
Chapter 5

Generative Adversarial Networks and Other Generative
Models

Markus Wenzel

Abstract

Generative networks are fundamentally different in their aim and methods compared to CNNs for classifi-
cation, segmentation, or object detection. They have initially been meant not to be an image analysis tool
but to produce naturally looking images. The adversarial training paradigm has been proposed to stabilize
generative methods and has proven to be highly successful—though by no means from the first attempt.
This chapter gives a basic introduction into the motivation for generative adversarial networks (GANs)

and traces the path of their success by abstracting the basic task and working mechanism and deriving the
difficulty of early practical approaches. Methods for a more stable training will be shown, as well as typical
signs for poor convergence and their reasons.

Though this chapter focuses on GANs that are meant for image generation and image analysis, the
adversarial training paradigm itself is not specific to images and also generalizes to tasks in image analysis.
Examples of architectures for image semantic segmentation and abnormality detection will be acclaimed,
before contrasting GANs with further generative modeling approaches lately entering the scene. This will
allow a contextualized view on the limits but also benefits of GANs.

Key words Generative models, Generative adversarial networks, GAN, CycleGAN, StyleGAN,
VQGAN, Diffusion models, Deep learning

1 Introduction

Generative adversarial networks are a type of neural network archi-
tecture, in which one network part generates solutions to a task and
another part compares and rates the generated solutions against a
priori known solutions. While at first glimpse this does not sound
much different from any loss function, which essentially also com-
pares a generated solution with the gold standard, there is one
fundamental difference. A loss function is static, but the “judge”
or “discriminator” network part is trainable (Fig. 1). This means
that it can be trained to distinguish the generated from the true
solutions and, as long as it succeeds in its task, a training signal for
the generative part can be derived. This is how the notion of
adversaries came into the name GAN. The discriminator part is

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_5,
© The Author(s) 2023

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_5&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_5#DOI

trained to distinguish true from generated solutions, while the
generative part is trained to arrive at the most realistic-appearing
solutions, making them adversaries with regard to their aims.

140 Markus Wenzel

Fig. 1 The fundamental GAN setup for image generation consisting of a genera-
tor and a discriminator network; here, CNNs

Generative adversarial networks are now among the most pow-
erful tools to create naturally looking images from many domains.
While they have been created in the context of image generation,
the original publication describes the general idea of how to make
two networks learn by competing, regardless of the application
domain. This key idea can be applied to generative tasks beyond
image creation, including text generation, music generation, and
many more.

The research interest skyrocketed in the years after the first
publication proposing an adversarial training paradigm [1]. Look-
ing at the number of web searches for the topic “generative adver-
sarial networks” shows how the interest in the topic has rapidly
grown but also the starting decline of the last years. Authors since
2014 have cast all kinds of problems into the GAN framework, to
enable this powerful training mechanism for a variety of tasks,
including image analysis tasks as well. This is surprising at first,
since there is no immediate similarity between a generative task
and, for example, a segmentation or detection task. Still, as evi-
denced by the success in these application areas, the adversarial
training approach can be applied with benefits. Clearly, the decline
in interest can to some degree be attributed to the emergence of
best practices and proven implementations, while simultaneously
the scientific interest has recently shifted to successor approaches.
However, similar to the persistent relevance of CNN architectures
like ResNets for classification, Mask R-CNNs for detection, or basic
transformer architectures for sequence processing, GANs will

remain an important tool for image creation and image analysis.
The adversarial training paradigm has become an ingredient to
models apart from generative aims, providing flexible ways to -
custom-tailor loss components for given tasks (compare Figs. 2
and 3).

GANs and Beyond 141

Fig. 2 Google web search-based interest estimate for “generative adversarial networks” since 2014. Relative
scale

Fig. 3 Some of the most-starred shared GAN code repositories on Github, until 2018. Ranking within this
selection in brackets

2 Generative Models

Generative processes are fundamentally hard to grasp computation-
ally. Their nature and purpose is to create something “meaningful”
out of something less meaningful (even random). The first question
to ask therefore is how this can even be possible for a computer
program since, intuitively, creation requires an inventive spirit—call
it creativity, to use the term humans tend to associate with this. To
introduce some of the terminology and basic concepts that we will
use in the remainder of this section, some remarks on human
creativity will set the scene.

In fact, creative human acts are inherently limited by our con-
cepts of the world, acquired by learning and experience through the

sensory means we have available, and by the available expressive
means (tools, instruments, . . .) with which we can even conceive of
creating something. This is true for any kind of creative act, includ-
ing writing, painting, wood carving, or any other art, and similarly
also for computer programming, algorithm development, or sci-
ence in general. Our limited internal representation of the world
around us frames our creative scope.

142 Markus Wenzel

This is very comparable to the way computerized, pro-
grammed, or learned generative processes create output. They
have either an in-build mechanism, or a way to acquire such a
mechanism, that represents the tools by which creation is possible,
as well as a model of the world that defines the scope of outputs.
Practically, a CNN-based generative process uses convolutions as
the in-built tool and is by this tool geared to produce image-like
outputs. The convolutional layers, if not a priori defined, will
represent a set of operations defined by a training process and
limited in their expressiveness by the training material—by the
fraction of the world that was presented. This will lead us to the
fundamental notion of how to capture the variability of the “frac-
tion of the world” that is interesting and how to make a neural
network represent this partial world knowledge. It is interesting to
note at this point that neither for human creative artists nor for
neural networks the ability to (re)create convincing results implies
an understanding of the way the templates (in the real world) have
come into existence. Generating convincing artifacts does not
imply understanding nature. Therefore, GANs cannot explain the
parts of nature they are able to generate.

2.1 The Language of

Generative Models:

Distributions, Density

Estimation, and

Estimators

Understanding the principles of generative models requires a basic
knowledge of distributions. The reason is that—as already hinted at
in the previous section—the “fraction of the world” is in fact
something that can be thought of as a distribution in a parameter
space. If you were to describe a part of the world in a computer-
interpretable way, you would define descriptive parameters. To
describe persons, you could characterize them by simple measures
like age, height, weight, hair and eye color, and many more. You
could add blood pressure, heart rate, muscle mass, maximum
strength, and more, and even a whole-genome sequencing result
might be a parameter. Each of the parameters individually can be
collected for the world population, and you will obtain a picture of
how this parameter is “distributed” worldwide. In addition, para-
meters will be in relation with each other, for example, age and
maximum strength. Countless such relationships exist, of which the
majority are and probably will remain unknown. Those interrela-
tionships are called a joint distribution. Would you know the joint
distribution, you could “create” a plausible parameter combination
of a nonexisting human. Let us formalize these thoughts now.

�

d)

GANs and Beyond 143

2.1.1 Distributions A distribution describes the frequency of particular observations
when watching a random process. Plotting the number of occur-
rences over an axis of all possible observations creates a histogram.
If the possible observations can be arranged on a continuous scale,
one can see that observations cluster in certain areas, and we say
that they create a “density” or are “dense” there. Hence, when
trying to describe where densities are in parameter space, this is
associated with the desire to reproduce or sample from distribu-
tions, like we want to do it to generate instances from a domain.
Before being able to reproduce the function that generates obser-
vations, estimating where the dense areas are is required. This will
in the most general sense be called density estimation.

Sometimes, the shape of the distribution follows an analytical
formula, for example, the normal distribution. If such a closed-
form description of the distribution can be given, for instance, the
normal distribution, this distribution generalizes the shape of the
histogram of observations and makes it possible to produce new
observations very easily, by simply sampling from the distribution.
When our observations follow a normal distribution, we mean that
we expect to observe instances more frequently around the mean of
the normal distribution than toward the tails. In addition, the
standard deviation quantifies how much more likely observations
close to the mean are compared to observations in the tails. We
describe our observations with a parametric description of the
observed density.

In the remainder of this section, rather than providing a rigor-
ous mathematical definition and description of the mathematics of
distributions and (probability) density estimation, we will intro-
duce the basic concepts and terminology in an intuitive way (also
compare Box 1). Readers with the wish for a more in-depth treat-
ment can find tutoring material in the references [2–6].

Box 1: Probability Distributions: Terminology

Several common terms regarding distributions have intuitive
interpretations which are given in the following. Let a be an
event from the probability distribution A, written as a�A,
and b B an event from another probability distribution.

In a medical example, A might be the distribution of
possible neurological diseases and B the distribution of all
possible variations of smoking behavior.

Conditional Probability P(A|B) The conditional probability
of a certain a�A, for exam-
ple, a stroke, might depend
on the concrete smoking
history of a person,

(continue

Box 1 (continued)
described by b�B. The
conditional probability is
written as p(a|b) for the
concrete instances or P(A|
B) if talking about the
entire probability distribu-
tions A and B.

Joint Probability P(A, B) The probability of seeing
instantiations of A and
B together is termed the
joint probability. Notably,
if expanded, this will lead
to a large table of probabil-
ities, joining each possible
a�A (e.g., stroke, demen-
tia, Parkinson’s disease,
etc.) with each possible
b�B (casual smoker, fre-
quent smoker, nonsmoker,
etc.).

Marginal Probability The marginal probabilities
of A and B (denoted,
respectively, P(A) and
P(B)) are the probabilities
of each possible outcome
across (and independent
of) all of the possible out-
comes of the other distribu-
tion. For example, it is the
probability of seeing non-
smokers across all neuro-
logical diseases or seeing a
specific disease regardless of
smoking status. It is said to
be the probability of one
distribution marginalized
over the other probability
distributions.

144 Markus Wenzel

2.1.2 Density Estimation We assume in the following that our observations have been pro-
duced by a function or process that is not known to us and that
cannot be guessed from an arrangement of the observations. In a
practical example, the images from a CT or MRI scanner are pro-
duced by such a function. Notably, the concern is less about the
intractability of the imaging physics but about the appearance of the
human body. The imaging physics might be modeled analytically
up to a certain error. But the outer shape and inner structure of the

human body and its organs depend on a large amount of mutually
influencing factors. Some of these factors are known and can even
be modeled, but many are not. In particular, the interdependence
of factors must be assumed to be intractable. What we can accumu-
late is measured data providing information about the body, its
shape, and its function. While many measurement instruments
exist in medicine, for this chapter, we will be concerned with images
as our observations. In the following thought experiment, we will
explore a naı̈ve way to model the distribution and try to generate
images.

GANs and Beyond 145

The first step is to examine the gray value distribution or, in
other words, estimate the density of values. The most basic way for
estimating a density is plotting a histogram. Let the value on the x
axis be the image gray value of the medical image in question (in CT
expressed in Hounsfield units (HU) and in arbitrary units for
MRI). Two plots show histograms of a head MRI (Fig. 4) and an
abdominal CT (Fig. 5). While the brain MRI suggests three or four
major “bumps” of the histogram at about values 25, 450, and
600, the abdominal CT doesn’t lend itself to such a description.

In the next step, we want to describe the histograms through
analytical functions, to make them amenable for computational

Fig. 4 Brain MRI (left) and histogram of gray values for one slice of a brain MRI

2200

2000

1800

1600

1400

1200

C
ou

nt

1000

800

600

400

200

0
0 100 200 300 400 500 600 700 800

Voxel value
900 1000 1100 1200 1300 1400 1500

Fig. 5 Abdominal CT (left) and histogram of gray values for one slice of an abdominal CT

ends. This means we will aim to estimate an analytical description of
the observations.

146 Markus Wenzel

Expectation maximization (EM; see Box 2) is an algorithm
suitable for this task. EM enables us to perform maximum likeli-
hood estimation in the presence of unobserved (“latent) variables
and incomplete data—this being the default assumption when
dealing with real data. Maximum likelihood estimation (MLE) is
the process of finding parameters of a parametric distribution to
most accurately match the distribution to the observations. In
MLE, this is achieved by adapting the parameters steered by an
error metric that indicates the closeness of the fit; in short, a
parameter optimization algorithm.

Box 2: Expectation Maximization—Example
Focusing on our density estimate of the MRI data, we want to
use expectation maximization (EM) to optimize the para-
meters of a fixed number of Gaussian functions adding up to
the closest possible fit to the empirical shape of the histogram.

In our data, we observe “bumps” of the histogram. We
can by image analysis determine that certain organs imaged by
MRI lead to certain bumps in the histogram, since they are of
different material and create different signal intensities. This,
however, is unknown to EM—the so-called “latent” variables.

The EM algorithm has two parts, the expectation step and
the maximization step. They can, with quite far-reaching
omission of details, be sketched as follows:

Expectation takes each point (or a number of sampled
points) of the distribution and estimates the
expectation to which of the parameterized dis-
tribution to assign it to. Figuring out this
assignment is the step of dealing with the
“latent” variable of the observations.

Maximization iterates over all parameterized distributions
and adjusts their parameters to match the
assigned points as well as possible.

This process is iterated until a fitting error cannot be
improved anymore.

A short introductory treatment of EM with examples and
applications is presented in [7]. The standard reference for the
algorithm is [8].

GANs and Beyond 147

0.012

0.010

0.008

0.006

1. Gaussian
2. Gaussian
3. Gaussian
4. Gaussian
Gaussian Mixture

0.004

0.002

0.000
0 250 500 750 1000 1250 1500 1750 2000

Fig. 6 A Gaussian mixture model (GMM) of four Gaussians was fit to the brain MRI data we have visualized as a
histogram in Fig. 4

In Fig. 6, a mixture of four Gaussian distributions has been fit
to the brain MRI voxel value data seen before.

It is tempting to model even more complex observations by
mixing simple analytical distributions (e.g., Gaussian mixture mod-
els (GMMs)), but in general this will be intractable for two reasons.
Firstly, realistic joint distributions will have an abundance of mixed
maxima and therefore require a vast number of basic distributions
to fit. Even basic normal distributions in high-dimensional param-
eter spaces are no longer functions with two parameters (μ, σ), but
with a vector of means and a covariance matrix. Secondly, it is no
longer trivial to sample from such high-dimensional joint distribu-
tions, and while some methods, among others Markov chain
Monte Carlo methods, allow to sample from them, such numerical
approaches are of such high computational complexity that it makes
their use difficult in the context of deep neural network parameter
estimation.

We will learn about alternatives. In principle, there are different
approaches for density (distribution) estimation, direct distribution
estimation, distribution approximation, or even more indirectly, by

using a simple surrogate distribution that is made to resemble the
unknown distribution as good as possible through a mapping
function. We will see this in the further elaboration of generative
modeling approaches.

148 Markus Wenzel

2.1.3 Estimators and the

Expected Value

Assume we have found suitable mean values and standard devia-
tions for three normal distributions that together approximate the
shape of the MRI data density estimate to our satisfaction. Such a
combination of normal (Gaussian) distributions is called a Gaussian
mixture model (GMM), and sampling from such a GMM is
straightforward. We are thus able to sample single pixels in any
number, and over time we will sample them such that their density
estimate or histogram will look similar to the one we started with.

However, if we want to generate a brain MRI image using a
sampling process from our closed-form GMM representation of the
distribution, we will notice that a very important notion wasn’t
respected in our approach. We start with one slice of 512×512
voxels and therefore randomly draw the required number of voxel
values from the distribution. However, this will not yield an image
that resembles one slice of a brain MRI, but will almost look like
random noise, because we did not model the spatial relation of the
gray values with respect to each other. Since the majority of voxels
of a brain MRI are not independent of each other, drawing one new
voxel from the distribution needs to depend on the spatial locations
and gray values of all voxels drawn before. Neighboring voxels will
have a higher likelihood of similar gray values than voxels far apart
from each other, for example. More crucially, underneath the inter-
dependence lies the image generation process: the image values
observed in a real brain MRI stem from actual tissue—and this is
what defines their interdependence. This means the anatomy of the
brain indirectly reflects itself in the rules describing the dependency
of gray values of one another.

For the modeling process, this implies that we cannot argue
about single-voxel values and their likelihood, but we need to
approach the generative process differently. One idea for a genera-
tive process has been implied in the above description already: pick
a random location of the to-be-generated image and predict the
gray value depending on all existing voxel values. Implemented
with the method of mixture models, this results in unfathomably
many distributions to be estimated, as for each possible “next
voxel” location, any possible combination of already existing
voxel numbers and positions needs to be considered. We will see
in Subheading 5.1 on diffusion models how this general approach
to image generation can still be made to work.

A different sequential approach to image generation has also
been attempted, in which pixels are generated in a defined order,
starting at the top left and scanning the image row by row across
the columns. Again, the knowledge about the already produced

pixels is memorized and used to predict the next voxel. This has
been dubbed the PixelRNN (Pixel Recurrent Neural Network),
which lends its general idea from text processing networks [9].

GANs and Beyond 149

Lastly, a direct approach to image generation could be formu-
lated by representing or approximating the full joint distribution of
all voxels in one distribution that is tangible and to sample all voxels
at once from this. The full joint distribution in this approach
remains implicit, and we use a surrogate. This will actually be the
approach implemented in GANs, though not in a naı̈ve way.

Running the numbers of what a likelihood-based naı̈ve
approach implies, the difficulties of making it work will become
obvious. Consider an MRI image as the joint distribution of
512×512 voxels (one slice of our brain MRI), where we approxi-
mated the gray value distribution of one voxel with a GMM with six
parameters. This results in a joint distribution of 512×512×6=1,
572, 864 parameters. Conceptually, this representation therefore
spans a 1,572,864-dimensional space, in which every one brain
MRI slice will be one data point. Referring back to the histograms
of CT and MRI images in the figures above, we have seen continu-
ous lines with densities because we have collected all voxels of an
entire medical image, which are many million. Still, we only covered
one single dimension out of the roughly 1.5 million. Searching for
the density in the 1,572,864-dimensional MRI-slice-space that is
given by all collected brain MRI slices is the difficult task any
generative algorithm has to solve. In this vastly large space, the
brain MRI slices “live” in a very tiny region that is extremely hard to
find. We say the images occupy a low-dimensional manifold within
the high-dimensional space.

Consider the maximum likelihood formulation

θ̂ = argmax
θ

x�Pdata
logQ θðxjθÞ ð1Þ

where Pdata is the unknown data distribution and Qθ the distribu-
tion generated by the model which is parameterized by θ. θ can, for
example, be the weights and biases of a deep neural network.1 In
other words, the result of maximum likelihood estimation is para-
meters θ̂ so that the product of two terms, out of which only the
second depends on the choice of θ, is maximal. The first term is the
expectation of x with regard to the real data distribution. The
second term is the (log of) the conditional probability (likelihood)
of seeing the example x given the choice of θ under the model Qθ.
Hence, maximizing the likelihood function means maximizing the
probability that x is seen in Qθ, which will be the case when
Q matches P as closely as possible given the parametric form of Q.

1 We will use θ when referring to parameters of models in general but designate parameters of neural networks
with w in accordance with literature.

150 Markus Wenzel

The maximum likelihood mechanism is very nicely illustrated in
[10]. Here, it is also visually shown how finding the maximum
likelihood estimate of parameters of the distribution can be done
by working with partial derivatives of the likelihood function with
respect to μ and σ2 and seeking their extrema. The partial deriva-
tives are called the score function and will make a reappearance
when we discuss score-based and diffusion models later in Sub-
heading 5.1 on advanced generative models.

2.1.4 Sampling from

Distributions

When a distribution is a model of how observed values occur, then
sampling from this distribution is the process of generating random
new values that could have been observed, with a probability similar
to the probability to observe this value in reality. There are two
basic approaches to sampling from distributions: generating a ran-
dom number from the uniform distribution (this is what a random
number generator is always doing underneath) and feeding this
number through the inverse cumulative density function (iCDF)
of the distribution, which is the function that integrates the proba-
bility density function (PDF) of the distribution. This can only be
achieved if the CDF is given in closed form. If it is not, the second
approach to sampling can be used, which is called acceptance
(or rejection) sampling. With f being the PDF, two random num-
bers x and y are drawn from the uniform distribution. The random
x is accepted, if f(x)> y, and rejected otherwise.

Our use case, as we have seen, involves not only high-
dimensional (multivariate) distributions but even more their joints,
and they are not given in closed form. In such scenarios, sampling
can be done still, using Markov chain Monte Carlo (MCMC)
sampling, which is a framework using rejection sampling with
added mechanisms to increase efficiency. While MCMC has favor-
able theoretic properties, it is still computationally very demanding
for complex joint distributions, which leads to important difficul-
ties in the context of sampling from distributions we are facing in
the domain of image analysis and generation.

We are therefore at this point facing two problems: we can
hardly hope to be able to estimate the density, and even if we
could, we could practically not sample from it.

3 Generative Adversarial Networks

3.1 Generative vs.

Discriminative Models

To emphasize the difficulty that generative models are facing, com-
pare them to discriminative models. Discriminative models solve
tasks like classification, detection, and segmentation, to name some
of the most prominent examples. How classification models are in
the class of discriminative models is obvious: discriminating exam-
ples is exactly classifying them. Detection models are also discrimi-
native models, though in a broader sense, in that they classify the

detection proposals into accepted object detections or rejected
proposals, and even the bounding box estimation, which is often
solved through bounding box regression, typically involves the
discriminative prediction of template boxes. Segmentation, on the
other hand, for example, using a U-Net, is only the extension of
classic discriminative approaches into a fast framework that avoids
pixel-wise inference through the model. It is common to all these
models that they yield output corresponding to their input, in the
sense that they extract information from the input image (e.g., an
organ segmentation, a classification, or even a textual description of
the image content) or infer additional knowledge about it (e.g., a
volume measurement or an assessment or prediction of a treatment
success given the appearance of the image).

GANs and Beyond 151

Generative models are fundamentally different, in that they
generate output potentially without any concrete input, out of
randomness. Still, they are supposed to generate output that con-
forms to certain criteria. In the most general form and intuitive
formulation, their output should “look natural.” We want to fur-
ther formalize the difference between the models in the following
by using the perspective of distributions again. Figure 7 shows how
discriminative and generative models have to construct differently
complex boundaries in the representation space of the domain to
accomplish their tasks.

Discriminative models take one example and map it to a label—
e.g., the class. This is also true for segmentation models: they do
this for each image voxel. The conceptual process is that the model
has to estimate the probabilities that the example (or the voxel)
comes from the distribution of the different available classes. The
distributions of all possible appearances of objects of all classes do

Fig. 7 The discriminative task compared to the generative task. Discriminative models only need to find the
separating line between classes, while generative models need to delineate the part of space covering the
classes (figure inspired by: https://developers.google.com/machine-learning/gan/generative)

https://developers.google.com/machine-learning/gan/generative

not need to be modeled analytically for this to be successful. It is
only important to know them locally—for example, it is sufficient
to delineate their borders or overlaps with other distributions of
other classes, but not all boundaries are important.

152 Markus Wenzel

Generative models, on the other hand, are tasked to produce an
example that is within a desired distribution. For this to work, the
network has to learn the complete shape of this distribution. This is
immensely complex, since all domains of practical importance in
medical imaging are extremely high-dimensional and the distribu-
tions defining examples of interest within these domains are very
small and hard to find. Also, they are neither analytically given nor
normally distributed in their multidimensional space. But they have
as many parameters as the output image of interest has voxels.

As already remarked, different other approaches were devised
to generate output before GANs entered the scene. Among the
trainable ones, approaches comprised (restricted) Boltzmann
machines, deep belief networks, or generative stochastic networks,
variational autoencoders, and others. Some of them involved feed-
back loops in the inference process (the prediction of a generated
example) and were therefore unstable to train using
backpropagation.

This was solved with the adversarial net framework proposed in
2014 by Goodfellow et al. [1]. They tried to solve the downsides
like computational intractability or instability of such previous gen-
erative models by introducing the adversarial training framework.

To understand how GANs relate to one of the closest prede-
cessors, the variational autoencoder, we will review their basic
layout next. We will learn how elegantly the GAN paradigm turns
the previously unsupervised approach to generative modeling into a
supervised one, with the benefit of much more control over the
training process.

3.2 Before GANs:

Variational

Autoencoders

Generative adversarial networks (GANs) haven’t been the first or
only attempt at generating realistically looking images (or any type
of output, generally speaking). Apart from GANs, a related neural
network-based approach to generative modeling is the variational
autoencoder, which will be treated in more details below. Among
other generative models with different approaches are as follows:

Flow-based models This category of generative models attempt
to model the data-generating distribution
explicitly through an iterative process
known as the normalizing flow [11], in
which through repeated changes of variables
a sequence of differentiable basis distribu-
tions is stacked to model the target distribu-
tion. The process is fully invertible, yielding
models with desirable properties, since an

analytical solution to the data-generating dis-

GANs and Beyond 153

tribution allows to directly estimate densities
to predict the likelihood of future events,
impute missing data points, and of course
generate new samples. Flow-based models
are computation-intensive. They can be cate-
gorized as a method that returns an explicit,
tractable density. Another method in this
category is, for example, the PixelRNN [9]
or the PixelCNN [12] which also serves for
conditional image generation. RealNVP [13]
also uses a chain of invertible functions.

Boltzmann machines work fundamentally differently. They also
return explicit densities but this time only
approximate the true target distribution. In
this regard, they are similar to variational
autoencoders, though their method is based
on Markov chains, and not a variational
approach. Deep Boltzmann machines have
been proposed already in 2009, uniting a
Markov chain-based loss component with a
maximum likelihood-based component and
showing good results on, at that time, highly
complex datasets. [14] Boltzmann machines
are very attractive but harder to train and use
than other comparably powerful alternatives
that exist today. This might change with
future research, however.

Variational autoencoders (VAE) are a follow-up development
of plain autoencoders, autoregressive models that in their essence
try to reconstruct their input after transforming it, usually into a
low-dimensional representation (see Fig. 8). This low-dimensional

Fig. 8 Schematic of an autoencoder network. The encoder, for images, for
example, a CNN with a number of convolutional and pooling layers, condenses
the defining information of the input image into the variables of the latent space.
The decoder, again convolutions, but this time with upsampling layers, recreates
a representation in image space. Input and output images are compared in the
loss function, which drives the gradient descent

representation is often termed the “latent space,” implying that
here hidden traits of the data-generating process are coded, which
are essential to the reconstruction process. This is very akin to the
latent variables estimated by EM. In the autoencoder, the encoder
will learn to code its input in terms of these latent variables, while
the decoder will learn to represent them again in the source
domain. In the following, we will be discussing the application to
images though, in principle, both autoencoders and their varia-
tional variant are general mechanisms working for any domain.

154 Markus Wenzel

We will later be interested in a behind-the-scene understanding
of their modeling approach, which will be related to the employed
loss function. We will then look at VAEs more extensively from the
same vantage point: to understand their loss function—which is
closest to the loss formulation of early GANs, the Kullback-Leibler
divergence or KL divergence, DKL.

With this tool in hand, we will examine how to optimize (train)
a network with regard to KL divergence as the loss and understand
key problems with this particular loss function. This will lead us to
the motivation for a more powerful alternative.

3.2.1 From AE to VAE VAEs are an interesting subject to study to emphasize the limits a
loss function like KL divergence may place on a model. We will
begin with a recourse to plain autoencoders to introduce the con-
cept of learning a latent representation. We will then proceed to
modify the autoencoder into a variational formulation which brings
about the switch to a divergence measure as a loss function. From
these grounds, we will then show how GANs again modified the
loss function to succeed in high-quality image generation.

Figure 8 shows the schematic of a plain autoencoder (AE). As
indicated in the sketch, input and output are of potentially very
high dimensionality, like images. In between the encoder and
decoder networks lies a “bottleneck” representation, which is, for
example, a convolutional layer of orders of magnitude lower
dimensionality (represented, for example, by a convolutional layer
with only a few channels or a dense layer with a given low number
of weights), which forces the network to find an encoding that
preserves all information required for reconstruction.

A typical loss function to use when training the autoencoder is,
for example, cross entropy, which is applicable for sigmoid activa-
tion functions, or simply the mean squared error (MSE). Any loss
shall essentially force the AE to learn the identity function between
input and output.

Let us introduce the notation for this. Let X be the input image
tensor and X′ the output image tensor. With fw being the encoder
function given as a neural network parameterized by weights and
biases w and gv the decoder function parameterized by v, the loss
hence works to make X=X′= gv(fw(X)).

ð j Þ

GANs and Beyond 155

In a variational autoencoder,2 things work differently. Auto-
encoders like before use a fixed (deterministic) latent code to map
the input to, while variational autoencoders will replace this with a
distribution. We can call this distribution pw, indicating the param-
eterization by w. It is crucial to understand that a choice was made
here that imposes conditions on the latent code. It is meant to
represent the input data in a variational way: in a way following
Bayes’ laws. Our mapping of the input image tensor X to the latent
variable z is by this choice defined by

• The prior probability pw(z)

• The likelihood (conditional probability) pw(X|z)

• The posterior probability pw(z|X)

Therefore, once we have obtained the correct parameters ŵ by
training the VAE, we can produce a new output X′ by sampling a
z(i) from the prior probability pŵðzÞ and then generate the example
from the conditional probability through X ðiÞ = pŵ X z= zðiÞ .

Obtaining the optimal parameters, however, isn’t possible
directly. The searched optimal parameters are those that maximize
the probability that the generated example X′ looks real. This
probability can be rewritten as the aggregated conditional
probabilities:

pwðX ðiÞÞ= pwðX ðiÞjzÞpwðzÞdz:

This, however, does not make the search any easier since we
need to enumerate and sum up all z. Therefore, an approximation is
made through a surrogate distribution, parameterized by another
set of parameters, qv . Weng [15] shows in her explanation of the
VAE the graphical model highlighting how qv is a stand-in for the
unknown searched pw (see Fig. 9).

The reason to introduce this surrogate distribution actually
comes from our wish to train neural networks for the decoding/
encoding functions, and this requires us to back-propagate through
the random variable, z, which of course cannot be done. Instead, if
we have control over the distribution, we can select it such that the
reparameterization trick can be employed. We define qv to be a
multivariate Gaussian distribution with means and a covariance
matrix that can be learned and a stochastic element multiplied to
the covariance matrix for sampling [15, 16]. With this, we can back-
propagate through the sampling process.

2 Though variational autoencoders are in general not necessarily neural networks, in our context, we restrict
ourselves to this implementation and stick to the notation with parameters w and v, where in many publications
they are denoted θ and ϕ.

156 Markus Wenzel

Fig. 9 The graphical model of the variational autoencoder. In a VAE, the variational decoder is pw(X|z), while
the variational encoder is qv(z|X) (Figure after [15])

At this point, the two distributions need to be made to match:
qv should be as similar to pw as possible. Measuring their similarity
can be done in a variety of ways, of which Kulback-Leibler diver-
gence (KL divergence or KLD) is one.

3.2.2 KL Divergence A divergence can be thought of as an asymmetric distance function
between two probability distributions, P and Q, measuring the
similarity between them. It is a statistical distance which is not
symmetric, which means it will not yield the same value if measured
from P to Q or the other way around:

DKLðPkQ Þ≠DKLðQ kPÞ

This can be seen when looking at the definition of KL
divergence:

DKLðPkQ Þ=
x
PðxÞ log PðxÞ

Q ðxÞ ð2Þ

Sometimes, the measure DKL is also called the relative entropy
or information gain of P over Q, which also indicates the
asymmetry.

To give the two distributions more meaning, let us associate
them with a use case. P is usually the probability distribution of the
example data, which can be our real images we wish to model, and
is assumed to be unknown and high-dimensional. Q, on the other
hand, is the modeled distribution, for example, parameterized by θ,
similar to Eq. 1. Hence, Q is the distribution we can play with
(in our case, optimize its parameters) to make them more similar to
P. This means Q will get more informative with respect to the true
P when we approach the optimal parameters.

GANs and Beyond 157

Box 3: Example: Calculating DKL

When comparing the two distributions given in Fig. 10, the
calculation of the Kullback-Leibler divergence, DKL, can
explicitly be given by reading off the y values of the nine
elements (columns) from Fig. 11 and inserting them into
Eq. 2.

The result of this calculation is for

DKLðPkQ Þ=
x
PðxÞ log PðxÞ

Q ðxÞ

=0:02 � log
:02
:01

þ 0:04 � log
:04
:12

þ � � � þ 0:02 � log
:02
:022

=0:004- 0:01 þ � � �- 0:0002

=0:0801

which we call “forward KL” as it calculates in the direction
from the actual distribution P to the model distribution Q and
for

DKLðQ kPÞ =
x
Q ðxÞ log Q ðxÞ

PðxÞ

=0:01 � log
0:01
0:02

þ 0:12 � log
0:12
0:04

þ � � � þ 0:022 � log
0:022
0:02

= -0:002-0:05þ � � � þ 0:0002
=0:0899

which we call “reverse KL.”

Note that in the example in Box 3, there is both a P(X= xi) and
Q(X= xi) for each i∈{0, 1, . . ., 8}. This is crucial for KL divergence
to work as a loss function.

3.2.3 Optimizing the KL

Divergence

Examine what happens in forward and reverse KL if this condition
is not satisfied for some i. If in forward KL P has values everywhere
but Q has not (or extremely small values), the quotient in the log

Fig. 10 Two distributions P and Q, here scaled to identical height

function will tend to infinity by means of the division by almost
zero, and the term will be very large.

158 Markus Wenzel

Fig. 11 The distributions P and Q, scaled to unit density, with added labels

Fig. 12 The distributions P (solid) and Qθ (dashed), in the initial configuration and after minimizing reverse KL
DKL(Qθ|P). This time, in the initial configuration, Qθ has values greater than 0 where P has not (marked with
green shading)

In Fig. 12, we assume Qθ to be a unimodal normal distribution,
i.e., a Gaussian, while P is any empirical distribution. In the left
plots of the figure, we show a situation before minimizing the
forward/reverse KL divergence between P and Qθ, in the right
plots, the resulting shape of the Gaussian after minimization.

When in the minimization of forward KL DKL(P|Qθ) Qθ is zero
where P has values greater zero, KL goes to infinity in these regions
(marked area in the start configuration of the top row in Fig. 12),
since the denominator in the log function goes to zero. This, in
turn, drives the parameters of Qθ to broaden the Gaussian to cover
these areas, thereby removing the large loss contributions. This is
known as the mean-seeking behavior of forward KL.

Conversely, in reverse KL (bottom row in Fig. 12), in the
marked areas of the initial configuration, P is zero in regions
where Qθ has values greater than zero. This yields high-loss

contributions from the log denominator, in this case driving the
Gaussian to remove these areas from Qθ. Since we assumed a
unimodal Gaussian Q, the minimization will focus on the largest
mode of the unknown P. This is known as the mode-seeking behav-
ior of reverse KL.

GANs and Beyond 159

Forward KL tends to overestimate the target distribution,
which is exaggerated in the right plot in Fig. 12. In contrast, reverse
KL tends to underestimate the target distribution, for example, by
dropping some of its modes. Since underestimation is the more
desirable property in practical settings, reverse KL is the loss func-
tion of choice, for example, in variational autoencoders. The down-
side is that as soon as target distribution P and model distribution
Qθ have no overlap, KL divergence evaluates to infinity and is
therefore uninformative. One countermeasure to take is to add
noise to Qθ, so that there is guaranteed overlap. This noise, how-
ever, is not desirable in the model distribution Qθ since it disturbs
the generated output.

Another way to remedy the problem of KL going to infinity is
to adjust the calculation of the divergence, which is done in Jensen-
Shannon divergence (JS divergence, DJS) defined as

DJS =
1
2
ðDKLðPkM Þ þ DKLðQ θkM ÞÞ, ð3Þ

where M = PþQ θ
2 . In the case of nonoverlapping P and Qθ, this

evaluates to constant log 2, which is still not providing information
about the closeness but is computationally much friendlier and does
not require the addition of a noise term to achieve numerical
stability.

3.2.4 The Limits of VAE In the VAE, reverse KL is used. Our optimization goal is maximiz-
ing the likelihood to produce realistic looking examples—ones with
a high pw(x). Simultaneously, we want to minimize the difference
between the real and estimated posterior distributions qv and pw .
This can only be achieved through a reformulation of reverse KL
[15]. After some rearranging of reverse KL, the loss of the varia-
tional autoencoder becomes

LVAEðw, vÞ = - log pwðX Þ þ DKLðqvðzjX ÞkpwðzjX ÞÞ
= -z�qvðzjX Þ log pwðX jzÞ þ DKLðqvðzjX ÞkpwðzÞÞ

ð4Þ
ŵ and v̂ are the parameters maximizing the loss.

We have seen how mode-seeking reverse KL divergence limits
the generative capacity of variational autoencoders through the
potential underrepresentation of all modes of the original
distribution.

160 Markus Wenzel

KL divergence and minimizing the ELBO also have a second
fundamental downside: there is no way to find out how close our
solution is to the obtainable optimum. We measure the similarity to
the target distribution up to the KL divergence, but since the true
pŵð:Þ is unknown, the stopping criterion in the optimization has to
be set by another metric, e.g., to a maximum number of iterations
or corresponding to an improvement of the loss below some ε.

The original presentation of the variational autoencoder was
given as one example of the general framework called the autoen-
coding variational Bayes. This publication presented the above
ideas in a thorough mathematical formulation, starting from a
directed graphical model that poses the abstract problem. The
authors also develop the seminal “reparameterization trick” to
make the loss formulation differentiable and with this to make the
search for the autoencoder parameters amenable to gradient
descent optimizers [16]. The details are beyond this introductory
treatment.

3.3 The Fundamental

GAN Approach

At the core of the adversarial training paradigm is the idea to create
two players competing in a minimax game. In such games, both
players have access to the same variables but have opposing goals, so
that they will manipulate the variables in different directions.

Referring to Fig. 13, we can see the generative part in orange
color, where random numbers are drawn from the latent space and,
one by one, converted into a set of “fake images” by the generator

Fig. 13 Schematic of a GAN network. Generator (orange) creates fake images based on random numbers
drawn from a latent space. These together with a random sample of real images are fed into the discriminator
(blue, right). The discriminator looks at the batch of real/fake images and tries to assign the correct label (“0”
for fake, “1” for real)

ð ð ð ÞÞÞ

network, in the figure implemented by a CNN. Simultaneously,
from a database of real images, a matching number of examples are
randomly drawn. The real and fake images are composed into one
batch of images which are fed into the discriminator. On the right
side, the discriminator CNN is indicated in blue. It takes the batch
of real and fake images and decides for each if it appears real
(yielding a value close to “1”) or fake (“0”).

GANs and Beyond 161

The error signal is computed from the number of correct
assignments the discriminator can do on the batch of generated
and real images. Both the generator and the discriminator can then
update their parameters based on this same error signal. Crucially,
the generator has the aim to maximize the error, since this signifies
that it has successfully fooled the discriminator into taking the fake
images for real, while the discriminator weights are updated to
minimize the same error, indicating its success in telling true and
fake examples apart. This is the core of the competitive game
between generator and discriminator.

Let us introduce some abbreviations to designate GAN com-
ponents. We will denote the generator and discriminator networks
with G and D, respectively. The objective of GAN training is a game
between generator and discriminator, where both affect a common
loss function J, but in opposed directions. Formally, this can be
written as

min
G

max
D

J ðG,DÞ,

with the GAN objective function

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ� ð5Þ
D will attempt to maximize J by maximizing the probability to
assign the correct labels to real and generated examples: this is the
case if D(x)=1, maximizing the first loss component, and if
D(G(z))=0, maximizing the second loss component. The genera-
tor G, instead, will attempt to generate realistic examples that the
discriminator labels with “1,” which corresponds to a minimization
of log 1-D G z .

3.4 Why Early GANs

Were Hard to Train

GANs with this training objective implicitly use JS divergence for
the loss, which can be seen by examining the GAN training objec-
tive. Consider the ideal discriminator D for a fixed generator. Its
loss is minimal for the optimal discriminator given by [1]

D̂ðxÞ=
pdataðxÞ

pdataðxÞ þ pGðxÞ
: ð6Þ

Substituting D̂ in Eq. 5 yields (without proof) the implicit use
of the Jensen-Shannon divergence if the above training objective is
employed:

ð ð ð ÞÞÞ

162 Markus Wenzel

J ðG, D̂Þ=2DJSðpdatakpGÞ- log 4: ð7Þ
This theoretical result shows that a minimum in the GAN

training can be found when the Jensen-Shannon divergence is
zero. This is achieved for identical probability distributions pdata
and pG or, equivalently, when the generator perfectly matches the
data distribution [17].

Unfortunately, it also shows that this loss is, like KL divergence,
only helpful when target distribution (i.e., data distribution) and
model distribution have overlapping support. Therefore, added
noise can be required to approximate the target distribution. In
addition, the training criterion saturates if the discriminator in the
early phase of training perfectly distinguishes between fake and real
examples. The generator will therefore no longer obtain a helpful
gradient to update its weights. An approach thought to prevent this
was proposed by Goodfellow et al. [1]. The generator loss was
turned from the minimization problem into a maximization prob-
lem that has the same fixed point in the overall minimax game but
prevents saturation: instead of minimizing logð1-DðGðzÞÞÞ, one
maximizes log D G z [1].

3.5 Improving GANs GAN training has quickly become notorious for the difficulties it
posed upon the researchers attempting to apply the mechanism to
real-world problems. We have qualitatively attributed a part of these
problems to the inherently difficult task of density estimation and
motivated the intuition that while fewer samples might suffice to
learn a decision boundary in a discriminative task, many more
examples are required to build a powerful generative model.

In the following, some more light shall be shed on the reasons
why GAN training might fail. Typical GAN problems comprise the
following:

Mode dropping is the phenomenon in forward KL caused by
regions of the data distribution not being
covered by the generator distribution, which
implies large probabilities of samples coming
from Pdata and very small probabilities of ori-
ginating from PG. This drives forward KL
toward infinity and punishes the generator
for not covering the entire data distribution
[18]. If all modes but one are dropped, one
can call this mode collapse: the generator only
generates examples from one mode of the
distribution.

Poor convergence can be caused by a discriminator learning to
distinguish real and fake examples very early—
which is also very likely to happen throughout
the GAN training. This is rooted in the

observation that by the generative process

GANs and Beyond 163

that projects from a low-dimensional latent
space into the high-dimensional pG, the sam-
ples in pG are not close to each other but
rather inhabit “islands” [18]. The discrimina-
tor can learn to find them and thereby differ-
entiate between true and false samples easily,
which causes the gradients driving generator
optimization to vanish [17].

Poor sample quality despite a high log likelihood of the model is a
consequence of the practical independence of
sample quality and model log likelihood.
Theis et al. [19] show that neither does a
high log likelihood imply generated sample
fidelity nor do visually pleasing samples
imply a high log likelihood. Therefore, train-
ing a GAN with a loss function that effectively
implements maximizing a log likelihood term
is not an ideal choice—but exactly corre-
sponds to KL minimization.

Unstable training is a consequence of reformulating the genera-
tor loss into maximizing logDðGðzÞÞ. It can
be shown [18] that this choice effectively
makes the generator struggle between a
reverse KL divergence favoring mode-seeking
behavior and a negative JS divergence actually
driving the generator into examples different
from the real data distribution.

There have been many subsequent authors touching these
topics, but already Arjovsky and Bottou [18] have shown best
practices of how to overcome these problems.

Among the solutions proposed for GAN improvements are
some that prevent the generator from producing only too similar
samples in one batch, some that keep the discriminator insecure
about the true labels of real and fake examples, and more, which
Creswell et al. [17] have summarized in their GAN overview. A
collection of best practices compiled from these sources is pre-
sented in Box 4. It is almost impossible to write a cookbook for
successful, converging, stable GAN training. For almost every tip,
there is a caveat or situation where it cannot be applied. The
suggestions below therefore are to be taken with a grain of salt
but have been used by many authors successfully.

164 Markus Wenzel

Box 4: Best Practices for Stable GAN Training

General measures. GAN training is sensitive to hyperpara-
meters, most importantly the learning rate. Mode collapse
might already be mitigated by a lower learning rate. Also,
different learning rates for generator and discriminator
might help. Other typical measures are batch normalization
(or instance normalization in case of small batch sizes; mind
however that batch normalization can taint the randomness of
latent vector sampling and in general should not be used in
combination with certain GAN loss functions), use of trans-
posed convolutions instead of parameter-free upsampling,
and strided convolutions instead of down-sampling.

Feature matching. One typical observation is that nei-
ther discriminator nor generator converges. They play their
“cat-and-mouse” game too effectively. The generator pro-
duces a good image, but the discriminator learns to figure it
out, and the generator shifts to another good image, and
so on.

A remedy for this is feature matching, where the ℓ2 dis-
tance between the average feature vectors of real and fake
examples is computed instead of a cross-entropy loss on the
logits. Because per batch the feature vectors change slightly,
this introduces randomness that helps to prevent discrimina-
tor overconfidence.

Minibatch discrimination. When the generator only
produces very convincing but extremely similar images, this
is an indication for mode collapse.

This can be counteracted by calculating a similarity metric
between generated samples and penalizing the generator for
too little variation. Minibatch discrimination is considered to
be superior in performance to feature matching.

One-sided label smoothing. Deep classification models
often suffer from overconfidence, focusing on only very few
features to classify an image. If this happens in a GAN, the
generator might figure this out and only produce the feature
the discriminator uses to decide for a real example.

A simple measure to counteract this is to provide not a
“1” as a label for the real images in the batch but a lower
value. This way, the discriminator is penalized for overconfi-
dence (when it returns a value close to “1”).

Cost function selection. Several sources list possible
GAN cost functions. Randomly trying them one by one
might work, but often some of the above measures, in partic-
ular learning rate and hyperparameter tuning, might be more
successful first steps.

GANs and Beyond 165

Besides these methods, one area of discussion concerned the
question if there is a need of balancing discriminator and generator
learning and convergence at all. The argument was that a converged
discriminator will as well yield a training signal to the generator as a
non-converged discriminator. Practically, however, many authors
described carefully designed update schedules, e.g., updating the
generator once per a given number of discriminator updates.

Many more ideas exist: weight updating in the generator using
an exponential moving average of previous weights to avoid “for-
getting,” different regularization and conditioning techniques, and
injecting randomness into generator layers anew. Some we will
encounter later, as they have proven to be useful in more recent
GAN architectures.

Despite the recent advances in stabilizing GAN training, even
the basic method described so far, with the improvements made in
the seminal DCGAN publication [20], finds application until
today, e.g., for the de novo generation of PET color images
[21]. The usefulness of an approach as presented in their publica-
tion might be doubted, since the native PET data is obviously not
colored. The authors use 2D histograms of the three-color channel
combinations to compare true and fake examples. As we have
discussed earlier, this is likely a poor metric since it does not allow
insights into the high-dimension joint probability distribution
underlying the data-generating process. Figure 14 shows an exam-
ple comparison of some generated examples compared to original
PET images.

Fig. 14 PET images generated from random noise using a DCGAN architecture. Image taken from [21]
(CC-BY4.0)

166 Markus Wenzel

To address many of the GAN training dilemmas, Arjovsky and
Bottou [18] have proposed to employ the Wasserstein distance as a
replacement for KL or JS divergence already in their examination of
the root causes of poor GAN training results and have later
extended this into their widely anticipated approach we will focus
on next [22, 23]. We will also see more involved and recent
approaches to stabilize and speed up GAN training in later sections
of this chapter (Subheading 4).

3.6 Wasserstein

GANs

Wasserstein GANs were appealing to the deep learning and GAN
scene very quickly after Arjovsky et al.’s [22] seminal publication
because of a number of traits their inventors claimed they’d have.
For one, Wasserstein GANs are based on the theoretical idea that
the change of the loss function to the Wasserstein distance should
lead to improved results. This combined with the reported bench-
mark performance would already justify attention. But Wasserstein
GANs additionally were reported to train much more stably,
because, as opposed to previous GANs, the discriminator would
be trained to convergence in every iteration, instead of demanding
a carefully and heuristically found update schedule for generator
and discriminator. In addition, the loss was directly reported to
correlate with visual quality of generated results, instead of being
essentially meaningless in a minimax game.

Wasserstein GANs are therefore worth an in-depth treatment in
the following sections.

3.6.1 The Wasserstein

(Earthmover) Distance

The Wasserstein distance figuratively measures how, with an opti-
mal transport plan, mass can be moved from one configuration to
another configuration with minimal work. Think, for example, of
heaps of earth. Figure 15 shows two heaps of earth, P and
Q (discrete probability distributions), both containing the same
amount of earth in total, but in different concrete states x and
y out of all possible states.

Work is defined as the shovelfuls of earth times the distance it is
moved. In the three rows of the figure, earth is moved (only within
one of P or Q, not from one to the other), in order to make the
configuration identical. First, one shovelful of earth is moved one
pile further, which adds one to the Wasserstein distance. Then, two
shovelfuls are moved three piles, adding six to the final Wasserstein
distance of DW=7.

Note that in an alternative plan, it would have been possible to
move two shovelfuls of earth from p4 to p1 (costing six) and one
from p4 to p3, which is the inverse transport plan of the above,
executed on P, and leading to the same Wasserstein distance. The
Wasserstein distance is in fact a distance, not a divergence, because
it yields the same result regardless of the direction. Also note that

we implicitly assumed that P and Q share their support,3 but that in
case of disjunct support, only a constant term would have to be
added, which grows with the distance between the support regions.

GANs and Beyond 167

Fig. 15 One square is one shovel full of earth. Transporting the earth shovel-wise
from pile to pile amasses performed work: the Wasserstein (earthmover) dis-
tance. The example shows a Wasserstein distance of DW= 7

Many other transport plans are possible, and others can be
equally cheap (or even cheaper—it is left to the reader to try this
out). Transport plans need not modify only one of the stocks but
can modify both to reach the optimal strategy to make them
identical. Algorithmically, the optimal solution to the question of
the optimal transport plan can be found by formulating it as a linear
programming problem. However, enumerating all transport plans
and computing the linear programming algorithm are intractable
for larger and more complex “heaps of earth.” Any nontrivial GAN
will need to estimate transport of such complex “heaps,” so they

3 The support, graphically, is the region where the distribution is not equal to zero.

suffer this intractability problem. Consequently, in practice, a dif-
ferent approach must be taken, which we will sketch below.4

168 Markus Wenzel

Formalizing the search for the optimal transport plan, we look
at all possible joint distributions of our P and Q, forming the set of
all possible transport plans, and denote this set Π(P, Q), implying
that for all γ ∈Π(P, Q), P and Q will be their marginal distribu-
tions.5 This, in turn, means that by definition ∑xγ(x, y)=P(y) and
∑yγ(x, y)=Q(x).

For one concrete transport plan γ that works between a state
x in P and a state y in Q, we are interested in the optimal transport
plan γ(x, y). Let kx- yk be the Euclidian distance to shift earth
between x and y, and then multiplying this with every value of γ (the
amount of earth shifted) leads to

DWðP ,Q Þ= inf
γ∈Π x, y

kx - ykγðx, yÞ,

which can be rewritten to obtain

DWðP ,Q Þ= inf
γ�ΠðP,Q Þ

ðx,yÞ�γkx- yk: ð8Þ

It measures both the distance of two distributions with disjunct
support and the difference between distributions with perfectly
overlapping support because it includes both, the shifting of earth
and the distance to move it.

Practically, though, this result cannot be used directly, since the
Linear Programming problem scales exponentially with the num-
ber of dimensions of the domain of P and Q, which are high for
images. To our disadvantage, we additionally need to differentiate
the distance function if we want to use it for deep neural network
training using backpropagation. However, we cannot obtain a
derivative from our distance function in the given form, since, in
the linear programming (LP) formulation, our optimized distribu-
tion (as well as the target distribution) end up as constraints, not
parameters.

Fortunately, we are not interested in the transport plan γ itself,
but only in the distance (of the optimal transport plan). We can
therefore use the dual form of the LP problem, in which the
constraints of the primal form become parameters. With some
clever definitions, the problem can be cast into the dual form, finally
yielding

4 An extensive treatment of Wasserstein distance and optimal transport in general is given in the 1.000-page
treatment of Villani’s book [24], which is freely available for download.
5 This section owes to the excellent blog post of Vincent Herrmann, at https://vincentherrmann.github.io/
blog/wasserstein/. Also recommended is the treatment of the “Wasserstein GAN” paper by Alex Irpan at https://
www.alexirpan.com/2017/02/22/wasserstein-gan.html. An introductory treatment of Wasserstein distance is
also found in [25, 26].

https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

GANs and Beyond 169

DWðP ,Q Þ= kf kL ≤1sup x�P f ðxÞ-x�Q f ðxÞ
with a function f that has to adhere to a constraint called the
1-Lipschitz continuity constraint, which requires f to have a slope
of at most magnitude 1 everywhere. f is the neural network, and
more specifically for a GAN, the discriminator network.
1-Lipschitzness can be achieved trivially by clipping the weights
to a very small interval around 0.

3.6.2 Implementing

WGANs

To implement the distance as a loss function, we rewrite the last
result again as

DWðP ,Q Þ= max
w∈W

x�P ½DwðxÞ�-z�Q ½DwðGwðzÞÞ�: ð9Þ
Note that in opposition to other GAN losses we have seen

before, there is no logarithm anymore, because, this time, the
“discriminator” is no longer a classification network that should
learn to discriminate true and fake samples but rather serves as a
“blank” helper function that during training learns to estimate the
Wasserstein distance between the sets of true and fake samples.

Box 5: Spectral Normalization

Spectral normalization is applied to the weight matrices of a
neural network to ensure a boundedness of the error function
(e.g., Lipschitzness of the discriminator network in the
WGAN context). This helps convergence like any other nor-
malization method, as it provides a guaranty that gradient
directions are stable around the current point, allowing larger
step widths.

The spectral norm (or matrix norm) measures how far a
matrix A can stretch a vector x:

jjAjj= max
x ≠0

jjAxjj
jjxjj

The numerical value of the spectral norm of A can be
shown to be just its maximum singular value. To compute the
maximum singular value, an algorithmic idea helps: the power
iteration method, which yields the maximal eigenvector.

Power iteration uses the fact that any matrix will rotate a
random vector toward its largest eigenvector. Therefore, by
iteratively calculating AX

jAxj, the largest eigenvector is obtained
eventually.

In practice, it is observed that a single iteration is already
sufficient to achieve the desired normalizing behavior.

170 Markus Wenzel

Consequently, the key ingredient is the Lipschitzness con-
straint of the discriminator network,6 and how to enforce this in a
stable and regularized way. It soon turned out that weight clipping
is not an ideal choice. Rather, two other methods have been pro-
posed: the gradient penalty approach and normalizing the weights
with the spectral norm of the weight matrices.

Both have been added to the standard catalogue of
performance-boosting measures in GAN training ever since,
where in particular spectral normalization (cf. Box 5) is attractive
as it can be implemented very efficiently, has a sound theoretical and
mathematical foundation, and ensures stable and efficient training.

3.6.3 Example

Application: Brain

Abnormality Detection

Using WGAN

One of the first applications of Wasserstein GANs in a practical use
case was presented in the medical domain, specifically in the context
of attributing visible changes of a diseased patient with respect to a
normal control to locations in the images [27]. The way this
detection problem was cast into a GAN approach (and then solved
with a Wasserstein GAN) was to delineate the regions that make the
images of a diseased patient look “diseased,” i.e., find the residual
region, that, if subtracted from the diseased-looking image, would
make it look “normal.”

Figure 16 shows the construction of the VA-GAN architecture
with images from a mocked dataset for illustration. For the authors’
results, see their publication and code repository.7

For their implementation, the authors note that neither batch
normalization nor layer normalization helped convergence and
hypothesize that the difference between real and generated exam-
ples may be a reason that in particular batch normalization may in
fact have an adverse effect especially during the early training phase.
Instead, they impose an ℓ1 norm loss component on the U-Net-
generated “visual (feature) attribution” (VA) map to ensure it to be
a minimal change to the subject. This serves to prevent the genera-
tor from changing the subject into some “average normal” image
that it may otherwise learn. They employ an update regime that
trains the critic network for more iterations than the generator, but
doesn’t train it to convergence as proposed in the original WGAN
publications. Apart from these measures, in their code repository,
the authors give several practical hints and heuristics that may
stabilize the training, e.g., using a tanh activation for the generator
or exploring other dropout settings and in general using a large
enough dataset. They also point out that the Wasserstein distance
isn’t suited for model selection since it is too unstable and not
directly correlated to the actual usefulness of the trained model.

6 The discriminator network in the context of continuous generator loss functions like the Wasserstein-based loss
is called a “critique” network, as it no longer discriminates but yields a metric. For ease of reading, this chapter
sticks to the term “discriminator.”
7 https://github.com/baumgach/vagan-code.

https://github.com/baumgach/vagan-code

GANs and Beyond 171

Fig. 16 An image of a diseased patient is run through a U-Net with the goal to yield a map that, if added to the
input image, results in a modified image that fools the discriminator (“critique”) network into classifying it as a
“normal” control. The map can be interpreted as the regions attributed to appear abnormal, giving rise to the
name of the architecture: visual attribution GAN (VA-GAN)

This is one more reason to turn in the next section to an
important topic in the context of validation for generative models:
How to quantify their results?

3.7 GAN

Performance Metrics

One imminent question has so far been postponed, though it
implicitly plays a crucial role in the quest for “better” GANs:
How to actually measure the success of a GAN or the performance
in terms of result quality?

GANs can be adapted to solve image analysis tasks like segmen-
tation or detection (cf. Subheading 3.6.3). In such cases, the qual-
ity and success can be measured in terms of task-related
performance (Jaccard/Dice coefficient for segmentation, overlap
metrics for detection etc.).

Performance assessment is less trivial if the GAN is meant to
generate unseen images from random vectors. In such scenarios,
the intuitive criterion is how convincing the generated results are.
But convincing to whom? One could expose human observers to
the real and fake images, ask them to tell them apart, and call a GAN
better than a competing GAN if it fools the observer more consis-
tently.8 Since this is practically infeasible, metrics were sought that
provide a more objective assessment.

8 In fact, there is only very little research on the actual performance of GANs in fooling human observers, though
guides exist on how to spot “typical” GAN artifacts in generated images. These are older than the latest GAN
models, and it can be hypothesized that the lack of such literature is indirect confirmation of the overwhelming
capacity of GANs to fool human observers.

172 Markus Wenzel

The most widely used way to assess GAN image quality is the
Fréchet inception distance (FID). This distance is conceptually
related to the Wasserstein distance. It has an analytical solution to
calculate the distance of Gaussian (normal) distributions. In the
multivariate case, the Fréchet distance between two distributions
X and Y is given by the squared distance of their means μX (resp.
μY) and a term depending on the covariance matrix describing their
variances ΣX (resp. ΣY):

dðX ,Y Þ= jjμX - μY jj2 þ TrðΣX þ ΣY -2 ΣXΣY

p Þ: ð10Þ
The way this distance function is being used is often the score,

which is computed as follows:

• Take two batches of images (real/fake, respectively).

• Run them through a feature extraction or embedding model.
For FID, the inception model is used, pretrained on ImageNet.
Retain the embeddings for all examples.

• Fit each one multivariate normal distribution to the embedded
real/fake examples.

• Calculate their Fréchet distance according to the analytical for-
mula in Eq. 10.

This metric has a number of downsides. Typically, if computed
for a larger batch of images, it decreases, although the same model
is being evaluated. This bias can be remedied, but FID remains the
most used metric still. Also, if the inception network cannot capture
the features of the data FID should be used on, it might simply be
uninformative. This is obviously a grave concern in the medical
domain where imaging features look much different from natural
images (although, on the other hand, transfer learning for medical
classification problems proved to work surprisingly well, so that
apparently convolutional filters trained on photographs also extract
applicable features from medical images). In any case, the selection
of the pretrained embedding model brings a bias into the validation
results. Lastly, the assumption of a multivariate normal distribution
for the inception features might not be accurate, and only describ-
ing it through their means and covariances is a severe reduction of
information. Therefore, a qualitative evaluation is still required.

One obvious additional question arises: If the ultimate metric
to judge the quality of the generator is given by, for example, the
FID, why can’t it be used as the optimization goal instead of
minimizing a discriminator loss? In particular, as the Fréchet dis-
tance is a variant of the Wasserstein distance, an answer to this
question is not obvious. In fact, feature matching as described in
Box 4 exactly uses this type of idea, and likewise, it has been
partially adopted in recent GAN architectures to enhance the sta-
bility of training with a more fine-grained loss component than a
pure categorical cross-entropy loss on the “real/fake” classification
of the discriminator.

GANs and Beyond 173

Related recent research is concerned with the question how
generated results can automatically be detected to counteract
fraudulent authors. So-called forensic algorithms detect patterns
that point out generated images. This research puts up the question
how to detect fake images reliably. Solutions based on different
analysis directions encompass image fingerprinting and frequency-
domain analysis [28–31].

4 Selected GAN Architectures You Should Know

In the following, we will examine some GAN architectures and
GAN developments that were taken up by the medical community
or that address specific needs that might make them appealing, e.g.,
for limited data scenarios.

4.1 Conditional GAN GANs cannot be told what to produce—at least that was the case
with early implementations. It was obvious, though, that a properly
trained GAN would imprint the semantics of the domain onto its
latent space, which was evidenced by experiments in which the
latent space was traversed and images of certain characteristics
could be produced by sampling accordingly. Also, it was found
that certain dimensions of the latent space can correspond to
certain features of the images, like hair color or glasses, so that
modifying them alone can add or take away such visible traits.

With the improved development of conditional GANs [32]
following a number of GANs that modeled the conditioning
input more explicitly, another approach was introduced that was
based on the U-Net architecture as a generator and a favorable
discriminator network that values local style over a full-image
assessment.

Technically, the formulation of a conditional GAN is straight-
forward. Recalling the value function (learning objective) of GANs
from Eq. 5,

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ�,
We now want to condition the generation on some additional

knowledge or input. Consequently, both the generator G and the
discriminator D will receive an additional “conditioning” input,
which we call x. This can be a class label but also any other asso-
ciated information. Very commonly, the additional input will be an
image, as, for example, for image translation application (e.g.,
transforming from one image modality to another such as, for
instance, MRI to CT). The result is the cGAN objective function:

J cGANðG,DÞ=x�pdata ½logDðxjyÞ� þ z�pG ½1- logDðGðzjyÞÞ�
ð11Þ

174 Markus Wenzel

Fig. 17 A possible architecture for a cGAN. Left: the generator network takes the base images x as input and
generates a translated image ŷ . The discriminator receives either this pair of images or a true pair x, y (right).
The additional generator reconstruction loss (often a ℓ1 loss) is calculated between y and ŷ

Isola et al. [32] describe experiments with MNIST handwritten
digits, where a simple generator with two layers of fully connected
neurons was used, and similarly for the discriminator. x was set to
be the class label. In a second experiment, a CNN creates a feature
representation of images, and the generator is trained to generate
textual labels (choosing from a vocabulary of about 250.000
encoded terms) for the images conditioned on this feature
representation.

Figure 17 shows a possible architecture to employ a cGAN
architecture for image-to-image translation. In this diagram, the
conditioning input is the target image that the trained network shall
be able to produce based on some image input. The generator
network therefore is a U-Net. The discriminator network can be
implemented, for example, by a classification network. This net-
work always receives two inputs: the conditioning image (x in
Fig. 17) and either the generated output ŷ or the true paired
image y.

k�k

GANs and Beyond 175

Fig. 18 Input and output of a pix2pix experiment. Online demo at https://affinelayer.com/pixsrv/

Note that the work of Isola et al. [32] introduces an additional
loss term on the generator that measures the ℓ1 distance between
the generated and ground truth image, which is (with variables as in
Eq. 11)

J ℓ1ðGÞ=x;y;zky -Gðx, zÞk1,
where 1 is the ℓ1 norm.

The authors do not further justify this loss term apart from
stating that ℓ1 is preferred over ℓ2 to encourage less blurry results. It
can be expected that this loss component provides a good training
signal to the generator when the discriminator loss doesn’t, e.g., in
the beginning of the training with little or no overlap of target and
parameterized distributions. The authors propose to give the ℓ1 loss
orders of magnitudes more weight than the discriminator loss
component to value accurate translations of images over “just”
very plausible images in the target domain.

The cGAN, namely, in the configuration with a U-Net serving
as the generative network, was very quickly adopted by artists and
scientists, thanks to the free implementation pix2pix.9 One example
created with pix2pix is given in Fig. 18, where the cGAN was
trained to produce cat images from line drawings.

One application in the medical domain was proposed, for
example, by Senaras et al. [33]. The authors used a U-Net as a
generator to produce a stained histopathology image from a label
image that has two distinct labels for two kinds of cell nuclei. Here,
the label image is the conditioning input to the network. Conse-
quently, the discriminator network, a classification CNN tailored to

9 https://github.com/phillipi/pix2pix.

https://affinelayer.com/pixsrv/
https://github.com/phillipi/pix2pix

the patch-based classification of slides, receives two inputs: the
histopathology image and a label image.

176 Markus Wenzel

Another example employed an augmented version of the con-
ditional GAN to translate CT to MR images of the brain, including
a localized uncertainty estimate about the image translation suc-
cess. In this work, a Bayesian approach to model the uncertainty
was taken by including dropout layers in the generator model [34].

Lastly, a 3D version of the pix2pix approach with a 3D U-Net
as a generative network was devised to segment gliomas in multi-
modal brain MRI using data from the 2020 International Multi-
modal Brain Tumor Segmentation (BraTS) challenge [35]). The
authors called their derived model vox2vox, alluding to the exten-
sion to 3D data [36].

More conditioning methods have been developed over the
years, some of which will be sketched further on. It is common to
this type of GANs that paired images are required to train the
network.

4.2 CycleGAN While cGANs require paired data for the gold standard and condi-
tioning input, this is often hard to come by, in particular in medical
use cases. Therefore, the development of the CycleGAN set a
milestone as it alleviates this requirement and allows to train
image-to-image translation networks without paired input samples.

The basic idea in this architecture is to train two mapping
functions between two domains and to execute them in sequence
so that the resulting output is considered to be in the origin domain
again. The output is compared against the original input, and their
ℓ1 or ℓ2 distance establishes a novel addition to the otherwise usual
adversarial GAN loss. This might conceptually remind one of the
autoencoder objectives: reproduce the input signal after encoding
and decoding; only this time, there is no bottleneck but another
interpretable image space. This can be exploited to stabilize the
training, since the sequential concatenation of image translation
functions, which we will call G and F, can be reversed. Figure 19
shows a schematic of the overall process (left) and one incarnation
of the cycle, here from image domain X to Y and back (middle).

CycleGANs employ several loss terms in training: two adver-
sarial losses JðG,DY Þ and JðF ,DX Þ and two cycle consistency
losses, of which one J cycðG, F Þ is indicated rightmost in Fig. 19.
Zhu et al. [37] presented the initial publication with a participation
of the cGAN author Isola [37]. The cycle consistency losses are ℓ1
losses in their implementation, and the GAN losses are least square
losses instead of negative log likelihood, since more stable training
was observed with this choice.

Almahairi et al. [38] provided an augmented version [38],
noting that the original implementation suffers from the inability
to generate stochastic results in the target domain Y but rather
learns a one-to-one mapping between X and Y and vice versa. To

alleviate this problem, the generators are conditioned on one latent
space each for both directions, so that, for the same input
x∈X, G will now produce multiple generated outputs in Y
depending on the sample from the auxiliary latent space (and
similarly in reverse). Still, F has to recreate a x̂ minimizing the
cycle consistency loss for each of these samples. This also remedies a
second criticism brought forward against vanilla CycleGANs: these
networks can learn to hide information in the (intermediate) target
image domain that fool the discriminator but help the backward
generator to minimize the cycle consistency loss more efficiently
[39]. Chu et al. [39] use adaptive histogram equalization to show
that in visually empty regions of the intermediate images informa-
tion is present. This is a finding reminiscent of adversarial attacks,
which the authors elaborate on in their publication.

GANs and Beyond 177

Fig. 19 Cycle GAN. Left: image translation functions G and F convert between two domains. Discriminators DX
and DY give adversarial losses in both domains. Middle: for one concrete translation of an image x, the
translation to Y and back to X is depicted. Right: after the translation cycle, the original and back-translated
result are compared in the cycle consistency loss

Zhang et al. [40] show a medical application. In their work, a
CycleGAN has been used to train image translation and segmenta-
tion models on unpaired images of the heart, acquired with MRI
and CT and with gold standard expert segmentations available for
both imaging datasets. The authors proposed to learn more pow-
erful segmentation models by enriching both datasets with artifi-
cially generated data. To this end, MRIs are converted into CT
contrast images and vice versa using GANs. Segmentation models
for MRI and CT are then trained on dataset consisting of original
images and their expert segmentations and augmented by the con-
verted images, for which expert segmentations can be carried over
from their original domain. To achieve this, it is of importance that
the converted (translated) images accurately depict the shape of the
organs as expected in the target domain, which is enforced using
the shape consistency loss.

In the extended setup of the CycleGAN with shape and cycle
consistency, three different loss types instead of the original two are
combined during training:

Adversarial GAN losses JGAN. This loss term is the same as
defined, e.g., in Eq. 5.

cyc 1

original CycleGAN authors dis-
cussed above.

Shape consistency losses J shape. The shape consistency loss is a new
addition proposed by the authors.
A cross-correlation loss takes into
account two segmentations, the
first being the gold standard seg-
mentation mx for an x∈X and one
segmentation produced by a seg-
menter network S that was trained
on domain Y and receives the
translated image ŷ =GðxÞ.

178 Markus Wenzel

Fig. 20 Cycle GAN with shape consistency loss (rightmost part of figure). Note that the figure shows only one
direction to ease readability

Cycle consistency losses J . This is the ℓ loss presented by the

Figure 20 depicts the three loss components, of which the first
two are known already from Fig. 19.

Note that the description as well as Fig. 20 only show one
direction for cycle and shape consistency loss. Both are duplicated
into the other direction and combined into the overall training
objective, which then consists of six components.

In several other works, the CycleGAN approach was extended
and combined with domain adaption methods for various segmen-
tation tasks and also extended to volumetric data [41–43].

4.3 StyleGAN and

Successor

One of the most powerful image synthesis GANs to date is the
successor of StyleGAN, StyleGAN2 [44, 45]. The authors, at the
time of writing researching at Nvidia, deviate from the usual GAN
approach in which an image is generated from a randomly sampled
vector from a latent space. Instead, they use a latent space that is
created by a mapping function f which is in their architecture
implemented as a multilayer perceptron which maps from a
512-dimensional space Z into a 512-dimensional space W. The
second major change consisted of the so-called adaptive instance
normalization layer, AdaIN, which implements a normalization to
zero-mean and unit variance of each feature map, followed by a
multiplicative factor and an additive bias term. This serves to

reweight the importance of feature maps in one layer. To ensure the
locality of the reweighting, the operation is followed by the non-
linearity. The scaling and bias are two components of y= (ys, yb),
which is the result of a learnable affine transformation A applied to a
sample from W.

GANs and Beyond 179

Fig. 21 StyleGAN architecture, after [44]. Learnable layers and transformations are shown in green, the AdaIN
function in blue

In their experiments, Karras et al. [44] recognized that after
these changes, the GAN actually no longer depended on the input
vector drawn from W itself, so the random latent vector was
replaced by a static vector fed into the GAN. The y, which they
call styles, remained to be results from a vector randomly sampled
from the new embedding space W.

Lastly, noise is added in each layer, which serves to allow the
GAN to produce more variation without learning to produce it
from actual image content. The noise, like the latent vector, is fed
through learnable transformations B, before it is added to the
unnormalized feature maps. The overall architecture is sketched
in Fig. 21.

In the basic setup, one sample is drawn from W and fed
through per-layer learned A to gain per-layer different interpreta-
tions of the style, y= (ys, yb). This can be changed, however, and the
authors show how using one random sample w1 in some of the layer
blocks and another sample w2 in the remaining; the result will be a
mixture of styles of both individual samples. This way, the coarse
attributes of the generated image can stem from one sample and the
fine detail from another. Applied to a face generator, for example,
pose and shape of the face are determined in the coarse early layers
of the network, while hair structure and skin texture are the fine

details of the last layers. The architecture and results gained wide-
spread attention through a website,10 which recently was followed
up by further similar pages. Results are depicted in Fig. 22.

180 Markus Wenzel

Fig. 22 Images created with StyleGAN; https://this{person—artwork—cat—horse—chemical}doesnotexist.
com. Last accessed: 2022-01-14

The crucial finding in StyleGAN was that the mapping function
F transforming the latent space vector from Z to W serves to ensure
a disentangled (flattened) latent space. Practically, this means that if
interpolating points zi between two points z1 and z2 drawn from Z
and reconstructing images from these interpolated points zi,
semantic objects might appear (in a StyleGAN-generating faces,
for example, a hat or glasses) that are neither part of the generated
images from the first point z1 nor the second point z2 between
which it has been interpolated. Conversely, if interpolating in W ,
this “semantic discontinuity” is no longer the case, as the authors
show with experiments in which they measure the visual change of
resulting images when traversing both latent spaces.

In their follow-up publications, the same authors improve the
performance even further. They stick to the basic architecture but
redesign the generative network pertaining to the AdaIN function.
In addition, they add their metric from [44] that was meant to
quantify the entanglement of the latent space as a regularizer. The
discriminator network was also enhanced, and the mechanisms of
StyleGAN that implement the progressive growing have been suc-
cessively replaced by more performance-efficient setups. In their
experiments, they show a growth of visual and measured quality
and removal of several artifacts reported for StyleGAN [45].

4.4 Stabilized GAN

for Few-Shot Learning

GAN training was very demanding both regarding GPU power, in
particular for high-performance architectures like StyleGAN and
StyleGAN2, and, as importantly, availability of data. StyleGAN2,
for example, has typical training times of about 10 days on a Nvidia
8-GPU Tesla V100. The datasets comprised at least tens of
thousands of images and easily orders of magnitude more. Particu-
larly in the medical domain, such richness of data is typically hard
to find.

10 https://thispersondoesnotexist.com/.

http://doi.org/
http://doi.org/
https://thispersondoesnotexist.com/

GANs and Beyond 181

Fig. 23 The FastGAN generator network. Shortcut connections through feature map weighting layers (called
skip-layer excitation, SLE) transport information from low-resolution feature maps into high-resolution feature
maps. For details regarding the blocks, see text

The authors of [46] propose simple measures to stabilize the
training of a specific GAN architecture, which they design from
scratch using a replacement for residual blocks, arranged in an
architecture with very few convolutional layers, and a loss that
drives the discriminator to be less certain when it gets closer to
convergence. In sum, this achieves very fast training and yields
results competitive with prior GANs [46] and outperforming
them in low-data situations.

The key ingredients to the architecture are shortcut connec-
tions in the generator model that rescale feature maps of higher
resolution with learnable weights derived from low resolutions.
The effect is to make fine details simultaneously more independent
of direct predecessor feature maps and yet ensure consistency across
scales.

A random seed vector of length 256 enters the first block (“Up
Conv”), where it is upscaled to a 256× 4× 4 tensor. In Fig. 23, the
further key blocks of the architecture are “upsample” and “SLE”
blocks.

Upsample blocks consist of a nearest-neighbor upsampling fol-
lowed by a 3×3 convolution, batch normalization, and
nonlinearity.

SLE blocks (seen in the top right inset in the architecture
diagram) don’t touch the incoming high-resolution
input (entering from top into the block) but comprise a
pooling layer that in each SLE block is set up to yield a

4 ×4 stack of feature maps, followed by a convolution to
reduce to a 1 ×1 tensor, which is then in a 1×1 convo-
lution brought to the same number of channels as the
high-resolution input. This vector is then multiplied to
the channels of the high-resolution input.

182 Markus Wenzel

Fig. 24 The FastGAN self-supervision mechanism of the discriminator network. Self-supervision manifests
through the loss term indicated by the curly bracket between reconstructions from feature maps and
resampled/cropped versions of the original real image, J recon

Secondly, the architecture introduces a self-supervision feature
in the discriminator network. The discriminator network (see
Fig. 24) is a simple CNN with strided convolutions in each layer,
halving resolution in each feature map. In the latest (coarsest)
feature maps, simple up-scaling convolutional networks are
attached that generate small images, which are then compared in
loss functions (J recon in Fig. 24) to down-sampled versions of the
real input image. This self-supervision of the discriminator is only
performed for real images, not for generated ones.

The blocks in the figure spell out as follows:

Down Conv Block consists of two convolutional layers with strided
4 ×4 convolutions, effectively reducing the res-
olution from 10242 to 2562 .

Residual Blocks have two sub-items, “Conv Block A” being a
strided 4×4 convolution to half resolution,
followed by a padded 3×3 convolution.
“Conv Block B” consists of a strided 2×2 aver-
age pooling that quarters resolution, followed
by a 1 ×1 convolution, so that both blocks
result in identically shaped tensors, which are
then added.

� ½ ð ð ÞÞ�

4 ×4 convolution without strides or padding,
so that the incoming 82 feature map is reduced
to 52 .

Decoder The decoder networks are four blocks of
upsampling layers each followed by 3 ×3
convolutions.

GANs and Beyond 183

Fig. 25 FastGAN as implemented by the authors has been used to train a CT slice generative model. Images
are not cherry-picked, but arranged by similar anatomical regions

Conv Block C consists of a 1 ×1 convolution followed by a

The losses employed in the model are the discriminator loss
consisting of the hinge version of the usual GAN loss, with the
added regularizing reconstruction loss between original real sam-
ples and their reconstruction, and the generator loss plainly being
JG =z Z D G z .

The model is easy to train on modest hardware and little data,
as evidenced by own experiments on a set of about 30 chest CTs
(about 2500 image slices, converted to RGB). Figure 25 shows
randomly picked generated example slices, roughly arranged by
anatomical content. It is to be noted that organs appear mirrored
in some images. On the other hand, no color artifacts are visible, so
that the model has learned to produce only gray scale images.
Training time for 50,000 iterations on a Nvidia TitanX GPU was
approximately 10 hours.

184 Markus Wenzel

Fig. 26 The VQGAN+CLIP combination creates images from text inputs, here: “A
child drawing of a dark garden full of animals”

4.5 VQGAN In a recent development, a team of researchers combined techni-
ques for text interpretation with a dictionary of elementary image
elements feeding into a generative network. The basic architecture
component that is employed goes back to vector quantization
variational autoencoders (VQ-VAE), where the latent space is no
longer allowed to be continuous, but is quantized. This allows to
use the latent space vectors in a look-up table: the visual elements.

Figure 26 was created using code available online, which
demonstrates how images of different visual styles can be created
using the combination of text-based conditioning and a powerful
generative network.

The basis for image generation is the VQGAN (“vector quan-
tization generative adversarial network”) [47], which learns repre-
sentations of input images that can later steer the generative
process, in an adversarial framework. The conditioning is achieved
with the CLIP (“Contrastive Image-Language Pretraining”) model
that learns a discriminator that can judge plausible images for a text
label or vice versa [48].

The architecture has been developed with an observation in
mind that puts the benefits and drawbacks of convolutional and
transformer architectures in relation to each other. While the local-
ity bias of convolutional architectures is inappropriate if overall
structural image relations should be considered, it is of great help
in capturing textural details that can exist anywhere, like fur, hair,
pavement, or grass, but where the exact representation of hair

https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ

positions or pavement stones is irrelevant. On the other hand,
image transformers are known to learn convolutional operators
implicitly, posing a severe computational burden without a visible
impact on the results. Therefore, Esser et al. [47] suggest to com-
bine convolutional operators for local detail representation and
transformer-based components for image structure.

GANs and Beyond 185

Since the VQGAN as a whole is no longer a pure CNN but for a
crucial component uses a transformer architecture, this model will
be brought up again briefly in Subheading 5.2.

The VQGAN architecture is derived from the VQ-VAE (vector
quantization variational autoencoder) [49], adding a reconstruc-
tion loss through a discriminator, which turns it into a GAN. At the
core of the architecture is the quantization of estimated codebook
entries. Among the quantized entries in the codebook, the closest
entry to the query vector coding, an image patch is determined.
The found codebook entry is then referred to by its index in the
codebook. This quantization operation is non-differentiable, so for
end-to-end training, gradients are simply copied through it during
backpropagation.

The transformer can then efficiently learn to predict codebook
indices from those comprising the current version of the image, and
the generative part of the architecture, the decoder, produces a new
version of the image. Learning expressive codebook entries is
enforced by a perceptual loss that punishes inaccurate local texture,
etc. Through this, the authors can show that high compression
levels can be achieved—a prerequisite to enable efficient, yet com-
prehensive, transformer training.

5 Other Generative Models

We have already seen how GANs were not the first approach to
image generation but have prevailed for a time when they became
computationally feasible and in consequence have been better
understood and improved to accomplish tasks in image analysis
and image generation with great success. In parallel with GANs,
other fundamentally different generative modeling approaches
have also been under continued development, most of which have
precursors from the “before-GAN” era as well. To give a compre-
hensive outlook, we will sketch in this last section the state of the art
of a selection of these approaches.11

11 The research on the so-called flow-based models, e.g., normalizing flows, has been omitted in this chapter,
though acknowledging their emerging relevance also in the context of image generation. Flow-based models are
built from sequences of invertible transformations, so that they learn data distributions explicitly at the expense of
sometimes higher computational costs due to their sequential architecture. When combined, e.g., with a powerful
GAN, they allow innovative applications, for example, to steer the exploration of a GAN’s latent space to achieve
fine-grained control over semantic attributes for conditional image generation. Interested readers are referred to
the literature [11, 13, 50–52].

186 Markus Wenzel

5.1 Diffusion and

Score-Based Models

Diffusion models take a completely different approach to distribu-
tion estimation. GANs implicitly represent the target distribution
by learning a surrogate distribution. Likelihood-based models like
VAE approximate the target distribution explicitly, not requiring
the surrogate. In diffusion models, however, the gradient of the log
probability density function is estimated, instead of looking at the
distribution itself (which would be the unfathomable integral of the
gradient). This value is known as the Stein score function, leading
to the notion that diffusion models are one variant of score-based
models [53].

The simple idea behind this class of models is to revert a
sequential noising process. Consider some image. Then, perform
a large number of steps. In each step, add a small amount of noise
from a known distribution, e.g., the normal distribution. Do this
until the result is indistinguishable from random noise.

The denoising process is then formulated as a latent variable
model, where T-1 latents successively progress from a noise image
xT � N ðxT ;0, IÞ to the reconstruction that we call x0� q(x0). The
reconstructed image, x0, is therefore obtained by a reverse process
qθ(x0:T). Note that each step in this chain can be evaluated in closed
form [54]. Several model implementations of this approach exist,
one being the deep diffusion probabilistic model (DDPM). Here, a
deep neural network learns to perform one denoising step given the
so-far achieved image and a t∈{1, . . ., T}. Iterative application of
the model to the result of the last iteration will eventually yield a
generated image from noise input.

Autoregressive diffusion models (ARDMs) [55] follow yet
another thought model, roughly reminiscent of PixelRNNs we
have briefly mentioned above (see Subheading 3.2). Both share
the approach to condition the prediction of the next pixel or pixels
on the already predicted ones. Other than in the PixelRNN, how-
ever, the specific ARDM proposed by the authors does not rely on a
predetermined schedule of pixel updates, so that these models can
be categorized as latent variable models.

As of late, the general topic of score-based methods, among
which diffusion models are one variant, received more attention in
the research community, fueled by a growing body of publications
that report image synthesis results that outperform GANs [53, 56,
57]. Score function-based and diffusion models superficially share
the similar concept of sequentially adding/removing noise but
achieve their objective with very different means: where score
function-based approaches are trained by score-matching and
their sampling process uses Langevin dynamics [58], diffusion
models are trained using the evidence lower bound (ELBO) and
sample with a decoder, which is commonly a neural network.
Figure 27 visualizes an example for a score function.

Score function-based (sometimes also score-matching) genera-
tive models have been developed to astounding quality levels, and

the recent works of Yang Song and others provide accessible blog
posts,12 and a comprehensive treatment of the subject in several
publications [53, 58, 59].

GANs and Beyond 187

Fig. 27 The Stein score function can be conceived of as the gradient of the log probability density function,
here indicated by two Gaussians. The arrows represent the score function

In the work of Ho et al. [54], the stepwise reverse (denoising)
process is the basis of the denoising diffusion probabilistic models
(DDPM). The authors emphasize that a proper selection of the
noise schedule is crucial to fast, yet high-quality, results. They point
out that their work is a combination of diffusion probabilistic
models with score-matching models, in this combination also gen-
eralizing and including the ideas of autoregressive denoising mod-
els. In an extension of Ho et al.’s [54] work by Nichol and Dhariwal
[57], an importance sampling scheme was introduced that lets the
denoising process steer the most easy to predict next image ele-
ments. Equipped with this new addition, the authors can show that,
in comparison to GANs, a wider region of the target distribution is
covered by the generative model.

5.2 Transformer-

Based Generative

Models

The basics of how attention mechanisms and transformer architec-
tures work will be covered in the subsequent chapter on this
promising technology (Chapter 6). Attention-based models, pre-
dominantly transformers, have been used successfully for some time
in sequential data processing and are now considered the superior
alternative to recurrent networks like long-short-term memory
(LSTM) networks. Transformers have, however, only recently
made their way into the image analysis and now also the image
generation world. In this section, we will only highlight some
developments in the area of generative tasks.

12 https://yang-song.github.io/blog/.

https://yang-song.github.io/blog/

188 Markus Wenzel

Google Brain/Google AI’s 2018 publication on so-called
image transformers [60], among other tasks, shows successful con-
ditional image generation for low-resolution input images to
achieve super-resolution output images, and for image inpainting,
where missing or removed parts of input images are replaced by
content produced by the image transformer.

OpenAI have later shown that even unmodified language trans-
formers can succeed to model image data, by dealing in sheer
compute power for hand modeling of domain knowledge, which
was the basis for the great success of previous unsupervised image
generation models. They have trained Image GPT (or iGPT for
short), a multibillion parameter language transformer model, and it
excels in several image generation tasks, though only for fairly small
image sizes [61]

In the recent past, StyleSwin has been proposed by Microsoft
Research Asia [62], enabling high-resolution image generation.
However, the approach uses a block-wise attention window,
thereby potentially introducing spatial incoherencies at block
edges, which they have to correct for.

“Taming transformers” [47], another recent publication
already mentioned above, uses what the authors call a learned
template code book of image components, which is combined
with a vector quantization GAN (VQGAN). The VQGAN is struc-
turally modeled after the VQ-VAE but adds a discriminator net-
work. A transformer model in this architecture composes these
code book elements and is interrogated by the GAN variational
latent space, conditioned on a textual input, a label image, or other
possible inputs. The GAN reconstructs the image from the
so-quantized latent space using a combination of a perceptual loss
assessing the overall image structure and a patch-based high-reso-
lution reconstruction loss. By using a sliding attention window
approach, the authors prevent patch border artifacts known from
StyleSwin. Conditioning on textual input makes use of parts of the
CLIP [48] idea (“Contrastive Language-Image Pretraining”),
where a language model was train in conjunction with an image
encoder to learn embeddings of text-image pairs, sufficient to solve
many image understanding tasks with competitive precision, with-
out specific domain adaption.

It is evidenced by the lineup of institutions that training image
transformer models successfully is nothing that can be achieved
with modest hardware or on even a medium-scale image database.
In particular for the medical area, where data is comparatively
scarce even under best assumptions, the power of such models
will only be available in the near future if domain transfer learning
can be successfully achieved. This, however, is a known strength of
transformer architectures.

GANs and Beyond 189

Acknowledgements

I thank my colleague at the Fraunhofer Institute for Digital Medi-
cine MEVIS, Till Nicke, for his thorough review of the chapter and
many valuable suggestions for improvements. I owe many thanks
more to other colleagues for their insights both in targeted discus-
sions and most importantly in everyday work life.

References

[1] Goodfellow IJ, Pouget-Abadie J, Mirza M,
Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y (2014) Generative adversarial
nets. In: Proceedings of the 27th interna-
tional conference on neural information pro-
cessing systems - volume, NIPS’14 . MIT
Press, Cambridge, pp 2672–2680

[2] Casella G, Berger RL (2021) Statistical infer-
ence. Cengage Learning, Boston

[3] Grinstead C, Snell LJ (2006) Introduction to
probability. Swarthmore College,
Swarthmore

[4] Severini TA (2005) Elements of distribution
theory, vol 17. Cambridge University Press,
Cambridge

[5] Murphy KP (2012) Machine learning: a prob-
abilistic perspective. MIT Press, Cambridge

[6] Murphy KP (2022) Probabilistic machine
learning: an introduction. MIT Press, Cam-
bridge. http://doi.org/probml.ai

[7] Do CB, Batzoglou S (2008) What is the
expectation maximization algorithm? Nat
Biotechnol 26:8, 26:897–899. https://doi.
org/10.1038/nbt1406. https://www.
nature.com/articles/nbt1406

[8] Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data
via the em algorithm. J Roy Statist Soc Ser B
(Methodolog) 39:1–22. https://doi.
org/10.1111/J.2517-6161.1977.TB01
600.X.https://onlinelibrary.wiley.com/doi/
full/10.1111/j.2517-6161.1977.tb01600.x.
https://onlinel ibrar y.wi ley.com/doi/
abs/10.1111/j.2517-6161.1977.tb01600.x.
h t tps ://rss .on l ine l ibrar y.wi ley.com/
doi/10.1111/j.2517-6161.1977.tb01600.x

[9] van den Oord A, Kalchbrenner N, Kavukcuo-
glu K (2016) Pixel recurrent neural networks.
ArXiv abs/1601.06759

[10] Magnusson K (2020) Understanding maxi-
mum likelihood: an interactive visualization.
https://rpsychologist.com/likelihood/

[11] Rezende DJ, Mohamed S (2015) Variational
inference with normalizing flows. In: ICML

[12] van den Oord A, Kalchbrenner N,
Espeholt L, Kavukcuoglu K, Vinyals O,
Graves A (2016) Conditional image genera-
tion with PixelCNN decoders. In: NIPS

[13] Dinh L, Sohl-Dickstein J, Bengio S (2017)
Density estimation using Real NVP. ArXiv
abs/1605.08803

[14] Salakhutdinov R, Hinton G (2009) Deep
Boltzmann machines. In: van Dyk D, Well-
ing M (eds) Proceedings of the twelfth inter-
national conference on artificial intelligence
and statistics, PMLR, hilton clearwater
beach resort, clearwater beach, Florida
USA, Proceedings of Machine Learning
Research, vol 5, pp 448–455. https://
proceedings.mlr.press/v5/salakhutdinov0
9a.html

[15] Weng L (2018) From autoencoder to
Beta-VAE. lilianwenggithubio/lil-log.
http://lilianweng.github.io/lil-log/201
8/08/12/from-autoencoder-to-beta-vae.
html

[16] Kingma DP, Welling M (2014) Auto-
encoding var iat ional bayes . ArXiv
1312.6114

[17] Creswell A, White T, Dumoulin V,
Arulkumaran K, Sengupta B, Bharath AA
(2018) Generative adversarial networks: an
overview. IEEE Signal Process Mag 35(1):
53–65. https://doi.org/10.1109/MSP.
2017.2765202

[18] Arjovsky M, Bottou L (2017) Towards prin-
cipled methods for training generative
adversarial networks. ArXiv
abs/1701.04862

[19] Theis L, van den Oord A, Bethge M (2016)
A note on the evaluation of generative mod-
els. CoRR abs/1511.01844

[20] Radford A, Metz L, Chintala S (2015)
Unsupervised representation learning with

http://doi.org/probml.ai
https://doi.org/10.1038/nbt1406
https://doi.org/10.1038/nbt1406
https://www.nature.com/articles/nbt1406
https://www.nature.com/articles/nbt1406
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://onlinelibrary.wiley.com/doi/full/10.1111/j.2517-6161.1977.tb01600.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.2517-6161.1977.tb01600.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x
https://rpsychologist.com/likelihood/
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html
http://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
http://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
http://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
http://doi.org/
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202

190 Markus Wenzel

deep convolutional generative adversarial
networks. ArXiV http://arxiv.org/abs/1
511.06434

[21] Islam J, Zhang Y (2020) GAN-based syn-
thetic brain PET image generation. Brain
Inform 7:1–12. https://doi.org/10.1186/
S40708-020-00104-2/FIGURES/9.
https://braininformatics.springeropen.
com/ar ticles/10.1186/s40708-020-
00104-2

[22] Arjovsky M, Chintala S, Bottou L (2017)
Wasserstein GAN. ArXiv http://arxiv.org/
abs/1701.07875v3. 1701.07875

[23] Gulrajani I, Ahmed F, Arjovsky M,
Dumoulin V, Courville A (2017) Improved
training of Wasserstein GANs. ArXiV
http://arxiv.org/abs/1704.00028v3. nIPS
camera-ready, 1704.00028

[24] Villani C (2009) Optimal transport, old and
new. Springer, Berlin. https://doi.
org/10.1007/978-3-540-71050-9.
https://www.cedricvillani.org/wp-content/
uploads/2012/08/preprint-1.pdf

[25] Basso G (2015) A Hitchhiker’s guide to
Wasserstein distances. https://homeweb.
unifr.ch/BassoG/pub/A%20Hitchhikers%
20guide%20to%20Wasserstein.pdf

[26] Weng L (2019) From GAN to WGAN.
ArXiv 1904.08994

[27] Baumgartner CF, Koch LM, Tezcan KC,
Ang JX, Konukoglu E (2018) Visual feature
attribution using Wasserstein GANs. In: The
IEEE conference on computer vision and
pattern recognition (CVPR)

[28] Dzanic T, Shah K, Witherden FD (2020)
Fourier spectrum discrepancies in deep net-
work generated images. In: 34th conference
on neural information processing systems
(NeurIPS)

[29] Joslin M, Hao S (2020) Attributing and
detecting fake images generated by known
GANs. In: Proceedings - 2020 IEEE sympo-
sium on security and privacy workshops,
SPW 2020. Institute of Electrical and Elec-
tronics Engineers, Piscataway, pp 8–14.
https://doi.org/10.1109/SPW50608.
2020.00019

[30] Le BM, Woo SS (2021) Exploring the asyn-
chronous of the frequency spectra of
GAN-generated facial images. ArXiv
https://arxiv.org/abs/2112.08050v1.
2112.08050

[31] Goebel M, Nataraj L, Nanjundaswamy T,
Mohammed TM, Chandrasekaran S, Manju-
nath BS, Maya (2021) Detection,

attribution and localization of GAN gener-
ated images. Electron Imag. https://doi.
org/10.2352/ISSN.2470-1173.2021.4.
MWSF-276

[32] Isola P, Zhu JY, Zhou T, Efros AA (2016)
Image-to-image translation with conditional
adversarial networks. ArXiV http://arxiv.
org/abs/1611.07004

[33] Senaras C, Sahiner B, Tozbikian G,
Lozanski G, Gurcan MN (2018) Creating
synthetic digital slides using conditional
generative adversarial networks: application
to Ki67 staining. In: Medical imaging 2018:
digital pathology, society of photo-optical
instrumentation engineers (SPIE) confer-
ence series, vol 10581, p 1058103.
https://doi.org/10.1117/12.2294999

[34] Zhao G, Meyerand ME, Birn RM (2021)
Bayesian conditional GAN for MRI brain
image synthesis. ArXiV 2005.11875

[35] Bakas S, Reyes M, . . ., Menze B (2019)
Identifying the best machine learning algo-
rithms for brain tumor segmentation, pro-
gression assessment, and overall survival
prediction in the BRATS challenge. ArXiV
1811.02629

[36] Cirillo MD, Abramian D, Eklund A (2020)
Vox2Vox: 3D-GAN for brain tumour seg-
mentation. ArXiV 2003.13653

[37] Zhu JY, Park T, Isola P, Efros AA (2017)
Unpaired image-to-image translation using
cycle-consistent adversarial networks. In:
2017 IEEE international conference on
computer vision (ICCV), IEEE, pp
2242–2251. http://ieeexplore.ieee.org/
document/8237506/papers3://publica
tion/doi/10.1109/ICCV.2017.244

[38] Almahairi A, Rajeswar S, Sordoni A,
Bachman P, Courville A (2018) Augmented
CycleGAN: Learning many-to-many map-
pings from unpaired data. ArXiV https://
arxiv.org/pdf/1802.10151.pdf. 1802.101
51

[39] Chu C, Zhmoginov A, Sandler M (2017)
CycleGAN, a master of steganography.
ArXiV http://arxiv.org/abs/1712.02950

[40] Zhang Z, Yang L, Zheng Y (2018) Translat-
ing and segmenting multimodal medical
volumes with cycle- and shape-consistency
generative adversarial network. In: 2018
IEEE/CVF conference on computer vision
and pattern recognition, IEEE, pp
9242–9251. https://doi.org/10.1109/
CVPR.2018.00963. https://ieeexplore.
ieee.org/document/8579061/

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1186/S40708-020-00104-2/FIGURES/9
https://doi.org/10.1186/S40708-020-00104-2/FIGURES/9
https://braininformatics.springeropen.com/articles/10.1186/s40708-020-00104-2
https://braininformatics.springeropen.com/articles/10.1186/s40708-020-00104-2
https://braininformatics.springeropen.com/articles/10.1186/s40708-020-00104-2
http://arxiv.org/abs/1701.07875v3
http://arxiv.org/abs/1701.07875v3
http://doi.org/
http://arxiv.org/abs/1704.00028v3
http://doi.org/
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://www.cedricvillani.org/wp-content/uploads/2012/08/preprint-1.pdf
https://www.cedricvillani.org/wp-content/uploads/2012/08/preprint-1.pdf
https://homeweb.unifr.ch/BassoG/pub/A%20Hitchhikers%20guide%20to%20Wasserstein.pdf
https://homeweb.unifr.ch/BassoG/pub/A%20Hitchhikers%20guide%20to%20Wasserstein.pdf
https://homeweb.unifr.ch/BassoG/pub/A%20Hitchhikers%20guide%20to%20Wasserstein.pdf
http://doi.org/
https://doi.org/10.1109/SPW50608.2020.00019
https://doi.org/10.1109/SPW50608.2020.00019
https://arxiv.org/abs/2112.08050v1
http://doi.org/
https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-276
https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-276
https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-276
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://doi.org/10.1117/12.2294999
http://doi.org/
http://doi.org/
http://doi.org/
http://ieeexplore.ieee.org/document/8237506/papers3://publication/doi/10.1109/ICCV.2017.244
http://ieeexplore.ieee.org/document/8237506/papers3://publication/doi/10.1109/ICCV.2017.244
http://ieeexplore.ieee.org/document/8237506/papers3://publication/doi/10.1109/ICCV.2017.244
https://arxiv.org/pdf/1802.10151.pdf
https://arxiv.org/pdf/1802.10151.pdf
http://doi.org/
http://doi.org/
http://arxiv.org/abs/1712.02950
https://doi.org/10.1109/CVPR.2018.00963
https://doi.org/10.1109/CVPR.2018.00963
https://ieeexplore.ieee.org/document/8579061/
https://ieeexplore.ieee.org/document/8579061/

GANs and Beyond 191

[41] Hoffman J, Tzeng E, Park T, Zhu JY,
Isola P, Saenko K, Efros AA, Darrell T
(2017) CyCADA: Cycle-consistent adver-
sarial domain adaptation. ArXiV 1
711.03213

[42] Huo Y, Xu Z, Bao S, Assad A, Abramson
RG, Landman BA (2018) Adversarial syn-
thesis learning enables segmentation with-
out target modality ground truth. In: 2018
IEEE 15th international symposium on bio-
medical imaging (ISBI 2018), pp
1217–1220. https://doi.org/10.1109/
ISBI.2018.8363790

[43] Yang D, Xiong T, Xu D, Zhou SK (2020)
Segmentation using adversarial image-to-
image networks. In: Handbook of medical
image computing and computer assisted
intervention, pp 165–182. https://doi.
o r g / 1 0 . 1 0 1 6 / B 9 7 8 - 0 - 1 2 - 8 1 6 1
76-0.00012-0

[44] Karras T, Laine S, Aila T (2018) A style-
based generator architecture for generative
adversarial networks. IEEE Trans Pattern
Analy Mach Intell 43:4217–4228. https://
doi.org/10.1109/TPAMI.2020.2970919.
https://arxiv.org/abs/1812.04948v3

[45] Karras T, Laine S, Aittala M, Hellsten J,
Lehtinen J, Aila T (2020) Analyzing and
improving the image quality of
StyleGAN. In: Proceedings of the IEEE
computer society conference on computer
vision and pattern recognition, pp
8107–8116. https://doi.org/10.1109/
CVPR42600.2020.00813. https://arxiv.
org/abs/1912.04958v2

[46] Liu B, Zhu Y, Song K, Elgammal A (2021)
Towards faster and stabilized GAN training
for high-fidelity few-shot image
synthesis. In: International conference on
l earn ing representat ions . h t tps ://
openreview.net/forum?id=1Fqg133qRaI

[47] Esser P, Rombach R, Ommer B (2021)
Taming transformers for high-resolution
image synthesis. In: 2021 IEEE/CVF con-
ference on computer vision and pattern rec-
ognition (CVPR), pp 12868–12878.
https://doi.org/10.1109/CVPR46437.
2021.01268

[48] Radford A, Kim JW, Hallacy C, Ramesh A,
Goh G, Agarwal S, Sastry G, Askell A,
Mishkin P, Clark J, Krueger G, Sutskever I
(2021) Learning transferable visual models
from natural language supervision. ArXiV
2103.00020

[49] van den Oord A, Vinyals O, Kavukcuoglu K
(2017) Neural discrete representation
learning. CoRR abs/1711.00937. http://
arxiv.org/abs/1711.00937

[50] Weng L (2018) Flow-based deep generative
models. lilianwenggithubio/lil-log. http://
lilianweng.github.io/lil-log/2018/10/13/
flow-based-deep-generative-models.html

[51] Kingma DP, Dhariwal P (2018) Glow: gen-
erative flow with invertible 1x1 convolu-
tions. ArXiv https://doi.org/10.48550/
ARXIV.1807.03039. https://arxiv.org/
abs/1807.03039

[52] Abdal R, Zhu P, Mitra NJ, Wonka P (2021)
StyleFlow: attribute-conditioned explora-
tion of StyleGAN-generated images using
conditional continuous normalizing flows.
ACM Trans Graph 40(3):1–21. https://
doi.org/10.1145/3447648. https://doi.
org/10.1145%2F3447648

[53] Song Y, Sohl-Dickstein J, Kingma DP,
Kumar A, Ermon S, Poole B (2021) Score-
based generative modeling through stochas-
tic differential equations. In: International
conference on learning representations.
h t tps ://openrev iew.net/forum? id=
PxTIG12RRHS

[54] Ho J, Jain A, Abbeel P (2020) Denoising
diffusion probabilistic models. ArXiV 200
6.11239

[55] Hoogeboom E, Gritsenko AA, Bastings J,
Poole B, van den Berg R, Salimans T
(2021) Autoregressive diffusion models.
ArXiV 2110.02037

[56] Dhariwal P, Nichol A (2021) Diffusion
models beat GANs on image synthesis.
ArXiV http://arxiv.org/abs/2105.05233

[57] Nichol A, Dhariwal P (2021) Improved
denoising diffusion probabilistic models.
ArXiV http://arxiv.org/abs/2102.09672

[58] Song Y, Ermon S (2019) Generative model-
ing by estimating gradients of the data
distribution. In: Advances in neural informa-
tion processing systems, pp 11895–11907

[59] Song Y, Garg S, Shi J, Ermon S (2019)
Sliced score matching: a scalable approach
to density and score estimation. In: Proceed-
ings of the thirty-fifth conference on uncer-
tainty in artificial intelligence, UAI 2019,
Tel Aviv, Israel, July 22–25, 2019, p 204.
http://auai.org/uai2019/proceedings/
papers/204.pdf

http://doi.org/
http://doi.org/
https://doi.org/10.1109/ISBI.2018.8363790
https://doi.org/10.1109/ISBI.2018.8363790
https://doi.org/10.1016/B978-0-12-816176-0.00012-0
https://doi.org/10.1016/B978-0-12-816176-0.00012-0
https://doi.org/10.1016/B978-0-12-816176-0.00012-0
https://doi.org/10.1109/TPAMI.2020.2970919
https://doi.org/10.1109/TPAMI.2020.2970919
https://arxiv.org/abs/1812.04948v3
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/CVPR42600.2020.00813
https://arxiv.org/abs/1912.04958v2
https://arxiv.org/abs/1912.04958v2
https://openreview.net/forum?id=1Fqg133qRaI
https://openreview.net/forum?id=1Fqg133qRaI
https://doi.org/10.1109/CVPR46437.2021.01268
https://doi.org/10.1109/CVPR46437.2021.01268
http://doi.org/
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://doi.org/10.48550/ARXIV.1807.03039
https://doi.org/10.48550/ARXIV.1807.03039
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1807.03039
https://doi.org/10.1145/3447648
https://doi.org/10.1145/3447648
https://doi.org/10.1145%2F3447648
https://doi.org/10.1145%2F3447648
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
http://doi.org/
http://doi.org/
http://doi.org/
http://arxiv.org/abs/2105.05233
http://arxiv.org/abs/2102.09672
http://auai.org/uai2019/proceedings/papers/204.pdf
http://auai.org/uai2019/proceedings/papers/204.pdf

Open Access This chapter is licensed under the term s of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4. 0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as y ou give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licens e and indicate if changes were made.

The images or other third party material in this chapt er are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the mat erial. If material is not included in the chapter’s Creative
Commons license and your intended use is not permit ted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the c opyright holder.

192 Markus Wenzel

[60] Parmar N, Vaswani A, Uszkoreit J, Łukasz
Kaiser, Shazeer N, Ku A, Tran D (2018)
Image transformer. ArXiV 1802.05751

[61] Chen M, Radford A, Child R, Wu J, Jun H,
Luan D, Sutskever I (2020) Generative pre-
training from pixels. In: Daumé III H, Singh
A (eds) Proceedings of the 37th interna-
tional conference on machine learning,

PMLR, proceedings of machine learning
research, vol 119, pp 1691–1703. https://
proceedings.mlr.press/v119/chen20s.html

[62] Zhang B, Gu S, Zhang B, Bao J, Chen D,
Wen F, Wang Y, Guo B (2021) StyleSwin:
transformer-based GAN for high-resolution
image generation. ArXiV 2112.10762

http://doi.org/
https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v119/chen20s.html
http://doi.org/
http://creativecommons.org/licenses/by/4.0/

	Chapter 5: Generative Adversarial Networks and Other Generative Models
	1 Introduction
	2 Generative Models
	2.1 The Language of Generative Models: Distributions, Density Estimation, and Estimators
	2.1.1 Distributions
	Box 1: Probability Distributions: Terminology
	2.1.2 Density Estimation
	Box 2: Expectation Maximization-Example
	2.1.3 Estimators and the Expected Value
	2.1.4 Sampling from Distributions

	3 Generative Adversarial Networks
	3.1 Generative vs. Discriminative Models
	3.2 Before GANs: Variational Autoencoders
	3.2.1 From AE to VAE
	3.2.2 KL Divergence
	Box 3: Example: Calculating DKL
	3.2.3 Optimizing the KL Divergence
	3.2.4 The Limits of VAE

	3.3 The Fundamental GAN Approach
	3.4 Why Early GANs Were Hard to Train
	3.5 Improving GANs
	Box 4: Best Practices for Stable GAN Training
	3.6 Wasserstein GANs
	3.6.1 The Wasserstein (Earthmover) Distance
	3.6.2 Implementing WGANs
	Box 5: Spectral Normalization
	3.6.3 Example Application: Brain Abnormality Detection Using WGAN

	3.7 GAN Performance Metrics

	4 Selected GAN Architectures You Should Know
	4.1 Conditional GAN
	4.2 CycleGAN
	4.3 StyleGAN and Successor
	4.4 Stabilized GAN for Few-Shot Learning
	4.5 VQGAN

	5 Other Generative Models
	5.1 Diffusion and Score-Based Models
	5.2 Transformer-Based Generative Models

	References

