
plots of the figure, we show a situation before minimizing the 
forward/reverse KL divergence between P and Qθ, in the right 
plots, the resulting shape of the Gaussian after minimization. 

When in the minimization of forward KL DKL(P|Qθ) Qθ is zero 
where P has values greater zero, KL goes to infinity in these regions 
(marked area in the start configuration of the top row in Fig. 12), 
since the denominator in the log function goes to zero. This, in 
turn, drives the parameters of Qθ to broaden the Gaussian to cover 
these areas, thereby removing the large loss contributions. This is 
known as the mean-seeking behavior of forward KL. 

Conversely, in reverse KL (bottom row in Fig. 12), in the 
marked areas of the initial configuration, P is zero in regions 
where Qθ has values greater than zero. This yields high-loss



contributions from the log denominator, in this case driving the 
Gaussian to remove these areas from Qθ. Since we assumed a 
unimodal Gaussian Q, the minimization will focus on the largest 
mode of the unknown P. This is known as the mode-seeking behav-
ior of reverse KL. 
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Forward KL tends to overestimate the target distribution, 
which is exaggerated in the right plot in Fig. 12. In contrast, reverse 
KL tends to underestimate the target distribution, for example, by 
dropping some of its modes. Since underestimation is the more 
desirable property in practical settings, reverse KL is the loss func-
tion of choice, for example, in variational autoencoders. The down-
side is that as soon as target distribution P and model distribution 
Qθ have no overlap, KL divergence evaluates to infinity and is 
therefore uninformative. One countermeasure to take is to add 
noise to Qθ, so that there is guaranteed overlap. This noise, how-
ever, is not desirable in the model distribution Qθ since it disturbs 
the generated output. 

Another way to remedy the problem of KL going to infinity is 
to adjust the calculation of the divergence, which is done in Jensen-
Shannon divergence (JS divergence, DJS) defined as 

DJS = 
1 
2
ðDKLðPkM Þ þ  DKLðQ θkM ÞÞ, ð3Þ 

where M = PþQ θ 
2 . In the case of nonoverlapping P and Qθ, this 

evaluates to constant log 2, which is still not providing information 
about the closeness but is computationally much friendlier and does 
not require the addition of a noise term to achieve numerical 
stability. 

3.2.4 The Limits of VAE In the VAE, reverse KL is used. Our optimization goal is maximiz-
ing the likelihood to produce realistic looking examples—ones with 
a high pw(x). Simultaneously, we want to minimize the difference 
between the real and estimated posterior distributions qv and pw . 
This can only be achieved through a reformulation of reverse KL 
[15]. After some rearranging of reverse KL, the loss of the varia-
tional autoencoder becomes 

LVAEðw, vÞ = - log pwðX Þ þ  DKLðqvðzjX ÞkpwðzjX ÞÞ 
= -z�qvðzjX Þ log pwðX jzÞ þ  DKLðqvðzjX ÞkpwðzÞÞ 

ð4Þ 
ŵ and v̂ are the parameters maximizing the loss. 

We have seen how mode-seeking reverse KL divergence limits 
the generative capacity of variational autoencoders through the 
potential underrepresentation of all modes of the original 
distribution.



160 Markus Wenzel

KL divergence and minimizing the ELBO also have a second 
fundamental downside: there is no way to find out how close our 
solution is to the obtainable optimum. We measure the similarity to 
the target distribution up to the KL divergence, but since the true 
pŵð:Þ is unknown, the stopping criterion in the optimization has to 
be set by another metric, e.g., to a maximum number of iterations 
or corresponding to an improvement of the loss below some ε. 

The original presentation of the variational autoencoder was 
given as one example of the general framework called the autoen-
coding variational Bayes. This publication presented the above 
ideas in a thorough mathematical formulation, starting from a 
directed graphical model that poses the abstract problem. The 
authors also develop the seminal “reparameterization trick” to 
make the loss formulation differentiable and with this to make the 
search for the autoencoder parameters amenable to gradient 
descent optimizers [16]. The details are beyond this introductory 
treatment. 

3.3 The Fundamental 

GAN Approach 

At the core of the adversarial training paradigm is the idea to create 
two players competing in a minimax game. In such games, both 
players have access to the same variables but have opposing goals, so 
that they will manipulate the variables in different directions. 

Referring to Fig. 13, we can see the generative part in orange 
color, where random numbers are drawn from the latent space and, 
one by one, converted into a set of “fake images” by the generator

Fig. 13 Schematic of a GAN network. Generator (orange) creates fake images based on random numbers 
drawn from a latent space. These together with a random sample of real images are fed into the discriminator 
(blue, right). The discriminator looks at the batch of real/fake images and tries to assign the correct label (“0” 
for fake, “1” for real)
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network, in the figure implemented by a CNN. Simultaneously, 
from a database of real images, a matching number of examples are 
randomly drawn. The real and fake images are composed into one 
batch of images which are fed into the discriminator. On the right 
side, the discriminator CNN is indicated in blue. It takes the batch 
of real and fake images and decides for each if it appears real 
(yielding a value close to “1”) or fake (“0”).
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The error signal is computed from the number of correct 
assignments the discriminator can do on the batch of generated 
and real images. Both the generator and the discriminator can then 
update their parameters based on this same error signal. Crucially, 
the generator has the aim to maximize the error, since this signifies 
that it has successfully fooled the discriminator into taking the fake 
images for real, while the discriminator weights are updated to 
minimize the same error, indicating its success in telling true and 
fake examples apart. This is the core of the competitive game 
between generator and discriminator. 

Let us introduce some abbreviations to designate GAN com-
ponents. We will denote the generator and discriminator networks 
with G and D, respectively. The objective of GAN training is a game 
between generator and discriminator, where both affect a common 
loss function J, but in opposed directions. Formally, this can be 
written as 

min 
G 

max 
D 

J ðG,DÞ, 

with the GAN objective function 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ� ð5Þ 
D will attempt to maximize J by maximizing the probability to 
assign the correct labels to real and generated examples: this is the 
case if D(x)=1, maximizing the first loss component, and if 
D(G(z))=0, maximizing the second loss component. The genera-
tor G, instead, will attempt to generate realistic examples that the 
discriminator labels with “1,” which corresponds to a minimization 
of log 1-D G z . 

3.4 Why Early GANs 

Were Hard to Train 

GANs with this training objective implicitly use JS divergence for 
the loss, which can be seen by examining the GAN training objec-
tive. Consider the ideal discriminator D for a fixed generator. Its 
loss is minimal for the optimal discriminator given by [1] 

D̂ðxÞ= 
pdataðxÞ 

pdataðxÞ þ  pGðxÞ
: ð6Þ 

Substituting D̂ in Eq. 5 yields (without proof) the implicit use 
of the Jensen-Shannon divergence if the above training objective is 
employed:
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J ðG, D̂Þ=2DJSðpdatakpGÞ- log 4: ð7Þ 
This theoretical result shows that a minimum in the GAN 

training can be found when the Jensen-Shannon divergence is 
zero. This is achieved for identical probability distributions pdata 
and pG or, equivalently, when the generator perfectly matches the 
data distribution [17]. 

Unfortunately, it also shows that this loss is, like KL divergence, 
only helpful when target distribution (i.e., data distribution) and 
model distribution have overlapping support. Therefore, added 
noise can be required to approximate the target distribution. In 
addition, the training criterion saturates if the discriminator in the 
early phase of training perfectly distinguishes between fake and real 
examples. The generator will therefore no longer obtain a helpful 
gradient to update its weights. An approach thought to prevent this 
was proposed by Goodfellow et al. [1]. The generator loss was 
turned from the minimization problem into a maximization prob-
lem that has the same fixed point in the overall minimax game but 
prevents saturation: instead of minimizing logð1-DðGðzÞÞÞ, one 
maximizes log D G z [1]. 

3.5 Improving GANs GAN training has quickly become notorious for the difficulties it 
posed upon the researchers attempting to apply the mechanism to 
real-world problems. We have qualitatively attributed a part of these 
problems to the inherently difficult task of density estimation and 
motivated the intuition that while fewer samples might suffice to 
learn a decision boundary in a discriminative task, many more 
examples are required to build a powerful generative model. 

In the following, some more light shall be shed on the reasons 
why GAN training might fail. Typical GAN problems comprise the 
following: 

Mode dropping is the phenomenon in forward KL caused by 
regions of the data distribution not being 
covered by the generator distribution, which 
implies large probabilities of samples coming 
from Pdata and very small probabilities of ori-
ginating from PG. This drives forward KL 
toward infinity and punishes the generator 
for not covering the entire data distribution 
[18]. If all modes but one are dropped, one 
can call this mode collapse: the generator only 
generates examples from one mode of the 
distribution. 

Poor convergence can be caused by a discriminator learning to 
distinguish real and fake examples very early— 
which is also very likely to happen throughout 
the GAN training. This is rooted in the



observation that by the generative process
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that projects from a low-dimensional latent 
space into the high-dimensional pG, the sam-
ples in pG are not close to each other but 
rather inhabit “islands” [18]. The discrimina-
tor can learn to find them and thereby differ-
entiate between true and false samples easily, 
which causes the gradients driving generator 
optimization to vanish [17]. 

Poor sample quality despite a high log likelihood of the model is a 
consequence of the practical independence of 
sample quality and model log likelihood. 
Theis et al. [19] show that neither does a 
high log likelihood imply generated sample 
fidelity nor do visually pleasing samples 
imply a high log likelihood. Therefore, train-
ing a GAN with a loss function that effectively 
implements maximizing a log likelihood term 
is not an ideal choice—but exactly corre-
sponds to KL minimization. 

Unstable training is a consequence of reformulating the genera-
tor loss into maximizing logDðGðzÞÞ. It can 
be shown [18] that this choice effectively 
makes the generator struggle between a 
reverse KL divergence favoring mode-seeking 
behavior and a negative JS divergence actually 
driving the generator into examples different 
from the real data distribution. 

There have been many subsequent authors touching these 
topics, but already Arjovsky and Bottou [18] have shown best 
practices of how to overcome these problems. 

Among the solutions proposed for GAN improvements are 
some that prevent the generator from producing only too similar 
samples in one batch, some that keep the discriminator insecure 
about the true labels of real and fake examples, and more, which 
Creswell et al. [17] have summarized in their GAN overview. A 
collection of best practices compiled from these sources is pre-
sented in Box 4. It is almost impossible to write a cookbook for 
successful, converging, stable GAN training. For almost every tip, 
there is a caveat or situation where it cannot be applied. The 
suggestions below therefore are to be taken with a grain of salt 
but have been used by many authors successfully.
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Box 4: Best Practices for Stable GAN Training 

General measures. GAN training is sensitive to hyperpara-
meters, most importantly the learning rate. Mode collapse 
might already be mitigated by a lower learning rate. Also, 
different learning rates for generator and discriminator 
might help. Other typical measures are batch normalization 
(or instance normalization in case of small batch sizes; mind 
however that batch normalization can taint the randomness of 
latent vector sampling and in general should not be used in 
combination with certain GAN loss functions), use of trans-
posed convolutions instead of parameter-free upsampling, 
and strided convolutions instead of down-sampling. 

Feature matching. One typical observation is that nei-
ther discriminator nor generator converges. They play their 
“cat-and-mouse” game too effectively. The generator pro-
duces a good image, but the discriminator learns to figure it 
out, and the generator shifts to another good image, and 
so on. 

A remedy for this is feature matching, where the ℓ2 dis-
tance between the average feature vectors of real and fake 
examples is computed instead of a cross-entropy loss on the 
logits. Because per batch the feature vectors change slightly, 
this introduces randomness that helps to prevent discrimina-
tor overconfidence. 

Minibatch discrimination. When the generator only 
produces very convincing but extremely similar images, this 
is an indication for mode collapse. 

This can be counteracted by calculating a similarity metric 
between generated samples and penalizing the generator for 
too little variation. Minibatch discrimination is considered to 
be superior in performance to feature matching. 

One-sided label smoothing. Deep classification models 
often suffer from overconfidence, focusing on only very few 
features to classify an image. If this happens in a GAN, the 
generator might figure this out and only produce the feature 
the discriminator uses to decide for a real example. 

A simple measure to counteract this is to provide not a 
“1” as a label for the real images in the batch but a lower 
value. This way, the discriminator is penalized for overconfi-
dence (when it returns a value close to “1”). 

Cost function selection. Several sources list possible 
GAN cost functions. Randomly trying them one by one 
might work, but often some of the above measures, in partic-
ular learning rate and hyperparameter tuning, might be more 
successful first steps.
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Besides these methods, one area of discussion concerned the 
question if there is a need of balancing discriminator and generator 
learning and convergence at all. The argument was that a converged 
discriminator will as well yield a training signal to the generator as a 
non-converged discriminator. Practically, however, many authors 
described carefully designed update schedules, e.g., updating the 
generator once per a given number of discriminator updates. 

Many more ideas exist: weight updating in the generator using 
an exponential moving average of previous weights to avoid “for-
getting,” different regularization and conditioning techniques, and 
injecting randomness into generator layers anew. Some we will 
encounter later, as they have proven to be useful in more recent 
GAN architectures. 

Despite the recent advances in stabilizing GAN training, even 
the basic method described so far, with the improvements made in 
the seminal DCGAN publication [20], finds application until 
today, e.g., for the de novo generation of PET color images 
[21]. The usefulness of an approach as presented in their publica-
tion might be doubted, since the native PET data is obviously not 
colored. The authors use 2D histograms of the three-color channel 
combinations to compare true and fake examples. As we have 
discussed earlier, this is likely a poor metric since it does not allow 
insights into the high-dimension joint probability distribution 
underlying the data-generating process. Figure 14 shows an exam-
ple comparison of some generated examples compared to original 
PET images. 

Fig. 14 PET images generated from random noise using a DCGAN architecture. Image taken from [21] 
(CC-BY4.0)
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To address many of the GAN training dilemmas, Arjovsky and 
Bottou [18] have proposed to employ the Wasserstein distance as a 
replacement for KL or JS divergence already in their examination of 
the root causes of poor GAN training results and have later 
extended this into their widely anticipated approach we will focus 
on next [22, 23]. We will also see more involved and recent 
approaches to stabilize and speed up GAN training in later sections 
of this chapter (Subheading 4). 

3.6 Wasserstein 

GANs 

Wasserstein GANs were appealing to the deep learning and GAN 
scene very quickly after Arjovsky et al.’s [22] seminal publication 
because of a number of traits their inventors claimed they’d have. 
For one, Wasserstein GANs are based on the theoretical idea that 
the change of the loss function to the Wasserstein distance should 
lead to improved results. This combined with the reported bench-
mark performance would already justify attention. But Wasserstein 
GANs additionally were reported to train much more stably, 
because, as opposed to previous GANs, the discriminator would 
be trained to convergence in every iteration, instead of demanding 
a carefully and heuristically found update schedule for generator 
and discriminator. In addition, the loss was directly reported to 
correlate with visual quality of generated results, instead of being 
essentially meaningless in a minimax game. 

Wasserstein GANs are therefore worth an in-depth treatment in 
the following sections. 

3.6.1 The Wasserstein 

(Earthmover) Distance 

The Wasserstein distance figuratively measures how, with an opti-
mal transport plan, mass can be moved from one configuration to 
another configuration with minimal work. Think, for example, of 
heaps of earth. Figure 15 shows two heaps of earth, P and 
Q (discrete probability distributions), both containing the same 
amount of earth in total, but in different concrete states x and 
y out of all possible states. 

Work is defined as the shovelfuls of earth times the distance it is 
moved. In the three rows of the figure, earth is moved (only within 
one of P or Q, not from one to the other), in order to make the 
configuration identical. First, one shovelful of earth is moved one 
pile further, which adds one to the Wasserstein distance. Then, two 
shovelfuls are moved three piles, adding six to the final Wasserstein 
distance of DW=7. 

Note that in an alternative plan, it would have been possible to 
move two shovelfuls of earth from p4 to p1 (costing six) and one 
from p4 to p3, which is the inverse transport plan of the above, 
executed on P, and leading to the same Wasserstein distance. The 
Wasserstein distance is in fact a distance, not a divergence, because 
it yields the same result regardless of the direction. Also note that



we implicitly assumed that P and Q share their support,3 but that in 
case of disjunct support, only a constant term would have to be 
added, which grows with the distance between the support regions. 
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Fig. 15 One square is one shovel full of earth. Transporting the earth shovel-wise 
from pile to pile amasses performed work: the Wasserstein (earthmover) dis-
tance. The example shows a Wasserstein distance of DW= 7 

Many other transport plans are possible, and others can be 
equally cheap (or even cheaper—it is left to the reader to try this 
out). Transport plans need not modify only one of the stocks but 
can modify both to reach the optimal strategy to make them 
identical. Algorithmically, the optimal solution to the question of 
the optimal transport plan can be found by formulating it as a linear 
programming problem. However, enumerating all transport plans 
and computing the linear programming algorithm are intractable 
for larger and more complex “heaps of earth.” Any nontrivial GAN 
will need to estimate transport of such complex “heaps,” so they

3 The support, graphically, is the region where the distribution is not equal to zero.



suffer this intractability problem. Consequently, in practice, a dif-
ferent approach must be taken, which we will sketch below.4
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Formalizing the search for the optimal transport plan, we look 
at all possible joint distributions of our P and Q, forming the set of 
all possible transport plans, and denote this set Π(P, Q), implying 
that for all γ ∈Π(P, Q), P and Q will be their marginal distribu-
tions.5 This, in turn, means that by definition ∑xγ(x, y)=P( y) and 
∑yγ(x, y)=Q(x). 

For one concrete transport plan γ that works between a state 
x in P and a state y in Q, we are interested in the optimal transport 
plan γ(x, y). Let kx- yk be the Euclidian distance to shift earth 
between x and y, and then multiplying this with every value of γ (the 
amount of earth shifted) leads to 

DWðP ,Q Þ= inf 
γ∈Π x, y 

kx - ykγðx, yÞ, 

which can be rewritten to obtain 

DWðP ,Q Þ= inf 
γ�ΠðP,Q Þ 

ðx,yÞ�γkx- yk: ð8Þ 

It measures both the distance of two distributions with disjunct 
support and the difference between distributions with perfectly 
overlapping support because it includes both, the shifting of earth 
and the distance to move it. 

Practically, though, this result cannot be used directly, since the 
Linear Programming problem scales exponentially with the num-
ber of dimensions of the domain of P and Q, which are high for 
images. To our disadvantage, we additionally need to differentiate 
the distance function if we want to use it for deep neural network 
training using backpropagation. However, we cannot obtain a 
derivative from our distance function in the given form, since, in 
the linear programming (LP) formulation, our optimized distribu-
tion (as well as the target distribution) end up as constraints, not 
parameters. 

Fortunately, we are not interested in the transport plan γ itself, 
but only in the distance (of the optimal transport plan). We can 
therefore use the dual form of the LP problem, in which the 
constraints of the primal form become parameters. With some 
clever definitions, the problem can be cast into the dual form, finally 
yielding 

4 An extensive treatment of Wasserstein distance and optimal transport in general is given in the 1.000-page 
treatment of Villani’s book [24], which is freely available for download. 
5 This section owes to the excellent blog post of Vincent Herrmann, at https://vincentherrmann.github.io/ 
blog/wasserstein/. Also recommended is the treatment of the “Wasserstein GAN” paper by Alex Irpan at https:// 
www.alexirpan.com/2017/02/22/wasserstein-gan.html. An introductory treatment of Wasserstein distance is 
also found in [25, 26].

https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
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DWðP ,Q Þ= kf kL ≤1sup x�P f ðxÞ-x�Q f ðxÞ 
with a function f that has to adhere to a constraint called the 
1-Lipschitz continuity constraint, which requires f to have a slope 
of at most magnitude 1 everywhere. f is the neural network, and 
more specifically for a GAN, the discriminator network. 
1-Lipschitzness can be achieved trivially by clipping the weights 
to a very small interval around 0. 

3.6.2 Implementing 

WGANs 

To implement the distance as a loss function, we rewrite the last 
result again as 

DWðP ,Q Þ= max 
w∈W 

x�P ½DwðxÞ�-z�Q ½DwðGwðzÞÞ�: ð9Þ 
Note that in opposition to other GAN losses we have seen 

before, there is no logarithm anymore, because, this time, the 
“discriminator” is no longer a classification network that should 
learn to discriminate true and fake samples but rather serves as a 
“blank” helper function that during training learns to estimate the 
Wasserstein distance between the sets of true and fake samples. 

Box 5: Spectral Normalization 

Spectral normalization is applied to the weight matrices of a 
neural network to ensure a boundedness of the error function 
(e.g., Lipschitzness of the discriminator network in the 
WGAN context). This helps convergence like any other nor-
malization method, as it provides a guaranty that gradient 
directions are stable around the current point, allowing larger 
step widths. 

The spectral norm (or matrix norm) measures how far a 
matrix A can stretch a vector x: 

jjAjj= max 
x ≠0 

jjAxjj 
jjxjj 

The numerical value of the spectral norm of A can be 
shown to be just its maximum singular value. To compute the 
maximum singular value, an algorithmic idea helps: the power 
iteration method, which yields the maximal eigenvector. 

Power iteration uses the fact that any matrix will rotate a 
random vector toward its largest eigenvector. Therefore, by 
iteratively calculating AX 

jAxj, the largest eigenvector is obtained 
eventually. 

In practice, it is observed that a single iteration is already 
sufficient to achieve the desired normalizing behavior.
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Consequently, the key ingredient is the Lipschitzness con-
straint of the discriminator network,6 and how to enforce this in a 
stable and regularized way. It soon turned out that weight clipping 
is not an ideal choice. Rather, two other methods have been pro-
posed: the gradient penalty approach and normalizing the weights 
with the spectral norm of the weight matrices. 

Both have been added to the standard catalogue of 
performance-boosting measures in GAN training ever since, 
where in particular spectral normalization (cf. Box 5) is attractive 
as it can be implemented very efficiently, has a sound theoretical and 
mathematical foundation, and ensures stable and efficient training. 

3.6.3 Example 

Application: Brain 

Abnormality Detection 

Using WGAN 

One of the first applications of Wasserstein GANs in a practical use 
case was presented in the medical domain, specifically in the context 
of attributing visible changes of a diseased patient with respect to a 
normal control to locations in the images [27]. The way this 
detection problem was cast into a GAN approach (and then solved 
with a Wasserstein GAN) was to delineate the regions that make the 
images of a diseased patient look “diseased,” i.e., find the residual 
region, that, if subtracted from the diseased-looking image, would 
make it look “normal.” 

Figure 16 shows the construction of the VA-GAN architecture 
with images from a mocked dataset for illustration. For the authors’ 
results, see their publication and code repository.7 

For their implementation, the authors note that neither batch 
normalization nor layer normalization helped convergence and 
hypothesize that the difference between real and generated exam-
ples may be a reason that in particular batch normalization may in 
fact have an adverse effect especially during the early training phase. 
Instead, they impose an ℓ1 norm loss component on the U-Net-
generated “visual (feature) attribution” (VA) map to ensure it to be 
a minimal change to the subject. This serves to prevent the genera-
tor from changing the subject into some “average normal” image 
that it may otherwise learn. They employ an update regime that 
trains the critic network for more iterations than the generator, but 
doesn’t train it to convergence as proposed in the original WGAN 
publications. Apart from these measures, in their code repository, 
the authors give several practical hints and heuristics that may 
stabilize the training, e.g., using a tanh activation for the generator 
or exploring other dropout settings and in general using a large 
enough dataset. They also point out that the Wasserstein distance 
isn’t suited for model selection since it is too unstable and not 
directly correlated to the actual usefulness of the trained model. 

6 The discriminator network in the context of continuous generator loss functions like the Wasserstein-based loss 
is called a “critique” network, as it no longer discriminates but yields a metric. For ease of reading, this chapter 
sticks to the term “discriminator.” 
7 https://github.com/baumgach/vagan-code.

https://github.com/baumgach/vagan-code
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Fig. 16 An image of a diseased patient is run through a U-Net with the goal to yield a map that, if added to the 
input image, results in a modified image that fools the discriminator (“critique”) network into classifying it as a 
“normal” control. The map can be interpreted as the regions attributed to appear abnormal, giving rise to the 
name of the architecture: visual attribution GAN (VA-GAN) 

This is one more reason to turn in the next section to an 
important topic in the context of validation for generative models: 
How to quantify their results? 

3.7 GAN 

Performance Metrics 

One imminent question has so far been postponed, though it 
implicitly plays a crucial role in the quest for “better” GANs: 
How to actually measure the success of a GAN or the performance 
in terms of result quality? 

GANs can be adapted to solve image analysis tasks like segmen-
tation or detection (cf. Subheading 3.6.3). In such cases, the qual-
ity and success can be measured in terms of task-related 
performance (Jaccard/Dice coefficient for segmentation, overlap 
metrics for detection etc.). 

Performance assessment is less trivial if the GAN is meant to 
generate unseen images from random vectors. In such scenarios, 
the intuitive criterion is how convincing the generated results are. 
But convincing to whom? One could expose human observers to 
the real and fake images, ask them to tell them apart, and call a GAN 
better than a competing GAN if it fools the observer more consis-
tently.8 Since this is practically infeasible, metrics were sought that 
provide a more objective assessment. 

8 In fact, there is only very little research on the actual performance of GANs in fooling human observers, though 
guides exist on how to spot “typical” GAN artifacts in generated images. These are older than the latest GAN 
models, and it can be hypothesized that the lack of such literature is indirect confirmation of the overwhelming 
capacity of GANs to fool human observers.
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The most widely used way to assess GAN image quality is the 
Fréchet inception distance (FID). This distance is conceptually 
related to the Wasserstein distance. It has an analytical solution to 
calculate the distance of Gaussian (normal) distributions. In the 
multivariate case, the Fréchet distance between two distributions 
X and Y is given by the squared distance of their means μX (resp. 
μY) and a term depending on the covariance matrix describing their 
variances ΣX (resp. ΣY): 

dðX ,Y Þ= jjμX - μY jj2 þ TrðΣX þ ΣY -2 ΣXΣY 

p Þ: ð10Þ 
The way this distance function is being used is often the score, 

which is computed as follows:

• Take two batches of images (real/fake, respectively).

• Run them through a feature extraction or embedding model. 
For FID, the inception model is used, pretrained on ImageNet. 
Retain the embeddings for all examples.

• Fit each one multivariate normal distribution to the embedded 
real/fake examples.

• Calculate their Fréchet distance according to the analytical for-
mula in Eq. 10. 

This metric has a number of downsides. Typically, if computed 
for a larger batch of images, it decreases, although the same model 
is being evaluated. This bias can be remedied, but FID remains the 
most used metric still. Also, if the inception network cannot capture 
the features of the data FID should be used on, it might simply be 
uninformative. This is obviously a grave concern in the medical 
domain where imaging features look much different from natural 
images (although, on the other hand, transfer learning for medical 
classification problems proved to work surprisingly well, so that 
apparently convolutional filters trained on photographs also extract 
applicable features from medical images). In any case, the selection 
of the pretrained embedding model brings a bias into the validation 
results. Lastly, the assumption of a multivariate normal distribution 
for the inception features might not be accurate, and only describ-
ing it through their means and covariances is a severe reduction of 
information. Therefore, a qualitative evaluation is still required. 

One obvious additional question arises: If the ultimate metric 
to judge the quality of the generator is given by, for example, the 
FID, why can’t it be used as the optimization goal instead of 
minimizing a discriminator loss? In particular, as the Fréchet dis-
tance is a variant of the Wasserstein distance, an answer to this 
question is not obvious. In fact, feature matching as described in 
Box 4 exactly uses this type of idea, and likewise, it has been 
partially adopted in recent GAN architectures to enhance the sta-
bility of training with a more fine-grained loss component than a 
pure categorical cross-entropy loss on the “real/fake” classification 
of the discriminator.
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Related recent research is concerned with the question how 
generated results can automatically be detected to counteract 
fraudulent authors. So-called forensic algorithms detect patterns 
that point out generated images. This research puts up the question 
how to detect fake images reliably. Solutions based on different 
analysis directions encompass image fingerprinting and frequency-
domain analysis [28–31]. 

4 Selected GAN Architectures You Should Know 

In the following, we will examine some GAN architectures and 
GAN developments that were taken up by the medical community 
or that address specific needs that might make them appealing, e.g., 
for limited data scenarios. 

4.1 Conditional GAN GANs cannot be told what to produce—at least that was the case 
with early implementations. It was obvious, though, that a properly 
trained GAN would imprint the semantics of the domain onto its 
latent space, which was evidenced by experiments in which the 
latent space was traversed and images of certain characteristics 
could be produced by sampling accordingly. Also, it was found 
that certain dimensions of the latent space can correspond to 
certain features of the images, like hair color or glasses, so that 
modifying them alone can add or take away such visible traits. 

With the improved development of conditional GANs [32] 
following a number of GANs that modeled the conditioning 
input more explicitly, another approach was introduced that was 
based on the U-Net architecture as a generator and a favorable 
discriminator network that values local style over a full-image 
assessment. 

Technically, the formulation of a conditional GAN is straight-
forward. Recalling the value function (learning objective) of GANs 
from Eq. 5, 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ�, 
We now want to condition the generation on some additional 

knowledge or input. Consequently, both the generator G and the 
discriminator D will receive an additional “conditioning” input, 
which we call x. This can be a class label but also any other asso-
ciated information. Very commonly, the additional input will be an 
image, as, for example, for image translation application (e.g., 
transforming from one image modality to another such as, for 
instance, MRI to CT). The result is the cGAN objective function: 

J cGANðG,DÞ=x�pdata ½logDðxjyÞ� þ z�pG ½1- logDðGðzjyÞÞ�
ð11Þ
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Fig. 17 A possible architecture for a cGAN. Left: the generator network takes the base images x as input and 
generates a translated image ŷ . The discriminator receives either this pair of images or a true pair x, y (right). 
The additional generator reconstruction loss (often a ℓ1 loss) is calculated between y and ŷ 

Isola et al. [32] describe experiments with MNIST handwritten 
digits, where a simple generator with two layers of fully connected 
neurons was used, and similarly for the discriminator. x was set to 
be the class label. In a second experiment, a CNN creates a feature 
representation of images, and the generator is trained to generate 
textual labels (choosing from a vocabulary of about 250.000 
encoded terms) for the images conditioned on this feature 
representation. 

Figure 17 shows a possible architecture to employ a cGAN 
architecture for image-to-image translation. In this diagram, the 
conditioning input is the target image that the trained network shall 
be able to produce based on some image input. The generator 
network therefore is a U-Net. The discriminator network can be 
implemented, for example, by a classification network. This net-
work always receives two inputs: the conditioning image (x in 
Fig. 17) and either the generated output ŷ or the true paired 
image y.
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Fig. 18 Input and output of a pix2pix experiment. Online demo at https://affinelayer.com/pixsrv/ 

Note that the work of Isola et al. [32] introduces an additional 
loss term on the generator that measures the ℓ1 distance between 
the generated and ground truth image, which is (with variables as in 
Eq. 11) 

J ℓ1ðGÞ=x;y;zky -Gðx, zÞk1, 
where 1 is the ℓ1 norm. 

The authors do not further justify this loss term apart from 
stating that ℓ1 is preferred over ℓ2 to encourage less blurry results. It 
can be expected that this loss component provides a good training 
signal to the generator when the discriminator loss doesn’t, e.g., in 
the beginning of the training with little or no overlap of target and 
parameterized distributions. The authors propose to give the ℓ1 loss 
orders of magnitudes more weight than the discriminator loss 
component to value accurate translations of images over “just” 
very plausible images in the target domain. 

The cGAN, namely, in the configuration with a U-Net serving 
as the generative network, was very quickly adopted by artists and 
scientists, thanks to the free implementation pix2pix.9 One example 
created with pix2pix is given in Fig. 18, where the cGAN was 
trained to produce cat images from line drawings. 

One application in the medical domain was proposed, for 
example, by Senaras et al. [33]. The authors used a U-Net as a 
generator to produce a stained histopathology image from a label 
image that has two distinct labels for two kinds of cell nuclei. Here, 
the label image is the conditioning input to the network. Conse-
quently, the discriminator network, a classification CNN tailored to

9 https://github.com/phillipi/pix2pix.

https://affinelayer.com/pixsrv/
https://github.com/phillipi/pix2pix


the patch-based classification of slides, receives two inputs: the 
histopathology image and a label image.
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Another example employed an augmented version of the con-
ditional GAN to translate CT to MR images of the brain, including 
a localized uncertainty estimate about the image translation suc-
cess. In this work, a Bayesian approach to model the uncertainty 
was taken by including dropout layers in the generator model [34]. 

Lastly, a 3D version of the pix2pix approach with a 3D U-Net 
as a generative network was devised to segment gliomas in multi-
modal brain MRI using data from the 2020 International Multi-
modal Brain Tumor Segmentation (BraTS) challenge [35]). The 
authors called their derived model vox2vox, alluding to the exten-
sion to 3D data [36]. 

More conditioning methods have been developed over the 
years, some of which will be sketched further on. It is common to 
this type of GANs that paired images are required to train the 
network. 

4.2 CycleGAN While cGANs require paired data for the gold standard and condi-
tioning input, this is often hard to come by, in particular in medical 
use cases. Therefore, the development of the CycleGAN set a 
milestone as it alleviates this requirement and allows to train 
image-to-image translation networks without paired input samples. 

The basic idea in this architecture is to train two mapping 
functions between two domains and to execute them in sequence 
so that the resulting output is considered to be in the origin domain 
again. The output is compared against the original input, and their 
ℓ1 or ℓ2 distance establishes a novel addition to the otherwise usual 
adversarial GAN loss. This might conceptually remind one of the 
autoencoder objectives: reproduce the input signal after encoding 
and decoding; only this time, there is no bottleneck but another 
interpretable image space. This can be exploited to stabilize the 
training, since the sequential concatenation of image translation 
functions, which we will call G and F, can be reversed. Figure 19 
shows a schematic of the overall process (left) and one incarnation 
of the cycle, here from image domain X to Y and back (middle). 

CycleGANs employ several loss terms in training: two adver-
sarial losses JðG,DY Þ and JðF ,DX Þ and two cycle consistency 
losses, of which one J cycðG, F Þ is indicated rightmost in Fig. 19. 
Zhu et al. [37] presented the initial publication with a participation 
of the cGAN author Isola [37]. The cycle consistency losses are ℓ1 
losses in their implementation, and the GAN losses are least square 
losses instead of negative log likelihood, since more stable training 
was observed with this choice. 

Almahairi et al. [38] provided an augmented version [38], 
noting that the original implementation suffers from the inability 
to generate stochastic results in the target domain Y but rather 
learns a one-to-one mapping between X and Y and vice versa. To



alleviate this problem, the generators are conditioned on one latent 
space each for both directions, so that, for the same input 
x∈X, G will now produce multiple generated outputs in Y 
depending on the sample from the auxiliary latent space (and 
similarly in reverse). Still, F has to recreate a x̂ minimizing the 
cycle consistency loss for each of these samples. This also remedies a 
second criticism brought forward against vanilla CycleGANs: these 
networks can learn to hide information in the (intermediate) target 
image domain that fool the discriminator but help the backward 
generator to minimize the cycle consistency loss more efficiently 
[39]. Chu et al. [39] use adaptive histogram equalization to show 
that in visually empty regions of the intermediate images informa-
tion is present. This is a finding reminiscent of adversarial attacks, 
which the authors elaborate on in their publication. 
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Fig. 19 Cycle GAN. Left: image translation functions G and F convert between two domains. Discriminators DX 
and DY give adversarial losses in both domains. Middle: for one concrete translation of an image x, the 
translation to Y and back to X is depicted. Right: after the translation cycle, the original and back-translated 
result are compared in the cycle consistency loss 

Zhang et al. [40] show a medical application. In their work, a 
CycleGAN has been used to train image translation and segmenta-
tion models on unpaired images of the heart, acquired with MRI 
and CT and with gold standard expert segmentations available for 
both imaging datasets. The authors proposed to learn more pow-
erful segmentation models by enriching both datasets with artifi-
cially generated data. To this end, MRIs are converted into CT 
contrast images and vice versa using GANs. Segmentation models 
for MRI and CT are then trained on dataset consisting of original 
images and their expert segmentations and augmented by the con-
verted images, for which expert segmentations can be carried over 
from their original domain. To achieve this, it is of importance that 
the converted (translated) images accurately depict the shape of the 
organs as expected in the target domain, which is enforced using 
the shape consistency loss. 

In the extended setup of the CycleGAN with shape and cycle 
consistency, three different loss types instead of the original two are 
combined during training: 

Adversarial GAN losses JGAN. This loss term is the same as 
defined, e.g., in Eq. 5.



cyc 1 

original CycleGAN authors dis-
cussed above. 

Shape consistency losses J shape. The shape consistency loss is a new 
addition proposed by the authors. 
A cross-correlation loss takes into 
account two segmentations, the 
first being the gold standard seg-
mentation mx for an x∈X and one 
segmentation produced by a seg-
menter network S that was trained 
on domain Y and receives the 
translated image ŷ =GðxÞ. 
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Fig. 20 Cycle GAN with shape consistency loss (rightmost part of figure). Note that the figure shows only one 
direction to ease readability 

Cycle consistency losses J . This is the ℓ loss presented by the 

Figure 20 depicts the three loss components, of which the first 
two are known already from Fig. 19. 

Note that the description as well as Fig. 20 only show one 
direction for cycle and shape consistency loss. Both are duplicated 
into the other direction and combined into the overall training 
objective, which then consists of six components. 

In several other works, the CycleGAN approach was extended 
and combined with domain adaption methods for various segmen-
tation tasks and also extended to volumetric data [41–43]. 

4.3 StyleGAN and 

Successor 

One of the most powerful image synthesis GANs to date is the 
successor of StyleGAN, StyleGAN2 [44, 45]. The authors, at the 
time of writing researching at Nvidia, deviate from the usual GAN 
approach in which an image is generated from a randomly sampled 
vector from a latent space. Instead, they use a latent space that is 
created by a mapping function f which is in their architecture 
implemented as a multilayer perceptron which maps from a 
512-dimensional space Z into a 512-dimensional space W. The 
second major change consisted of the so-called adaptive instance 
normalization layer, AdaIN, which implements a normalization to 
zero-mean and unit variance of each feature map, followed by a 
multiplicative factor and an additive bias term. This serves to



reweight the importance of feature maps in one layer. To ensure the 
locality of the reweighting, the operation is followed by the non-
linearity. The scaling and bias are two components of y= (ys, yb), 
which is the result of a learnable affine transformation A applied to a 
sample from W. 
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Fig. 21 StyleGAN architecture, after [44]. Learnable layers and transformations are shown in green, the AdaIN 
function in blue 

In their experiments, Karras et al. [44] recognized that after 
these changes, the GAN actually no longer depended on the input 
vector drawn from W itself, so the random latent vector was 
replaced by a static vector fed into the GAN. The y, which they 
call styles, remained to be results from a vector randomly sampled 
from the new embedding space W. 

Lastly, noise is added in each layer, which serves to allow the 
GAN to produce more variation without learning to produce it 
from actual image content. The noise, like the latent vector, is fed 
through learnable transformations B, before it is added to the 
unnormalized feature maps. The overall architecture is sketched 
in Fig. 21. 

In the basic setup, one sample is drawn from W and fed 
through per-layer learned A to gain per-layer different interpreta-
tions of the style, y= (ys, yb). This can be changed, however, and the 
authors show how using one random sample w1 in some of the layer 
blocks and another sample w2 in the remaining; the result will be a 
mixture of styles of both individual samples. This way, the coarse 
attributes of the generated image can stem from one sample and the 
fine detail from another. Applied to a face generator, for example, 
pose and shape of the face are determined in the coarse early layers 
of the network, while hair structure and skin texture are the fine



details of the last layers. The architecture and results gained wide-
spread attention through a website,10 which recently was followed 
up by further similar pages. Results are depicted in Fig. 22. 
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Fig. 22 Images created with StyleGAN; https://this{person—artwork—cat—horse—chemical}doesnotexist. 
com. Last accessed: 2022-01-14 

The crucial finding in StyleGAN was that the mapping function 
F transforming the latent space vector from Z to W serves to ensure 
a disentangled (flattened) latent space. Practically, this means that if 
interpolating points zi between two points z1 and z2 drawn from Z 
and reconstructing images from these interpolated points zi, 
semantic objects might appear (in a StyleGAN-generating faces, 
for example, a hat or glasses) that are neither part of the generated 
images from the first point z1 nor the second point z2 between 
which it has been interpolated. Conversely, if interpolating in W , 
this “semantic discontinuity” is no longer the case, as the authors 
show with experiments in which they measure the visual change of 
resulting images when traversing both latent spaces. 

In their follow-up publications, the same authors improve the 
performance even further. They stick to the basic architecture but 
redesign the generative network pertaining to the AdaIN function. 
In addition, they add their metric from [44] that was meant to 
quantify the entanglement of the latent space as a regularizer. The 
discriminator network was also enhanced, and the mechanisms of 
StyleGAN that implement the progressive growing have been suc-
cessively replaced by more performance-efficient setups. In their 
experiments, they show a growth of visual and measured quality 
and removal of several artifacts reported for StyleGAN [45]. 

4.4 Stabilized GAN 

for Few-Shot Learning 

GAN training was very demanding both regarding GPU power, in 
particular for high-performance architectures like StyleGAN and 
StyleGAN2, and, as importantly, availability of data. StyleGAN2, 
for example, has typical training times of about 10 days on a Nvidia 
8-GPU Tesla V100. The datasets comprised at least tens of 
thousands of images and easily orders of magnitude more. Particu-
larly in the medical domain, such richness of data is typically hard 
to find. 

10 https://thispersondoesnotexist.com/.

http://doi.org/
http://doi.org/
https://thispersondoesnotexist.com/
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Fig. 23 The FastGAN generator network. Shortcut connections through feature map weighting layers (called 
skip-layer excitation, SLE) transport information from low-resolution feature maps into high-resolution feature 
maps. For details regarding the blocks, see text 

The authors of [46] propose simple measures to stabilize the 
training of a specific GAN architecture, which they design from 
scratch using a replacement for residual blocks, arranged in an 
architecture with very few convolutional layers, and a loss that 
drives the discriminator to be less certain when it gets closer to 
convergence. In sum, this achieves very fast training and yields 
results competitive with prior GANs [46] and outperforming 
them in low-data situations. 

The key ingredients to the architecture are shortcut connec-
tions in the generator model that rescale feature maps of higher 
resolution with learnable weights derived from low resolutions. 
The effect is to make fine details simultaneously more independent 
of direct predecessor feature maps and yet ensure consistency across 
scales. 

A random seed vector of length 256 enters the first block (“Up 
Conv”), where it is upscaled to a 256× 4× 4 tensor. In Fig. 23, the 
further key blocks of the architecture are “upsample” and “SLE” 
blocks. 

Upsample blocks consist of a nearest-neighbor upsampling fol-
lowed by a 3×3 convolution, batch normalization, and 
nonlinearity. 

SLE blocks (seen in the top right inset in the architecture 
diagram) don’t touch the incoming high-resolution 
input (entering from top into the block) but comprise a 
pooling layer that in each SLE block is set up to yield a



4 ×4 stack of feature maps, followed by a convolution to
reduce to a 1 ×1 tensor, which is then in a 1×1 convo-
lution brought to the same number of channels as the 
high-resolution input. This vector is then multiplied to 
the channels of the high-resolution input. 
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Fig. 24 The FastGAN self-supervision mechanism of the discriminator network. Self-supervision manifests 
through the loss term indicated by the curly bracket between reconstructions from feature maps and 
resampled/cropped versions of the original real image, J recon 

Secondly, the architecture introduces a self-supervision feature 
in the discriminator network. The discriminator network (see 
Fig. 24) is a simple CNN with strided convolutions in each layer, 
halving resolution in each feature map. In the latest (coarsest) 
feature maps, simple up-scaling convolutional networks are 
attached that generate small images, which are then compared in 
loss functions (J recon in Fig. 24) to down-sampled versions of the 
real input image. This self-supervision of the discriminator is only 
performed for real images, not for generated ones. 

The blocks in the figure spell out as follows: 

Down Conv Block consists of two convolutional layers with strided 
4 ×4 convolutions, effectively reducing the res-
olution from 10242 to 2562 . 

Residual Blocks have two sub-items, “Conv Block A” being a 
strided 4×4 convolution to half resolution, 
followed by a padded 3×3 convolution. 
“Conv Block B” consists of a strided 2×2 aver-
age pooling that quarters resolution, followed 
by a 1 ×1 convolution, so that both blocks 
result in identically shaped tensors, which are 
then added.



� ½ ð ð ÞÞ�

4 ×4 convolution without strides or padding, 
so that the incoming 82 feature map is reduced 
to 52 . 

Decoder The decoder networks are four blocks of 
upsampling layers each followed by 3 ×3 
convolutions. 

GANs and Beyond 183

Fig. 25 FastGAN as implemented by the authors has been used to train a CT slice generative model. Images 
are not cherry-picked, but arranged by similar anatomical regions 

Conv Block C consists of a 1 ×1 convolution followed by a 

The losses employed in the model are the discriminator loss 
consisting of the hinge version of the usual GAN loss, with the 
added regularizing reconstruction loss between original real sam-
ples and their reconstruction, and the generator loss plainly being 
JG =z Z D G z . 

The model is easy to train on modest hardware and little data, 
as evidenced by own experiments on a set of about 30 chest CTs 
(about 2500 image slices, converted to RGB). Figure 25 shows 
randomly picked generated example slices, roughly arranged by 
anatomical content. It is to be noted that organs appear mirrored 
in some images. On the other hand, no color artifacts are visible, so 
that the model has learned to produce only gray scale images. 
Training time for 50,000 iterations on a Nvidia TitanX GPU was 
approximately 10 hours.
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Fig. 26 The VQGAN+CLIP combination creates images from text inputs, here: “A 
child drawing of a dark garden full of animals” 

4.5 VQGAN In a recent development, a team of researchers combined techni-
ques for text interpretation with a dictionary of elementary image 
elements feeding into a generative network. The basic architecture 
component that is employed goes back to vector quantization 
variational autoencoders (VQ-VAE), where the latent space is no 
longer allowed to be continuous, but is quantized. This allows to 
use the latent space vectors in a look-up table: the visual elements. 

Figure 26 was created using code available online, which 
demonstrates how images of different visual styles can be created 
using the combination of text-based conditioning and a powerful 
generative network. 

The basis for image generation is the VQGAN (“vector quan-
tization generative adversarial network”) [47], which learns repre-
sentations of input images that can later steer the generative 
process, in an adversarial framework. The conditioning is achieved 
with the CLIP (“Contrastive Image-Language Pretraining”) model 
that learns a discriminator that can judge plausible images for a text 
label or vice versa [48]. 

The architecture has been developed with an observation in 
mind that puts the benefits and drawbacks of convolutional and 
transformer architectures in relation to each other. While the local-
ity bias of convolutional architectures is inappropriate if overall 
structural image relations should be considered, it is of great help 
in capturing textural details that can exist anywhere, like fur, hair, 
pavement, or grass, but where the exact representation of hair

https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ


positions or pavement stones is irrelevant. On the other hand, 
image transformers are known to learn convolutional operators 
implicitly, posing a severe computational burden without a visible 
impact on the results. Therefore, Esser et al. [47] suggest to com-
bine convolutional operators for local detail representation and 
transformer-based components for image structure. 
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Since the VQGAN as a whole is no longer a pure CNN but for a 
crucial component uses a transformer architecture, this model will 
be brought up again briefly in Subheading 5.2. 

The VQGAN architecture is derived from the VQ-VAE (vector 
quantization variational autoencoder) [49], adding a reconstruc-
tion loss through a discriminator, which turns it into a GAN. At the 
core of the architecture is the quantization of estimated codebook 
entries. Among the quantized entries in the codebook, the closest 
entry to the query vector coding, an image patch is determined. 
The found codebook entry is then referred to by its index in the 
codebook. This quantization operation is non-differentiable, so for 
end-to-end training, gradients are simply copied through it during 
backpropagation. 

The transformer can then efficiently learn to predict codebook 
indices from those comprising the current version of the image, and 
the generative part of the architecture, the decoder, produces a new 
version of the image. Learning expressive codebook entries is 
enforced by a perceptual loss that punishes inaccurate local texture, 
etc. Through this, the authors can show that high compression 
levels can be achieved—a prerequisite to enable efficient, yet com-
prehensive, transformer training. 

5 Other Generative Models 

We have already seen how GANs were not the first approach to 
image generation but have prevailed for a time when they became 
computationally feasible and in consequence have been better 
understood and improved to accomplish tasks in image analysis 
and image generation with great success. In parallel with GANs, 
other fundamentally different generative modeling approaches 
have also been under continued development, most of which have 
precursors from the “before-GAN” era as well. To give a compre-
hensive outlook, we will sketch in this last section the state of the art 
of a selection of these approaches.11 

11 The research on the so-called flow-based models, e.g., normalizing flows, has been omitted in this chapter, 
though acknowledging their emerging relevance also in the context of image generation. Flow-based models are 
built from sequences of invertible transformations, so that they learn data distributions explicitly at the expense of 
sometimes higher computational costs due to their sequential architecture. When combined, e.g., with a powerful 
GAN, they allow innovative applications, for example, to steer the exploration of a GAN’s latent space to achieve 
fine-grained control over semantic attributes for conditional image generation. Interested readers are referred to 
the literature [11, 13, 50–52].



186 Markus Wenzel

5.1 Diffusion and 

Score-Based Models 

Diffusion models take a completely different approach to distribu-
tion estimation. GANs implicitly represent the target distribution 
by learning a surrogate distribution. Likelihood-based models like 
VAE approximate the target distribution explicitly, not requiring 
the surrogate. In diffusion models, however, the gradient of the log 
probability density function is estimated, instead of looking at the 
distribution itself (which would be the unfathomable integral of the 
gradient). This value is known as the Stein score function, leading 
to the notion that diffusion models are one variant of score-based 
models [53]. 

The simple idea behind this class of models is to revert a 
sequential noising process. Consider some image. Then, perform 
a large number of steps. In each step, add a small amount of noise 
from a known distribution, e.g., the normal distribution. Do this 
until the result is indistinguishable from random noise. 

The denoising process is then formulated as a latent variable 
model, where T-1 latents successively progress from a noise image 
xT � N ðxT ;0, IÞ to the reconstruction that we call x0� q(x0). The 
reconstructed image, x0, is therefore obtained by a reverse process 
qθ(x0:T). Note that each step in this chain can be evaluated in closed 
form [54]. Several model implementations of this approach exist, 
one being the deep diffusion probabilistic model (DDPM). Here, a 
deep neural network learns to perform one denoising step given the 
so-far achieved image and a t∈{1, . . ., T}. Iterative application of 
the model to the result of the last iteration will eventually yield a 
generated image from noise input. 

Autoregressive diffusion models (ARDMs) [55] follow yet 
another thought model, roughly reminiscent of PixelRNNs we 
have briefly mentioned above (see Subheading 3.2). Both share 
the approach to condition the prediction of the next pixel or pixels 
on the already predicted ones. Other than in the PixelRNN, how-
ever, the specific ARDM proposed by the authors does not rely on a 
predetermined schedule of pixel updates, so that these models can 
be categorized as latent variable models. 

As of late, the general topic of score-based methods, among 
which diffusion models are one variant, received more attention in 
the research community, fueled by a growing body of publications 
that report image synthesis results that outperform GANs [53, 56, 
57]. Score function-based and diffusion models superficially share 
the similar concept of sequentially adding/removing noise but 
achieve their objective with very different means: where score 
function-based approaches are trained by score-matching and 
their sampling process uses Langevin dynamics [58], diffusion 
models are trained using the evidence lower bound (ELBO) and 
sample with a decoder, which is commonly a neural network. 
Figure 27 visualizes an example for a score function. 

Score function-based (sometimes also score-matching) genera-
tive models have been developed to astounding quality levels, and



the recent works of Yang Song and others provide accessible blog 
posts,12 and a comprehensive treatment of the subject in several 
publications [53, 58, 59]. 
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Fig. 27 The Stein score function can be conceived of as the gradient of the log probability density function, 
here indicated by two Gaussians. The arrows represent the score function 

In the work of Ho et al. [54], the stepwise reverse (denoising) 
process is the basis of the denoising diffusion probabilistic models 
(DDPM). The authors emphasize that a proper selection of the 
noise schedule is crucial to fast, yet high-quality, results. They point 
out that their work is a combination of diffusion probabilistic 
models with score-matching models, in this combination also gen-
eralizing and including the ideas of autoregressive denoising mod-
els. In an extension of Ho et al.’s [54] work by Nichol and Dhariwal 
[57], an importance sampling scheme was introduced that lets the 
denoising process steer the most easy to predict next image ele-
ments. Equipped with this new addition, the authors can show that, 
in comparison to GANs, a wider region of the target distribution is 
covered by the generative model. 

5.2 Transformer-

Based Generative 

Models 

The basics of how attention mechanisms and transformer architec-
tures work will be covered in the subsequent chapter on this 
promising technology (Chapter 6). Attention-based models, pre-
dominantly transformers, have been used successfully for some time 
in sequential data processing and are now considered the superior 
alternative to recurrent networks like long-short-term memory 
(LSTM) networks. Transformers have, however, only recently 
made their way into the image analysis and now also the image 
generation world. In this section, we will only highlight some 
developments in the area of generative tasks. 

12 https://yang-song.github.io/blog/.

https://yang-song.github.io/blog/
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Google Brain/Google AI’s 2018 publication on so-called 
image transformers [60], among other tasks, shows successful con-
ditional image generation for low-resolution input images to 
achieve super-resolution output images, and for image inpainting, 
where missing or removed parts of input images are replaced by 
content produced by the image transformer. 

OpenAI have later shown that even unmodified language trans-
formers can succeed to model image data, by dealing in sheer 
compute power for hand modeling of domain knowledge, which 
was the basis for the great success of previous unsupervised image 
generation models. They have trained Image GPT (or iGPT for 
short), a multibillion parameter language transformer model, and it 
excels in several image generation tasks, though only for fairly small 
image sizes [61] 

In the recent past, StyleSwin has been proposed by Microsoft 
Research Asia [62], enabling high-resolution image generation. 
However, the approach uses a block-wise attention window, 
thereby potentially introducing spatial incoherencies at block 
edges, which they have to correct for. 

“Taming transformers” [47], another recent publication 
already mentioned above, uses what the authors call a learned 
template code book of image components, which is combined 
with a vector quantization GAN (VQGAN). The VQGAN is struc-
turally modeled after the VQ-VAE but adds a discriminator net-
work. A transformer model in this architecture composes these 
code book elements and is interrogated by the GAN variational 
latent space, conditioned on a textual input, a label image, or other 
possible inputs. The GAN reconstructs the image from the 
so-quantized latent space using a combination of a perceptual loss 
assessing the overall image structure and a patch-based high-reso-
lution reconstruction loss. By using a sliding attention window 
approach, the authors prevent patch border artifacts known from 
StyleSwin. Conditioning on textual input makes use of parts of the 
CLIP [48] idea (“Contrastive Language-Image Pretraining”), 
where a language model was train in conjunction with an image 
encoder to learn embeddings of text-image pairs, sufficient to solve 
many image understanding tasks with competitive precision, with-
out specific domain adaption. 

It is evidenced by the lineup of institutions that training image 
transformer models successfully is nothing that can be achieved 
with modest hardware or on even a medium-scale image database. 
In particular for the medical area, where data is comparatively 
scarce even under best assumptions, the power of such models 
will only be available in the near future if domain transfer learning 
can be successfully achieved. This, however, is a known strength of 
transformer architectures.
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