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Abstract 

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-
the-art performance in a variety of fields, including medical applications. Deep learning architectures can be 
categorized into different groups depending on their components. However, most of them share similar 
modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be 
presented to provide a better understanding of these powerful and broadly used algorithms. The analysis 
is structured around the main components of deep learning architectures, focusing on convolutional neural 
networks and autoencoders. 
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1 Introduction 

Recently, deep learning frameworks have become very popular, 
attracting a lot of attention from the research community. These 
frameworks provide machine learning schemes without the need 
for feature engineering, while at the same time they remain quite 
flexible. Initially developed for supervised tasks, they are nowadays 
extended to many other settings. Deep learning, in the strict sense, 
involves the use of multiple layers of artificial neurons. The first 
artificial neural networks were developed in the late 1950s with the 
presentation of the perceptron [1] algorithms. However, limita-
tions related to the computational costs of these algorithms during 
that period, as well as the often-miscited claim of Minsky and 
Papert [2] that perceptrons are not capable of learning non-linear 
functions such as the XOR, caused a significant decline of interest 
for further research on these algorithms and contributed to the 
so-called artificial intelligence winter. In particular, in their book 
[2], Minsky and Papert discussed that single-layer perceptrons are
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only capable of learning linearly separable patterns. It was often 
incorrectly believed that they also presumed this is the case for 
multilayer perceptron networks. It took more than 10 years for 
research on neural networks to recover, and in [3], some of these 
issues were clarified and further discussed. Even if during this 
period there was not a lot of research interest for perceptrons, 
very important algorithms such as the backpropagation algorithm 
[4–7] and recurrent neural networks [8] were introduced.
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After this period, and in the early 2000s, publications by Hin-
ton, Osindero, and Teh [9] indicated efficient ways to train multi-
layer perceptrons layer by layer, treating each layer as an 
unsupervised restricted Boltzmann machine and then using super-
vised backpropagation for the fine-tuning [10]. Such advances in 
the optimization algorithms and in hardware, in particular graphics 
processing units (GPUs), increased the computational speed of 
deep learning systems and made their training easier and faster. 
Moreover, around 2010, the first large-scale datasets, with Ima-
geNet [11] being one of the most popular, were made available, 
contributing to the success of deep learning algorithms, allowing 
the experimental demonstration of their superior performance on 
several tasks in comparison with other commonly used machine 
learning algorithms. Finally, another very important factor that 
contributed to the current popularity of deep learning techniques 
is their support by publicly available and easy-to-use libraries such 
as Theano [12], Caffe [13], TensorFlow [14], Keras [15], and 
PyTorch [16]. Indeed, currently, due to all these publicly available 
libraries that facilitate collaborative and reproducible research and 
access to resources from large corporations such as Kaggle, Google 
Colab, and Amazon Web Services, teaching and research about 
these algorithms have become much easier. 

This chapter will focus on the presentation and discussion of 
the main components of deep learning algorithms, giving the 
reader a better understanding of these powerful models. The chap-
ter is meant to be readable by someone with no background in deep 
learning. The basic notions of machine learning will not be 
included here; however, the reader should refer to Chap. 2 (reader 
without a background in engineering or computer science can also 
refer to Chap. 1 for a lay audience-oriented presentation of these 
concepts). The rest of this chapter is organized as follows. We will 
first present the deep feedforward networks focusing on percep-
trons, multilayer perceptrons, and the main functions that they are 
composed of (Subheading 2). Then, we will focus on the optimiza-
tion of deep neural networks, and in particular, we will formally 
present the topics of gradient descent, backpropagation, as well as 
the notions of generalization and overfitting (Subheading 3). Sub-
heading 4 will focus on convolutional neural networks discussing in 
detail the basic convolution operations, while Subheading 5 will 
give an overview of the autoencoder architectures.
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2 Deep Feedforward Networks 

In this section, we will present the early deep learning approaches 
together with the main functions that are commonly used in deep 
feedforward networks. Deep feedforward networks are a set of 
parametric, non-linear, and hierarchical representation models 
that are optimized with stochastic gradient descent. In this defini-
tion, the term parametric holds due to the parameters that we need 
to learn during the training of these models, the non-linearity due 
to the non-linear functions that they are composed of, and the 
hierarchical representation due to the fact that the output of one 
function is used as the input of the next in a hierarchical way. 

2.1 Perceptrons The perceptron [1] was originally developed for supervised binary 
classification problems, and it was inspired by works from neuros-
cientists such as Donald Hebb [17]. It was built around a 
non-linear neuron, namely, the McCulloch-Pitts model of a neu-
ron. More formally, we are looking for a function f(x;w, b) such that 
f ð:;w, bÞ : x∈p → fþ1, -1g where w and b are the parameters 
of f and the vector x= [x1, . . ., xp]

⊤ is the input. The training set is 
{(x(i) , y(i) )}. In particular, the perceptron relies on a linear model for 
performing the classification: 

f ðx;w, bÞ= 
þ1 if  w⊤x þ b ≥0

-1 otherwise 
: ð1Þ 

Such a model can be interpreted geometrically as a hyperplane 
that can appropriately divide data points that are linearly separable. 
Moreover, one can observe that, in the previous definition, a per-
ceptron is a combination of a weighted summation between the 
elements of the input vector x combined with a step function that 
performs the decision for the classification. Without loss of gener-
ality, this step function can be replaced by other activation functions 
such as the sigmoid, hyperbolic tangent, or softmax functions (see 
Subheading 2.3); the output simply needs to be thresholded to 
assign the + 1 or -1 class. Graphically, a perceptron is presented in 
Fig. 1 on which each of the elements of the input is described as a 
neuron and all the elements are combined by weighting with the 
models’ parameters and then passed to an activation function for 
the final decision. 

During the training process and similarly to the other machine 
learning algorithms, we need to find the optimal parameters w and 
b for the perceptron model. One of the main innovations of Rosen-
blatt was the proposition of the learning algorithm using an itera-
tive process. First, the weights are initialized randomly, and then 
using one sample (x(i) , y(i) ) of the training set, the prediction of the



perceptron is calculated. If the prediction is correct, no further 
action is needed, and the next data point is processed. If the 
prediction is wrong, the weights are updated with the 
following rule: the weights are increased in case the prediction is 
smaller than the ground-truth label y(i) and decreased if the predic-
tion is higher than the ground-truth label. This process is repeated 
until no further errors are made for the data points. A pseudocode 
of the training or convergence algorithm is presented in 
Algorithm 1 (note that in this version, it is assumed that the data 
is linearly separable). 
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Fig. 1 A simple perceptron model. The input elements are described as neurons 
and combined for the final prediction ŷ . The final prediction is composed of a 
weighted sum and an activation function 

Algorithm 1 Train perceptron 

procedure Train({(x(i), y(i))}) 
Initialization: initialize randomly the weights w and bias b 
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) �= y(i) do 

Pick i randomly 
error = y(i) − f(x(i);w, b) 
if error �= 0  then 

w ← w + error · x(i) 

b b + error 

Originally, the perceptron has been proposed for binary classi-
fication tasks. However, this algorithm can be generalized for the 
case of multiclass classification, fc(x;w, b), where c∈{1, . . ., C} are 
the different classes. This can be easily achieved by adding more 
neurons to the output layer of the perceptron. That way, the 
number of output neurons would be the same as the number of 
possible outputs we need to predict for the specific problem. Then, 
the final decision can be made by choosing the maximum of the 
different output neurons f n = max f cðx;w, bÞ. 

c∈f1, ...,CgFinally, in the following, we will integrate the bias b in the 
weights w (and thus add 1 as the first element of the input vector 
x= [1, x1, . . ., xp]

⊤ ). The model can then be rewritten as f(x;w) such 
that f ð:;wÞ : x∈pþ1 → fþ1, -1g.
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2.2 Multilayer 

Perceptrons 

The limitation of perceptrons to linear problems can be overcome 
by using multilayer perceptions, often denoted as MLP. An MLP 
consists of at least three layers of neurons: the input layer, a hidden 
layer, and an output layer. Except for the input neurons, each 
neuron uses a non-linear activation function, making it capable of 
distinguishing data that is not linearly separable. These layers can 
also be called fully connected layers since they connect all the 
neurons of the previous and of the current layer. It is absolutely 
crucial to keep in mind that non-linear functions are necessary for 
the network to find non-linear separations in the data (otherwise, 
all the layers could simply be collapsed together into a single 
gigantic linear function). 

2.2.1 A Simple Multilayer 

Network 

Without loss of generality, an MLP with one hidden layer can be 
defined as: 

zðxÞ= gðW 1 xÞ 
ŷ = f ðx;W 1 ,W 2Þ=W 2 zðxÞ 

, ð2Þ 

where gðxÞ :  → denotes the non-linear function (which can be 
applied element-wise to a vector), W1 the matrix of coefficients of 
the first layer, and W2 the matrix of coefficients of the second layer. 

Equivalently, one can write: 

yc = 
d1 

j =1 

W 2 
ðc,jÞgðW 1⊤ 

ðjÞxÞ, ð3Þ 

where d1 is the number of neurons for the hidden layer which 
defines the width of the network, W 1 

ðjÞ denotes the first column 
of the matrix W1 , and W 2 

ðc,jÞ denotes the c, j element of the matrix 
W2 . Graphically, a two-layer perceptron is presented in Fig. 2 on
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Fig. 2 An example of a simple multilayer perceptron model. The input layer is fed 
into a hidden layer (z), which is then combined for the last output layer providing 
the final prediction



which the input neurons are fed into a hidden layer whose neurons 
are combined for the final prediction.

82 Maria Vakalopoulou et al.

There were a lot of research works indicating the capacity of 
feedforward neural networks with a single hidden layer of finite size 
to approximate continuous functions. In the late 1980s, the first 
proof was published [18] for sigmoid activation functions (see 
Subheading 2.3 for the definition) and was generalized to other 
functions for feedforward multilayer architectures [19–21]. In par-
ticular, these works prove that any continuous function can be 
approximated under mild conditions as closely as wanted by a 
three-layer network. As N →1, any continuous function f can 
be approximated by some neural network f̂ , because each compo-
nent gðW T 

ðjÞxÞ behaves like a basis function and functions in a 
suitable space admit a basis expansion. However, since N may 
need to be very large, introducing some limitations for these 
types of networks, deeper networks, with more than one hidden 
layer, can provide good alternatives. 

2.2.2 Deep Neural 

Network 

The simple MLP networks can be generalized to deeper networks 
with more than one hidden layer that progressively generate 
higher-level features from the raw input. Such networks can be 
written as: 

z1ðxÞ= gðW 1 xÞ 
. . .  

zkðxÞ= gðWk zk-1ðxÞÞ 
. . .  

ŷ = f ðx;W 1 , . . .,W K Þ= zK ðzK -1ð. . .ðz1ðxÞÞÞÞ 

, ð4Þ 

where K denotes the number of layers for the neural network, 
which defines the depth of the network. In Fig. 3, a graphical 
representation of the deep multilayer perceptron is presented. 
Once again, the input layer is fed into the different hidden layers 
of the network in a hierarchical way such that the output of one 
layer is the input of the next one. The last layer of the network 
corresponds to the output layer, which makes the final prediction of 
the model. 

As for networks with one hidden layer, they are also universal 
approximators. However, the approximation theory for deep net-
works is less understood compared with neural networks with one 
hidden layer. Overall, deep neural networks excel at representing 
the composition of functions. 

So far, we have described neural networks as simple chains of 
layers, applied in a hierarchical way, with the main considerations 
being the depth of the network (the number of layers K) and the



width of each k layer (the number of neurons dk). Overall, there are 
no rules for the choice of the K and dk parameters that define the 
architecture of the MLP. However, it has been shown empirically 
that deeper models perform better. In Fig. 4, an overview of 
2 different networks with 3 and 11 hidden layers is presented 
with respect to the number of parameters and their accuracy. For 
each architecture, the number of parameters varies by changing the 
number of neurons dk. One can observe that, empirically, deeper 
networks achieve better performance using approximately the same 
or a lower number of parameters. Additional evidence to support 
these empirical findings is a very active field of research [22, 23]. 
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Fig. 3 An example of a deep neural network. The input layer, the kth layer of the deep neural network, and the 
output layer are presented in the figure 

Fig. 4 Comparison of two different networks with almost the same number of parameters, but different 
depths. Figure inspired by Goodfellow et al. [24] 

Neural networks can come in a variety of models and architec-
tures. The choice of the proper architecture and type of neural 
network depends on the type of application and the type of data.



2 j =0 j
are homogeneously, linearly separable.

Most of the time, the best architecture is defined empirically. In the 
next section, we will discuss the main functions used in neural 
networks. 
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2.3 Main Functions A neural network is a composition of different functions also called 
modules. Most of the times, these functions are applied in a sequen-
tial way. However, in more complicated designs (e.g., deep residual 
networks), different ways of combining them can be designed. In 
the following subsections, we will discuss the most commonly used 
functions that are the backbones of most perceptrons and multi-
layer perceptron architectures. One should note, however, that a 
variety of functions can be proposed and used for different deep 
learning architectures with the constraint to be differentiable – 
almost – everywhere. This is mainly due to the way that deep neural 
networks are trained, and this will be discussed later in the chapter. 

2.3.1 Linear Functions One of the most fundamental functions used in deep neural net-
works is the simple linear function. Linear functions produce a 
linear combination of all the nodes of one layer of the network, 
weighted with the parameters W. The output signal of the linear 
function is Wx, which is a polynomial of degree one. While it is easy 
to solve linear equations, they have less power to learn complex 
functional mappings from data. Moreover, when the number of 
samples is much larger than the dimension of the input space, the 
probability that the data is linearly separable comes close to zero 
(Box 1). This is why they need to be combined with non-linear 
functions, also called activation functions (the name activation has 
been initially inspired by biology as the neuron will be active or not 
depending on the output of the function). 

Box 1: Function Counting Theorem 
The so-called Function Counting Theorem (Cover [25]) 
counts the number of linearly separable dichotomies of 
n points in general position in p . The theorem shows that, 
out of the total 2n dichotomies, only Cðn, pÞ= 

p n-1 

When n>> p, the probability of a dichotomy to be line-
arly separable converges to zero. This indicates the need for 
the integration of non-linear functions into our modeling and 
architecture design. Note that n>> p is a typical regime in 
machine learning and deep learning applications where the 
number of samples is very large.
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Fig. 5 Overview of different non-linear functions (in green) and their first-order derivative (blue). (a) Hyperbolic 
tangent function (tanh), (b) sigmoid, and (c) rectified linear unit (ReLU) 

2.3.2 Non-linear 

Functions 

One of the most important components of deep neural networks is 
the non-linear functions, also called activation functions. They 
convert the linear input signal of a node into non-linear outputs 
to facilitate the learning of high-order polynomials. There are a lot 
of different non-linear functions in the literature. In this subsec-
tion, we will discuss the most classical non-linearities. 

Hyperbolic Tangent 

Function (tanh) 

One of the most standard non-linear functions is the hyperbolic 
tangent function, aka the tanh function. Tanh is symmetric around 
the origin with a range of values varying from-1 to 1. The biggest 
advantage of the tanh function is that it produces a zero-centered 
output (Fig. 5a), thereby supporting the backpropagation process 
that we will cover in the next section. The tanh function is used 
extensively for the training of multilayer neural networks. Formally, 
the tanh function, together with its gradient, is defined as: 

g = tanh ðxÞ= 
ex - e - x 

ex þ e - x 

∂g 
∂x 

=1- tanh 2ðxÞ 
: ð5Þ 

One of the downsides of tanh is the saturation of gradients that 
occurs for large or small inputs. This can slow down the training of 
the networks. 

Sigmoid Similar to tanh, the sigmoid is one of the first non-linear functions 
that were used to compose deep learning architectures. One of the 
main advantages is that it has a range of values varying from 0 to 
1 (Fig. 5b) and therefore is especially used for models that aim to 
predict a probability as an output. Formally, the sigmoid function, 
together with its gradient, is defined as: 

g = σðxÞ= 
1 

1þ e - x 

∂g 
∂x 

= σðxÞð1- σðxÞÞ 
: ð6Þ
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Note that this is in fact the logistic function, which is a special 
case of the more general class of sigmoid function. As it is indicated 
in Fig. 5b, the sigmoid gradient vanishes for large or small inputs 
making the training process difficult. However, in case it is used for 
the output units which are not latent variables and on which we 
have access to the ground-truth labels, sigmoid may be a good 
option. 

Rectified Linear Unit (ReLU) ReLU is considered among the default choice of non-linearity. 
Some of the main advantages of ReLU include its efficient calcula-
tion and better gradient propagation with fewer vanishing gradient 
problems compared to the previous two activation functions 
[26]. Formally, the ReLU function, together with its gradient, is 
defined as: 

g = max ð0, xÞ 
∂g 
∂x 

= 
0, if x ≤0 

1, if x >0 

: ð7Þ 

As it is indicated in Fig. 5c, ReLU is differentiable anywhere 
else than zero. However, this is not a very important problem as the 
value of the derivative at zero can be arbitrarily chosen to be 0 or 
1. In [27], the authors empirically demonstrated that the number 
of iterations required to reach 25% training error on the CIFAR-10 
dataset for a four-layer convolutional network was six times faster 
with ReLU than with tanh neurons. On the other hand, and as 
discussed in [28], ReLU-type neural networks which yield a piece-
wise linear classifier function produce almost always high confi-
dence predictions far away from the training data. However, due 
to its efficiency and popularity, many variations of ReLU have been 
proposed in the literature, such as the leaky ReLU [29] or the 
parametric ReLU [30]. These two variations both address the 
problem of dying neurons, where some ReLU neurons die for all 
inputs and remain inactive no matter what input is supplied. In such 
a case, no gradient flows from these neurons, and the training of the 
neural network architecture is affected. Leaky ReLU and parametric 
ReLU change the g(x)=0 part, by adding a slope and extending 
the range of ReLU. 

Swish The choice of the activation function in neural networks is not 
always easy and can greatly affect performance. In [31], the authors 
performed a combination of exhaustive and reinforcement 
learning-based searches to discover novel activation functions. 
Their experiments discovered a new activation function that is 
called Swish and is defined as:



n
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g = x � σðβxÞ 
∂g 
∂x 

= βgðxÞ þ  σðβxÞð1- βgðxÞÞ 
, ð8Þ 

where σ is the sigmoid function and β is either a constant or a 
trainable parameter. Swish tends to work better than ReLU on 
deeper models, as it has been shown experimentally in [31] i  
different domains. 

Softmax Softmax is often used as the last activation function of a neural 
network. In practice, it normalizes the output of a network to a 
probability distribution over the predicted output classes. Softmax 
is defined as: 

SoftmaxðxiÞ= 
ex i 
C 
j e

x 
j 

: ð9Þ 

The softmax function takes as input a vector x of C real num-
bers and normalizes it into a probability distribution consisting of 
C probabilities proportional to the exponentials of the input num-
bers. However, a limitation of softmax is that it assumes that every 
input x belongs to at least one of the C classes (which is not the case 
in practice, i.e., the network could be applied to an input that does 
not belong to any of the classes). 

2.3.3 Loss Functions Besides the activation functions, the loss function (which defines 
the cost function) is one of the main elements of neural networks. It 
is the function that represents the error for a given prediction. To 
that purpose, for a given training sample, it compares the prediction 
f(x(i) ;W) to the ground truth y(i) (here we denote for simplicity as 
W all the parameters of the network, combining all the W1 , . . ., WK 

in the multilayer perceptron shown above). The loss is denoted as 
ℓ(y, f(x;W)). The average loss across the n training samples is called 
the cost function and is defined as: 

J ðW Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;W Þ , ð10Þ 

where {(x(i) , y(i) )}i=1..n composes the training set. The aim of the 
training will be to find the parameters W such that J(W) is mini-
mized. Note that, in deep learning, one often calls the cost function 
the loss function, although, strictly speaking, the loss is for a given 
sample, and the cost is averaged across samples. Besides, the objec-
tive function is the overall function to minimize, including the cost 
and possible regularization terms. However, in the remainder of 
this chapter, in accordance with common usage in deep learning, 
we will sometimes use the term loss function instead of cost 
function.
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In neural networks, the loss function can be virtually any func-
tion that is differentiable. Below we present the two most common 
losses, which are, respectively, used for classification or regression 
problems. However, specific losses exist for other tasks, such as 
segmentation, which are covered in the corresponding chapters. 

Cross-Entropy Loss One of the most basic loss functions for classification problems 
corresponds to the cross-entropy between the expected values and 
the predicted ones. It leads to the following cost function: 

J ðW Þ= -
n 

i =1 

log P y= yðiÞjx= xðiÞ;W , ð11Þ 

where P y= yðiÞjx= xðiÞ;W is the probability that a given sample is 
correctly classified. 

The cross-entropy can also be seen here as the negative 
log-likelihood of the training set given the predictions of the net-
work. In other words, minimizing this loss function corresponds to 
maximizing the likelihood: 

J ðW Þ= ∏ 
n 

i =1 

P y= yðiÞjx= xðiÞ;W : ð12Þ 

Mean Squared Error Loss For regression problems, the mean squared error is one of the most 
basic cost functions, measuring the average of the squares of the 
errors, which is the average squared difference between the pre-
dicted values and the real ones. The mean squared error is 
defined as: 

J ðW Þ= 
n 

i =1 

jj yðiÞ - f ðxðiÞ;W Þ jj 2 : ð13Þ 

3 Optimization of Deep Neural Networks 

Optimization is one of the most important components of 
neural networks, and it focuses on finding the parameters W that 
minimize the loss function J(W). Overall, optimization is a difficult 
task. Traditionally, the optimization process is performed by care-
fully designing the loss function and integrating its constraints to 
ensure that the optimization process is convex (and thus, one can 
be sure to find the global minimum). However, neural networks are 
non-convex models, making their optimization challenging, and, in 
general, one does not find the global minimum but only a local one. 
In the next sections, the main components of their optimization 
will be presented, giving a general overview of the optimization 
process, its challenges, and common practices.
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Fig. 6 The gradient descent algorithm. This first-order optimization algorithm is 
finding a local minimum by taking steps toward the opposite direction of the 
gradient 

3.1 Gradient Descent Gradient descent is an iterative optimization algorithm that is 
among the most popular and basic algorithms in machine learning. 
It is a first-order1 optimization algorithm, which is finding a local 
minimum of a differentiable function. The main idea of gradient 
descent is to take iterative steps toward the opposite direction of the 
gradient of the function that needs to be optimized (Fig. 6). 

That way, the parameters W of the model are updated by: 

W tþ1 ←W t - η 
∂J ðW t Þ 
∂W t , ð14Þ 

where t is the iteration and η, called learning rate, is the hyperpara-
meter that indicates the magnitude of the step that the algorithm 
will take. 

Besides its simplicity, gradient descent is one of the most com-
monly used algorithms. More sophisticated algorithms require 
computing the Hessian (or an approximation) and/or its inverse 
(or an approximation). Even if these variations could give better 
optimization guarantees, they are often more computationally 
expensive, making gradient descent the default method for 
optimization. 

In the case of convex functions, the optimization problem can 
be reduced to the problem of finding a local minimum. Any local 
minimum is then guaranteed to be a global minimum, and gradient 
descent can identify it. However, when dealing with non-convex 
functions, such as neural networks, it is possible to have many local 
minima making the use of gradient descent challenging. Neural 
networks are, in general, non-identifiable [24]. A model is said to 
be identifiable if it is theoretically possible, given a sufficiently large 
training set, to rule out all but one set of the model’s parameters. 
Models with latent variables, such as the hidden layers of neural 
networks, are often not identifiable because we can obtain equiva-
lent models by exchanging latent variables with each other.

1 First-order means here that the first-order derivatives of the cost function are used as opposed to second-order 
algorithms that, for instance, use the Hessian.



However, all these minima are often almost equivalent to each 
other in cost function value. In that case, these local minima are 
not a problematic form of non-convexity. It remains an open ques-
tion whether there exist many local minima with a high cost that 
prevent adequate training of neural networks. However, it is cur-
rently believed that most local minima, at least as found by modern 
optimization procedures, will correspond to a low cost (even 
though not to identical costs) [24].
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For W� to be a local minimum, we need mainly two conditions 
to be fulfilled:

• ∂J 
∂W 

ðW �Þ =0.

• All the eigenvalues of ∂2 J 

∂W 2 ðW �Þ to be positive. 

For random functions in n dimensions, the probability for the 
eigenvalues to be all positive is 1 n. On the other hand, the ratio of the 
number of saddle points to localminima increases exponentiallywith 
n [32]. A saddle point, or critical point, is a point where the deriva-
tives are zero without being a minimum of the function. Such points 
could result in a high error making the optimization with gradient 
descent challenging. In [32], this issue is discussed, and an optimi-
zation algorithm that leverages second-order curvature information 
is proposed to deal with this issue for deep and recurrent networks. 

3.1.1 Stochastic Gradient 

Descent 

Gradient descent efficiency is not enough when it comes to 
machine learning problems with large numbers of training samples. 
Indeed, this is the case for neural networks and deep learning which 
often rely on hundreds or thousands of training samples. Updating 
the parameters W after calculating the gradient using all the 
training samples would lead to a tremendous computational com-
plexity of the underlying optimization algorithm [33]. To deal with 
this problem, the stochastic gradient descent (SGD) algorithm is a 
drastic simplification. Instead of computing the ∂J ðW Þ 

∂W 
exactly, each 

iteration estimates this gradient on the basis of a small set of 
randomly picked examples, as follows: 

W tþ1 ←W t - ηtGðW tÞ, ð15Þ 
where 

GðW tÞ= 
1 
K 

K 

k=1 

∂J ðikÞW
t 

∂W 
, ð16Þ 

where J ik 
is the loss function at training sample ik, 

fðxðikÞ, yðikÞÞgk=1...K is the small subset of K training samples 
(K<<N). This subset of K samples is called a mini-batch or 
sometimes a batch.2 In such a way, the iteration cost of stochastic

2 Note that, as often in deep learning, the terminology can be confusing. In isolation, the term batch is usually a 
synonym of mini-batch. On the contrary, batch gradient descent means computing the gradient using all training 
samples and not only a mini-batch [24].



gradient descent will be OðKÞ and for gradient descent OðN Þ. The 
ideal choice for the batch size is a debated question. First, an upper 
limit for the batch size is often simply given the available GPU 
memory, in particular when the size of the input data is large (e.g., 
3D medical images). Besides, choosing K as a power of 2 often 
leads to more efficient computations. Finally, small batch sizes tend 
to have a regularizing effect which can be beneficial [24]. In any 
case, the ideal batch size usually depends on the application, and it 
is not uncommon to try different batch sizes. Finally, one calls an 
epoch a complete pass over the whole training set (meaning that 
each training sample has been used once). The number of epochs is 
the number of full passes over the whole training set. It should not 
be confused with the number of iterations which is the number of 
mini-batches that have been processed.
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Note that various improvements over traditional SGD have 
been introduced, leading to more efficient optimization methods. 
These state-of-the-art optimization methods are presented in 
Subheading 3.4. 

Box 2: Convergence of SGD Theorem 

In [34], the authors prove that stochastic gradient 
descent converges if the network is sufficiently overpara-
metrized. Let (x(i) , y(i) )1≤i≤n be a training set satisfying 
mini,j:i ≠ jkx(i)-x( j )k2> δ> 0. Consider fitting the data 
using a feedforward neural network with ReLU activa-
tions. Denote by D (resp. W ) the depth (resp. width) of 
the network. Suppose that the neural network is suffi-
ciently overparametrized, i.e.: 

W ≫ polynomial n,D, 
1 
δ 

: ð17Þ 

Then, with high probability, running SGD with some random 
initialization and properly chosen step sizes ηt yields J(W

t ) 
< E in t / log 1 ε. 

3.2 Backpropagation The training of neural networks is performed with backpropaga-
tion. Backpropagation computes the gradient of the loss function 
with respect to the parameters of the network in an efficient and 
local way. This algorithm was originally introduced in 1970. How-
ever, it started becoming very popular after the publication of [6], 
which indicated that backpropagation works faster than other 
methods that had been proposed back then for the training of 
neural networks.



3.3 Generalization

and Overfitting

Þ
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Fig. 7 A multilayer perceptron with one hidden layer 

The backpropagation algorithm works by computing the gra-
dient of the loss function (J) with respect to each weight by the 
chain rule, computing the gradient one layer at a time, and iterating 
backward from the last layer to avoid redundant calculations of 
intermediate terms in the chain rule. In Fig. 7, an example of a 
multilayer perceptron with one hidden layer is presented. In such a 
network, the backpropagation is calculated as: 

∂J ðW Þ 
∂w2 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w2 

∂J ðW Þ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂z1 

× 
∂z1 
∂w1 

: ð18Þ 

Overall, backpropagation is very simple and local. However, 
the reason why we can train a highly non-convex machine with 
many local minima, like neural networks, with a strong local 
learning algorithm is not really known even today. In practice, 
backpropagation can be computed in different ways, including 
manual calculation, numerical differentiation using finite difference 
approximation, and symbolic differentiation. Nowadays, deep 
learning frameworks such as [14, 16] use automatic differentiation 
[35] for the application of backpropagation. 

Similar to all the machine learning algorithms (discussed in 
Chapter 2), neural networks can suffer from poor generaliza-
tion and overfitting. These problems are caused mainly by the 
optimization of the parameters of the models performed in the 
{(xi, yi)}i=1,. .  .,n training set, while we need the model to per-
form well on other unseen data that are not available during the 
training. More formally, in the case of cross-entropy, the loss 
that we would like to minimize is: 

J ðW Þ= - log ∏ðx, yÞ∈T T 
P y= yjx= x;Wð , ð19Þ 

where TT is the set of any data, not available during training. In 
practice, a small validation set TV is used to evaluate the loss on 
unseen data. Of course, this validation set should be distinct from 
the training set. It is extremely important to keep in mind that the 
performance obtained on the validation set is generally biased 
upward because the validation set was used to perform early stop-
ping or to choose regularization parameters. Therefore, one should 
have an independent test set that has been isolated at the

https://doi.org/10.1007/978-1-0716-3195-9_2


beginning, has not been used in any way during training, and is 
only used to report the performance (see Chap. 20 for details). In 
case one cannot have an additional independent test set due to a 
lack of data, one should be aware that the performance may be 
biased and that this is a limitation of the specific study. 
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To avoid overfitting and improve the generalization perfor-
mance of the model, usually, the validation set is used to monitor 
the loss during the training of the networks. Tracking the training 
and validation losses over the number of epochs is essential and 
provides important insights into the training process and the 
selected hyperparameters (e.g., choice of learning rate). Recent 
visualization tools such as TensorBoard3 or Weights & Biases4 

make this tracking easy. In the following, we will also mention 
some of the most commonly applied optimization techniques that 
help with preventing overfitting. 

Early Stopping Using the reported training and validation errors, 
the best model in terms of performance and generalization power is 
selected. In particular, early stopping, which corresponds to select-
ing a model corresponding to an earlier time point than the final 
epoch, is a common way to prevent overfitting [36]. Early stopping 
is a form of regularization for models that are trained with an 
iterative method, such as gradient descent and its variants. Early 
stopping can be implemented with different criteria. However, 
generally, it requires the monitoring of the performance of the 
model on a validation set, and the model is selected when its 
performance degrades or its loss increases. Overall, early stopping 
should be used almost universally for the training of neural net-
works [24]. The concept of early stopping is illustrated in Fig. 8. 

Weight Regularization Similar to other machine learning meth-
ods (Chap. 2), weight regularization is also a very commonly used 
technique for avoiding overfitting in neural networks. More specif-
ically, during the training of the model, the weights of the network 
start growing in size in order to specialize the model to the training 
data. However, large weights tend to cause sharp transitions in the 
different layers of the network and, that way, large changes in the 
output for only small changes in the inputs [37]. To handle this 
problem, during the training process, the weights can be updated in 
such a way that they are encouraged to be small, by adding a penalty 
to the loss function, for instance, the ℓ2 norm of the parameters 
λkWk2 , where λ is a trade-off parameter between the loss and the 
regularization. Since weight regularization is quite popular in

3 https://www.tensorflow.org/tensorboard. 
4 https://wandb.ai/site.

https://doi.org/10.1007/978-1-0716-3195-9_20
https://doi.org/10.1007/978-1-0716-3195-9_2
https://www.tensorflow.org/tensorboard
https://wandb.ai/site


neural networks, different optimizers have integrated them into 
their optimization process in the form of weight decay.
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Validation 

Training 

Loss 

Time (epochs) 

Underfitting Overfitting 

Fig. 8 Illustration of the concept of early stopping. The model that should be selected corresponds to the 
dashed bar which is the point where the validation loss starts increasing. Before this point, the model is 
underfitting. After, it is overfitting 

Weight Initialization The way that the weights of neural net-
works will be initialized is very important, and it can determine 
whether the algorithm converges at all, with some initial points 
being so unstable that the algorithm encounters numerical difficul-
ties and fails altogether [24]. Most of the time, the weights are 
initialized randomly from a Gaussian or uniform distribution. 
According to [24], the choice of Gaussian or uniform distribution 
does not seem to matter very much; however, the scale does have a 
large effect both on the outcome of the optimization procedure 
and on the ability of the network to generalize. Nevertheless, more 
tailored approaches have been developed over the last decade that 
have become the standard initialization points. One of them is the 
Xavier Initialization [38] which balances between all the layers to 
have the same activation variance and the same gradient variance. 
More formally the weights are initialized as: 

Wi,j � Uniform -
6 

m þ n , 
6 

m þ n , ð20Þ 

where m is the number of inputs and n the number of outputs of 
matrix W. Moreover, the biases b are initialized to 0. 

Drop-out There are other techniques to prevent overfitting, such 
as drop-out [39], which involves randomly destroying neurons 
during the training process, thereby reducing the complexity of



the model. Drop-out is an ensemble method that does not need to 
build the models explicitly. In practice, at each optimization itera-
tion, random binary masks on the units are considered. The proba-
bility of removing a unit (p) is defined as a hyperparameter during 
the training of the network. During inference, all the units are 
activated; however, the obtained parameters W are multiplied 
with this probability p. Drop-out is quite efficient and commonly 
used in a variety of neural network architectures. 
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Fig. 9 Examples of data transformations applied in the MNIST dataset. Each of these generated samples is 
considered additional training data 

Data Augmentation Since neural networks are data-driven meth-
ods, their performance depends on the training data. To increase 
the amount of data during the training, data augmentation can be 
performed. It generates slightly modified copies of the existing 
training data to enrich the training samples. This technique acts as 
a regularizer and helps reduce overfitting. Some of the most com-
monly used transformations applied during data augmentation 
include random rotations, translations, cropping, color jittering, 
resizing, Gaussian blurring, and many more. In Fig. 9, examples 
of different transformations on different digits (first column) of the 
MNIST dataset [40] are presented. For medical images, the 
TorchIO library allows to easily perform data augmentation [41]. 

Batch Normalization To ensure that the training of the networks 
will be more stable and faster, batch normalization has been pro-
posed [42]. In practice, batch normalization re-centers and 
re-scales the layer’s input, mitigating the problem of internal



covariate shift which changes the distribution of the inputs of each 
layer affecting the learning rate of the network. Even if the method 
is quite popular, its necessity and use for the training have recently 
been questioned [43]. 
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3.4 State-of-the-Art 

Optimizers 

Over the years, different optimizers have been proposed and widely 
used, aiming to provide improvements over the classical stochastic 
gradient descent. These algorithms are motivated by challenges 
that need to be addressed with stochastic gradient descent and are 
focusing on the choice of the proper learning rate, its dynamic 
change during training, as well as the fact that it is the same for all 
the parameter updates [44]. Moreover, a proper choice of opti-
mizer could speed up the convergence to the optimal solution. In 
this subsection, we will discuss some of the most commonly used 
optimizers nowadays. 

3.4.1 Stochastic Gradient 

Descent with Momentum 

One of the limitations of the stochastic gradient descent is that 
since the direction of the gradient that we are taking is random, it 
can heavily oscillate, making the training slower and even getting 
stuck in a saddle point. To deal with this problem, stochastic 
gradient descent with momentum [45, 46] keeps a history of the 
previous gradients, and it updates the weights taking into account 
the previous updates. More formally: 

gt ← ρgt -1 þ ð1- ρÞGðW tÞ 
ΔW t ← - ηt g

t 

W tþ1 ←W t þ ΔW t 

, ð21Þ 

where gt is the direction of the update of the weights in time-step 
t and ρ∈ [0, 1] is a hyperparameter that controls the contribution 
of the previous gradients and current gradient in the current 
update. When ρ=0, it is the same as the classical stochastic gradient 
descent. A large value of ρ will mean that the update is strongly 
influenced by the previous updates. 

The momentum algorithm accumulates an exponentially 
decaying moving average of the past gradients and continues to 
move in their direction [24]. Momentum increases the speed of 
convergence, while it is also helpful to not get stuck in places where 
the search space is flat (saddle points with zero gradient), since the 
momentum will pursue the search in the same direction as before 
the flat region. 

3.4.2 AdaGrad To facilitate and speed up, even more, the training process, optimi-
zers with adaptive learning rates per parameter have been proposed. 
The adaptive gradient (AdaGrad) optimizer [47] is one of them. It 
updates each individual parameter proportionally to their compo-
nent (and momentum) in the gradient. More formally:
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gt ←GðW tÞ 
rt ← rt -1 þ gt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð22Þ 

where gt is the gradient estimate vector in time-step t, rt is the term 
controlling the per parameter update, and δ is some small quantity 
that is used to avoid the division by zero. Note that rt constitutes of 
the gradient’s element-wise product with itself and of the previous 
term rt-1 accumulating the gradients of the previous terms. 

This algorithm performs very well for sparse data since it 
decreases the learning rate faster for the parameters that are more 
frequent and slower for the infrequent parameters. However, since 
the update accumulates gradients of the previous steps, the updates 
could decrease very fast, blocking the learning process. This limita-
tion is mitigated by extensions of the AdaGrad algorithm as we 
discuss in the next sections. 

3.4.3 RMSProp Another algorithm with adaptive learning rates per parameter is the 
root mean squared propagation (RMSProp) algorithm, proposed 
by Geoffrey Hinton. Despite its popularity and use, this algorithm 
has not been published. RMSProp is an extension of the AdaGrad 
algorithm dealing with the problem of radically diminishing 
learning rates by being less influenced by the first iterations of the 
algorithm. More formally: 

gt ←GðW t Þ 
rt ← ρrt -1 þ ð1- ρÞgt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð23Þ 

where ρ is a hyperparameter that controls the contribution of the 
previous gradients and the current gradient in the current update. 
Note that RMSProp estimates the squared gradients in the same 
way as AdaGrad, but instead of letting that estimate continually 
accumulate over training, we keep a moving average of it, integrat-
ing the momentum. Empirically, RMSProp has been shown to be 
an effective and practical optimization algorithm for deep neural 
networks [24]. 

3.4.4 Adam The effectiveness and advantages of the AdaGrad and RMSProp 
algorithms are combined in the adaptive moment estimation 
(Adam) optimizer [48]. The method computes individual adaptive 
learning rates for different parameters from estimates of the first 
and second moments of the gradients. More formally:



a
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gt ←GðW tÞ 
s t ← ρ1s

t -1 þ ð1- ρ1Þgt 

rt ← ρ2r
t -1 þ ð1- ρ2Þgt gt 

ŝ t ← 
s t 

1- ðρ1Þt 

r̂ t ← 
rt 

1- ðρ2Þt 
ΔW t ← -

λ 

δþ r̂ t
p ŝ t 

W tþ1 ←W t þ ΔW t 

, ð24Þ 

where st is the gradient with momentum, rt accumulates the 
squared gradients with momentum as in RMSProp, and ŝ t and r̂ t 

are smaller than st and rt , respectively, but they converge toward 
them. Moreover, δ is some small quantity that is used to avoid the 
division by zero, while ρ1 and ρ2 are hyperparameters of the algo-
rithm. The parameters ρ1 and ρ2 control the decay rates of each 
moving average, respectively, and their value is close to 1. Empirical 
results demonstrate that Adam works well in practice and compares 
favorably to other stochastic optimization methods, making it the 
go-to optimizer for deep learning problems. 

3.4.5 Other Optimizers The development of efficient (in terms of speed and stability) 
optimizers is still an active research direction. RAdam [49] is  
variant of Adam, introducing a term to rectify the variance of the 
adaptive learning rate. In particular, RAdam leverages a dynamic 
rectifier to adjust the adaptive momentum of Adam based on the 
variance and effectively provides an automated warm-up custom-
tailored to the current dataset to ensure a solid start to training. 
Moreover, LookAhead [50] was inspired by recent advances in the 
understanding of loss surfaces of deep neural networks and pro-
vides a breakthrough in robust and stable exploration during the 
entirety of the training. Intuitively, the algorithm chooses a search 
direction by looking ahead at the sequence of fast weights gener-
ated by another optimizer. These are only some of the optimizers 
that exist in the literature, and depending on the problem and the 
application, different optimizers could be selected and applied. 

4 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a specific category of 
deep neural networks that employ the convolution operation in 
order to process the input data. Even though the main concept 
dates back to the 1990s and is greatly inspired by neuroscience [51] 
(in particular by the organization of the visual cortex), their wide-
spread use is due to a relatively recent success on the ImageNet 
Large Scale Visual Recognition Challenge of 2012 [27]. In contrast



to the deep fully connected networks that have been already dis-
cussed, CNNs excel in processing data with a spatial or grid-like 
organization (e.g., time series, images, videos, etc.) while at the 
same time decreasing the number of trainable parameters due to 
their weight sharing properties. The rest of this section is first 
introducing the convolution operation and the motivation behind 
using it as a building block/module of neural networks. Then, a 
number of different variations are presented together with exam-
ples of the most important CNN architectures. Lastly, the impor-
tance of the receptive field – a central property of such networks – 
will be discussed. 
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4.1 The Convolution 

Operation 

The convolution operation is defined as the integral of the product 
of the two functions ( f, g)5 after one is reversed and shifted over the 
other function. Formally, we write: 

hðtÞ= 
1

-1 
f ðt - τÞgðτÞ dτ: ð25Þ 

Such an operation can also be denoted with an asterisk (�), so it 
is written as: 

hðtÞ= ðf � gÞðtÞ: ð26Þ 
In essence, the convolution operation shows how one function 

affects the other. This intuition arises from the signal processing 
domain, where it is typically important to know how a signal will be 
affected by a filter. For example, consider a uni-dimensional con-
tinuous signal, like the brain activity of a patient on some electro-
encephalography electrode, and a Gaussian filter. The result of the 
convolution operation between these two functions will output the 
effect of a Gaussian filter on this signal which will, in fact, be a 
smoothed version of the input. 

A different way to think of the convolution operation is that it 
shows how the two functions are related. In other words, it shows 
how similar or dissimilar the two functions are at different relative 
positions. In fact, the convolution operation is very similar to the 
cross-correlation operation, with the subtle difference being that in 
the convolution operation, one of the two functions is inverted. In 
the context of deep learning specifically, the exact differences 
between the two operations can be of secondary concern; however, 
the convolution operation has more properties than correlation, 
such as commutativity. Note also that when the signals are symmet-
ric, both operations will yield the same result. 

In order to deal with discrete and finite signals, we can expand 
the definition of the convolution operation. Specifically, given two

5 Note that f and g have no relationship to their previous definitions in the chapter. In particular, f is not the deep 
learning model.



discrete signals f[k] and g[k], with k∈, the convolution operation 
is defined by:
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0 1 1 1 0 0 0 
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I 
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K 
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Fig. 10 A visualization of the discrete convolution operation in 2D 

h½k�= 
n 
f ½k-n�g ½n�: ð27Þ 

Lastly, the convolution operation can be extended for multidi-
mensional signals similarly. For example, we can write the convolu-
tion operation between two discrete and finite two-dimensional 
signals (e.g., I[i, j], K[i, j]) as: 

H ½i, j �= 
m n 

I ½i-m, j -n�K ½m,n�: ð28Þ 

Very often, the first signal will be the input of interest (e.g., a 
large size image), while the second signal will be of relatively small 
size (e.g., a 3 ×3 or 4×4 matrix) and will implement a specific 
operation. The second signal is then called a kernel. In Fig. 10, a  
visualization of the convolution operation is shown in the case of a 
2D discrete signal such as an image and a 3 ×3 kernel. In detail, the 
convolution kernel is shifted over all locations of the input, and an 
element-wise multiplication and a summation are utilized to calcu-
late the convolution output at the corresponding location. Exam-
ples of applications of convolutions to an image are provided in 
Fig. 11. Finally, note that, as in multilayer perceptrons, a convolu-
tion will generally be followed by a non-linear activation function, 
for instance, a ReLU (see Fig. 12 for an example of activation 
applied to a feature map). 

In the following sections of this chapter, any reference to the 
convolution operation will mostly refer to the 2D discrete case. The



extension to the 3D case, which is often encountered in medical 
imaging, is straightforward. 
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1 0 -1  

1 0 -1  

1 0 -1  

1 1 1  

0 0 0

-1 -1 -1 

Original image Vertical edge detection Horizontal edge detection 

Fig. 11 Two examples of convolutions applied to an image. One of the filters acts as a vertical edge detector 
and the other one as a horizontal edge detector. Of course, in CNNs, the filters are learned, not predefined, so 
there is no guarantee that, among the learned filters, there will be a vertical/horizontal case detector, although 
it will often be the case in practice, especially for the first layers of the architecture 

Fig. 12 Example of application of a non-linear activation function (here a ReLU) to an image 

4.2 Properties of the 

Convolution Operation 

In the case of a discrete domain, the convolution operation can be 
performed using a simple matrix multiplication without the need of 
shifting one signal over the other one. This can be essentially 
achieved by utilizing the Toeplitz matrix transformation. The Toe-
plitz transformation creates a sparse matrix with repeated elements 
which, when multiplied with the input signal, produces the convo-
lution result. To illustrate how the convolution operation can be 
implemented as a matrix multiplication, let’s take the example of a 
3× 3 kernel (K) and a 4 ×4 input (I):



K =

k00 k01 k02 0

0 k00 k01 k

0 0 0 0

0 0 0 0

I = i00 i01 i02 i½
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K = 

k00 k01 k02 

k10 k11 k12 

k20 k21 k22 

and I = 

i00 i01 i02 i03 

i10 i11 i12 i13 

i20 i21 i22 i23 

i30 i31 i32 i33 

: 

Then, the convolution operation can be computed as a matrix 
multiplication between the Toepliz transformed kernel: 

k10 k11 k12 0 k20 k21 k22 0 0 0 0 0  

02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0  

k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 

0  k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 

and a reshaped input: 

03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33 �⊤ : 
The produced output will need to be reshaped as a 2×2 matrix 

in order to retrieve the convolution output. This matrix multiplica-
tion implementation is quite illuminating on a few of the most 
important properties of the convolution operation. These proper-
ties are the main motivation behind using such elements in deep 
neural networks. 

By transforming the convolution operation to a matrix multi-
plication operation, it is evident that it can fit in the formalization of 
the linear functions, which has already been presented in Subhead-
ing 2.3. As such, deep neural networks can be designed in a way to 
utilize trainable convolution kernels. In practice, multiple convolu-
tion kernels are learned at each convolutional block, while several of 
these trainable convolutional blocks are stacked on top of each 
other forming deep CNNs. Typically, the output of a convolution 
operation is called a feature map or just features. 

Another important aspect of the convolution operation is that 
it requires much fewer parameters than the fully connected 
MLP-based deep neural networks. As it can also be seen from the 

K matrix, the exact same parameters are shared across all locations. 
Eventually, rather than learning a different set of parameters for the 
different locations of the input, only one set is learned. This is 
referred to as parameter sharing or weight sharing and can greatly 
decrease the amount of memory that is required to store the 
network parameters. An illustration of the process of weight sharing 
across locations, together with the fact that multiple filters (result-
ing in multiple feature maps) are computed for a given layer, is 
illustrated in Fig. 13. The multiple feature maps for a given layer are 
stored using another dimension (see Fig. 14), thus resulting in a 3D



array when the input is a 2D image (and a 4D array when the input 
is a 3D image). 
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Fig. 13 For a given layer, several (usually many) filters are learned, each of them being able to detect a 
specific characteristic in the image, resulting in several feature/filter maps. On the other hand, for a given 
filter, the weights are shared across all the locations of the image 

Fig. 14 The different feature maps for a given layer are arranged along another dimension. The feature maps 
will thus be a 3D array when the input is a 2D image (and a 4D array when the input is a 3D image) 

Convolutional neural networks have proven quite powerful in 
processing data with spatial structure (e.g., images, videos, etc.). 
This is effectively based on the fact that there is a local connectivity 
of the kernel elements while at the same time the same kernel is 
applied at different locations of the input. Such processing grants a 
quite useful property called translation equivariance enabling the



4.3 Functions and

Variants

network to output similar responses at different locations of the 
input. An example of the usefulness of such a property can be 
identified on an image detection task. Specifically, when training a 
network to detect tumors in an MR image of the brain, the model 
should respond similarly regardless of the location where the anom-
aly can be manifested. 
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Lastly, another important property of the convolution opera-
tion is that it decouples the size of the input with the trainable 
parameters. For example, in the case of MLPs, the size of the weight 
matrix is a function of the dimension of the input. Specifically, a 
densely connected layer that maps 256 features to 10 outputs 
would have a size of W∈10 ×256 . On the contrary, in convolu-
tional layers, the number of trainable parameters only depends on 
the kernel size and the number of kernels that a layer has. This 
eventually allows the processing of arbitrarily sized inputs, for 
example, in the case of fully convolutional networks. 

An observant reader might have noticed that the convolution 
operation can change the dimensionality of the produced output. 
In the example visualized in Fig. 10, the image of size 7× 7, when 
convolved with a kernel of size 3× 3, produces a feature map of size 
of 5× 5. Even though dimension changes can be avoided with 
appropriate padding (see Fig. 15 for an illustration of this process) 
prior to the convolution operation, in some cases, it is actually 
desired to reduce the dimensions of the input. Such a decrease 
can be achieved in a number of ways depending on the task at 
hand. In this subsection, some of the most typical functions that 
are utilized in CNNs will be discussed. 

Fig. 15 The padding operation, which involves adding zeros around the image, allows to obtain feature maps 
that are of the same size as the original image
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Max pooling with 
2×2 filter and stride 2 

Input feature map 

Pooled feature map 

Fig. 16 Effect of a pooling operation. Here, a maximum pooling of size 2 × 2 with a stride of 2 

Downsampling Operations (i.e., Pooling Layers) In many 
CNN architectures, there is an extensive use of downsampling 
operations that aim to compress the size of the feature maps and 
decrease the computational burden. Otherwise referred to as pool-
ing layers, these processing operations are aggregating the values of 
their input depending on their design. Some of the most common 
downsampling layers are the maximum pooling, average pooling, or  
global average pooling. In the first two, either the maximum or the 
average value is used as a feature for the output across 
non-overlapping regions of a predefined pooling size. In the case 
of the global average pooling, the spatial dimensions are all repre-
sented with the average value. An example of pooling is provided in 
Fig. 16. 

Strided Convolution The strided convolution refers to the spe-
cific case in which, instead of applying the convolution operation 
for every location using a step size (or stride, s) of 1, different step 
sizes can be considered (Fig. 17). Such an operation will produce a 
convolution output with much fewer elements. Convolutional 
blocks with s>1 can be found on CNN architectures as a way to 
decrease the feature sizes in intermediate layers. 

Atrous or Dilated Convolution Dilated, also called atrous, con-
volution is the convolution with kernels that have been dilated by 
inserting zero holes (à trous in French) between the non-zero 
values of a kernel. In this case, an additional parameter (d) of the 
convolution operation is added, and it is changing the distance 
between the kernel elements. In essence, it is increasing the reach 
of the kernel but keeping the number of trainable parameters the 
same. For example, a dilated convolution with a kernel size of 3 ×3 
and a dilation rate of d=2 would be sparsely arranged on a 
5× 5 grid.
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Fig. 17 Stride operation, here with a stride of 2 

Transposed Convolution In certain circumstances, one needs 
not only to downsample the spatial dimensions of the input but 
also, usually at a later stage of the network, apply an upsample 
operation. The most emblematic case is the task of image segmen-
tation (see Chap. 13), in which a pixel-level classification is 
expected, and therefore, the output of the neural network should 
have the same size as the input. In such cases, several upsampling 
operations are typically applied. The upsampling can be achieved by 
a transposed convolution operation that will eventually increase the 
size of the output. In details, the transposed convolution is per-
formed by dilating the input instead of the kernel before applying a 
convolution operation. In this way, an input of size 5 ×5 will reach a 
size of 10×10 after being dilated with d=2. With proper padding 
and using a kernel of size 3× 3, the output will eventually double 
in size. 

4.4 Receptive Field 

Calculation 

In the context of deep neural networks and specifically CNNs, the 
term receptive field is used to define the proportion of the input 
that produces a specific feature. For example, a CNN that takes an 
image as input and applies only a single convolution operation with 
a kernel size of 3 ×3 would have a receptive field of 3 ×3. This 
means that for each pixel of the first feature map, a 3× 3 region of 
the input would be considered. Now, if another layer were to be 
added, with again 3 ×3 size, then the receptive field of the new 
feature map with respect to the CNN’s input would be 5× 5. In 
other words, the proportion of the input that is used to calculate 
each element of the feature map of the second convolution layer 
increases. 

Calculating the receptive field at different parts of a CNN is 
crucial when trying to understand the inner workings of a specific 
architecture. For instance, a CNN that is designed to take as an 
input an image of size 256× 256 and that requires information

https://doi.org/10.1007/978-1-0716-3195-9_13


4.5 Classical

Convolutional Neural

Network Architectures

from all parts of it should have a receptive field close to the size of 
the input. The receptive field can be influenced by all the different 
convolution parameters and down-/upsampling operations 
described in the previous section. A comprehensive presentation 
of mathematical derivations for calculating receptive fields for 
CNNs is given in [52]. 
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In the last decades, a variety of convolutional neural network archi-
tectures have been proposed. In this chapter, we cover only a few 
classical architectures for classification and regression. Note that 
classification and regression can usually be performed with the 
same architecture, just changing the loss function (e.g., cross-
entropy for classification, mean squared error for regression). 
Architectures for other tasks can be found in other chapters. 

A Basic CNN Architecture Let us start with the most simple 
CNN, which is actually very close to the original one proposed by 
LeCun et al. [53], sometimes called “LeNet.” Such architecture is 
typically composed of two parts: the first one is based on convolu-
tion operations and learns the features for the image and the second 
part flattens the features and inputs them to a set of fully connected 
layers (in other words, a multilayer perceptron) for performing the 
classification/regression (see illustration in Fig. 18). Note that, of 
course, the whole network is trained end to end: the two parts are 
not trained independently. In the first part, one combines a series of 
blocks composed of a convolution operation (possibly strided 
and/or dilated), a non-linear activation function (for instance, a 
ReLU), and a pooling operation. It is often a good idea to include a 
drawing of the different layers of the chosen architecture.

Input image Convolution 
+ 

Non-linearity 

Pooling Convolution 
+ 

Non-linearity 

Pooling 

Feature learning 

Fully 
connected 

Flatten 

Classification 

Fig. 18 A basic CNN architecture. Classically, it is composed of two main parts. The first one, using 
convolution operations, performs feature learning. The features are then flattened and fed into a set of fully 
connected layers (i.e., a multilayer perceptron), which performs the classification or the regression task



Unfortunately, there is no harmonized format for such a descrip-
tion. An example is provided in Fig. 19.
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Fig. 19 A drawing describing a CNN architecture. Classically, it is composed of two main parts. Here 
16@3 × 3 × 3 means that 16 features with a 3 × 3 × 3 convolution kernel will be computed. For the pooling 
operation, the kernel size is also mentioned (2 × 2). Finally, the stride is systematically indicated 

One of the first CNN architectures that follow this paradigm is 
the AlexNet architecture [54]. AlexNet was one of the first papers 
that empirically indicated that the ReLU activation function makes 
the convergence of CNNs faster compared to other non-linearities 
such as the tanh. Moreover, it was the first architecture that 
achieved a top 5 error rate of 18.2% on the ImageNet dataset, 
outperforming all the other methods on this benchmark by a 
huge margin (about 10%). Prior to AlexNet, best-performing 
methods were using (very sophisticated) pre-extracted features 
and classical machine learning. After this advance, deep learning 
in general and CNNs, in particular, became very active research 
directions to address different computer vision problems. This 
resulted in the introduction of a variety of architectures such as 
VGG16 [55] that reported a 7.3% error rate on ImageNet, intro-
ducing some changes such as the use of smaller kernel filters. 
Following these advances, and even if there were a lot of different 
architectures proposed during that period, one could mention the 
Inception architecture [56], which was one of the deepest archi-
tectures of that period and which further reduced the error rate on 
ImageNet to 6.7%. One of the main characteristics of this architec-
ture was the inception modules, which applied multiple kernel 
filters of different sizes at each level of the architecture. To solve 
the problem of vanishing gradients, the authors introduced auxil-
iary classifiers connected to intermediate layers, expecting to 
encourage discrimination in the lower stages in the classifier, 
increasing the gradient signal that gets propagated back, and 
providing additional regularization. During inference, these classi-
fiers were completely discarded. 

In the following section, some other recent and commonly 
used CNN architectures, especially for medical applications, will 
be presented.
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ResNet One of the most commonly used CNN architectures, even 
today, is the ResNet [57]. ResNet reduced the error rate on Ima-
geNet to 3.6%, while it was the first deep architecture that proposed 
novel concepts on how to gracefully go deeper than a few dozen of 
layers. In particular, the authors introduced a deep residual learning 
framework. The main idea of this residual learning is that instead of 
learning the desired underlying mapping of each network level, 
they learn the residual mapping. More formally, instead of learning 
the H(x) mapping after the convolutional and non-linear layers, 
they fit another mapping of F(x)=H(x)- x on which the original 
mapping is recast into F(x) + x. Feedforward neural networks can 
realize this mapping with “shortcut connections” by simply 
performing identity mapping, and their outputs are added to the 
outputs of the stacked layers. Such identity connections add neither 
additional complexity nor parameters to the network, making such 
architectures extremely powerful. 

Different ResNet architectures have been proposed even in the 
original paper. Even though the depth of the network is increased 
with the additional convolutions, especially for the 152-layer 
ResNet (11.3 billion floating point operations), it still has lower 
complexity (i.e., fewer parameters) than VGG16/VGG19 net-
works. Currently, different layered-size ResNet architectures 
pre-trained on ImageNet are used as backbones for various pro-
blems and applications, including medical imaging. Pre-trained 
ResNet models, even if they are 2D architectures, are commonly 
used on histopathology [58, 59], chest X-ray [60], or even brain 
imaging [61, 62], while the way that such pre-trained networks 
work for medical applications gathered the attention of different 
studies such as [63]. However, it should be noted that networks 
pre-trained on ImageNet are not always efficient for medical imag-
ing tasks, and there are cases where they perform poorly, much 
lower than simpler CNNs trained from scratch [64]. Nevertheless, 
a pre-trained ResNet is very often a good idea to use for a first try in 
a given application. Finally, there was an effort from the medical 
community to train 3D variations of ResNet architectures on a 
large amount of 3D medical data and release the pre-trained mod-
els. Such an effort is presented in [65] in which the authors trained 
and released different 3D ResNet architectures trained on different 
publicly available 3D datasets, including different anatomies such as 
the brain, prostate, liver, heart, and pancreas. 

EfficientNet A more recent CNN architecture that is worth men-
tioning in this section is the recently presented EfficientNet 
[66]. EfficientNets are a family of neural networks that are balanc-
ing all dimensions of the network (width/depth/resolution) auto-
matically. In particular, the authors propose a simple yet effective 
compound scaling method for obtaining these hyperpameters. In 
particular, the main compound coefficient ϕ uniformly scales



network width, depth, and resolution in a principled way: depth = 
αϕ , width = βϕ , resolution = γϕ s.t. α � β2 � γ2 ≈2, α≥1, β≥1, γ ≥1. 
In this formulation, the parameters α, β, γ are constants, and a small 
grid search can determine them. This grid search resulted in eight 
different architectures presented in the original paper. EfficientNet 
is used more and more for medical imaging tasks, as can be seen in 
multiple recent studies [67–69]. 
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5 Autoencoders 

An autoencoder is a type of neural network that can learn a com-
pressed representation (called the latent space representation) of 
the training data. As opposed to the multilayer perceptrons and 
CNNs seen until now that are used for supervised learning, auto-
encoders have widely been used for unsupervised learning, with a 
wide range of applications. The architecture of autoencoders is 
composed of a contracting path (called the encoder), which will 
transform the input into a lower-dimensional representation, and 
an expanding path (called the decoder), which will aim at recon-
structing the input as well as possible from the lower-dimensional 
representation (see Fig. 20). 

The loss is usually the ℓ2 loss and the cost function is then: 

J ðθ,ϕÞ= 
n 

i =1 

jj xðiÞ -DθðEϕðxðiÞÞÞk2 2, ð29Þ 

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the 
decoder (and θ its parameters). Note that, in Fig. 20, Dθ(Eϕ(x)) is 
denoted as x̂. More generally, one can write: 

J ðθ,ϕÞ=x�μxref d x,DθðEϕðxÞÞ , ð30Þ 
where μref is the reference distribution that one is trying to approx-
imate and d is the reconstruction function. When μref is the

Fig. 20 The general principle of a denoising autoencoder. It aims at learning of a 
low-dimensional representation (latent space) z of the training data. The 
learning is done by aiming to provide a faithful reconstruction x̂ of the input 
data x̂



empirical distribution of the training set and d is the ℓ2 norm, 
Eq. 30 is equivalent to Eq. 29.
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Many variations of autoencoders exist, to prevent autoencoders 
from learning the identity function and to improve their ability to 
capture important information and learn richer representations. 
Among them, sparse autoencoders offer an alternative method for 
introducing an information bottleneck without requiring a reduc-
tion in the number of nodes at the hidden features. This is done by 
constructing the loss function such that it penalizes activations 
within a layer. This is achieved by enforcing sparsity in the network 
and encouraging it to learn an encoding and decoding which relies 
only on activating a small number of neurons. This sparsity is 
enforced in two main ways, an ℓ1 regularization on the parameters 
of the network and a Kullback-Leibler divergence, which is a mea-
sure of the difference between two probability distributions. More 
information about sparse autoencoders could be found in 
[70]. Moreover, a quite common type of autoencoders is the 
denoising autoencoders [71], on which the model is tasked with 
reproducing the input as closely as possible while passing through 
some sort of information bottleneck (Fig. 20). This way, the model 
is not able to simply develop a mapping that memorizes the training 
data but rather learns a vector field for mapping the input data 
toward a lower-dimensional manifold. One should note here that 
the vector field is typically well-behaved in the regions where the 
model has observed data during training. In out-of-distribution 
data, the reconstruction error is both large and does not always 
point in the direction of the true distribution. This observation 
makes these networks quite popular for anomaly detection in med-
ical data [72]. Additionally, contractive autoencoders [73] are other 
variants of this type of models, adding the contractive regulariza-
tion loss to the standard autoencoder loss. Intuitively, it forces very 
similar inputs to have a similar encoding, and in particular, it 
requires the derivative of the hidden layer activations to be small 
with respect to small changes in the input. The denoising autoen-
coders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising 
autoencoders make the reconstruction error resistant to finite-
sized input perturbations, while the contractive autoencoders 
make the extracted features resistant to small input perturbations. 

Depending on the input type, different autoencoder architec-
tures could be designed. In particular, when the inputs are images, 
the encoder and the decoder are classically composed of convolu-
tional blocks. The decoder uses, for instance, transposed convolu-
tions to perform the expansion. Finally, the addition of skip 
connections has led to the U-Net [74] architectures that are com-
monly used for segmentation purposes. Segmentation architectures 
will be more extensively described in Chap. 13. Finally, variational 
autoencoders, which rely on a different mathematical formulation,

https://doi.org/10.1007/978-1-0716-3195-9_13


are not covered in the present chapter and are presented, together 
with other generative models, in Chap. 5. 
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6 Conclusion 

Deep learning is a very fast evolving field, with numerous still 
unanswered theoretical questions. However, deep learning-based 
models have become the state-of-the-art methods for a variety of 
fields and tasks. In this chapter, we presented the basic principles of 
deep learning, covering both perceptrons and convolutional neural 
networks. All architectures were feedforward and recurrent net-
works are covered in Chap. 4. Generative adversarial networks are 
covered in Chap. 5, along with other generative models. Chapter 6 
presents a recent class of deep learning methods, which does not 
use convolutions, and that are called transformers. Finally, through-
out the other chapters of the book, different deep learning archi-
tectures are presented for various types of applications. 

Acknowledgements 

This work was supported in part by the French government under 
management of Agence Nationale de la Recherche as part of the 
“Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute), reference ANR-10-IAIHU-06 
(Institut Hospitalo-Universitaire ICM), and ANR-21-CE45-0007 
(Hagnodice). 

References 

1. Rosenblatt F (1957) The perceptron, a perceiv-
ing and recognizing automaton Project Para. 
Cornell Aeronautical Laboratory, Buffalo 

2. Minsky M, Papert S (1969) Perceptron: an 
introduction to computational geometry. 
MIT Press, Cambridge, MA 

3. Minsky ML, Papert SA (1988) Perceptrons: 
expanded edition. MIT Press, Cambridge, MA 

4. Linnainmaa S (1976) Taylor expansion of the 
accumulated rounding error. BIT Numer Math 
16(2):146–160 

5. Werbos PJ (1982) Applications of advances in 
nonlinear sensitivity analysis. In: System mod-
eling and optimization. Springer, Berlin, pp 
762–770 

6. Rumelhart DE, Hinton GE, Williams RJ 
(1986) Learning representations by back-
propagating errors. Nature 323(6088): 
533–536 

7. Le Cun Y (1985) Une procédure d’apprentis-
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