
Chapter 3

Deep Learning: Basics and Convolutional Neural Networks
(CNNs)

Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos,
Olivier Colliot, and Vincent Lepetit

Abstract

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-
the-art performance in a variety of fields, including medical applications. Deep learning architectures can be
categorized into different groups depending on their components. However, most of them share similar
modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be
presented to provide a better understanding of these powerful and broadly used algorithms. The analysis
is structured around the main components of deep learning architectures, focusing on convolutional neural
networks and autoencoders.

Key words Perceptrons, Backpropagation, Convolutional neural networks, Deep learning, Medical
imaging

1 Introduction

Recently, deep learning frameworks have become very popular,
attracting a lot of attention from the research community. These
frameworks provide machine learning schemes without the need
for feature engineering, while at the same time they remain quite
flexible. Initially developed for supervised tasks, they are nowadays
extended to many other settings. Deep learning, in the strict sense,
involves the use of multiple layers of artificial neurons. The first
artificial neural networks were developed in the late 1950s with the
presentation of the perceptron [1] algorithms. However, limita-
tions related to the computational costs of these algorithms during
that period, as well as the often-miscited claim of Minsky and
Papert [2] that perceptrons are not capable of learning non-linear
functions such as the XOR, caused a significant decline of interest
for further research on these algorithms and contributed to the
so-called artificial intelligence winter. In particular, in their book
[2], Minsky and Papert discussed that single-layer perceptrons are

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_3,
© The Author(s) 2023

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_3&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_3#DOI

only capable of learning linearly separable patterns. It was often
incorrectly believed that they also presumed this is the case for
multilayer perceptron networks. It took more than 10 years for
research on neural networks to recover, and in [3], some of these
issues were clarified and further discussed. Even if during this
period there was not a lot of research interest for perceptrons,
very important algorithms such as the backpropagation algorithm
[4–7] and recurrent neural networks [8] were introduced.

78 Maria Vakalopoulou et al.

After this period, and in the early 2000s, publications by Hin-
ton, Osindero, and Teh [9] indicated efficient ways to train multi-
layer perceptrons layer by layer, treating each layer as an
unsupervised restricted Boltzmann machine and then using super-
vised backpropagation for the fine-tuning [10]. Such advances in
the optimization algorithms and in hardware, in particular graphics
processing units (GPUs), increased the computational speed of
deep learning systems and made their training easier and faster.
Moreover, around 2010, the first large-scale datasets, with Ima-
geNet [11] being one of the most popular, were made available,
contributing to the success of deep learning algorithms, allowing
the experimental demonstration of their superior performance on
several tasks in comparison with other commonly used machine
learning algorithms. Finally, another very important factor that
contributed to the current popularity of deep learning techniques
is their support by publicly available and easy-to-use libraries such
as Theano [12], Caffe [13], TensorFlow [14], Keras [15], and
PyTorch [16]. Indeed, currently, due to all these publicly available
libraries that facilitate collaborative and reproducible research and
access to resources from large corporations such as Kaggle, Google
Colab, and Amazon Web Services, teaching and research about
these algorithms have become much easier.

This chapter will focus on the presentation and discussion of
the main components of deep learning algorithms, giving the
reader a better understanding of these powerful models. The chap-
ter is meant to be readable by someone with no background in deep
learning. The basic notions of machine learning will not be
included here; however, the reader should refer to Chap. 2 (reader
without a background in engineering or computer science can also
refer to Chap. 1 for a lay audience-oriented presentation of these
concepts). The rest of this chapter is organized as follows. We will
first present the deep feedforward networks focusing on percep-
trons, multilayer perceptrons, and the main functions that they are
composed of (Subheading 2). Then, we will focus on the optimiza-
tion of deep neural networks, and in particular, we will formally
present the topics of gradient descent, backpropagation, as well as
the notions of generalization and overfitting (Subheading 3). Sub-
heading 4 will focus on convolutional neural networks discussing in
detail the basic convolution operations, while Subheading 5 will
give an overview of the autoencoder architectures.

https://doi.org/10.1007/978-1-0716-3195-9_2
https://doi.org/10.1007/978-1-0716-3195-9_1

Deep Learning: Basics and CNN 79

2 Deep Feedforward Networks

In this section, we will present the early deep learning approaches
together with the main functions that are commonly used in deep
feedforward networks. Deep feedforward networks are a set of
parametric, non-linear, and hierarchical representation models
that are optimized with stochastic gradient descent. In this defini-
tion, the term parametric holds due to the parameters that we need
to learn during the training of these models, the non-linearity due
to the non-linear functions that they are composed of, and the
hierarchical representation due to the fact that the output of one
function is used as the input of the next in a hierarchical way.

2.1 Perceptrons The perceptron [1] was originally developed for supervised binary
classification problems, and it was inspired by works from neuros-
cientists such as Donald Hebb [17]. It was built around a
non-linear neuron, namely, the McCulloch-Pitts model of a neu-
ron. More formally, we are looking for a function f(x;w, b) such that
f ð:;w, bÞ : x∈p → fþ1, -1g where w and b are the parameters
of f and the vector x= [x1, . . ., xp]

⊤ is the input. The training set is
{(x(i) , y(i))}. In particular, the perceptron relies on a linear model for
performing the classification:

f ðx;w, bÞ=
þ1 if w⊤x þ b ≥0

-1 otherwise
: ð1Þ

Such a model can be interpreted geometrically as a hyperplane
that can appropriately divide data points that are linearly separable.
Moreover, one can observe that, in the previous definition, a per-
ceptron is a combination of a weighted summation between the
elements of the input vector x combined with a step function that
performs the decision for the classification. Without loss of gener-
ality, this step function can be replaced by other activation functions
such as the sigmoid, hyperbolic tangent, or softmax functions (see
Subheading 2.3); the output simply needs to be thresholded to
assign the + 1 or -1 class. Graphically, a perceptron is presented in
Fig. 1 on which each of the elements of the input is described as a
neuron and all the elements are combined by weighting with the
models’ parameters and then passed to an activation function for
the final decision.

During the training process and similarly to the other machine
learning algorithms, we need to find the optimal parameters w and
b for the perceptron model. One of the main innovations of Rosen-
blatt was the proposition of the learning algorithm using an itera-
tive process. First, the weights are initialized randomly, and then
using one sample (x(i) , y(i)) of the training set, the prediction of the

perceptron is calculated. If the prediction is correct, no further
action is needed, and the next data point is processed. If the
prediction is wrong, the weights are updated with the
following rule: the weights are increased in case the prediction is
smaller than the ground-truth label y(i) and decreased if the predic-
tion is higher than the ground-truth label. This process is repeated
until no further errors are made for the data points. A pseudocode
of the training or convergence algorithm is presented in
Algorithm 1 (note that in this version, it is assumed that the data
is linearly separable).

80 Maria Vakalopoulou et al.

x1

x2

xp

1

� ŷ

wp

w2

w1

b

Fig. 1 A simple perceptron model. The input elements are described as neurons
and combined for the final prediction ŷ . The final prediction is composed of a
weighted sum and an activation function

Algorithm 1 Train perceptron

procedure Train({(x(i), y(i))})
Initialization: initialize randomly the weights w and bias b
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) �= y(i) do

Pick i randomly
error = y(i) − f(x(i);w, b)
if error �= 0 then

w ← w + error · x(i)

b b + error

Originally, the perceptron has been proposed for binary classi-
fication tasks. However, this algorithm can be generalized for the
case of multiclass classification, fc(x;w, b), where c∈{1, . . ., C} are
the different classes. This can be easily achieved by adding more
neurons to the output layer of the perceptron. That way, the
number of output neurons would be the same as the number of
possible outputs we need to predict for the specific problem. Then,
the final decision can be made by choosing the maximum of the
different output neurons f n = max f cðx;w, bÞ.

c∈f1, ...,CgFinally, in the following, we will integrate the bias b in the
weights w (and thus add 1 as the first element of the input vector
x= [1, x1, . . ., xp]

⊤). The model can then be rewritten as f(x;w) such
that f ð:;wÞ : x∈pþ1 → fþ1, -1g.

Deep Learning: Basics and CNN 81

2.2 Multilayer

Perceptrons

The limitation of perceptrons to linear problems can be overcome
by using multilayer perceptions, often denoted as MLP. An MLP
consists of at least three layers of neurons: the input layer, a hidden
layer, and an output layer. Except for the input neurons, each
neuron uses a non-linear activation function, making it capable of
distinguishing data that is not linearly separable. These layers can
also be called fully connected layers since they connect all the
neurons of the previous and of the current layer. It is absolutely
crucial to keep in mind that non-linear functions are necessary for
the network to find non-linear separations in the data (otherwise,
all the layers could simply be collapsed together into a single
gigantic linear function).

2.2.1 A Simple Multilayer

Network

Without loss of generality, an MLP with one hidden layer can be
defined as:

zðxÞ= gðW 1 xÞ
ŷ = f ðx;W 1 ,W 2Þ=W 2 zðxÞ

, ð2Þ

where gðxÞ : → denotes the non-linear function (which can be
applied element-wise to a vector), W1 the matrix of coefficients of
the first layer, and W2 the matrix of coefficients of the second layer.

Equivalently, one can write:

yc =
d1

j =1

W 2
ðc,jÞgðW 1⊤

ðjÞxÞ, ð3Þ

where d1 is the number of neurons for the hidden layer which
defines the width of the network, W 1

ðjÞ denotes the first column
of the matrix W1 , and W 2

ðc,jÞ denotes the c, j element of the matrix
W2 . Graphically, a two-layer perceptron is presented in Fig. 2 on

x1

x2

xp

z3

z2

z1

zd 1

1

W 1 W 2

ŷ

2 ŷ

Fig. 2 An example of a simple multilayer perceptron model. The input layer is fed
into a hidden layer (z), which is then combined for the last output layer providing
the final prediction

which the input neurons are fed into a hidden layer whose neurons
are combined for the final prediction.

82 Maria Vakalopoulou et al.

There were a lot of research works indicating the capacity of
feedforward neural networks with a single hidden layer of finite size
to approximate continuous functions. In the late 1980s, the first
proof was published [18] for sigmoid activation functions (see
Subheading 2.3 for the definition) and was generalized to other
functions for feedforward multilayer architectures [19–21]. In par-
ticular, these works prove that any continuous function can be
approximated under mild conditions as closely as wanted by a
three-layer network. As N →1, any continuous function f can
be approximated by some neural network f̂ , because each compo-
nent gðW T

ðjÞxÞ behaves like a basis function and functions in a
suitable space admit a basis expansion. However, since N may
need to be very large, introducing some limitations for these
types of networks, deeper networks, with more than one hidden
layer, can provide good alternatives.

2.2.2 Deep Neural

Network

The simple MLP networks can be generalized to deeper networks
with more than one hidden layer that progressively generate
higher-level features from the raw input. Such networks can be
written as:

z1ðxÞ= gðW 1 xÞ
. . .

zkðxÞ= gðWk zk-1ðxÞÞ
. . .

ŷ = f ðx;W 1 , . . .,W K Þ= zK ðzK -1ð. . .ðz1ðxÞÞÞÞ

, ð4Þ

where K denotes the number of layers for the neural network,
which defines the depth of the network. In Fig. 3, a graphical
representation of the deep multilayer perceptron is presented.
Once again, the input layer is fed into the different hidden layers
of the network in a hierarchical way such that the output of one
layer is the input of the next one. The last layer of the network
corresponds to the output layer, which makes the final prediction of
the model.

As for networks with one hidden layer, they are also universal
approximators. However, the approximation theory for deep net-
works is less understood compared with neural networks with one
hidden layer. Overall, deep neural networks excel at representing
the composition of functions.

So far, we have described neural networks as simple chains of
layers, applied in a hierarchical way, with the main considerations
being the depth of the network (the number of layers K) and the

width of each k layer (the number of neurons dk). Overall, there are
no rules for the choice of the K and dk parameters that define the
architecture of the MLP. However, it has been shown empirically
that deeper models perform better. In Fig. 4, an overview of
2 different networks with 3 and 11 hidden layers is presented
with respect to the number of parameters and their accuracy. For
each architecture, the number of parameters varies by changing the
number of neurons dk. One can observe that, empirically, deeper
networks achieve better performance using approximately the same
or a lower number of parameters. Additional evidence to support
these empirical findings is a very active field of research [22, 23].

Deep Learning: Basics and CNN 83

x1

x2

xp

zk ,3

zk ,2

zk ,1

zk ,d k

╳ ╳╳╳

1 ŷ

2 ŷ

Fig. 3 An example of a deep neural network. The input layer, the kth layer of the deep neural network, and the
output layer are presented in the figure

Fig. 4 Comparison of two different networks with almost the same number of parameters, but different
depths. Figure inspired by Goodfellow et al. [24]

Neural networks can come in a variety of models and architec-
tures. The choice of the proper architecture and type of neural
network depends on the type of application and the type of data.

2 j =0 j
are homogeneously, linearly separable.

Most of the time, the best architecture is defined empirically. In the
next section, we will discuss the main functions used in neural
networks.

84 Maria Vakalopoulou et al.

2.3 Main Functions A neural network is a composition of different functions also called
modules. Most of the times, these functions are applied in a sequen-
tial way. However, in more complicated designs (e.g., deep residual
networks), different ways of combining them can be designed. In
the following subsections, we will discuss the most commonly used
functions that are the backbones of most perceptrons and multi-
layer perceptron architectures. One should note, however, that a
variety of functions can be proposed and used for different deep
learning architectures with the constraint to be differentiable –
almost – everywhere. This is mainly due to the way that deep neural
networks are trained, and this will be discussed later in the chapter.

2.3.1 Linear Functions One of the most fundamental functions used in deep neural net-
works is the simple linear function. Linear functions produce a
linear combination of all the nodes of one layer of the network,
weighted with the parameters W. The output signal of the linear
function is Wx, which is a polynomial of degree one. While it is easy
to solve linear equations, they have less power to learn complex
functional mappings from data. Moreover, when the number of
samples is much larger than the dimension of the input space, the
probability that the data is linearly separable comes close to zero
(Box 1). This is why they need to be combined with non-linear
functions, also called activation functions (the name activation has
been initially inspired by biology as the neuron will be active or not
depending on the output of the function).

Box 1: Function Counting Theorem
The so-called Function Counting Theorem (Cover [25])
counts the number of linearly separable dichotomies of
n points in general position in p . The theorem shows that,
out of the total 2n dichotomies, only Cðn, pÞ=

p n-1

When n>> p, the probability of a dichotomy to be line-
arly separable converges to zero. This indicates the need for
the integration of non-linear functions into our modeling and
architecture design. Note that n>> p is a typical regime in
machine learning and deep learning applications where the
number of samples is very large.

Deep Learning: Basics and CNN 85

Tanh Sigmoid ReLU

(a) (b) (c)

Fig. 5 Overview of different non-linear functions (in green) and their first-order derivative (blue). (a) Hyperbolic
tangent function (tanh), (b) sigmoid, and (c) rectified linear unit (ReLU)

2.3.2 Non-linear

Functions

One of the most important components of deep neural networks is
the non-linear functions, also called activation functions. They
convert the linear input signal of a node into non-linear outputs
to facilitate the learning of high-order polynomials. There are a lot
of different non-linear functions in the literature. In this subsec-
tion, we will discuss the most classical non-linearities.

Hyperbolic Tangent

Function (tanh)

One of the most standard non-linear functions is the hyperbolic
tangent function, aka the tanh function. Tanh is symmetric around
the origin with a range of values varying from-1 to 1. The biggest
advantage of the tanh function is that it produces a zero-centered
output (Fig. 5a), thereby supporting the backpropagation process
that we will cover in the next section. The tanh function is used
extensively for the training of multilayer neural networks. Formally,
the tanh function, together with its gradient, is defined as:

g = tanh ðxÞ=
ex - e - x

ex þ e - x

∂g
∂x

=1- tanh 2ðxÞ
: ð5Þ

One of the downsides of tanh is the saturation of gradients that
occurs for large or small inputs. This can slow down the training of
the networks.

Sigmoid Similar to tanh, the sigmoid is one of the first non-linear functions
that were used to compose deep learning architectures. One of the
main advantages is that it has a range of values varying from 0 to
1 (Fig. 5b) and therefore is especially used for models that aim to
predict a probability as an output. Formally, the sigmoid function,
together with its gradient, is defined as:

g = σðxÞ=
1

1þ e - x

∂g
∂x

= σðxÞð1- σðxÞÞ
: ð6Þ

86 Maria Vakalopoulou et al.

Note that this is in fact the logistic function, which is a special
case of the more general class of sigmoid function. As it is indicated
in Fig. 5b, the sigmoid gradient vanishes for large or small inputs
making the training process difficult. However, in case it is used for
the output units which are not latent variables and on which we
have access to the ground-truth labels, sigmoid may be a good
option.

Rectified Linear Unit (ReLU) ReLU is considered among the default choice of non-linearity.
Some of the main advantages of ReLU include its efficient calcula-
tion and better gradient propagation with fewer vanishing gradient
problems compared to the previous two activation functions
[26]. Formally, the ReLU function, together with its gradient, is
defined as:

g = max ð0, xÞ
∂g
∂x

=
0, if x ≤0

1, if x >0

: ð7Þ

As it is indicated in Fig. 5c, ReLU is differentiable anywhere
else than zero. However, this is not a very important problem as the
value of the derivative at zero can be arbitrarily chosen to be 0 or
1. In [27], the authors empirically demonstrated that the number
of iterations required to reach 25% training error on the CIFAR-10
dataset for a four-layer convolutional network was six times faster
with ReLU than with tanh neurons. On the other hand, and as
discussed in [28], ReLU-type neural networks which yield a piece-
wise linear classifier function produce almost always high confi-
dence predictions far away from the training data. However, due
to its efficiency and popularity, many variations of ReLU have been
proposed in the literature, such as the leaky ReLU [29] or the
parametric ReLU [30]. These two variations both address the
problem of dying neurons, where some ReLU neurons die for all
inputs and remain inactive no matter what input is supplied. In such
a case, no gradient flows from these neurons, and the training of the
neural network architecture is affected. Leaky ReLU and parametric
ReLU change the g(x)=0 part, by adding a slope and extending
the range of ReLU.

Swish The choice of the activation function in neural networks is not
always easy and can greatly affect performance. In [31], the authors
performed a combination of exhaustive and reinforcement
learning-based searches to discover novel activation functions.
Their experiments discovered a new activation function that is
called Swish and is defined as:

n

Deep Learning: Basics and CNN 87

g = x � σðβxÞ
∂g
∂x

= βgðxÞ þ σðβxÞð1- βgðxÞÞ
, ð8Þ

where σ is the sigmoid function and β is either a constant or a
trainable parameter. Swish tends to work better than ReLU on
deeper models, as it has been shown experimentally in [31] i
different domains.

Softmax Softmax is often used as the last activation function of a neural
network. In practice, it normalizes the output of a network to a
probability distribution over the predicted output classes. Softmax
is defined as:

SoftmaxðxiÞ=
ex i
C
j e

x
j

: ð9Þ

The softmax function takes as input a vector x of C real num-
bers and normalizes it into a probability distribution consisting of
C probabilities proportional to the exponentials of the input num-
bers. However, a limitation of softmax is that it assumes that every
input x belongs to at least one of the C classes (which is not the case
in practice, i.e., the network could be applied to an input that does
not belong to any of the classes).

2.3.3 Loss Functions Besides the activation functions, the loss function (which defines
the cost function) is one of the main elements of neural networks. It
is the function that represents the error for a given prediction. To
that purpose, for a given training sample, it compares the prediction
f(x(i) ;W) to the ground truth y(i) (here we denote for simplicity as
W all the parameters of the network, combining all the W1 , . . ., WK

in the multilayer perceptron shown above). The loss is denoted as
ℓ(y, f(x;W)). The average loss across the n training samples is called
the cost function and is defined as:

J ðW Þ=
1
n

n

i =1

ℓ yðiÞ, f ðxðiÞ;W Þ , ð10Þ

where {(x(i) , y(i))}i=1..n composes the training set. The aim of the
training will be to find the parameters W such that J(W) is mini-
mized. Note that, in deep learning, one often calls the cost function
the loss function, although, strictly speaking, the loss is for a given
sample, and the cost is averaged across samples. Besides, the objec-
tive function is the overall function to minimize, including the cost
and possible regularization terms. However, in the remainder of
this chapter, in accordance with common usage in deep learning,
we will sometimes use the term loss function instead of cost
function.

88 Maria Vakalopoulou et al.

In neural networks, the loss function can be virtually any func-
tion that is differentiable. Below we present the two most common
losses, which are, respectively, used for classification or regression
problems. However, specific losses exist for other tasks, such as
segmentation, which are covered in the corresponding chapters.

Cross-Entropy Loss One of the most basic loss functions for classification problems
corresponds to the cross-entropy between the expected values and
the predicted ones. It leads to the following cost function:

J ðW Þ= -
n

i =1

log P y= yðiÞjx= xðiÞ;W , ð11Þ

where P y= yðiÞjx= xðiÞ;W is the probability that a given sample is
correctly classified.

The cross-entropy can also be seen here as the negative
log-likelihood of the training set given the predictions of the net-
work. In other words, minimizing this loss function corresponds to
maximizing the likelihood:

J ðW Þ= ∏
n

i =1

P y= yðiÞjx= xðiÞ;W : ð12Þ

Mean Squared Error Loss For regression problems, the mean squared error is one of the most
basic cost functions, measuring the average of the squares of the
errors, which is the average squared difference between the pre-
dicted values and the real ones. The mean squared error is
defined as:

J ðW Þ=
n

i =1

jj yðiÞ - f ðxðiÞ;W Þ jj 2 : ð13Þ

3 Optimization of Deep Neural Networks

Optimization is one of the most important components of
neural networks, and it focuses on finding the parameters W that
minimize the loss function J(W). Overall, optimization is a difficult
task. Traditionally, the optimization process is performed by care-
fully designing the loss function and integrating its constraints to
ensure that the optimization process is convex (and thus, one can
be sure to find the global minimum). However, neural networks are
non-convex models, making their optimization challenging, and, in
general, one does not find the global minimum but only a local one.
In the next sections, the main components of their optimization
will be presented, giving a general overview of the optimization
process, its challenges, and common practices.

Deep Learning: Basics and CNN 89

Fig. 6 The gradient descent algorithm. This first-order optimization algorithm is
finding a local minimum by taking steps toward the opposite direction of the
gradient

3.1 Gradient Descent Gradient descent is an iterative optimization algorithm that is
among the most popular and basic algorithms in machine learning.
It is a first-order1 optimization algorithm, which is finding a local
minimum of a differentiable function. The main idea of gradient
descent is to take iterative steps toward the opposite direction of the
gradient of the function that needs to be optimized (Fig. 6).

That way, the parameters W of the model are updated by:

W tþ1 ←W t - η
∂J ðW t Þ
∂W t , ð14Þ

where t is the iteration and η, called learning rate, is the hyperpara-
meter that indicates the magnitude of the step that the algorithm
will take.

Besides its simplicity, gradient descent is one of the most com-
monly used algorithms. More sophisticated algorithms require
computing the Hessian (or an approximation) and/or its inverse
(or an approximation). Even if these variations could give better
optimization guarantees, they are often more computationally
expensive, making gradient descent the default method for
optimization.

In the case of convex functions, the optimization problem can
be reduced to the problem of finding a local minimum. Any local
minimum is then guaranteed to be a global minimum, and gradient
descent can identify it. However, when dealing with non-convex
functions, such as neural networks, it is possible to have many local
minima making the use of gradient descent challenging. Neural
networks are, in general, non-identifiable [24]. A model is said to
be identifiable if it is theoretically possible, given a sufficiently large
training set, to rule out all but one set of the model’s parameters.
Models with latent variables, such as the hidden layers of neural
networks, are often not identifiable because we can obtain equiva-
lent models by exchanging latent variables with each other.

1 First-order means here that the first-order derivatives of the cost function are used as opposed to second-order
algorithms that, for instance, use the Hessian.

However, all these minima are often almost equivalent to each
other in cost function value. In that case, these local minima are
not a problematic form of non-convexity. It remains an open ques-
tion whether there exist many local minima with a high cost that
prevent adequate training of neural networks. However, it is cur-
rently believed that most local minima, at least as found by modern
optimization procedures, will correspond to a low cost (even
though not to identical costs) [24].

90 Maria Vakalopoulou et al.

For W� to be a local minimum, we need mainly two conditions
to be fulfilled:

• ∂J
∂W

ðW �Þ =0.

• All the eigenvalues of ∂2 J

∂W 2 ðW �Þ to be positive.

For random functions in n dimensions, the probability for the
eigenvalues to be all positive is 1 n. On the other hand, the ratio of the
number of saddle points to localminima increases exponentiallywith
n [32]. A saddle point, or critical point, is a point where the deriva-
tives are zero without being a minimum of the function. Such points
could result in a high error making the optimization with gradient
descent challenging. In [32], this issue is discussed, and an optimi-
zation algorithm that leverages second-order curvature information
is proposed to deal with this issue for deep and recurrent networks.

3.1.1 Stochastic Gradient

Descent

Gradient descent efficiency is not enough when it comes to
machine learning problems with large numbers of training samples.
Indeed, this is the case for neural networks and deep learning which
often rely on hundreds or thousands of training samples. Updating
the parameters W after calculating the gradient using all the
training samples would lead to a tremendous computational com-
plexity of the underlying optimization algorithm [33]. To deal with
this problem, the stochastic gradient descent (SGD) algorithm is a
drastic simplification. Instead of computing the ∂J ðW Þ

∂W
exactly, each

iteration estimates this gradient on the basis of a small set of
randomly picked examples, as follows:

W tþ1 ←W t - ηtGðW tÞ, ð15Þ
where

GðW tÞ=
1
K

K

k=1

∂J ðikÞW
t

∂W
, ð16Þ

where J ik
is the loss function at training sample ik,

fðxðikÞ, yðikÞÞgk=1...K is the small subset of K training samples
(K<<N). This subset of K samples is called a mini-batch or
sometimes a batch.2 In such a way, the iteration cost of stochastic

2 Note that, as often in deep learning, the terminology can be confusing. In isolation, the term batch is usually a
synonym of mini-batch. On the contrary, batch gradient descent means computing the gradient using all training
samples and not only a mini-batch [24].

gradient descent will be OðKÞ and for gradient descent OðN Þ. The
ideal choice for the batch size is a debated question. First, an upper
limit for the batch size is often simply given the available GPU
memory, in particular when the size of the input data is large (e.g.,
3D medical images). Besides, choosing K as a power of 2 often
leads to more efficient computations. Finally, small batch sizes tend
to have a regularizing effect which can be beneficial [24]. In any
case, the ideal batch size usually depends on the application, and it
is not uncommon to try different batch sizes. Finally, one calls an
epoch a complete pass over the whole training set (meaning that
each training sample has been used once). The number of epochs is
the number of full passes over the whole training set. It should not
be confused with the number of iterations which is the number of
mini-batches that have been processed.

Deep Learning: Basics and CNN 91

Note that various improvements over traditional SGD have
been introduced, leading to more efficient optimization methods.
These state-of-the-art optimization methods are presented in
Subheading 3.4.

Box 2: Convergence of SGD Theorem

In [34], the authors prove that stochastic gradient
descent converges if the network is sufficiently overpara-
metrized. Let (x(i) , y(i))1≤i≤n be a training set satisfying
mini,j:i ≠ jkx(i)-x(j)k2> δ> 0. Consider fitting the data
using a feedforward neural network with ReLU activa-
tions. Denote by D (resp. W) the depth (resp. width) of
the network. Suppose that the neural network is suffi-
ciently overparametrized, i.e.:

W ≫ polynomial n,D,
1
δ

: ð17Þ

Then, with high probability, running SGD with some random
initialization and properly chosen step sizes ηt yields J(W

t)
< E in t / log 1 ε.

3.2 Backpropagation The training of neural networks is performed with backpropaga-
tion. Backpropagation computes the gradient of the loss function
with respect to the parameters of the network in an efficient and
local way. This algorithm was originally introduced in 1970. How-
ever, it started becoming very popular after the publication of [6],
which indicated that backpropagation works faster than other
methods that had been proposed back then for the training of
neural networks.

3.3 Generalization

and Overfitting

Þ

92 Maria Vakalopoulou et al.

Fig. 7 A multilayer perceptron with one hidden layer

The backpropagation algorithm works by computing the gra-
dient of the loss function (J) with respect to each weight by the
chain rule, computing the gradient one layer at a time, and iterating
backward from the last layer to avoid redundant calculations of
intermediate terms in the chain rule. In Fig. 7, an example of a
multilayer perceptron with one hidden layer is presented. In such a
network, the backpropagation is calculated as:

∂J ðW Þ
∂w2

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂w2

∂J ðW Þ
∂w1

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂w1

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂z1

×
∂z1
∂w1

: ð18Þ

Overall, backpropagation is very simple and local. However,
the reason why we can train a highly non-convex machine with
many local minima, like neural networks, with a strong local
learning algorithm is not really known even today. In practice,
backpropagation can be computed in different ways, including
manual calculation, numerical differentiation using finite difference
approximation, and symbolic differentiation. Nowadays, deep
learning frameworks such as [14, 16] use automatic differentiation
[35] for the application of backpropagation.

Similar to all the machine learning algorithms (discussed in
Chapter 2), neural networks can suffer from poor generaliza-
tion and overfitting. These problems are caused mainly by the
optimization of the parameters of the models performed in the
{(xi, yi)}i=1,. . .,n training set, while we need the model to per-
form well on other unseen data that are not available during the
training. More formally, in the case of cross-entropy, the loss
that we would like to minimize is:

J ðW Þ= - log ∏ðx, yÞ∈T T
P y= yjx= x;Wð , ð19Þ

where TT is the set of any data, not available during training. In
practice, a small validation set TV is used to evaluate the loss on
unseen data. Of course, this validation set should be distinct from
the training set. It is extremely important to keep in mind that the
performance obtained on the validation set is generally biased
upward because the validation set was used to perform early stop-
ping or to choose regularization parameters. Therefore, one should
have an independent test set that has been isolated at the

https://doi.org/10.1007/978-1-0716-3195-9_2

beginning, has not been used in any way during training, and is
only used to report the performance (see Chap. 20 for details). In
case one cannot have an additional independent test set due to a
lack of data, one should be aware that the performance may be
biased and that this is a limitation of the specific study.

Deep Learning: Basics and CNN 93

To avoid overfitting and improve the generalization perfor-
mance of the model, usually, the validation set is used to monitor
the loss during the training of the networks. Tracking the training
and validation losses over the number of epochs is essential and
provides important insights into the training process and the
selected hyperparameters (e.g., choice of learning rate). Recent
visualization tools such as TensorBoard3 or Weights & Biases4

make this tracking easy. In the following, we will also mention
some of the most commonly applied optimization techniques that
help with preventing overfitting.

Early Stopping Using the reported training and validation errors,
the best model in terms of performance and generalization power is
selected. In particular, early stopping, which corresponds to select-
ing a model corresponding to an earlier time point than the final
epoch, is a common way to prevent overfitting [36]. Early stopping
is a form of regularization for models that are trained with an
iterative method, such as gradient descent and its variants. Early
stopping can be implemented with different criteria. However,
generally, it requires the monitoring of the performance of the
model on a validation set, and the model is selected when its
performance degrades or its loss increases. Overall, early stopping
should be used almost universally for the training of neural net-
works [24]. The concept of early stopping is illustrated in Fig. 8.

Weight Regularization Similar to other machine learning meth-
ods (Chap. 2), weight regularization is also a very commonly used
technique for avoiding overfitting in neural networks. More specif-
ically, during the training of the model, the weights of the network
start growing in size in order to specialize the model to the training
data. However, large weights tend to cause sharp transitions in the
different layers of the network and, that way, large changes in the
output for only small changes in the inputs [37]. To handle this
problem, during the training process, the weights can be updated in
such a way that they are encouraged to be small, by adding a penalty
to the loss function, for instance, the ℓ2 norm of the parameters
λkWk2 , where λ is a trade-off parameter between the loss and the
regularization. Since weight regularization is quite popular in

3 https://www.tensorflow.org/tensorboard.
4 https://wandb.ai/site.

https://doi.org/10.1007/978-1-0716-3195-9_20
https://doi.org/10.1007/978-1-0716-3195-9_2
https://www.tensorflow.org/tensorboard
https://wandb.ai/site

neural networks, different optimizers have integrated them into
their optimization process in the form of weight decay.

94 Maria Vakalopoulou et al.

Validation

Training

Loss

Time (epochs)

Underfitting Overfitting

Fig. 8 Illustration of the concept of early stopping. The model that should be selected corresponds to the
dashed bar which is the point where the validation loss starts increasing. Before this point, the model is
underfitting. After, it is overfitting

Weight Initialization The way that the weights of neural net-
works will be initialized is very important, and it can determine
whether the algorithm converges at all, with some initial points
being so unstable that the algorithm encounters numerical difficul-
ties and fails altogether [24]. Most of the time, the weights are
initialized randomly from a Gaussian or uniform distribution.
According to [24], the choice of Gaussian or uniform distribution
does not seem to matter very much; however, the scale does have a
large effect both on the outcome of the optimization procedure
and on the ability of the network to generalize. Nevertheless, more
tailored approaches have been developed over the last decade that
have become the standard initialization points. One of them is the
Xavier Initialization [38] which balances between all the layers to
have the same activation variance and the same gradient variance.
More formally the weights are initialized as:

Wi,j � Uniform -
6

m þ n ,
6

m þ n , ð20Þ

where m is the number of inputs and n the number of outputs of
matrix W. Moreover, the biases b are initialized to 0.

Drop-out There are other techniques to prevent overfitting, such
as drop-out [39], which involves randomly destroying neurons
during the training process, thereby reducing the complexity of

the model. Drop-out is an ensemble method that does not need to
build the models explicitly. In practice, at each optimization itera-
tion, random binary masks on the units are considered. The proba-
bility of removing a unit (p) is defined as a hyperparameter during
the training of the network. During inference, all the units are
activated; however, the obtained parameters W are multiplied
with this probability p. Drop-out is quite efficient and commonly
used in a variety of neural network architectures.

Deep Learning: Basics and CNN 95

Fig. 9 Examples of data transformations applied in the MNIST dataset. Each of these generated samples is
considered additional training data

Data Augmentation Since neural networks are data-driven meth-
ods, their performance depends on the training data. To increase
the amount of data during the training, data augmentation can be
performed. It generates slightly modified copies of the existing
training data to enrich the training samples. This technique acts as
a regularizer and helps reduce overfitting. Some of the most com-
monly used transformations applied during data augmentation
include random rotations, translations, cropping, color jittering,
resizing, Gaussian blurring, and many more. In Fig. 9, examples
of different transformations on different digits (first column) of the
MNIST dataset [40] are presented. For medical images, the
TorchIO library allows to easily perform data augmentation [41].

Batch Normalization To ensure that the training of the networks
will be more stable and faster, batch normalization has been pro-
posed [42]. In practice, batch normalization re-centers and
re-scales the layer’s input, mitigating the problem of internal

covariate shift which changes the distribution of the inputs of each
layer affecting the learning rate of the network. Even if the method
is quite popular, its necessity and use for the training have recently
been questioned [43].

96 Maria Vakalopoulou et al.

3.4 State-of-the-Art

Optimizers

Over the years, different optimizers have been proposed and widely
used, aiming to provide improvements over the classical stochastic
gradient descent. These algorithms are motivated by challenges
that need to be addressed with stochastic gradient descent and are
focusing on the choice of the proper learning rate, its dynamic
change during training, as well as the fact that it is the same for all
the parameter updates [44]. Moreover, a proper choice of opti-
mizer could speed up the convergence to the optimal solution. In
this subsection, we will discuss some of the most commonly used
optimizers nowadays.

3.4.1 Stochastic Gradient

Descent with Momentum

One of the limitations of the stochastic gradient descent is that
since the direction of the gradient that we are taking is random, it
can heavily oscillate, making the training slower and even getting
stuck in a saddle point. To deal with this problem, stochastic
gradient descent with momentum [45, 46] keeps a history of the
previous gradients, and it updates the weights taking into account
the previous updates. More formally:

gt ← ρgt -1 þ ð1- ρÞGðW tÞ
ΔW t ← - ηt g

t

W tþ1 ←W t þ ΔW t

, ð21Þ

where gt is the direction of the update of the weights in time-step
t and ρ∈ [0, 1] is a hyperparameter that controls the contribution
of the previous gradients and current gradient in the current
update. When ρ=0, it is the same as the classical stochastic gradient
descent. A large value of ρ will mean that the update is strongly
influenced by the previous updates.

The momentum algorithm accumulates an exponentially
decaying moving average of the past gradients and continues to
move in their direction [24]. Momentum increases the speed of
convergence, while it is also helpful to not get stuck in places where
the search space is flat (saddle points with zero gradient), since the
momentum will pursue the search in the same direction as before
the flat region.

3.4.2 AdaGrad To facilitate and speed up, even more, the training process, optimi-
zers with adaptive learning rates per parameter have been proposed.
The adaptive gradient (AdaGrad) optimizer [47] is one of them. It
updates each individual parameter proportionally to their compo-
nent (and momentum) in the gradient. More formally:

Deep Learning: Basics and CNN 97

gt ←GðW tÞ
rt ← rt -1 þ gt gt

ΔW t ← -
η

δþ rt
p gt

W tþ1 ←W t þ ΔW t

, ð22Þ

where gt is the gradient estimate vector in time-step t, rt is the term
controlling the per parameter update, and δ is some small quantity
that is used to avoid the division by zero. Note that rt constitutes of
the gradient’s element-wise product with itself and of the previous
term rt-1 accumulating the gradients of the previous terms.

This algorithm performs very well for sparse data since it
decreases the learning rate faster for the parameters that are more
frequent and slower for the infrequent parameters. However, since
the update accumulates gradients of the previous steps, the updates
could decrease very fast, blocking the learning process. This limita-
tion is mitigated by extensions of the AdaGrad algorithm as we
discuss in the next sections.

3.4.3 RMSProp Another algorithm with adaptive learning rates per parameter is the
root mean squared propagation (RMSProp) algorithm, proposed
by Geoffrey Hinton. Despite its popularity and use, this algorithm
has not been published. RMSProp is an extension of the AdaGrad
algorithm dealing with the problem of radically diminishing
learning rates by being less influenced by the first iterations of the
algorithm. More formally:

gt ←GðW t Þ
rt ← ρrt -1 þ ð1- ρÞgt gt

ΔW t ← -
η

δþ rt
p gt

W tþ1 ←W t þ ΔW t

, ð23Þ

where ρ is a hyperparameter that controls the contribution of the
previous gradients and the current gradient in the current update.
Note that RMSProp estimates the squared gradients in the same
way as AdaGrad, but instead of letting that estimate continually
accumulate over training, we keep a moving average of it, integrat-
ing the momentum. Empirically, RMSProp has been shown to be
an effective and practical optimization algorithm for deep neural
networks [24].

3.4.4 Adam The effectiveness and advantages of the AdaGrad and RMSProp
algorithms are combined in the adaptive moment estimation
(Adam) optimizer [48]. The method computes individual adaptive
learning rates for different parameters from estimates of the first
and second moments of the gradients. More formally:

a

98 Maria Vakalopoulou et al.

gt ←GðW tÞ
s t ← ρ1s

t -1 þ ð1- ρ1Þgt

rt ← ρ2r
t -1 þ ð1- ρ2Þgt gt

ŝ t ←
s t

1- ðρ1Þt

r̂ t ←
rt

1- ðρ2Þt
ΔW t ← -

λ

δþ r̂ t
p ŝ t

W tþ1 ←W t þ ΔW t

, ð24Þ

where st is the gradient with momentum, rt accumulates the
squared gradients with momentum as in RMSProp, and ŝ t and r̂ t

are smaller than st and rt , respectively, but they converge toward
them. Moreover, δ is some small quantity that is used to avoid the
division by zero, while ρ1 and ρ2 are hyperparameters of the algo-
rithm. The parameters ρ1 and ρ2 control the decay rates of each
moving average, respectively, and their value is close to 1. Empirical
results demonstrate that Adam works well in practice and compares
favorably to other stochastic optimization methods, making it the
go-to optimizer for deep learning problems.

3.4.5 Other Optimizers The development of efficient (in terms of speed and stability)
optimizers is still an active research direction. RAdam [49] is
variant of Adam, introducing a term to rectify the variance of the
adaptive learning rate. In particular, RAdam leverages a dynamic
rectifier to adjust the adaptive momentum of Adam based on the
variance and effectively provides an automated warm-up custom-
tailored to the current dataset to ensure a solid start to training.
Moreover, LookAhead [50] was inspired by recent advances in the
understanding of loss surfaces of deep neural networks and pro-
vides a breakthrough in robust and stable exploration during the
entirety of the training. Intuitively, the algorithm chooses a search
direction by looking ahead at the sequence of fast weights gener-
ated by another optimizer. These are only some of the optimizers
that exist in the literature, and depending on the problem and the
application, different optimizers could be selected and applied.

4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific category of
deep neural networks that employ the convolution operation in
order to process the input data. Even though the main concept
dates back to the 1990s and is greatly inspired by neuroscience [51]
(in particular by the organization of the visual cortex), their wide-
spread use is due to a relatively recent success on the ImageNet
Large Scale Visual Recognition Challenge of 2012 [27]. In contrast

to the deep fully connected networks that have been already dis-
cussed, CNNs excel in processing data with a spatial or grid-like
organization (e.g., time series, images, videos, etc.) while at the
same time decreasing the number of trainable parameters due to
their weight sharing properties. The rest of this section is first
introducing the convolution operation and the motivation behind
using it as a building block/module of neural networks. Then, a
number of different variations are presented together with exam-
ples of the most important CNN architectures. Lastly, the impor-
tance of the receptive field – a central property of such networks –
will be discussed.

Deep Learning: Basics and CNN 99

4.1 The Convolution

Operation

The convolution operation is defined as the integral of the product
of the two functions (f, g)5 after one is reversed and shifted over the
other function. Formally, we write:

hðtÞ=
1

-1
f ðt - τÞgðτÞ dτ: ð25Þ

Such an operation can also be denoted with an asterisk (�), so it
is written as:

hðtÞ= ðf � gÞðtÞ: ð26Þ
In essence, the convolution operation shows how one function

affects the other. This intuition arises from the signal processing
domain, where it is typically important to know how a signal will be
affected by a filter. For example, consider a uni-dimensional con-
tinuous signal, like the brain activity of a patient on some electro-
encephalography electrode, and a Gaussian filter. The result of the
convolution operation between these two functions will output the
effect of a Gaussian filter on this signal which will, in fact, be a
smoothed version of the input.

A different way to think of the convolution operation is that it
shows how the two functions are related. In other words, it shows
how similar or dissimilar the two functions are at different relative
positions. In fact, the convolution operation is very similar to the
cross-correlation operation, with the subtle difference being that in
the convolution operation, one of the two functions is inverted. In
the context of deep learning specifically, the exact differences
between the two operations can be of secondary concern; however,
the convolution operation has more properties than correlation,
such as commutativity. Note also that when the signals are symmet-
ric, both operations will yield the same result.

In order to deal with discrete and finite signals, we can expand
the definition of the convolution operation. Specifically, given two

5 Note that f and g have no relationship to their previous definitions in the chapter. In particular, f is not the deep
learning model.

discrete signals f[k] and g[k], with k∈, the convolution operation
is defined by:

100 Maria Vakalopoulou et al.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗ K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Fig. 10 A visualization of the discrete convolution operation in 2D

h½k�=
n
f ½k-n�g ½n�: ð27Þ

Lastly, the convolution operation can be extended for multidi-
mensional signals similarly. For example, we can write the convolu-
tion operation between two discrete and finite two-dimensional
signals (e.g., I[i, j], K[i, j]) as:

H ½i, j �=
m n

I ½i-m, j -n�K ½m,n�: ð28Þ

Very often, the first signal will be the input of interest (e.g., a
large size image), while the second signal will be of relatively small
size (e.g., a 3 ×3 or 4×4 matrix) and will implement a specific
operation. The second signal is then called a kernel. In Fig. 10, a
visualization of the convolution operation is shown in the case of a
2D discrete signal such as an image and a 3 ×3 kernel. In detail, the
convolution kernel is shifted over all locations of the input, and an
element-wise multiplication and a summation are utilized to calcu-
late the convolution output at the corresponding location. Exam-
ples of applications of convolutions to an image are provided in
Fig. 11. Finally, note that, as in multilayer perceptrons, a convolu-
tion will generally be followed by a non-linear activation function,
for instance, a ReLU (see Fig. 12 for an example of activation
applied to a feature map).

In the following sections of this chapter, any reference to the
convolution operation will mostly refer to the 2D discrete case. The

extension to the 3D case, which is often encountered in medical
imaging, is straightforward.

Deep Learning: Basics and CNN 101

1 0 -1

1 0 -1

1 0 -1

1 1 1

0 0 0

-1 -1 -1

Original image Vertical edge detection Horizontal edge detection

Fig. 11 Two examples of convolutions applied to an image. One of the filters acts as a vertical edge detector
and the other one as a horizontal edge detector. Of course, in CNNs, the filters are learned, not predefined, so
there is no guarantee that, among the learned filters, there will be a vertical/horizontal case detector, although
it will often be the case in practice, especially for the first layers of the architecture

Fig. 12 Example of application of a non-linear activation function (here a ReLU) to an image

4.2 Properties of the

Convolution Operation

In the case of a discrete domain, the convolution operation can be
performed using a simple matrix multiplication without the need of
shifting one signal over the other one. This can be essentially
achieved by utilizing the Toeplitz matrix transformation. The Toe-
plitz transformation creates a sparse matrix with repeated elements
which, when multiplied with the input signal, produces the convo-
lution result. To illustrate how the convolution operation can be
implemented as a matrix multiplication, let’s take the example of a
3× 3 kernel (K) and a 4 ×4 input (I):

K =

k00 k01 k02 0

0 k00 k01 k

0 0 0 0

0 0 0 0

I = i00 i01 i02 i½

102 Maria Vakalopoulou et al.

K =

k00 k01 k02

k10 k11 k12

k20 k21 k22

and I =

i00 i01 i02 i03

i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

:

Then, the convolution operation can be computed as a matrix
multiplication between the Toepliz transformed kernel:

k10 k11 k12 0 k20 k21 k22 0 0 0 0 0

02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0

k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0

0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22

and a reshaped input:

03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33 �⊤ :
The produced output will need to be reshaped as a 2×2 matrix

in order to retrieve the convolution output. This matrix multiplica-
tion implementation is quite illuminating on a few of the most
important properties of the convolution operation. These proper-
ties are the main motivation behind using such elements in deep
neural networks.

By transforming the convolution operation to a matrix multi-
plication operation, it is evident that it can fit in the formalization of
the linear functions, which has already been presented in Subhead-
ing 2.3. As such, deep neural networks can be designed in a way to
utilize trainable convolution kernels. In practice, multiple convolu-
tion kernels are learned at each convolutional block, while several of
these trainable convolutional blocks are stacked on top of each
other forming deep CNNs. Typically, the output of a convolution
operation is called a feature map or just features.

Another important aspect of the convolution operation is that
it requires much fewer parameters than the fully connected
MLP-based deep neural networks. As it can also be seen from the

K matrix, the exact same parameters are shared across all locations.
Eventually, rather than learning a different set of parameters for the
different locations of the input, only one set is learned. This is
referred to as parameter sharing or weight sharing and can greatly
decrease the amount of memory that is required to store the
network parameters. An illustration of the process of weight sharing
across locations, together with the fact that multiple filters (result-
ing in multiple feature maps) are computed for a given layer, is
illustrated in Fig. 13. The multiple feature maps for a given layer are
stored using another dimension (see Fig. 14), thus resulting in a 3D

array when the input is a 2D image (and a 4D array when the input
is a 3D image).

Deep Learning: Basics and CNN 103

Fig. 13 For a given layer, several (usually many) filters are learned, each of them being able to detect a
specific characteristic in the image, resulting in several feature/filter maps. On the other hand, for a given
filter, the weights are shared across all the locations of the image

Fig. 14 The different feature maps for a given layer are arranged along another dimension. The feature maps
will thus be a 3D array when the input is a 2D image (and a 4D array when the input is a 3D image)

Convolutional neural networks have proven quite powerful in
processing data with spatial structure (e.g., images, videos, etc.).
This is effectively based on the fact that there is a local connectivity
of the kernel elements while at the same time the same kernel is
applied at different locations of the input. Such processing grants a
quite useful property called translation equivariance enabling the

4.3 Functions and

Variants

network to output similar responses at different locations of the
input. An example of the usefulness of such a property can be
identified on an image detection task. Specifically, when training a
network to detect tumors in an MR image of the brain, the model
should respond similarly regardless of the location where the anom-
aly can be manifested.

104 Maria Vakalopoulou et al.

Lastly, another important property of the convolution opera-
tion is that it decouples the size of the input with the trainable
parameters. For example, in the case of MLPs, the size of the weight
matrix is a function of the dimension of the input. Specifically, a
densely connected layer that maps 256 features to 10 outputs
would have a size of W∈10 ×256 . On the contrary, in convolu-
tional layers, the number of trainable parameters only depends on
the kernel size and the number of kernels that a layer has. This
eventually allows the processing of arbitrarily sized inputs, for
example, in the case of fully convolutional networks.

An observant reader might have noticed that the convolution
operation can change the dimensionality of the produced output.
In the example visualized in Fig. 10, the image of size 7× 7, when
convolved with a kernel of size 3× 3, produces a feature map of size
of 5× 5. Even though dimension changes can be avoided with
appropriate padding (see Fig. 15 for an illustration of this process)
prior to the convolution operation, in some cases, it is actually
desired to reduce the dimensions of the input. Such a decrease
can be achieved in a number of ways depending on the task at
hand. In this subsection, some of the most typical functions that
are utilized in CNNs will be discussed.

Fig. 15 The padding operation, which involves adding zeros around the image, allows to obtain feature maps
that are of the same size as the original image

Deep Learning: Basics and CNN 105

Max pooling with
2×2 filter and stride 2

Input feature map

Pooled feature map

Fig. 16 Effect of a pooling operation. Here, a maximum pooling of size 2 × 2 with a stride of 2

Downsampling Operations (i.e., Pooling Layers) In many
CNN architectures, there is an extensive use of downsampling
operations that aim to compress the size of the feature maps and
decrease the computational burden. Otherwise referred to as pool-
ing layers, these processing operations are aggregating the values of
their input depending on their design. Some of the most common
downsampling layers are the maximum pooling, average pooling, or
global average pooling. In the first two, either the maximum or the
average value is used as a feature for the output across
non-overlapping regions of a predefined pooling size. In the case
of the global average pooling, the spatial dimensions are all repre-
sented with the average value. An example of pooling is provided in
Fig. 16.

Strided Convolution The strided convolution refers to the spe-
cific case in which, instead of applying the convolution operation
for every location using a step size (or stride, s) of 1, different step
sizes can be considered (Fig. 17). Such an operation will produce a
convolution output with much fewer elements. Convolutional
blocks with s>1 can be found on CNN architectures as a way to
decrease the feature sizes in intermediate layers.

Atrous or Dilated Convolution Dilated, also called atrous, con-
volution is the convolution with kernels that have been dilated by
inserting zero holes (à trous in French) between the non-zero
values of a kernel. In this case, an additional parameter (d) of the
convolution operation is added, and it is changing the distance
between the kernel elements. In essence, it is increasing the reach
of the kernel but keeping the number of trainable parameters the
same. For example, a dilated convolution with a kernel size of 3 ×3
and a dilation rate of d=2 would be sparsely arranged on a
5× 5 grid.

106 Maria Vakalopoulou et al.

Fig. 17 Stride operation, here with a stride of 2

Transposed Convolution In certain circumstances, one needs
not only to downsample the spatial dimensions of the input but
also, usually at a later stage of the network, apply an upsample
operation. The most emblematic case is the task of image segmen-
tation (see Chap. 13), in which a pixel-level classification is
expected, and therefore, the output of the neural network should
have the same size as the input. In such cases, several upsampling
operations are typically applied. The upsampling can be achieved by
a transposed convolution operation that will eventually increase the
size of the output. In details, the transposed convolution is per-
formed by dilating the input instead of the kernel before applying a
convolution operation. In this way, an input of size 5 ×5 will reach a
size of 10×10 after being dilated with d=2. With proper padding
and using a kernel of size 3× 3, the output will eventually double
in size.

4.4 Receptive Field

Calculation

In the context of deep neural networks and specifically CNNs, the
term receptive field is used to define the proportion of the input
that produces a specific feature. For example, a CNN that takes an
image as input and applies only a single convolution operation with
a kernel size of 3 ×3 would have a receptive field of 3 ×3. This
means that for each pixel of the first feature map, a 3× 3 region of
the input would be considered. Now, if another layer were to be
added, with again 3 ×3 size, then the receptive field of the new
feature map with respect to the CNN’s input would be 5× 5. In
other words, the proportion of the input that is used to calculate
each element of the feature map of the second convolution layer
increases.

Calculating the receptive field at different parts of a CNN is
crucial when trying to understand the inner workings of a specific
architecture. For instance, a CNN that is designed to take as an
input an image of size 256× 256 and that requires information

https://doi.org/10.1007/978-1-0716-3195-9_13

4.5 Classical

Convolutional Neural

Network Architectures

from all parts of it should have a receptive field close to the size of
the input. The receptive field can be influenced by all the different
convolution parameters and down-/upsampling operations
described in the previous section. A comprehensive presentation
of mathematical derivations for calculating receptive fields for
CNNs is given in [52].

Deep Learning: Basics and CNN 107

In the last decades, a variety of convolutional neural network archi-
tectures have been proposed. In this chapter, we cover only a few
classical architectures for classification and regression. Note that
classification and regression can usually be performed with the
same architecture, just changing the loss function (e.g., cross-
entropy for classification, mean squared error for regression).
Architectures for other tasks can be found in other chapters.

A Basic CNN Architecture Let us start with the most simple
CNN, which is actually very close to the original one proposed by
LeCun et al. [53], sometimes called “LeNet.” Such architecture is
typically composed of two parts: the first one is based on convolu-
tion operations and learns the features for the image and the second
part flattens the features and inputs them to a set of fully connected
layers (in other words, a multilayer perceptron) for performing the
classification/regression (see illustration in Fig. 18). Note that, of
course, the whole network is trained end to end: the two parts are
not trained independently. In the first part, one combines a series of
blocks composed of a convolution operation (possibly strided
and/or dilated), a non-linear activation function (for instance, a
ReLU), and a pooling operation. It is often a good idea to include a
drawing of the different layers of the chosen architecture.

Input image Convolution
+

Non-linearity

Pooling Convolution
+

Non-linearity

Pooling

Feature learning

Fully
connected

Flatten

Classification

Fig. 18 A basic CNN architecture. Classically, it is composed of two main parts. The first one, using
convolution operations, performs feature learning. The features are then flattened and fed into a set of fully
connected layers (i.e., a multilayer perceptron), which performs the classification or the regression task

Unfortunately, there is no harmonized format for such a descrip-
tion. An example is provided in Fig. 19.

108 Maria Vakalopoulou et al.

Fig. 19 A drawing describing a CNN architecture. Classically, it is composed of two main parts. Here
16@3 × 3 × 3 means that 16 features with a 3 × 3 × 3 convolution kernel will be computed. For the pooling
operation, the kernel size is also mentioned (2 × 2). Finally, the stride is systematically indicated

One of the first CNN architectures that follow this paradigm is
the AlexNet architecture [54]. AlexNet was one of the first papers
that empirically indicated that the ReLU activation function makes
the convergence of CNNs faster compared to other non-linearities
such as the tanh. Moreover, it was the first architecture that
achieved a top 5 error rate of 18.2% on the ImageNet dataset,
outperforming all the other methods on this benchmark by a
huge margin (about 10%). Prior to AlexNet, best-performing
methods were using (very sophisticated) pre-extracted features
and classical machine learning. After this advance, deep learning
in general and CNNs, in particular, became very active research
directions to address different computer vision problems. This
resulted in the introduction of a variety of architectures such as
VGG16 [55] that reported a 7.3% error rate on ImageNet, intro-
ducing some changes such as the use of smaller kernel filters.
Following these advances, and even if there were a lot of different
architectures proposed during that period, one could mention the
Inception architecture [56], which was one of the deepest archi-
tectures of that period and which further reduced the error rate on
ImageNet to 6.7%. One of the main characteristics of this architec-
ture was the inception modules, which applied multiple kernel
filters of different sizes at each level of the architecture. To solve
the problem of vanishing gradients, the authors introduced auxil-
iary classifiers connected to intermediate layers, expecting to
encourage discrimination in the lower stages in the classifier,
increasing the gradient signal that gets propagated back, and
providing additional regularization. During inference, these classi-
fiers were completely discarded.

In the following section, some other recent and commonly
used CNN architectures, especially for medical applications, will
be presented.

Deep Learning: Basics and CNN 109

ResNet One of the most commonly used CNN architectures, even
today, is the ResNet [57]. ResNet reduced the error rate on Ima-
geNet to 3.6%, while it was the first deep architecture that proposed
novel concepts on how to gracefully go deeper than a few dozen of
layers. In particular, the authors introduced a deep residual learning
framework. The main idea of this residual learning is that instead of
learning the desired underlying mapping of each network level,
they learn the residual mapping. More formally, instead of learning
the H(x) mapping after the convolutional and non-linear layers,
they fit another mapping of F(x)=H(x)- x on which the original
mapping is recast into F(x) + x. Feedforward neural networks can
realize this mapping with “shortcut connections” by simply
performing identity mapping, and their outputs are added to the
outputs of the stacked layers. Such identity connections add neither
additional complexity nor parameters to the network, making such
architectures extremely powerful.

Different ResNet architectures have been proposed even in the
original paper. Even though the depth of the network is increased
with the additional convolutions, especially for the 152-layer
ResNet (11.3 billion floating point operations), it still has lower
complexity (i.e., fewer parameters) than VGG16/VGG19 net-
works. Currently, different layered-size ResNet architectures
pre-trained on ImageNet are used as backbones for various pro-
blems and applications, including medical imaging. Pre-trained
ResNet models, even if they are 2D architectures, are commonly
used on histopathology [58, 59], chest X-ray [60], or even brain
imaging [61, 62], while the way that such pre-trained networks
work for medical applications gathered the attention of different
studies such as [63]. However, it should be noted that networks
pre-trained on ImageNet are not always efficient for medical imag-
ing tasks, and there are cases where they perform poorly, much
lower than simpler CNNs trained from scratch [64]. Nevertheless,
a pre-trained ResNet is very often a good idea to use for a first try in
a given application. Finally, there was an effort from the medical
community to train 3D variations of ResNet architectures on a
large amount of 3D medical data and release the pre-trained mod-
els. Such an effort is presented in [65] in which the authors trained
and released different 3D ResNet architectures trained on different
publicly available 3D datasets, including different anatomies such as
the brain, prostate, liver, heart, and pancreas.

EfficientNet A more recent CNN architecture that is worth men-
tioning in this section is the recently presented EfficientNet
[66]. EfficientNets are a family of neural networks that are balanc-
ing all dimensions of the network (width/depth/resolution) auto-
matically. In particular, the authors propose a simple yet effective
compound scaling method for obtaining these hyperpameters. In
particular, the main compound coefficient ϕ uniformly scales

network width, depth, and resolution in a principled way: depth =
αϕ , width = βϕ , resolution = γϕ s.t. α � β2 � γ2 ≈2, α≥1, β≥1, γ ≥1.
In this formulation, the parameters α, β, γ are constants, and a small
grid search can determine them. This grid search resulted in eight
different architectures presented in the original paper. EfficientNet
is used more and more for medical imaging tasks, as can be seen in
multiple recent studies [67–69].

110 Maria Vakalopoulou et al.

5 Autoencoders

An autoencoder is a type of neural network that can learn a com-
pressed representation (called the latent space representation) of
the training data. As opposed to the multilayer perceptrons and
CNNs seen until now that are used for supervised learning, auto-
encoders have widely been used for unsupervised learning, with a
wide range of applications. The architecture of autoencoders is
composed of a contracting path (called the encoder), which will
transform the input into a lower-dimensional representation, and
an expanding path (called the decoder), which will aim at recon-
structing the input as well as possible from the lower-dimensional
representation (see Fig. 20).

The loss is usually the ℓ2 loss and the cost function is then:

J ðθ,ϕÞ=
n

i =1

jj xðiÞ -DθðEϕðxðiÞÞÞk2 2, ð29Þ

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the
decoder (and θ its parameters). Note that, in Fig. 20, Dθ(Eϕ(x)) is
denoted as x̂. More generally, one can write:

J ðθ,ϕÞ=x�μxref d x,DθðEϕðxÞÞ , ð30Þ
where μref is the reference distribution that one is trying to approx-
imate and d is the reconstruction function. When μref is the

Fig. 20 The general principle of a denoising autoencoder. It aims at learning of a
low-dimensional representation (latent space) z of the training data. The
learning is done by aiming to provide a faithful reconstruction x̂ of the input
data x̂

empirical distribution of the training set and d is the ℓ2 norm,
Eq. 30 is equivalent to Eq. 29.

Deep Learning: Basics and CNN 111

Many variations of autoencoders exist, to prevent autoencoders
from learning the identity function and to improve their ability to
capture important information and learn richer representations.
Among them, sparse autoencoders offer an alternative method for
introducing an information bottleneck without requiring a reduc-
tion in the number of nodes at the hidden features. This is done by
constructing the loss function such that it penalizes activations
within a layer. This is achieved by enforcing sparsity in the network
and encouraging it to learn an encoding and decoding which relies
only on activating a small number of neurons. This sparsity is
enforced in two main ways, an ℓ1 regularization on the parameters
of the network and a Kullback-Leibler divergence, which is a mea-
sure of the difference between two probability distributions. More
information about sparse autoencoders could be found in
[70]. Moreover, a quite common type of autoencoders is the
denoising autoencoders [71], on which the model is tasked with
reproducing the input as closely as possible while passing through
some sort of information bottleneck (Fig. 20). This way, the model
is not able to simply develop a mapping that memorizes the training
data but rather learns a vector field for mapping the input data
toward a lower-dimensional manifold. One should note here that
the vector field is typically well-behaved in the regions where the
model has observed data during training. In out-of-distribution
data, the reconstruction error is both large and does not always
point in the direction of the true distribution. This observation
makes these networks quite popular for anomaly detection in med-
ical data [72]. Additionally, contractive autoencoders [73] are other
variants of this type of models, adding the contractive regulariza-
tion loss to the standard autoencoder loss. Intuitively, it forces very
similar inputs to have a similar encoding, and in particular, it
requires the derivative of the hidden layer activations to be small
with respect to small changes in the input. The denoising autoen-
coders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising
autoencoders make the reconstruction error resistant to finite-
sized input perturbations, while the contractive autoencoders
make the extracted features resistant to small input perturbations.

Depending on the input type, different autoencoder architec-
tures could be designed. In particular, when the inputs are images,
the encoder and the decoder are classically composed of convolu-
tional blocks. The decoder uses, for instance, transposed convolu-
tions to perform the expansion. Finally, the addition of skip
connections has led to the U-Net [74] architectures that are com-
monly used for segmentation purposes. Segmentation architectures
will be more extensively described in Chap. 13. Finally, variational
autoencoders, which rely on a different mathematical formulation,

https://doi.org/10.1007/978-1-0716-3195-9_13

are not covered in the present chapter and are presented, together
with other generative models, in Chap. 5.

112 Maria Vakalopoulou et al.

6 Conclusion

Deep learning is a very fast evolving field, with numerous still
unanswered theoretical questions. However, deep learning-based
models have become the state-of-the-art methods for a variety of
fields and tasks. In this chapter, we presented the basic principles of
deep learning, covering both perceptrons and convolutional neural
networks. All architectures were feedforward and recurrent net-
works are covered in Chap. 4. Generative adversarial networks are
covered in Chap. 5, along with other generative models. Chapter 6
presents a recent class of deep learning methods, which does not
use convolutions, and that are called transformers. Finally, through-
out the other chapters of the book, different deep learning archi-
tectures are presented for various types of applications.

Acknowledgements

This work was supported in part by the French government under
management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute), reference ANR-10-IAIHU-06
(Institut Hospitalo-Universitaire ICM), and ANR-21-CE45-0007
(Hagnodice).

References

1. Rosenblatt F (1957) The perceptron, a perceiv-
ing and recognizing automaton Project Para.
Cornell Aeronautical Laboratory, Buffalo

2. Minsky M, Papert S (1969) Perceptron: an
introduction to computational geometry.
MIT Press, Cambridge, MA

3. Minsky ML, Papert SA (1988) Perceptrons:
expanded edition. MIT Press, Cambridge, MA

4. Linnainmaa S (1976) Taylor expansion of the
accumulated rounding error. BIT Numer Math
16(2):146–160

5. Werbos PJ (1982) Applications of advances in
nonlinear sensitivity analysis. In: System mod-
eling and optimization. Springer, Berlin, pp
762–770

6. Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. Nature 323(6088):
533–536

7. Le Cun Y (1985) Une procédure d’apprentis-
sage pour réseau à seuil assymétrique. Cogni-
tiva 85:599–604

8. Hochreiter S, Schmidhuber J (1997) Long
short-term memory. Neural Comput 9(8):
1735–1780

9. Hinton GE, Osindero S, Teh YW (2006) A fast
learning algorithm for deep belief nets. Neural
Comput 18(7):1527–1554

10. Hinton GE (2007) Learning multiple layers of
representation. Trends Cogn Sci 11(10):
428–434

11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei
L (2009) ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE conference on
computer vision and pattern recognition.
IEEE, pp 248–255

12. Bergstra J, Bastien F, Breuleux O, Lamblin P,
Pascanu R, Delalleau O, Desjardins G, Warde-
Farley D, Goodfellow I, Bergeron A et al

https://doi.org/10.1007/978-1-0716-3195-9_5
https://doi.org/10.1007/978-1-0716-3195-9_4
https://doi.org/10.1007/978-1-0716-3195-9_5
https://doi.org/10.1007/978-1-0716-3195-9_6

Deep Learning: Basics and CNN 113

(2011) Theano: deep learning on GPUs with
Python. In: NIPS 2011, Big learning work-
shop, Granada, Spain, vol 3. Citeseer, pp 1–48

13. Jia Y, Shelhamer E, Donahue J, Karayev S,
Long J, Girshick R, Guadarrama S, Darrell T
(2014) Caffe: convolutional architecture for
fast feature embedding. In: Proceedings of the
22nd ACM international conference on Multi-
media, pp 675–678

14. Abadi M, Agarwal A, Barham P, Brevdo E,
Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M et al (2016) TensorFlow:
large-scale machine learning on heterogeneous
distributed systems. arXiv preprint
arXiv:160304467

15. Chollet F et al (2015) Keras. https://github.
com/fchollet/keras

16. Paszke A, Gross S, Massa F, Lerer A,
Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L et al (2019) PyTorch:
an imperative style, high-performance deep
learning library. In: Advances in neural infor-
mation processing systems, vol 32

17. Hebb DO (1949) The organization of behav-
ior: a psychological theory. Wiley, New York

18. Cybenko G (1989) Approximations by super-
positions of a sigmoidal function. Math Con-
trol Signals Syst 2:183–192

19. Hornik K, Stinchcombe M, White H (1989)
Multilayer feedforward networks are universal
approximators. Neural Netw 2(5):359–366

20. Mhaskar HN (1996) Neural networks for opti-
mal approximation of smooth and analytic
functions. Neural Comput 8(1):164–177

21. Pinkus A (1999) Approximation theory of the
MLP model in neural networks. Acta Numer 8:
143–195

22. Poggio T, Mhaskar H, Rosasco L, Miranda B,
Liao Q (2017) Why and when can deep-but
not shallow-networks avoid the curse of
dimensionality: a review. Int J Autom Comput
14(5):503–519

23. Rolnick D, Tegmark M (2017) The power of
deeper networks for expressing natural func-
tions. arXiv preprint arXiv:170505502

24. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge, MA

25. Cover TM (1965) Geometrical and statistical
properties of systems of linear inequalities with
applications in pattern recognition. IEEE
Trans Electron Comput 3:326–334

26. Glorot X, Bordes A, Bengio Y (2011) Deep
sparse rectifier neural networks. In: Proceed-
ings of the fourteenth international conference
on artificial intelligence and statistics, JMLR
workshop and conference proceedings, pp
315–323

27. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. In: Advances in neural
information processing systems, vol 25

28. Hein M, Andriushchenko M, Bitterwolf J
(2019) Why ReLU networks yield high-
confidence predictions far away from the train-
ing data and how to mitigate the problem. In:
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp
41–50

29. Maas AL, Hannun AY, Ng AY et al (2013)
Rectifier nonlinearities improve neural network
acoustic models. In: Proc. ICML, Atlanta,
Georgia, vol 30. p 3

30. He K, Zhang X, Ren S, Sun J (2015) Delving
deep into rectifiers: surpassing human-level
performance on ImageNet classification. In:
Proceedings of the IEEE international confer-
ence on computer vision, pp 1026–1034

31. Ramachandran P, Zoph B, Le QV (2017)
Searching for activation functions. arXiv pre-
print arXiv:171005941

32. Dauphin YN, Pascanu R, Gulcehre C, Cho K,
Ganguli S, Bengio Y (2014) Identifying and
attacking the saddle point problem in high-
dimensional non-convex optimization. In:
Advances in neural information processing sys-
tems, vol 27

33. Bottou L (2010) Large-scale machine learning
with stochastic gradient descent. In: Proceed-
ings of COMPSTAT’2010. Springer, Berlin,
pp 177–186

34. Allen-Zhu Z, Li Y, Song Z (2019) A conver-
gence theory for deep learning via over-
parameterization. In: International conference
on machine learning, PMLR, pp 242–252

35. Baydin AG, Pearlmutter BA, Radul AA, Siskind
JM (2018) Automatic differentiation in
machine learning: a survey. J Mach Learn Res
18:1–43

36. Prechelt L (1998) Early stopping-but when? In:
Neural networks: tricks of the trade. Springer,
Berlin, pp 55–69

37. Reed R, MarksII RJ (1999) Neural smithing:
supervised learning in feedforward artificial
neural networks. MIT Press, Cambridge, MA

38. Glorot X, Bengio Y (2010) Understanding the
difficulty of training deep feedforward neural
networks. In: Proceedings of the thirteenth
international conference on artificial intelli-
gence and statistics, JMLR workshop and con-
ference proceedings, pp 249–256

39. Srivastava N, Hinton G, Krizhevsky A,
Sutskever I, Salakhutdinov R (2014) Dropout:
a simple way to prevent neural networks from

https://github.com/fchollet/keras
https://github.com/fchollet/keras

114 Maria Vakalopoulou et al.

overfitting. J Mach Learn Res 15(1):
1929–1958

40. Deng L (2012) The MNIST database of hand-
written digit images for machine learning
research. IEEE Signal Process Mag 29(6):
141–142

41. Pérez-Garcı́a F, Sparks R, Ourselin S (2021)
TorchIO: a Python library for efficient loading,
preprocessing, augmentation and patch-based
sampling of medical images in deep learning.
Comput Methods Programs Biomed 208:
106236

42. Ioffe S, Szegedy C (2015) Batch normaliza-
tion: accelerating deep network training by
reducing internal covariate shift. In: Interna-
tional conference on machine learning,
PMLR, pp 448–456

43. Brock A, De S, Smith SL, Simonyan K (2021)
High-performance large-scale image recogni-
tion without normalization. In: International
conference on machine learning, PMLR, pp
1059–1071

44. Ruder S (2016) An overview of gradient
descent optimization algorithms. arXiv pre-
print arXiv:160904747

45. Polyak BT (1964) Some methods of speeding
up the convergence of iteration methods.
USSR Comput Math Math Phys 4(5):1–17

46. Qian N (1999) On the momentum term in
gradient descent learning algorithms. Neural
Netw 12(1):145–151

47. Duchi J, Hazan E, Singer Y (2011) Adaptive
subgradient methods for online learning and
stochastic optimization. J Mach Learn Res
12(7)

48. Kingma DP, Ba J (2014) Adam: a method for
stochastic optimization. arXiv preprint
arXiv:14126980

49. Liu L, Jiang H, He P, Chen W, Liu X, Gao J,
Han J (2019) On the variance of the adaptive
learning rate and beyond. arXiv preprint
arXiv:190803265

50. Zhang M, Lucas J, Ba J, Hinton GE (2019)
LookAhead optimizer: k steps forward, 1 step
back. Adv Neural Inf Process Syst 32

51. Fukushima K, Miyake S (1982) Neocognitron:
a self-organizing neural network model for a
mechanism of visual pattern recognition. In:
Competition and cooperation in neural nets.
Springer, Berlin, pp 267–285

52. Araujo A, Norris W, Sim J (2019) Computing
receptive fields of convolutional neural net-
works. Distill https://doi.org/10.23915/dis
till.00021

53. LeCun Y, Boser B, Denker JS, Henderson D,
Howard RE, Hubbard W, Jackel LD (1989)
Backpropagation applied to handwritten zip

code recognition. Neural Comput 1(4):
541–551

54. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. In: Pereira F,
Burges C, Bottou L, Weinberger K (eds)
Advances in neural information processing sys-
tems, vol 25. Curran Associates. https://
proceedings.neurips.cc/paper/2012/file/c3
99862d3b9d6b76c8436e924a68c45b-
Paper.pdf

55. Simonyan K, Zisserman A (2014) Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:14091556

56. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S,
Anguelov D, Erhan D, Vanhoucke V, Rabino-
vich A (2015) Going deeper with
convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp 1–9

57. He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp
770–778

58. Lu MY, Williamson DF, Chen TY, Chen RJ,
Barbieri M, Mahmood F (2021) Data-efficient
and weakly supervised computational pathol-
ogy on whole-slide images. Nat Biomed Eng
5(6):555–570

59. Benkirane H, Vakalopoulou M,
Christodoulidis S, Garberis IJ, Michiels S,
Cournède PH (2022) Hyper-AdaC: adaptive
clustering-based hypergraph representation of
whole slide images for survival analysis. In:
Machine learning for health, PMLR, pp
405–418

60. Horry MJ, Chakraborty S, Paul M, Ulhaq A,
Pradhan B, Saha M, Shukla N (2020) X-ray
image based COVID-19 detection using
pre-trained deep learning models. Engineering
Archive, Menomonie

61. Li JP, Khan S, Alshara MA, Alotaibi RM,
Mawuli C et al (2022) DACBT: deep learning
approach for classification of brain tumors
using MRI data in IoT healthcare environ-
ment. Sci Rep 12(1):1–14

62. Nandhini I, Manjula D, Sugumaran V (2022)
Multi-class brain disease classification using
modified pre-trained convolutional neural net-
works model with substantial data augmenta-
tion. J Med Imaging Health Inform 12(2):
168–183

63. Raghu M, Zhang C, Kleinberg J, Bengio S
(2019) Transfusion: understanding transfer
learning for medical imaging. In: Advances in
neural information processing systems, vol 32

https://doi.org/10.23915/distill.00021
https://doi.org/10.23915/distill.00021
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made. The images or other
third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deep Learning: Basics and CNN 115

64. Wen J, Thibeau-Sutre E, Diaz-Melo M, Sam-
per-González J, Routier A, Bottani S,
Dormont D, Durrleman S, Burgos N, Colliot
O (2020) Convolutional neural networks for
classification of Alzheimer’s disease: overview
and reproducible evaluation. Med Image Anal
63:101694

65. Chen S, Ma K, Zheng Y (2019) Med3D: trans-
fer learning for 3D medical image analysis.
arXiv preprint arXiv:190400625

66. Tan M, Le Q (2019) EfficientNet: rethinking
model scaling for convolutional neural
networks. In: International conference on
machine learning, PMLR, pp 6105–6114

67. Wang J, Liu Q, Xie H, Yang Z, Zhou H (2021)
Boosted EfficientNet: detection of lymph node
metastases in breast cancer using convolutional
neural networks. Cancers 13(4):661

68. Oloko-Oba M, Viriri S (2021) Ensemble of
EfficientNets for the diagnosis of tuberculosis.
Comput Intell Neurosci 2021:9790894

69. Ali K, Shaikh ZA, Khan AA, Laghari AA (2021)
Multiclass skin cancer classification using
EfficientNets—a first step towards preventing
skin cancer. Neurosci Inform 2(4):100034

70. Ng A et al (2011) Sparse autoencoder. CS294A
Lecture Notes 72(2011):1–19

71. Vincent P, Larochelle H, Bengio Y, Manzagol
PA (2008) Extracting and composing robust
features with denoising autoencoders. In: Pro-
ceedings of the 25th international conference
on machine learning, pp 1096–1103

72. Baur C, Denner S, Wiestler B, Navab N, Albar-
qouni S (2021) Autoencoders for unsupervised
anomaly segmentation in brain MR images: a
comparative study. Med Image Anal 69:
101952

73. Salah R, Vincent P, Muller X, et al (2011)
Contractive auto-encoders: explicit invariance
during feature extraction. In: Proceedings of
the 28th international conference on machine
learning, pp 833–840

74. Ronneberger O, Fischer P, Brox T (2015)
U-net: convolutional networks for biomedical
image segmentation. In: International Confer-
ence on Medical image computing and
computer-assisted intervention. Springer, Ber-
lin, pp 234–241

http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Deep Learning: Basics and Convolutional Neural Networks (CNNs)
	1 Introduction
	2 Deep Feedforward Networks
	2.1 Perceptrons
	2.2 Multilayer Perceptrons
	2.2.1 A Simple Multilayer Network
	2.2.2 Deep Neural Network

	2.3 Main Functions
	2.3.1 Linear Functions
	Box 1: Function Counting Theorem
	2.3.2 Non-linear Functions
	Hyperbolic Tangent Function (tanh)
	Sigmoid
	Rectified Linear Unit (ReLU)
	Swish
	Softmax

	2.3.3 Loss Functions
	Cross-Entropy Loss
	Mean Squared Error Loss

	3 Optimization of Deep Neural Networks
	3.1 Gradient Descent
	3.1.1 Stochastic Gradient Descent
	Box 2: Convergence of SGD Theorem

	3.2 Backpropagation
	3.3 Generalization and Overfitting
	3.4 State-of-the-Art Optimizers
	3.4.1 Stochastic Gradient Descent with Momentum
	3.4.2 AdaGrad
	3.4.3 RMSProp
	3.4.4 Adam
	3.4.5 Other Optimizers

	4 Convolutional Neural Networks
	4.1 The Convolution Operation
	4.2 Properties of the Convolution Operation
	4.3 Functions and Variants
	4.4 Receptive Field Calculation
	4.5 Classical Convolutional Neural Network Architectures

	5 Autoencoders
	6 Conclusion
	References

