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Preface to the Series 

Experimental life sciences have two basic foundations: concepts and tools. The Neuro-
methods series focuses on the tools and techniques unique to the investigation of the 
nervous system and excitable cells. It will not, however, shortchange the concept side of 
things as care has been taken to integrate these tools within the context of the concepts and 
questions under investigation. In this way, the series is unique in that it not only collects 
protocols but also includes theoretical background information and critiques which led to 
the methods and their development. Thus it gives the reader a better understanding of the 
origin of the techniques and their potential future development. The Neuromethods pub-
lishing program strikes a balance between recent and exciting developments like those 
concerning new animal models of disease, imaging, in vivo methods, and more established 
techniques, including, for example, immunocytochemistry and electrophysiological tech-
nologies. New trainees in neurosciences still need a sound footing in these older methods in 
order to apply a critical approach to their results. 

Under the guidance of its founders, Alan Boulton and Glen Baker, the Neuromethods 
series has been a success since its first volume published through Humana Press in 1985. The 
series continues to flourish through many changes over the years. It is now published under 
the umbrella of Springer Protocols. While methods involving brain research have changed a 
lot since the series started, the publishing environment and technology have changed even 
more radically. Neuromethods has the distinct layout and style of the Springer Protocols 
program, designed specifically for readability and ease of reference in a laboratory setting. 

The careful application of methods is potentially the most important step in the process 
of scientific inquiry. In the past, new methodologies led the way in developing new dis-
ciplines in the biological and medical sciences. For example, Physiology emerged out of 
Anatomy in the nineteenth century by harnessing new methods based on the newly discov-
ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth-
ods are more complex. Methods are now widely shared between disciplines and research 
areas. New developments in electronic publishing make it possible for scientists that 
encounter new methods to quickly find sources of information electronically. The design 
of individual volumes and chapters in this series takes this new access technology into 
account. Springer Protocols makes it possible to download single protocols separately. In 
addition, Springer makes its print-on-demand technology available globally. A print copy 
can therefore be acquired quickly and for a competitive price anywhere in the world. 

Saskatoon, SK, Canada Wolfgang Walz
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Preface 

Machine learning (ML) is at the core of the tremendous progress in artificial intelligence in 
the past decade. ML offers exciting promises for medicine. In particular, research on ML for 
brain disorders is a very active field. Neurological and psychiatric disorders are particularly 
complex and can be characterized using various types of data. ML has the potential to exploit 
such rich and complex data for a wide range of benefits including a better understanding of 
disorders, the discovery of new biomarkers, assisting diagnosis, providing prognostic infor-
mation, predicting response to treatment and building more effective clinical trials. 

Machine learning for brain disorders is an interdisciplinary field, involving concepts 
from different disciplines such as mathematics, statistics and computer science on the one 
hand and neurology, psychiatry, neuroscience, pathology and medical imaging on the other 
hand. It is thus difficult to apprehend for students and researchers who are new to this area. 
The aim of this book is to provide an up-to-date and comprehensive guide to both 
methodological and applicative aspects of ML for brain disorders. This book aims to be 
useful to students and researchers with various backgrounds: engineers, computer scientists, 
neurologists, psychiatrists, radiologists, neuroscientists, etc. 

Part I presents the fundamentals of ML. The book starts with a non-technical introduc-
tion to the main concepts underlying ML (Chapter 1). The main classic ML techniques are 
then presented in Chapter 2. Even though not recent for most of them, these techniques are 
still useful for various tasks. Chapters 3–6 are devoted to deep learning, a family of 
techniques which have achieved impressive results in the past decade. Chapter 3 describes 
the basics of deep learning, starting with simple artificial neural networks and then covering 
convolutional neural networks (CNN) which are a standard family of approaches that are 
mainly (but not only) used for imaging data. Those architectures are feed-forward, meaning 
that information flows only in one direction. On the contrary, recurrent neural networks 
(RNN), presented in Chapter 4, involve loops. They are particularly adapted to sequential 
data, including longitudinal data (repeated measurements over time), time series and text. 
Chapter 5 is dedicated to generative models: models that can generate new data. A large part 
is devoted to generative adversarial networks (GANs), but other approaches such as diffu-
sion models are also described. Finally, Chapter 6 presents transformers, a recent approach 
which is now the state-of-the-art for natural language processing and has achieved impres-
sive results for other applications such as imaging. 

Part II is devoted to the main types of data used to characterize brain disorders. These 
include clinical assessments (Chapter 7), neuroimaging (including magnetic resonance 
imaging—MRI, positron emission tomography—PET, computed tomography—CT, 
single-photon emission computed tomography—SPECT, Chapter 8), electro- and magne-
toencephalography (EEG/MEG, Chapter 9), genetic and omics data (including genotyp-
ing, transcriptomics, proteomics, metabolomics, Chapter 10), electronic health records 
(EHR, Chapter 11), mobile devices, connected objects and sensor data (Chapter 12). The 
emphasis is put on practical aspects rather on an in-depth description of the underlying data 
acquisition techniques (which can be complex, for instance in the case of neuroimaging or 
omics data). The corresponding chapters describe which information do these data provide,
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how they should be handled and processed and which features can be extracted from 
such data.

viii Preface

Part III covers the core methodologies of ML for brain disorders. Each chapter is 
devoted to a specific medical task that can be addressed with ML, presenting the main 
state-of-the-art techniques. Chapter 13 deals with image segmentation, a crucial task for 
extracting information from images. Image segmentation techniques allow delineating 
anatomical structures and lesions (e.g. tumours, white matter lesions), which can in turn 
provide biomarkers (e.g. the volume of the structure/lesion or other more sophisticated 
derived measures). Image registration is presented in Chapter 14. It is also a fundamental 
image analysis task which allows aligning images from different modalities or different 
patients and which is a prerequisite for many other ML methods. Chapter 15 describes 
methods for computer-aided diagnosis and prediction. These include methods to automati-
cally classify patients (for instance to assist diagnosis) as well as to predict their future state. 
Chapter 16 presents ML methods to discover disease subtypes. Indeed, brain disorders are 
heterogeneous and patients with a given diagnosis may have different symptoms, a different 
underlying pathophysiology and a different evolution. Such heterogeneity is a major barrier 
to the development of new treatments. ML has the potential to help discover more 
homogeneous disease subtypes. Modelling disease progression is the focus of Chapter 17. 
The chapter describes a wide range of techniques that allow, in a data-driven manner, to 
build models of disease progression, which includes finding the ordering by which different 
biomarkers become abnormal, estimating trajectories of change and uncovering different 
evolution profiles within a given population. Chapter 18 is devoted to computational 
pathology which is the automated analysis of histological data (which may come from 
biopsies or post-mortem samples). Tremendous progresses have been made in this area in 
the past years. Chapter 19 describes methods for integrating multimodal data including 
medical imaging, clinical data and genetics (or other omics data). Indeed, characterizing the 
complexity of brain disorders requires to integrate multiple types of data, but such integra-
tion raises computational challenges. 

Part IV is dedicated to validation and datasets. These are fundamental issues that are 
sometimes overlooked by ML researchers. It is indeed crucial that ML models for medicine 
are thoroughly and rigorously validated. Chapter 20 covers model validation. It introduces 
the main performance metrics for classification and regression tasks, describes how to 
estimate these metrics in an unbiased manner and how to obtain confidence intervals. 
Chapter 21 deals with reproducibility, the ability to reproduce results and findings. It is 
widely recognized that many fields of science, including ML for medicine, are undergoing a 
reproducibility crisis. The chapter describes the main types of reproducibility, what they 
require and why they are important. The topic of Chapter 22 is interpretability of ML 
methods. In particular, it reviews the main approaches to get insight on how “black-box” 
models take their decisions and describes their application to brain imaging data. Chapter 23 
provides a regulatory science perspective on performance assessment of ML algorithms. It is 
indeed crucial to understand such perspective because regulation is critical to translate safe 
and effective technologies to the clinic. Finally, Chapter 24 provides an overview of the main 
existing datasets accessible to researchers. It can help scientists identify which datasets are 
most suited to a particular research question and provides hints on how to use them. 

Part V presents applications of ML to various neurological and psychiatric disorders. 
Each chapter is devoted to a specific disorder or family of disorders. It presents some 
information about the disorder that should, in particular, be useful to researchers who 
don’t have a medical background. It then describes some important applications of ML to



this disorder as well as future challenges. The following disorders are covered: Alzheimer’s 
disease and related dementia (including vascular dementia, frontotemporal dementia and 
dementia with Lewy bodies) in Chapter , Parkinson’s disease and related disorders 
(including multiple system atrophy, progressive supranuclear palsy and dementia with 
Lewy bodies) in Chapter , epilepsy in Chapter , multiple sclerosis in Chapter , 
cerebrovascular disorders (including stroke, microbleeds, vascular malformations, aneur-
ysms and small vessel disease) in Chapter , brain tumours in Chapter , neurodevelop-
mental disorders (including autism spectrum and attention deficit with hyperactivity 
disorders) in Chapter and psychiatric disorders (including depression, schizophrenia 
and bipolar disorder) in Chapter . 32

31 

3029

282726

25

Preface ix

We hope that this book will serve as a reference for researchers and graduate students 
who are new to this field of research as well as constitute a useful resource for all scientists 
working in this exciting scientific area. 

Paris, France Olivier Colliot
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ASPECTS The Alberta Stroke Programme Early CT Score 
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BAM Binary Alignment Map 
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BD Bipolar Disorder 
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CAD Computer-Assisted Diagnosis 
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CAM Class Activation Maps 
CAP College of American Pathologists 
CARS Coherent Anti-Stokes Raman Scattering 
CBD Cortico-basal Degeneration
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CBF Cerebral Blood Flow 
CBV Cerebral Blood Volume 
CC Cross-Correlation 
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CDF Cumulative Density Function 
CDR Clinical Dementia Rating 
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C-LSTM Convolutional Long Short-Term Memory 
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CNN Convolutional Neural Network 
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CP Computational Pathology 
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CPM Computational Precision Medicine 
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CT Computed Tomography 
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CTSA Clinical Translational Science Awards 
CTV-3 Clinical Terms Version 3 
CV Cross-Validation 
D3PM Data-Driven Disease Progression Modelling 
DAT Dopamine Transporter 
dbGAP Database of Genotypes and Phenotypes 
DBS Deep Brain Stimulation 
DCGAN Deep Convolutional Generative Adversarial Network 
DDPM Denoising Diffusion Probabilistic Models 
DEBM Discriminative Event-Based Model 
DIAN Dominantly Inherited Alzheimer Network 
DICOM Digital Imaging and Communications in medicine 
DIR Double Inversion Recovery MR sequence 
DL Deep Learning 
DLB Dementia with Lewy Bodies 
DNA Deoxyribonucleic Acid 
dof Degrees of Freedom 
DPCE Distance map Penalized Cross Entropy loss 
DPS Disease Progression Score 
DRAM Deep Recurrent Attention Model 
DRNN Disconnected Recurrent Neural Network 
DSA Digital Subtraction Angiography 
DSC Dice Similarity Coefficient
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DSM-5 5th edition of the Diagnostic and Statistical Manual of Mental Disorders 
DT Decision Tree 
DTI Diffusion Tensor Imaging 
DWI Diffusion-Weighted Imaging 
DXA Dual-energy X-ray Absorptiometry 
DZ Dizygotic 
EBM Event-Based Model 
EDSS Expanded Disability Status Scale 
EEA European Economic Area 
EEG Electroencephalography 
EFA Exploratory Factor Analysis 
EHR Electronic Health Record 
ELBO Evidence Lower Bound 
ELL Exponential Logarithmic Loss 
EM Expectation-Maximization 
ENIGMA Enhancing NeuroImaging Genetics Through Meta-Analysis 
eQTL expression Quantitative Trait Loci 
ET Enhancing Tumour 
EU European Union 
FA Fractional Anisotropy 
FAIR Findable, Accessible, Interoperable, Reusable 
FASTA Fast-All format 
FCD Focal Cortical Dysplasia 
FCN Fully Connected Network 
FCNN Fully Convolutional Neural Network 
FDA United States Food and Drug Administration 
FDG-PET [18F]-Fluorodeoxyglucose Positron Emission Tomography 
FDR False Discovery Rate 
FFPE Formalin-Fixed Paraffin-Embedded 
FID Fréchet Inception Distance 
FLAIR Fluid-Attenuated Inversion Recovery 
FLOP Floating Point Operations 
fMRI functional Magnetic Resonance Imaging 
FN False Negative 
FOG Freezing of Gait 
FP False Positive 
FROC Free-response ROC 
FTLD Fronto-temporal Lobar Degeneration 
G2PSR Genome-to-Phenome Sparse Regression 
GAN Generative Adversarial Network 
GBM Glioblastoma 
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GDPR General Data Protection Regulation 
GENFI Genetic FTD Initiative 
GEO Gene Expression Omnibus 
GFF General Feature Format 
GIS Geographic Information Systems 
GM Gray Matter 
GMM Gaussian Mixture Model
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GPPM Gaussian Process Progression Model 
GPS Global Positioning System 
GPU Graphical Processing Unit 
Grad-CAM Gradient-weighted Class Activation Mapping 
GRE Gradient-Recalled Echo 
GRU Gated Recurrent Unit 
GTEx Genotype-Tissue Expression 
GWAS Genome-Wide Association Study 
H&E Hematoxylin and Eosin 
HAR Human Activity Recognition 
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HD Hausdorff Distance 
HGG High-Grade Glioma 
HIPAA Health Insurance Portability and Accountability Act 
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HUPO Human Proteome Organization 
HYDRA HeterogeneitY through DiscRiminative Analysis 
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ICA Independent Component Analysis 
ICD International Classification of Diseases 
iCDF Inverse Cumulative Density Function 
ICF International Classification of Functioning, Disability and Health 
ID Intelligence Disabilities 
IDH Isocitrate Dehydrogenase 
IEEE Institute of Electrical and Electronics Engineers 
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IPMI Information Processing in Medical Imaging conference 
IQ Intelligence Quotient 
iRANO Immune-related Response Assessment in Neuro-Oncology 
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ISBI International Symposium on Biomedical Imaging 
ISLES The Ischemic Stroke Lesion Segmentation 
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KDE-EBM Kernel Density Estimation EBM 
KEGG Kyoto Encyclopedia of Genes and Genomes 
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LATE Limbic-predominant Age-related TDP-43 Encephalopathy 
LDA Linear Discriminant Analysis 
LDDMM Large Deformation Diffeomorphic Metric Mapping 
LGG Low-Grade Glioma 
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LJTMM Latent Time Joint Mixed Model 
LP Linear Programming 
LPA Logopenic Progressive Aphasia 
LR Logistic Regression 
LR- Negative Likelihood Ratio 
LR+ Positive Likelihood Ratio 
LRP Layer-wise relevance 
LSTM Long Short-Term Memory 
LVO Large Vessel Occlusion 
MAE Mean Absolute Error 
MAGIC Multi-scAle heteroGeneity analysIs and Clustering 
MAGNIMS Magnetic Resonance Imaging in Multiple Sclerosis network 
MAP Maximum a Posteriori 
MAR Missing at Random 
MCA Multi-head Cross-Attention 
MCAR Missing Completely at Random 
MCMC Markov Chain Monte Carlo 
mcVAE Multi-Channel Variational Autoencoder 
MD Mean Diffusivity 
MDD Major Depressive Disorder 
MDE Major Depressive Episode 
MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating Scale 
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MEDA Minimal Evidence of Disease Activity 
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MEM Micro Electro Mechanical system 
MGMT O6-Methylguanine-DNA Methyltransferase 
MI Mutual Information 
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Society 
MICE Multiple Imputation by Chained Equations 
MIDS Medical Imaging Data Structure 
MIP Maximal Intensity Projection 
ML Machine Learning 
MLE Maximum Likelihood Estimation 
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MMSA Masked Multi-head Self-Attention 
MMSE Mini-Mental state examination 
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MRA Magnetic Resonance Angiography 
MRI Magnetic Resonance Imaging 
mRNA Messenger RNA 
mRS modified Rankin Score 
MS Multiple Sclerosis 
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MSA Multiple System Atrophy 
MSA-C Cerebellar variant of Multiple System Atrophy 
MSA-P Parkinsonian variant of Multiple System Atrophy 
MSD Medical Segmentation Decathlon 
MSE Mean Squared Error 
mTOR Mammalian Target of Rapamycin 
MTR Magnetization Transfer Ratio 
MZ Monozygotic 
mzML Mass Spectrometry Markup Language 
NAWM Normal Appearing White Matter 
NB Naive Bayes 
NCBI National Center for Biotechnology Information 
NCC Normalized Cross Correlation 
ncRNA Non-coding RNA 
NDDs Neurodevelopmental Disorders 
NEDA No Evidence of Disease Activity 
NeurIPS Neuronal Information Processing Systems conference 
NGS Next Generation Sequencing 
NifTI Neuroimaging Informatics Technology Initiative 
NIH National Institutes of Health 
NINCDS-ADRDA National Institute of Neurological and Communicative Disorders and 

Stroke - Alzheimer’s Disease and Related Disorders Association 
NIPALS Non-linear Iterative Partial Least Squares 
NIVEL Netherlands Institute for Health Services Research 
NIVEL-PCD NIVEL Primary Care Database 
NLP Natural Language Processing 
NMF Non-negative Matrix Factorization 
NMI Normalized Mutual Information 
NMOSD Neuromyelitis Optica Spectrum Disorder 
NMT Neural Machine Translation 
NN Neural Network 
NPV Negative Predictive Value 
OATS Older Adult Twin Study 
OCD Obsessive Compulsive Disorder 
OCT Optimal Cutting Temperature 
OSF Open Science Framework 
PACS Picture Archiving and Communication System 
PCA Posterior Cortical Atrophy 
PCA Principal Component Analysis 
PD Parkinson’s Disease 
PD Proton-Density MR sequence 
PDF Probability Density Function 
PE Positional Encoding 
PET Positron Emission Tomography 
PIB-PET [11C]-Pittsburgh Compound B Positron Emission Tomography 
PiD Pick’s Disease 
PLS Partial Least Squares 
PLSR Partial Least Square Regression 
PML Progressive Multifocal Leukoencephalopathy
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PNS Peripheral Nervous System 
PPA Primary Progressive Aphasia 
PPMI Parkinson’s Progression Markers Initiative 
PPMS Primary Progressive Multiple Sclerosis 
PPV Positive Predictive Value 
PRS Polygenic Risk Score 
PSI HUPO Proteomics Standards Initiative 
PSI Proteomics Standards Initiative 
PSP Progressive Supranuclear Palsy 
psPD pseudoprogression of disease 
PT Patient 
PTSD Post-Traumatic Stress Disorder 
PVS Perivascular Space 
PWI Perfusion Weighted Imaging 
QSM Quantitative Susceptibility Mapping 
QT Quantitative Traits 
QTAB Queensland Twin Adolescent Brain 
QTIM Queensland Twin IMaging 
rΔCBF relative CBF change 
RANO Response Assessment in Neuro-Oncology 
RAVEL Removal of Artificial Voxel Effect by Linear regression 
RBF Radial Basis Function 
RCNN Region Convolutional Neural Network 
RECIST Response Evaluation Criteria in Solid Tumours 
ReLU Rectified Linear Unit 
REM Rapid Eye Movement 
ResNet Residual Neural Network 
RF Random Forest 
RKHS Reproducing Kernel Hilbert Space 
RMSE Root Mean Square Error 
RMSProp Root Mean Squared Propagation 
RNA Ribonucleic Acid 
RNN Recurrent Neural Network 
ROC Receiver Operating Characteristic curve 
RRMS Relapsing Remitting Multiple Sclerosis 
RS-fMRI Resting State functional Magnetic Resonance Imaging 
RSNA Radiological Society of North America 
SA Self-Attention 
SAM Sequence Alignment Map 
SD Standard Deviation 
SDG Stochastic Gradient Descent 
SHAP SHapley Additive exPlanations 
Smile-GAN Semi-supervised cLustering via GANs 
SNOMED-CT Systematized NOmenclature of MEDicine - Clinical Terms 
SNP Single Nucleotide Polymorphism 
SPECT Single-Photon Emission Computed Tomography 
SPIE The Society for Photoelectrical Instrumentation Engineers - The Inter-

national Society for Optics and Photonics 
SPIRIT-AI Standard Protocol Items: Recommendations for Interventional Trials-

Artificial Intelligence
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SPMS Secondary Progressive Multiple Sclerosis 
SRA Sequence Read Archive 
SRH Stimulated Raman scattering Histology 
SS Sensitivity-Specificity loss 
SSD Sum of Square Differences 
SSL Semi-Supervised Learning 
STARD-AI Standards for Reporting Diagnostic Accuracy Studies - Artificial 

Intelligence 
STN Spatial Transformer Network 
STR Swedish Twin Registry 
STRIVE the STandards for ReportIng Vascular changes on nEuroimaging 
SUD Substance Use Disorder 
SuLign Subtyping Alignment 
SuStaIn Subtype and Stage Inference 
SVD Singular Value Decomposition 
SVM Support Vector Machine 
SWI Susceptibility-Weighted Images 
TC Tumour Core 
TEBM Temporal Event-Based Model 
TICI Thrombolysis in Cerebral Infarction 
TLE Temporal Lobe Epilepsy 
TMZ Temozolomide 
TN True Negative 
TNR True Negative Rate 
TOPMed Trans-omics Precision Medicine 
TP True Positive 
TPR True Positive Rate 
TRIPOD-ML Transparent Reporting of a Multivariable Prediction Model for Individ-

ual Prognosis or Diagnosis-Machine Learning 
tRNA Transfer RNA 
UAD Unsupervised Anomaly Detection 
UDA Unsupervised Data Augmentation 
UI User Interface 
UKB UK Biobank 
UMLS Unified Medical Language System 
UPDRS Unified Parkinson’s Disease Rating Scale 
UX User Experience 
VaD Vascular Dementia 
VAE Variational Autoencoder 
VA-GAN Visual Attribution Generative Adversarial Network 
VASARI Visually AcceSAble Rembrandt Images 
VCCA Deep Variational CCA 
VCI Vascular Cognitive Impairment 
VETSA Vietnam Era Twin Study of Aging 
ViT Vision Transformer 
ViViT Video Vision Transformer 
VQGAN Vector Quantization Generative Adversarial Network 
VQ-VAE Vector Quantization Variational Autoencoder 
WCE Weighted Cross Entropy loss
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WGAN Wasserstein Generative Adversarial Network 
WGS Whole Genome Sequence 
WHO World Health Organization 
WM White Matter 
WMH White Matter Hyperintensity 
WSI Whole Slide Image 
WT Whole Tumour 
WUSTL Washington University in Saint Louis 
xAI eXplainable AI 
XML eXtensible Markup Language 
XNAT eXtensible Neuroimaging Archive Toolkit
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France; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 
Australia 

VASA CURCIN • Department of Population Health Sciences, King’s College London, London, 
United Kingdom 

SUSMITA DAS • Indian Institute of Technology (IIT), Centre of Excellence in Artificial 
Intelligence, Kharagpur, West Bengal, India 

CHRISTOS DAVATZIKOS • Center for Biomedical Image Computing and Analytics, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 

MARIE DEPREZ • Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group, 
Nice, France 

CHRISTINE DERUELLE • Aix-Marseille Université, CNRS, Institut de Neurosciences de la 
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Université Paris Est Créteil, Créteil, France; APHP, Mondor Univ. Hospitals, DMU 
Impact, Psychiatry Department, Créteil, France 
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ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France 
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Part I 

Machine Learning Fundamentals



Chapter 1 

A Non-technical Introduction to Machine Learning 

Olivier Colliot 

Abstract 

This chapter provides an introduction to machine learning for a non-technical readership. Machine learning 
is an approach to artificial intelligence. The chapter thus starts with a brief history of artificial intelligence in 
order to put machine learning into this broader scientific context. We then describe the main general 
concepts of machine learning. Readers with a background in computer science may skip this chapter. 

Key words Machine learning, Artificial intelligence, Supervised learning, Unsupervised learning 

1 Introduction 

Machine learning (ML) is a scientific domain which aims at allow-
ing computers to perform tasks without being explicitly pro-
grammed to do so [1]. To that purpose, the computer is trained 
using the examination of examples or experiences. It is part of a 
broader field of computer science called artificial intelligence 
(AI) which aims at creating computers with abilities that are char-
acteristic of human or animal intelligence. This includes tasks such 
as perception (the ability to recognize images or sounds), 
reasoning, decision-making, or creativity. Emblematic tasks which 
are easy to perform for a human and are inherently difficult for a 
computer are, for instance, recognizing objects, faces, or animals in 
photographs or recognizing words in speech. On the other hand, 
there are also tasks which are inherently easy for a computer and 
difficult for a human, such as computing with large numbers or 
memorizing exactly huge amounts of text. Machine learning is the 
AI technique that has achieved the most impressive successes over 
the past years. However, it is not the only approach to AI, and 
conceptually different approaches also exist. 

Machine learning also has close ties to other scientific fields. 
First, it has evident strong links to statistics. Indeed, most machine 
learning approaches exploit statistical properties of the data. More-
over, some classical approaches used in machine learning were
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actually invented in statistics (for instance, linear or logistic regres-
sion). Nowadays, there is a constant interplay between progress in 
statistics and machine learning. ML has also important ties to signal 
and image processing, ML techniques being efficient for many 
applications in these domains and signal/image processing con-
cepts being often key to the design or understanding of ML tech-
niques. There are also various links to different branches of 
mathematics, including optimization and differential geometry. 
Besides, some inspiration for the design of ML approaches comes 
from the observation of biological cognitive systems, hence the 
connections with cognitive science and neuroscience. Finally, the 
term data science has become commonplace to refer to the use of 
statistical and computational methods for extracting meaningful 
patterns from data. In practice, machine learning and data science 
share many concepts, techniques, and tools. Nevertheless, data 
science puts more emphasis on the discovery of knowledge from 
the data, while machine learning focuses on solving tasks.

4 Olivier Colliot

This chapter starts by providing a few historical landmarks 
regarding artificial intelligence and machine learning (Subheading 
2). It then proceeds with the main concepts of ML which are 
foundational to understand other chapters of this book. 

2 A Bit of History 

As a scientific endeavor, artificial intelligence is at least 80 years old. 
Here, we provide a very brief overview of this history. For more 
details, the reader may refer to [2]. A non-exhaustive timeline of AI 
is shown in Fig. 1. 

Fig. 1 A brief timeline of AI with some of the landmark advances
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Even if this is debatable, one often considers AI to emerge in 
the 1940s–1950s with a series of important concepts and events. 
In 1943, the neurophysiologist Warren McCulloch and the logician 
Walter Pitts proposed an artificial neuron model, which is a mathe-
matical abstraction of a biological neuron [3], and showed that sets 
of neurons can compute logical operations. In 1948, the mathema-
tician and philosopher Norbert Wiener coined the term “cybernet-
ics” [4] to designate the scientific study of control and 
communication in humans, animals, and machines. This idea that 
such processes can be studied within the same framework in both 
humans/animals and machines is a conceptual revolution. In 1949, 
the psychologist Donald Hebb [5] described a theory of learning 
for biological neurons which was later influential in the modifica-
tion of the weights of artificial neurons. 

In 1950, Alan Turing, one of the founders of computer science, 
introduced a test (the famous “Turing test”) for deciding if a 
machine can think [6]. Actually, since the question can a machine 
think? is ill-posed and depends on the definition of thinking, Turing 
proposed to replace it with a practical test. The idea is that of a game 
in which an interrogator is given the task of determining which of 
two players A and B is a computer and which is a human (by using 
only responses to written questions). In 1956, the mathematician 
John McCarthy organized what remained as the famous Dart-
mouth workshop and which united ten prominent scientists for 
2 months (among which were Marvin Minsky, Claude Shannon, 
Arthur Samuel, and others). This workshop is more important by 
its scientific program than by its outputs. Let us reproduce here the 
first sentences of the proposal written by McCarthy et al. [7] as we  
believe that they are particularly enlightening on the prospects of 
artificial intelligence: 

We propose that a 2 month, 10 man study of artificial intelligence be carried 
out during the summer of 1956 at Dartmouth College in Hanover, New 
Hampshire. The study is to proceed on the basis of the conjecture that every 
aspect of learning or any other feature of intelligence can in principle be so 
precisely described that a machine can be made to simulate it. An attempt 
will be made to find how to make machines use language, form abstractions 
and concepts, solve kinds of problems now reserved for humans, and 
improve themselves. We think that a significant advance can be made in 
one or more of these problems if a carefully selected group of scientists work 
on it together for a summer. 

There was no major advance made at the workshop, although a 
reasoning program, able to prove theorems, was presented by Allen 
Newell and Herbert Simon [8] at this occasion. This can be con-
sidered as the start of symbolic AI (we will come back later on the 
two main families of AI: symbolic and connexionist). Let us end the 
1950s with the invention, in 1958, of the perceptron by Frank 
Rosenblatt [9], whose work was built upon the ideas of McCulloch, 
Pitts, and Hebb. The perceptron was the first actual artificial



neuron. It was able to recognize images. This is an important 
landmark for several reasons. The perceptron, with some modifica-
tions, is still the building block of modern deep learning algo-
rithms. To mimic an artificial neuron (Fig. 2), it is composed of a 
set of inputs (which correspond to the information entering the 
synapses) xi, which are linearly combined and then go through a 
non-linear function g to produce an output y. This was an impor-
tant advance at the time, but it had strong limitations, in particular 
its inability to discriminate patterns which are not linearly separable. 
More generally, in the field of AI as a whole, unreasonable promises 
had been made, and they were not delivered: newspapers were 
writing about upcoming machines that could talk, see, write, and 
think; the US government funded huge programs to design auto-
matic translation programs, etc. This led to a dramatic drop in 
research funding and, more generally, in interest in AI. This is 
often referred to as the first AI winter (Fig. 3). 

6 Olivier Colliot

Even though research in AI continued, it was not before the 
early 1980s that real-world applications were once again considered 
possible. This wave was that of expert systems [10], which are a type 
of symbolic AI approach but with domain-specific knowledge. 
Expert systems led to commercial applications and to a real boom 
in the industry. A specific programming language, called LISP [11], 
became dominant for the implementation of expert systems. Com-
panies started building LISP machines, which were dedicated com-
puters with specific architecture tailored to execute LISP efficiently. 
One cannot help thinking of a parallel with current hardware 
dedicated to deep learning. However, once again, expectations 
were not met. Expert systems were very large and complex sets of 
rules. They were difficult to maintain and update. They also had 
poor performances in perception tasks such as image and speech 
recognition. Academic and industrial funding subsequently 
dropped. This was the second AI winter. 

At this stage, it is probably useful to come back to the two main 
families of AI: symbolic and connexionist (Fig. 4). They had impor-
tant links at the beginning (see, e.g., the work of McCulloch and 
Pitt aiming to perform logical operations using artificial neurons), 
but they subsequently developed separately. In short, these two 
families can be described as follows. The first operates on symbols 
through sets of logical rules. It has strong ties to the domain of 
predicate logic. Connexionism aims at training networks of artificial 
neurons. This is done through the examination of training exam-
ples. More generally, it is acceptable to put most machine learning 
methods within the connexionist family, even though they don’t 
rely on artificial neuron models, because their underlying principle 
is also to exploit statistical similarities in the training data. For a 
more detailed perspective on the two families of AI, the reader can 
refer to the very interesting (and even entertaining!) paper of 
Cardon et al. [12].
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(a) 

(b) 

Fig. 2 (a) Biological neuron. The synapses form the input of the neuron. Their signals are combined, and if the 
result exceeds a given threshold, the neuron is activated and produces an output signal which is sent through 
the axon. (b) The perceptron: an artificial neuron which is inspired by biology. It is composed of the set of 
inputs (which correspond to the information entering the synapses) xi, which are linearly combined with 
weights wi and then go through a non-linear function g to produce an output y. Image in panel (a) is courtesy of 
Thibault Rolland
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Fig. 3 Summers and winters of AI 

Fig. 4 Two families of AI. The symbolic approach operates on symbols through 
logical rules. The connexionist family actually not only encompasses artificial 
neural networks but more generally machine learning approaches 

Let us come back to our historical timeline. The 1980s saw a 
rebirth of connexionism and, more generally, the start of the rise of 
machine learning. Interestingly, it is at that time that two of the 
main conferences on machine learning started: the International 
Conference on Machine Learning (ICML) in 1980 and Neural 
Information Processing Systems (NeurIPS, formerly NIPS) in 
1987. It had been known for a long time that neural networks 
with multiple layers (as opposed to the original perceptron with a 
single layer) (Fig. 5) could solve non-linearly separable problems, 
but their training remained difficult. The back-propagation algo-
rithm for training multilayer neural networks was described by 
David Rumelhart, Geoffrey Hinton, and Ronald Williams [13]  in  
1986, as well as by Yann LeCun in 1985 [14], who also refined the 
procedure in his PhD thesis published in 1987. This idea had 
actually been explored since the 1960s, but it was only in the 
1980s that it was efficiently used for training multilayer neural 
networks. Finally, in 1989, Yann LeCun proposed the convolu-
tional neural network [15], an architecture inspired by the organi-
zation of the visual cortex, whose principle is still at the core of



state-of-the-art algorithms for many image processing and recog-
nition tasks. Multilayer neural networks demonstrated their utility 
in several real-world applications such as digit recognition on 
checks and ZIP codes [16]. Nevertheless, they would not become 
the dominant machine learning approach until the 2010s. Indeed, 
at the time, they required considerable computing power for train-
ing, and there was often not enough training data. 

Introduction to Machine Learning 9

Fig. 5 A multilayer perceptron model (here with only one hidden layer, but there 
can be many more) 

During the 1980s and 1990s, machine learning methods 
continued to develop. Interestingly, connections between machine 
learning and statistics increased. We are not going to provide an 
overview of the history of statistics, but one should note that many 
statistical methods such as linear regression [17], principal compo-
nent analysis [18], discriminant analysis [19], or decision trees [20] 
can actually be used to solve machine learning tasks such as auto-
matic categorization of objects or prediction. In the 1980s, deci-
sion trees witnessed important developments (see, e.g., the ID3 
[21] and CART [21] algorithms). In the 1990s, there were impor-
tant advances in the statistical theory of learning (in particular, the 
works of Vladimir Vapnik [22]). A landmark algorithm developed 
at that time was the support vector machine (SVM) [23] which 
worked well with small training datasets and could handle 
non-linearities through the use of kernels. The machine learning 
field continued to expand through the 2000s and 2010s, with new 
approaches but also more mature software packages such as scikit-
learn [24]. More generally, it is actually important to have in mind 
that what is currently called AI owes more to statistics (and other 
mathematical fields such as optimization in particular) than to 
modeling of brain circuitry and that even approaches that take 
inspiration from neurobiology can actually be viewed as complex 
statistical machineries.
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2012 saw the revival of neural networks and the beginning of 
the era of deep learning. It was undoubtedly propelled by the 
considerable improvement obtained on the ImageNet recognition 
challenge which contains 14 million natural images belonging to 
20,000 categories. The solution, proposed by Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton [25], was a convolutional neural 
network with a large number of layers, hence the term deep 
learning. The building blocks of this solution were already present 
in the 1980s, but there was not enough computing power nor large 
training datasets for them to work properly. In the interval, things 
had changed. Computers had become exponentially more power-
ful, and, in particular, the use of graphical processing units (GPU) 
considerably sped up computations. The expansion of the Internet 
had provided massive amounts of data of various sorts such as texts 
and images. In the subsequent years, deep learning [26] approaches 
became increasingly sophisticated. In parallel, efficient and mature 
software packages including TensorFlow [27], PyTorch [28], or 
Keras [29], whose development is supported by major companies 
such as Google and Facebook, enable deep learning to be used 
more easily by scientists and engineers. 

Artificial intelligence in medicine as a research field is about 
50 years old. In 1975, an expert system, called MYCIN, was 
proposed to identify bacteria causing various infectious diseases 
[30]. More generally, there was a growing interest in expert systems 
for medical applications. Medical image processing also quickly 
became a growing field. The first conference on Information Pro-
cessing in Medical Imaging (IPMI) was held in 1977 (it existed 
under a different name since 1969). The first SPIE Medical Image 
Processing conference took place in 1986, and the Medical Image 
Computing and Computer-Assisted Intervention (MICCAI) con-
ference started in 1998. Image perception tasks, such as segmenta-
tion or classification, soon became among the key topics of this 
field, even though the methods came in majority from traditional 
image processing and not from machine learning. In the 2010s, 
machine learning approaches became dominant for medical image 
processing and more generally in artificial intelligence in medicine. 

To conclude this part, it is important to be clear about the 
different terms, in particular those of artificial intelligence, machine 
learning, and deep learning (Fig. 6). Machine learning is one 
approach to artificial intelligence, and other radically different 
approaches exist. Deep learning is a specific type of machine 
learning approach. It has recently obtained impressive results on 
some types of data (in particular, images and text), but this does not 
mean that it is the universal solution to all problems. As we will see 
in this book, there are tasks for which other types of approaches 
perform best.
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Fig. 6 Artificial intelligence, machine learning, and deep learning are not 
synonymous. Deep learning is a type of machine learning which involves 
neural networks with a large number of hidden layers. Machine learning is one 
approach to artificial intelligence, but other approaches exist 

3 Main Machine Learning Concepts 

As aforementioned, machine learning aims at making a computer 
capable of performing a task without explicitly being programmed 
for that task. More precisely, it means that one will not write a 
sequence of instructions that will directly perform the considered 
task. Instead, one will write a program that allows the computer to 
learn how to perform the task by examining examples or experi-
ences. The output of this learning process is a computer program 
itself that performs the desired task, but this program was not 
explicitly written. Instead, it has been learned automatically by the 
computer. 

In 1997, Tom Mitchell gave a more precise definition of a 
well-posed machine learning problem [31]: 

A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance at task T, as 
measured by P, improves with experience E. 

He then provides the example of a computer that learns to play 
checkers: task T is playing checkers, performance measure P is the 
proportion of games won, and the training experience E is playing 
checker games against itself. Very often, the experience E will not 
be an actual action but the observation of a set of examples, for 
instance, a set of images belonging to different categories, such as 
photographs of cats and dogs, or medical images containing tumors 
or without lesions. Please refer to Box 1 for a summary. 

Box 1: Definition of machine learning 
Machine learning definition [31]: 

a computer program is said to learn from experience E with respect to 
some task T and some performance measure P, if its performance at 
task T, as measured by P, improves with experience E.
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Box 1 (continued)
Example: learning to detect tumors from medical images

• Task T: detect tumors from medical image

• Performance measure P: proportion of tumors correctly 
identified

• Experience E: examining a dataset of medical images where 
the presence of tumors has been annotated 

3.1 Types of 

Learning 

One usually considers three main types of learning: supervised 
learning, unsupervised learning, and reinforcement learning (Box 
2). In both supervised and unsupervised learning, the experience E 
is actually the inspection of a set of examples, which we will refer to 
as training examples or training set. 

Box 2: Supervised, Unsupervised, and Reinforcement 
learning
• Supervised learning. Learns from labeled examples, i.e., 

examples for which the output that we are trying to learn is 
known 

– Example 1. The task is computer-aided diagnosis 
(a classification problem), and the label can be the diagno-
sis of each patient, as defined by an expert physician. 

– Example 2. The task is the prediction of the age of a person 
from a set of biological variables (e.g., a brain MRI). This is 
a regression problem. The label is the true age of a given 
person in the training set.

• U 

– 

nsupervised learning. Learns from unlabeled examples 

Example 1. Given a large set of newspaper articles, auto-
matically cluster them into groups dealing with the same 
topic based only on the text of the article. The topics can, 
for example, be economics, politics, or international 
affairs. The topics are not known a priori. 

– Example 2. Given a set of patients with autism spectrum 
disorders, the aim is to discover a cluster of patients that 
share the same characteristics. The clusters are not known a 
priori. Examples 1 and 2 will be referred to as clustering 
tasks. 

– Example 3. Given a large set of medical characteristics 
(various biological measurements, clinical and cognitive 
tests, medical images), find a small set of variables that 
best explain the variability of the dataset. This is a 
dimensionality reduction problem.



–
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Box 2 (continued)
• Reinforcement learning. Learns by iteratively performing 

actions to maximize some reward 

– Classical approach used for learning to play games (chess, 
go, etc.) or in the domain of robotics 

Currently few applications in the domain of brain diseases 

3.1.1 Supervised 

Learning 

In supervised learning, the machine learns to perform a task by 
examining a set of examples for which the output is known (i.e., the 
examples have been labeled). The two most common tasks in 
supervised learning are classification and regression (Fig. 7). Classi-
fication aims at assigning a category for each sample. The examples 
can, for instance, be different patients, and the categories are the 
different possible diagnoses. The outputs are thus discrete. Exam-
ples of common classification algorithms include logistic regression 
(in spite of its name, it is a classification method), linear discrimi-
nant analysis, support vector machines, random forest classifiers, 
and deep learning models for classification. In regression, the out-
put is a continuous number. This can be, for example, the future 
clinical score of a patient that we are trying to predict. Examples of 
common regression methods include simple or multiple linear 
regression, penalized regression, and random forest regression. 
Finally, there are many other tasks that can be framed as a super-
vised learning problem, including, for example, data synthesis, 
image segmentation, and many others which will be described in 
other chapters of this book. 

3.1.2 Unsupervised 

Learning 

In unsupervised learning, the examples are not labeled. The two 
most common tasks in unsupervised learning are clustering and 
dimensionality reduction (Fig. 8). Clustering aims at discovering 
groups within the training set, but these groups are not known a 
priori. The objective is to find groups such that members of the 
same group are similar, while members of different groups are 
dissimilar. For example, one can aim to discover disease subtypes 
which are not known a priori. Some classical clustering methods 
are k-means or spectral clustering, for instance. Dimensionality 
reduction aims at finding a space of variables (of lower dimension 
than the input space) that best explain the variability of the 
training data, given a larger set of input variables. This produces a 
new set of variables that, in general, are not among the input 
variables but are combinations of them. Examples of such methods 
include principal component analysis, Laplacian eigenmaps, or 
variational autoencoders.
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Fig. 7 Two of the main supervised learning tasks: classification and regression. 
The upper panel presents a classification task which aims at linearly separating 
the orange and the blue class. Each sample is described by two variables. The 
lower panel presents a linear regression task in which the aim is to predict the 
body mass index from the age of a person. Figure courtesy of Johann Faouzi 

3.1.3 Reinforcement 

Learning 

In reinforcement learning, the machine will take a series of actions 
in order to maximize a reward. This can, for example, be the case of 
a machine learning to play chess, which will play games against itself 
in order to maximize the number of victories. These methods are 
widely used for learning to play games or in the domain of robotics. 
So far, they have had few applications to brain diseases and will not 
be covered in the rest of this book. 

3.1.4 Discussion Unsupervised learning is obviously attractive because it does not 
require labels. Indeed, acquiring labels for a training set is usually 
time-consuming and expensive because the labels need to be 
assigned by a human. This is even more problematic in medicine 
because the labels must be provided by experts in the field. It is thus 
in principle attractive to adopt unsupervised strategies, even for



tasks which could be framed as supervised learning problems. Nev-
ertheless, up to now, the performances of supervised approaches are 
often vastly superior in many applications. However, in the past 
years, an alternative strategy called self-supervised learning, where 
the machine itself provides its own supervision, has emerged. This is 
a promising approach which has already led to impressive results in 
different fields such as natural language processing in particular 
[32–34]. 
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Clustering 

Fig. 8 Clustering task. The algorithm automatically identifies three groups 
(corresponding to the red circles) from unlabeled examples (the blue dots). 
The groups are not known a priori. Figure courtesy of Johann Faouzi 

3.2 Overview of the 

Learning Process 

In this section, we aim at formalizing the main concepts underlying 
most supervised learning methods. Some of these concepts, with 
modifications, also extend to unsupervised cases. 

The task that we will consider will be to provide an output, 
denoted as y, from an input given to the computer, denoted as x. At  
this moment, the nature of x does not matter. It can, for example, 
be any possible photograph as in the example presented in Fig. 9. 
It could also be a single number, a series of numbers, a text, etc. For 
now, the nature of y can also be varied. Typically, in the case of 
regression, it can be a number. In the case of classification, it 
corresponds to a label (for instance, the label “cat” in our example). 
For now, you do not need to bother about how these data (images, 
labels, etc.) are represented in a computer. For those without a 
background in computer science, this will be briefly covered in 
Subheading 3.3. 

Learning will aim at finding a function f that can transform 
x into y, that is, such that y= f(x). For now, f can be of any type—



just imagine it as an operation that can associate a given x with a
given y. In Chap. the functions f will be artificial neural networks.
Learning aims at finding a function f which will provide the correct
output for each given input. Let us call the loss function and denote
ℓ a function that measures the error that is made by the function f.
The loss function takes two arguments: the true output y and the
predicted output f(x). The lower the loss function value, the closer
the predicted output is to the true output. An example of loss
function is the classical least squares loss ℓ(y, f(x))= (y - f(x))2,
but many others exist. Ideally, the best function f would be the one
that produces the minimal error for any possible input x and asso-
ciated output y, not only those which we have at our disposal, but
any other possible new data. Of course, we do not have any possible
data at our disposal. Thus, we are going to use a set of data called
the training set. In supervised learning, this set is labeled, i.e., for
each example in this set, we know the value of both x and y. Let us
denote as (x(1), y(1)), . . ., (x(n), y(n)) the n examples of the training

3,
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Fig. 9 Main concepts underlying supervised learning, here in the case of classification. The aim is to be able to 
recognize the content of a photograph (the input x) which amounts to assigning it a label (the output y). In other 
words, we would like to have a function f that transforms x into y. In order to find the function f, we will make 
use of a training set (x(1) , y(1) ), . . .,  (x(n) , y(n) ) (which in our case is a set of photographs which have been 
labeled). All images come from https://commons.wikimedia.org/ and have no usage restriction

https://commons.wikimedia.org/


set which are n pairs of inputs and outputs. We are now going to 
search for the function f that makes the minimum error over the 
n samples of the training set. In other words, we are looking for the 
function which minimizes the average error over the training set. 
Let us call this average error the cost function:
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J ðf Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

Learning will then aim at finding the function f̂ which mini-
mizes the cost function: 

f̂ = argmin 
f ∈F 

1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

In the above equation, argmin indicates that we are interested 
in the function f that minimizes the cost J( f ) and not in the value of 
the cost itself. F is the space that contains all admissible functions. 
F can, for instance, be the set of linear functions or the set of neural 
networks with a given architecture. 

The procedure that will aim at finding f that minimizes the cost 
is called an optimization procedure. Sometimes, the minimum can 
be find analytically (i.e., by directly solving an equation for f ), but 
this will rarely be the case. In other cases, one will resort to an 
iterative procedure (i.e., an algorithm): the function f is iteratively 
modified until we find the function which minimizes the cost. 
There are cases where we will have an algorithm that is guaranteed 
to find the global minimum and others where one will only find a 
local minimum. 

Minimizing the errors on the training set does not guarantee 
that the trained computer will perform well on new examples which 
were not part of the training set. A first reason may be that the 
training set is too different from the general population (for 
instance, we have trained a model on a dataset of young males, 
and we would like to apply it to patients of any gender and age). 
Another reason is that, even if the training set characteristics follow 
those of the general population, the learned function f may be too 
specific to the training set. In other words, it has learned the 
training set “by heart” but has not discovered a more general rule 
that would work for other examples. This phenomenon is called 
overfitting and often arises when the dimensionality of the data is 
too high (there are many variables to represent an input), when the 
training set is too small, or when the function f is too flexible. A way 
to prevent overfitting will be to modify the cost function so that it 
not only represents the average error across training samples but 
also constrains the function f to have some specific properties.
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Table 1 
Example where the input is a series of number. Here each patient is 
characterized by several variables 

Age (years) Height (cm) Weight (kg) 

Patient 1 52.5 172 52 

Patient 2 75.1 182 78 

Patient 3 32.7 161 47 

Patient 4 45 190 92 

3.3 Inputs and 

Features 

In the previous section, we made no assumption on the nature of 
the input x. It could be an image, a number, a text, etc. 

The simplest form of input that one can consider is when x is a 
single number. Examples include age, clinical scores, etc. However, 
for most problems, characterization of a patient cannot be done 
with a single number but requires a large set of measurements 
(Table 1). In such a case, the input can be a series of numbers 
x1, . . ., xp which can be arranged into a vector: 

x = 

x1 

⋮ 

xp 

However, there are cases where the input is not a vector of 
numbers. This is the case when the input is a medical image, a text, 
or a DNA sequence, for instance. Of course, in a computer, every-
thing is stored as numbers. An image is an array of values represent-
ing the grayscale intensity of each pixel (Fig. 10). A text is a 
sequence of characters which are each coded as a number. However, 
unlike in the example presented in Table 1, these numbers are not 
meaningful by themselves. For this reason, a common approach is 
to extract features, which will be series of numbers that meaning-
fully represent the input. For example, if the input is a brain 
magnetic resonance image (MRI), relevant features could be the 
volumes of different anatomical regions of the brain (this specific 
process is done using a technique called image segmentation which 
is covered in another chapter). This would result in a series of 
numbers that would form an input vector. The development of 
efficient methods for extracting meaningful features from raw data 
is important in machine learning. Such an approach is often called 
feature engineering. Deep learning methods allow for avoiding 
extracting features by providing an end-to-end approach from the 
raw data to the output. In some areas, this has made feature 
engineering less important, but there are still applications where 
the so-called handcrafted features are competitive with deep 
learning methods.
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Fig. 10 In a computer, an image is represented as an array of numbers. Each number corresponds to the gray 
level of a given pixel. Here the example is a slice of an anatomical MRI which has been severely undersampled 
so that the different pixels are clearly visible. Note that an anatomical MRI is actually a 3D image and would 
thus be represented by a 3D array rather than by a 2D array. Image courtesy of Ninon Burgos 

3.4 Illustration in a 

Simple Case 

We will now illustrate step by step the above concepts in a very 
simple case: univariate linear regression. Univariate means that the 
input is a single number as in the example shown in Fig. 7. Linear 
means that the model f will be a simple line. The input is a number 
x and the output is a number y. The loss will be the least 
squares loss: ℓ(y, f(x))= (y - f(x))2 . The model f will be a linear 
function of x that is f(x)=w1x+w0 and corresponds to the equa-
tion of a line, w1 being the slope of the line and w0 the intercept. To 
further simplify things, we will consider the case where there is no 
intercept, i.e., the line passes through the origin. Different values of 
w1 correspond to different lines (and thus to different functions f ) 
and to different values of the cost function J( f ), which can be in 
our case rewritten as J(w1) since f only depends on the parameter w1 

(Fig. 11). The best model is the one for which J(w1) is minimal. 
How can we find w1 such that J(w1) is minimal? We are going to 

use the derivative of J: dJ dw1 
. A minimum of J(w1) is necessarily such 

that dJ dw1 
=0 (in our specific case, the converse is also true). In our 

case, it is possible to directly solve dJ 
dw1 

=0. This will nevertheless 
not be the case in general. Very often, it will not be possible to solve 
this analytically. We will thus resort to an iterative algorithm. One 
classical iterative method is gradient descent. In the general case, 
f depends not on only one parameter w1 but on a set of parameters 
(w1, . . ., wp) which can be assembled into a vector w. Thus, instead 
of working with the derivative dJ dw1 

, we will work with the gradient 
∇wJ. The gradient is a vector that indicates the direction that one 
should follow to climb along J. We will thus follow the opposite of 
the gradient, hence the name gradient descent. This process is 
illustrated in Fig. 12, together with the corresponding algorithm.



20 Olivier Colliot

Fig. 11 We illustrate the concepts of supervised learning on a very simple case: univariate linear regression 
with no intercept. Training samples correspond to the black circles. The different models f(x)=w1x 
correspond to the different lines. Each model (and thus each value of the parameter w1) corresponds to a 
value of the cost J(w1). The best model (the blue line) is the one which minimizes J(w1); here it corresponds to 
the line with a slope w1= 1 

repeat 
w1 ← w1 − η dJ 

dw1 

until convergence; 

Fig. 12 Upper panel: Illustration of the concept of gradient descent in a simple case where the model f is 
defined using only one parameter w1. The value of w1 is iteratively updated by following the opposite of the 
gradient. Lower panel: Gradient descent algorithm where η is the learning rate, i.e., the speed at which w1 will 
be updated
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4 Conclusion 

This chapter provided an introduction to machine learning 
(ML) for a non-technical readership (e.g., physicians, neuroscien-
tists, etc.). ML is an approach to artificial intelligence and thus 
needs to be put into this larger context. We introduced the main 
concepts underlying ML that will be further expanded in 
Chaps. 2–6. The reader can find a summary of these main concepts, 
as well as notations, in Box 3. 

B
•
ox 3: Summary of main concepts 
The input x

• The output y

• The training samples (x(1) , y(1) ), . . ., (x(n) , y(n) )

• The model: transforms the input into the output 

f such that y= f(x)

• The set of possible models F

• The loss: measures the error between the predicted and the 
true output, for a given sample 

ℓ(y, f(x))

• The cost function: measures the average error across the 
training samples 

J f = 1 n 
n 
i =1ℓ y

ðiÞ, f xðiÞ

• Learning process: finding the model which minimizes the cost 
function 

f̂ = argmin f ∈F J f 
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Chapter 2 

Classic Machine Learning Methods 

Johann Faouzi and Olivier Colliot 

Abstract 

In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted 
to supervised learning techniques for classification and regression, including nearest neighbor methods, 
linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the 
problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsuper-
vised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover 
neural networks and deep learning as these will be presented in Chaps. 3, 4, 5, and 6. 

Key words Machine learning, Classification, Regression, Clustering, Dimensionality reduction 

1 Introduction 

This chapter presents the main classic machine learning 
(ML) methods. There is a focus on supervised learning methods 
for classification and regression, but we also describe some unsu-
pervised approaches. The chapter is meant to be readable by some-
one with no background in machine learning. It is nevertheless 
necessary to have some basic notions of linear algebra, probabilities, 
and statistics. If this is not the case, we refer the reader to Chapters 
2 and 3 of [1]. 

The rest of this chapter is organized as follows. Rather than 
grouping methods by categories (for instance, classification or 
regression methods), we chose to present methods by increasing 
order of complexity. We first provide the notations in Subheading 
2. We then describe a very intuitive family of methods, that of 
nearest neighbors (Subheading 3). We continue with linear regres-
sion (Subheading 4) and logistic regression (Subheading 5), the 
latter being a classification technique. We subsequently introduce 
the problem of overfitting (Subheading 6) as well as strategies to 
mitigate it (Subheading 7). Subheading 8 describes support vector 
machines (SVM). Subheading 9 explains how binary classification 
methods can be extended to a multi-class setting. We then describe
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methods which are specifically adapted to the case of normal dis-
tributions (Subheading 10). Decision trees and random forests are 
described in Subheading 11. We then briefly describe some unsu-
pervised learning techniques, namely, for clustering (Subheading 
12) and dimensionality reduction (Subheading 13). The chapter 
ends with a description of kernel methods which can be used to 
extend linear techniques to non-linear cases (Subheading 14). 
Box 1 summarizes the methods presented in this chapter, grouped 
by categories and then sorted in order of appearance.
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Box 1: Main Classic ML Methods

• Supervised learning 

– Classification: nearest neighbors, logistic regression, sup-
port vector machine (SVM), naive Bayes, linear discrimi-
nant analysis (LDA), quadratic discriminant analysis, tree-
based models (decision tree, random forest, extremely 
randomized trees) 

– Regression: nearest neighbors, linear regression, support 
vector machine regression, tree-based models (decision 
tree, random forest, extremely randomized trees), kernel 
ridge regression

• Unsupervised learning 

– Clustering: k-means, Gaussian mixture model 

– Dimensionality reduction: principal component analysis 
(PCA), linear discriminant analysis (LDA), kernel principal 
component analysis 

2 Notations 

Let n be the number of samples and p be the number of features. An 
input sample is thus a p-dimensional vector: 

x = 

x1 

⋮ 

xp 

An output sample is denoted by y. Thus, a sample is (x, y). The 
dataset of n samples can then be summarized as an n× p matrix X 
representing the input data and an n-dimensional vector y repre-
senting the target data:
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X = 

xð1Þ 

⋮ 

xðnÞ 
= 

x
ð1Þ 
1 . . .  x

ð1Þ 
p 

⋮ ⋱  ⋮  

x
ðnÞ 
1 . . .  x

ðnÞ 
p 

, y = 

y1 

⋮ 

yn 

The input space is denoted by I, and the set of training samples is 
denoted by X. 

In the case of regression, y is a real number. In the case of 
classification, y is a single label. More precisely, y can only take one 
of a finite set of values called labels. The set of possible classes (i.e., 
labels) is denoted by C = fC 1, . . ., C qg, with q being the number of 
classes. As the values of the classes are not meaningful, when there 
are only two classes, the classes are often called the positive and 
negative classes. In this case and also for mathematical reasons, 
without loss of generality, we assume the values of the classes to 
be + 1 and -1. 

3 Nearest Neighbor Methods 

One of the most intuitive approaches to machine learning is nearest 
neighbors. It is based on the following intuition: for a given input, 
its corresponding output is likely to be similar to the outputs of 
similar inputs. A real-life metaphor would be that if a subject has 
similar characteristics than other subjects who were diagnosed with 
a given disease, then this subject is likely to also be suffering from 
this disease. 

More formally, nearest neighbor methods use the training 
samples from the neighborhood of a given point x, denoted by 
N(x), to perform prediction [2]. 

For regression tasks, the prediction is computed as a weighted 
mean of the target values in N(x): 

ŷ = 
xðiÞ∈N ðxÞ 

w
ðxÞ 
i yðiÞ 

where w
ðxÞ 
i is the weight associated with x(i) to predict the output of 

x, with w
ðxÞ 
i ≥0 8i and iw

ðxÞ 
i =1. 

For classification tasks, the predicted label corresponds to the 
label with the largest weighted sum of occurrences of each label: 

ŷ = arg max 
C xðiÞ∈N ðxÞ 

w
ðxÞ 
i 1yðiÞ = C k 

A key parameter of nearest neighbor methods is the metric, 
denoted by d, that is, a mathematical function that defines dissimi-
larity. The metric is used to define the neighborhood of any point 
and can also be used to compute the weights.
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3.1 Metrics Many metrics have been defined for various types of input data such 
as vectors of real numbers, integers, or booleans. Among these 
different types, vectors of real numbers are one of the most com-
mon types of input data, for which the most commonly used metric 
is the Euclidean distance, defined as: 

8x, x ′∈ I , kx - x ′ k2 = 
p 

j =1 

ðxj - x 0 j Þ2 

The Euclidean distance is sometimes referred to as the “ordinary” 
distance since it is the one based on the Pythagorean theorem and 
that everyone uses in their everyday lives. 

3.2 Neighborhood The two most common definitions of the neighborhood rely on 
either the number of neighbors or the radius around the given 
point. Figure 1 illustrates the differences between both definitions. 

The k-nearest neighbor method defines the neighborhood of a 
given point x as the set of the k closest points to x: 

N ðxÞ= fxðiÞgk i =1 with dðx, xð1ÞÞ≤ . . .  ≤ dðx, xðnÞÞ 
The radius neighbor method defines the neighborhood of a 

given point x as the set of points whose dissimilarity to x is smaller 
than the given radius, denoted by r: 

N ðxÞ= fxðiÞ∈X j dðx, xðiÞÞ< rg 

0.0 0.5 1.0 

0.00 

0.25 

0.50 

0.75 

1.00 

k-nearest neighbors (k = 5)  

0.0 0.5 1.0 

Radius neighbors (r = 0.2) 

Fig. 1 Different definitions of the neighborhood. On the left, the neighborhood of 
a given point is the set of its five nearest neighbors. On the right, the neighbor-
hood of a given point is the set of points whose dissimilarity is lower than the 
radius. For a given input, its neighborhood may be different depending on the 
definition used. The Euclidean distance is used as the metric in both examples
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3.3 Weights The two most common approaches to compute the weights are 
to use:

• Uniform weights (all the weights are equal):

8i, wðxÞ 
i = 

1 
jN ðxÞj 

• Weights inversely proportional to the dissimilarity: 

8i, wðxÞ 
i = 

1 

dðxðiÞ, xÞ 
j 

1 

dðxðjÞ, xÞ 
= 

1 

dðxðiÞ, xÞ j 
1 

dðxðjÞ, xÞ 

With uniform weights, every point in the neighborhood equally 
contributes to the prediction. With weights inversely proportional 
to the dissimilarity, closer points contribute more to the prediction 
than further points. Figure 2 illustrates the different decision func-
tions obtained with uniform weights and weights inversely propor-
tional to the dissimilarity for a 3-nearest neighbor classification 
model. 

3.4 Neighbor Search The brute-force method to compute the neighborhood for 
n points with p features is to compute the metric for each pair of 
inputs, which has a Oðn2 pÞ algorithmic complexity (assuming that 
evaluating the metric for a pair of inputs has a complexity of OðpÞ, 
which is the case for most metrics). However, it is possible to 
decrease this algorithmic complexity if the metric is a distance, 

1. Non-negativity: 8a, b, d(a, b)≥0 

2. Identity: 8a, b, d(a, b)=0 if and only if a= b

Training samples Uniform weights 
Weights inversely proportional 

to the dissimilarity 

Fig. 2 Impact of the definition of the weights on the prediction function of a 
3-nearest neighbor classification model. When the weights are inversely propor-
tional to the dissimilarity, the classifier is more subject to outliers since the 
predictions in the close neighborhood of any input are mostly dedicated by the 
label of this input, independently of the number of neighbors used. With uniform 
weights, the prediction function tends to be smoother
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3. Symmetry: 8a, b, d(a, b)= d(b, a) 

4. Triangle inequality: 8a, b, c, d(a, b) + d(b, c)≥ d(a, c)

The key property is the triangle inequality, which has a simple 
interpretation: the shortest path between two points is a straight 
line. Mathematically, if a is far from c and c is close to b (i.e., d(a, c) 
is large and d(b, c) is small), then a is far from b (i.e., d(a, b) i  
large). This is obtained by rewriting the triangle inequality as 
follows: 

8a, b, c, dða, bÞ≥ dða, cÞ- dðb, cÞ 
This means that it is not necessary to compute d(a, b) in this case. 
Therefore, the computational cost of a nearest neighbor search can 
be reduced to OðnlogðnÞpÞ or better, which is a substantial 
improvement over the brute-force method for large n. Two popu-
lar methods that take advantage of this property are the K-dimen-
sional tree structure [3] and the ball tree structure [4]. 

4 Linear Regression 

Linear regression is a regression model that linearly combines the 
features. Each feature is associated with a coefficient that represents 
the relative weight of this feature compared to the other features. A 
real-life metaphor would be to see the coefficients as the ingredients 
of a recipe: the key is to find the best balance (i.e., proportions) 
between all the ingredients in order to make the best cake. 

Mathematically, a linear model is a model that linearly com-
bines the features [5]: 

f ðxÞ=w0 þ 
p 

j =1 

wjxj 

A common notation consists in including a 1 in x so that f(x) can be 
written as the dot product between the vector x and the vector w: 

f ðxÞ=w0 ×1þ 
p 

j =1 

wjxj = x⊤w 

where the vector w consists of:

• The intercept (also known as bias) w0

• The coefficients (w1, . . ., wp), where each coefficient wj is asso-
ciated with the corresponding feature xj 

In the case of linear regression, f(x) is the predicted output: 

ŷ = f ðxÞ= x⊤w
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Simple linear regression 
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Fig. 3 Ordinary least squares regression. The coefficients (i.e., the intercept and 
the slope with a single predictor) are estimated by minimizing the sum of the 
squared errors 

There are several methods to estimate the w coefficients. In this 
section, we present the oldest one which is known as ordinary least 
squares regression. 

In the case of ordinary least squares regression, the cost func-
tion J is the sum of the squared errors on the training data (see 
Fig. 3): 

J ðwÞ= 
n 

i =1 

yðiÞ - ŷðiÞ 
2 
= 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 
= ky -Xwk2 2 

One wants to find the optimal parameters w⋆ that minimize the 
cost function: 

w⋆ = arg min 
w 

J ðwÞ 

This optimization problem is convex, implying that any local mini-
mum is a global minimum, and differentiable, implying that every 
local minimum has a null gradient. One therefore aims to find null 
gradients of the cost function: 

∇w⋆J =0 

) 2X⊤ Xw⋆ -2X⊤ y =0 

) X⊤ Xw⋆ =X⊤ y 

) w⋆ = X⊤ Xð Þ-1 
X⊤ y 

Ordinary least squares regression is one of the few machine 
learning optimization problems for which there exists a closed for-
mula, i.e., the optimal solution can be computed using a finite 
number of standard operations such as addition, multiplication,



and evaluations of well-known functions. A summary of linear 
regression can be found in Box 2. 
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Box 2: Linear Regression

• Main idea: best hyperplane (i.e., line when p= 1, plane when 
p= 2) mapping the inputs and to the outputs.

• Mathematical formulation: linear relationship between the 
predicted output ŷ and the input x that minimizes the sum of 
squared errors:

ŷ =w⋆ 
0 þ 

n 

j =1 

w⋆ 
j xj with w⋆ = arg min 

w 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 

• Regularization: can be penalized to avoid overfitting (ridge), 
to perform feature selection (lasso), or both (elastic-net). See 
Subheading 7. 

5 Logistic Regression 

Intuitively, linear regression consists in finding the line that best fits 
the data: the true output should be as close to the line as possible. 
For binary classification, one wants the line to separate both classes 
as well as possible: the samples from one class should all be in one 
subspace, and the samples from the other class should all be in the 
other subspace, with the inputs being as far as possible from 
the line. 

Mathematically, for binary classification tasks, a linear model is 
defined by a hyperplane splitting the input space into two subspaces 
such that each subspace is characteristic of one class. For instance, a 
line splits a plane into two subspaces in the two-dimensional case, 
while a plane splits a three-dimensional space into two subspaces. A 
hyperplane is defined by a vector w= (w0, w1, . . ., wp), and f(x)= 
x⊤ w corresponds to the signed distance between the input x and the 
hyperplane w: in one subspace, the distance with any input is always 
positive, whereas in the other subspace, the distance with any input 
is always negative. Figure 4 illustrates the decision function in the 
two-dimensional case where both classes are linearly separable. 

The sign of the signed distance corresponds to the decision 
function of a linear binary classification model: 

ŷ = signðf ðxÞÞ= 
þ1 if  f ðxÞ>0

-1 if  f ðxÞ<0



Þ

Þ
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Fig. 4 Decision function of a logistic regression model. A logistic regression is a 
linear model, that is, its decision function is linear. In the two-dimensional case, 
it separates a plane with a line 

The logistic regression model is a probabilistic linear model 
that transforms the signed distance to the hyperplane into a proba-
bility using the sigmoid function [6], denoted by σðuÞ= 1 

1þ exp -uð  . 
Consider the linear model: 

f ðxÞ= x⊤w =w0 þ 
p 

i = j 

wj xj 

Then the probability of belonging to the positive class is: 

P y= þ 1jx= xð Þ= σðf ðxÞÞ= 
1 

1þ exp - f ðxÞð Þ  
and that of belonging to the negative class is: 

P y= -1jx= xð Þ  =1-P y= þ 1jx= xð Þ  
= 

exp - f ðxÞð Þ  
1þ exp - f ðxÞð Þ  

= 
1 

1þ exp f ðxÞð  Þ  
P y= -1jx= xð Þ  = σð- f ðxÞÞ 

By applying the inverse of the sigmoid function, which is 
known as the logit function, one can see that the logarithm of the 
odds ratio is modeled as a linear combination of the features: 

log 
P y= þ 1jx= xð Þ  
P y= -1jx= xð Þ  = log 

P y= þ 1jx= xð Þ  
1-P y= þ 1jx= xð = f ðxÞ



(continued)
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The w coefficients are estimated by maximizing the likelihood 
function, that is, the function measuring the goodness of fit of the 
model to the training data: 

LðwÞ= ∏ 
n 

i =1 
P y= yðiÞjx= xðiÞ;w 

For computational reasons, it is easier to maximize the log-likeli-
hood, which is simply the logarithm of the likelihood: 

logðLðwÞÞ = 
n 

i =1 

log P y= yðiÞjx= xðiÞ;w 

= 
n 

i =1 

log σ yðiÞf ðxðiÞ;wÞ 

= 
n 

i =1

- log 1þ exp yðiÞxðiÞ⊤w 

logðLðwÞÞ = -
n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

Finally, we can rewrite this maximization problem as a minimiza-
tion problem by noticing that 
max w logðLðwÞÞ= - min w - log ðLðwÞÞ: 

max
w 

logðLðwÞÞ= - min
w 

n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

We can see that the w coefficients that maximize the likelihood are 
also the coefficients that minimize the sum of the logistic loss values, 
with the logistic loss being defined as: 

ℓlogisticðy, f ðxÞÞ= log 1þ exp yf ðxÞð Þð Þ= log ð2Þ 
Unlike for linear regression, there is no closed formula for this 
minimization. One thus needs to use an optimization method 
such as gradient descent which was presented in Subheading 3 of 
Chap. 1. In practice, more sophisticated approaches such as quasi-
Newton methods and variants of stochastic gradient descent are 
often used. The main concepts underlying logistic regression can be 
found in Box 3. 

Box 3: Logistic Regression

• Main idea: best hyperplane (i.e., line) that separates two 
classes.

• Mathematical formulation: the signed distance to the 
hyperplane is mapped into the probability to belong to the 
positive class using the sigmoid function:
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f ðxÞ=w0 þ 
j =1 

wjxj 

Pðy= þ 1jx= xÞ= σðf ðxÞÞ= 
1 

1þ expð- f ðxÞÞ 

Box 3 (continued)
n 

• Estimation: likelihood maximization.

• Regularization: can be penalized to avoid overfitting (ℓ2 
penalty), to perform feature selection (ℓ1 penalty), or both 
(elastic-net penalty). 

6 Overfitting and Regularization 

The original formulations of ordinary least squares regression and 
logistic regression are unregularized models, that is, the model is 
trained to fit the training data as much as possible. Let us consider a 
real-life example as it is very similar to human learning. If a person 
learns by heart the content of a book, they are able to solve the 
exercises in the book, but unable to apply the theoretical concepts 
to new exercises or real-life situations. If a person only quickly reads 
through the book, they are probably unable to solve neither the 
exercises in the book nor new exercises. 

The corresponding concepts are known as overfitting and 
underfitting in machine learning. Overfitting occurs when a 
model fits too well the training data and generalizes poorly to 
new data. Oppositely, underfitting occurs when a model does not 
capture well enough the characteristics of the training data and thus 
also generalizes poorly to new data. 

Overfitting and underfitting are related to frequently used 
terms in machine learning: bias and variance. Bias is defined as 
the expected (i.e., mean) difference between the true output and 
the predicted output. Variance is defined as the variability of the 
predicted output. For instance, let us consider a model predicting 
the age of a person from a picture. If the model always under-
estimates or overestimates the age, then the model is biased. If 
the model makes both large and small errors, then the model has a 
high variance. 

Ideally, one would like to have a model with a small bias and a 
small variance. However, the bias of a model tends to increase when 
decreasing its variance, and the variance of the model tends to 
increase when decreasing its bias. This phenomenon is known as 
the bias-variance trade-off. Figure 5 illustrates this phenomenon. 
One can also notice it by computing the squared error between the 
true output y (fixed) and the predicted output ŷ (random variable): 
its expected value is the sum of the squared bias of ŷ and the 
variance of ŷ:
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Fig. 5 Illustration of underfitting and overfitting. Underfitting occurs when a 
model is too simple and does not capture well enough the characteristics of 
the training data, leading to high bias and low variance. Oppositely, overfitting 
occurs when a model is too complex and learns the noise in the training data, 
leading to low bias and high variance
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 ðy - ŷÞ2 = y2 -2y ŷ þ ŷ2 

= y2 -2y ŷ½ � þ   ŷ2 
= y2 -2y ŷ½ � þ   ŷ2 þ  ŷ½ �2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 -2 ŷ½ �2 þ  ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 -2ŷ ŷ½ � þ   ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ- ŷ½ �ð Þ2 

 ðy - ŷÞ2 =  ŷ½ �- yð Þ2 

bias2 

þ Var ŷ½ �
variance 

7 Penalized Models 

Depending on the class of methods, there exist different strategies 
to tackle overfitting. 

For neighbor methods, the number of neighbors used to define 
the neighborhood of any input and the strategy to compute the 
weights are the key hyperparameters to control the bias-variance 
trade-off. For models that are presented in the remaining sections 
of this chapter, we mention strategies to address the bias-variance 
trade-off in their respective sections. In this section, we present the 
most commonly used strategies for models whose parameters are 
optimized by minimizing a cost function defined as the mean loss 
values over all the training samples: 

min
w 

J ðwÞ with J ðwÞ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;wÞ 

This is, for instance, the case of the linear and logistic regression 
methods presented in the previous sections. 

7.1 Penalties The main idea is to introduce a penalty term Pen(w) that will 
constraint the parameters w to have some desired properties. The 
most common penalties are the ℓ2 penalty, the ℓ1 penalty, and the 
elastic-net penalty. 

7.1.1 ℓ2 Penalty The ℓ2 penalty is defined as the squared ℓ2 norm of the 
w coefficients:
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ℓ2ðwÞ= kwk2 2 = 
p 

j =1 

w2 
j 

The ℓ2 penalty forces each coefficient wi not to be too large and 
makes the coefficients more robust to collinearity (i.e., when some 
features are approximately linear combinations of the other 
features). 

7.1.2 ℓ1 Penalty The ℓ2 penalty forces the values of the parameters not to be too 
large, but does not incentivize to make small values tend to zero. 
Indeed, the square of a small value is even smaller. When the 
number of features is large, or when interpretability is important, 
it can be useful to make the model select the most important 
features. The corresponding metric is the ℓ0 “norm” (which is not 
a proper norm in the mathematical sense), defined as the number of 
nonzero elements: 

ℓ0ðwÞ= kwk0 = 
p 

j =1 

1wj ≠0 

However, the ℓ0 “norm” is neither differentiable nor convex (which 
are useful properties to solve an optimization problem, but this is 
not further detailed for the sake of conciseness). The best convex 
differentiable approximation of the ℓ0 “norm” is the ℓ1 norm (see 
Fig. 6), defined as the sum of the absolute values of each element: 

ℓ1ðwÞ= kwk1 = 
p 

j =1 

jwj j 

7.1.3 Elastic-Net Penalty Both the ℓ2 and ℓ1 penalties have their upsides and downsides. In 
order to try to obtain the best of penalties, one can add both 
penalties in the objective function. The combination of both penal-
ties is known as the elastic-net penalty: 

ENðw, αÞ= αkwk1 þ ð1- αÞkwk2 2 
where α∈ [0, 1] is a hyperparameter representing the proportion of 
the ℓ1 penalty compared to the ℓ2 penalty. 

7.2 New 

Optimization Problem 

A natural approach would be to add a constraint to the minimiza-
tion problem: 

min
w 

J ðwÞ subject to PenðwÞ< c ð1Þ 
which reads as “Find the optimal parameters that minimize the cost 
function J among all the parameters w that satisfy Pen(w)< c” for a 
positive real number c. Figure 7 illustrates the optimal solution of a 
simple linear regression task with different constraints. This figure
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�0
�1
�2 

Fig. 6 Unit balls of the ℓ0, ℓ1, and ℓ2 norms. For each norm, the set of points in 
2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex 
approximation to the ℓ0 norm. Note that the lines for the ℓ0 norm extend to
-1 and +1 but are cut for plotting reasons 

also highlights the sparsity property of the ℓ1 penalty (the optimal 
parameter for the horizontal axis is set to zero) that the ℓ2 penalty 
does not have (the optimal parameter for the horizontal axis is small 
but different from zero). 

Although this approach is appealing due to its intuitiveness and 
the possibility to set the maximum possible penalty on the para-
meters w, it leads to a minimization problem that is not trivial to 
solve. A similar approach consists in adding the regularization term 
in the cost function: 

min
w 

J ðwÞ þ  λ×PenðwÞ ð2Þ 
where λ>0 is a hyperparameter that controls the weights of the 
penalty term compared to the mean loss values over all the training 
samples. This formulation is related to the Lagrangian function of 
the minimization problem with the penalty constraint. 

This formulation leads to a minimization problem with no 
constraint which is much easier to solve. One can actually show 
that Eqs. 1 and 2 are related: solving Eq. 2 for a given λ, whose 
optimal solution is denoted by w⋆ 

λ , is equivalent to solving Eq. 1 for 
c =Penðw⋆ 

λ Þ. In other words, solving Eq. 2 for a given λ is equiva-
lent to solving Eq. 1 for c whose value is only known after finding 
the optimal solution of Eq. 2. 

Figure 8 illustrates the impact of the regularization term λ×Pen 
(w) on the prediction function of a kernel ridge regression algo-
rithm (see Subheading 14 for more details) for different values of λ. 
For high values of λ, the regularization term is dominating the 
mean loss value, making the prediction function not fitting well 
enough the training data (underfitting). For small values of λ, the



mean loss value is dominating the regularization term, making the 
prediction function fitting too well the training data (overfitting). A 
good balance between the mean loss value and the regularization 
term is required to learn the best function. 
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Fig. 7 Illustration of the minimization problem with a constraint on the penalty 
term. The plot represents the value of the loss function for different values of the 
two coefficients for a linear regression task. The black star indicates the optimal 
solution with no constraint. The green and orange stars indicate the optimal 
solutions when imposing a constraint on the ℓ2 and ℓ1 norms of the parameters 
w, respectively 

Since linear regression is one of the oldest and best-known 
models, the aforementioned penalties were originally introduced 
for linear regression:

• Linear regression with the ℓ2 penalty is also known as ridge [7]:

min
w 

ky -Xwk2 2 þ λkwk2 2
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Fig. 8 Illustration of regularization. A kernel ridge regression algorithm is fitted 
on the training data (blue points) with different values of λ, which is the weight of 
the regularization in the cost function. The smaller the values of λ, the smaller 
the weight of the ℓ2 regularization. The algorithm underfits (respectively, overfits) 
the data when the value of λ is too large (respectively, low)
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As in ordinary least squares regression, there exists a closed formula 
for the optimal solution:

w⋆ = X⊤ X þ λIð Þ-1 
X⊤ y 

• Linear regression with the ℓ1 penalty is also known as lasso [8]:

min
w 

ky -Xwk2 2 þ λkwk1 
• Linear regression with the elastic-net penalty is also known as 

elastic-net [9]:

min
w 

ky -Xwk2 2 þ λαkwk1 þ λð1- αÞkwk2 2 

The penalties can also be added in other models such as logistic 
regression, support vector machines, artificial neural networks, etc. 

8 Support Vector Machine 

Linear and logistic regression take into account every training 
sample in order to find the best line, which is due to their 
corresponding loss functions: the squared error is zero only if the 
true and predicted outputs are equal, and the logistic loss is always 
positive. One could argue that the training samples whose outputs 
are “easily” well predicted are not relevant: only the training sam-
ples whose outputs are not “easily” well predicted or are wrongly 
predicted should be taken into account. The support vector 
machine (SVM) is based on this principle (please see Box 4 for an 
overview of the SVM). 

Box 4: Support Vector Machine

• Main idea: hyperplane (i.e., line) that maximizes the margin 
(i.e., the distance between the hyperplane and the closest 
inputs to the hyperplane).

• Support vectors: only the misclassified inputs and the inputs 
well classified but with low confidence are taken into account.

• Non-linearity: decision function can be non-linear with the 
use of non-linear kernels.

• Regularization: ℓ2 penalty. 

8.1 Original 

Formulation 

The original support vector machine was invented in 1963 and was 
a linear binary classification method [10]. Figure 9 illustrates the 
main concept of its original version. When both classes are linearly



separable, there exist an infinite number of hyperplanes that sepa-
rate both classes. The SVM finds the hyperplane that maximizes the 
margin, that is, the distance between the hyperplane and the closest 
points of both classes to the hyperplane, while linearly separating 
both classes. 
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Fig. 9 Support vector machine classifier with linearly separable classes. When 
two classes are linearly separable, there exist an infinite number of hyperplanes 
separating them (left). The decision function of the support vector machine 
classifier is the hyperplane that maximizes the margin, that is, the distance 
between the hyperplane and the closest points to the hyperplane (right). Support 
vectors are highlighted with a black circle surrounding them 

The SVM was later updated to non-separable classes [11]. Fig-
ure 10 illustrates the role of the margin in this case. The dashed 
lines correspond to the hyperplanes defined by the equations 
x⊤ w=+1 and x⊤ w=-1. The margin is the distance between 
both hyperplanes and is equal to 2=kwk2 2. It defines which samples 
are included in the decision function of the model: a sample is 
included if and only if it is inside the margin or outside the margin 
and misclassified. Such samples are called support vectors and are 
illustrated in Fig. 10 with a black circle surrounding them. In this 
case, the margin can be seen a regularization term: the larger the 
margin is, the more support vectors are included in the decision 
function, the more regularized the model is. 

The loss function for the SVM is called the hinge loss and is 
defined as: 

ℓhingeðy, f ðxÞÞ= max ð0, 1- yf ðxÞÞ 
Figure 11 illustrates the curves of the logistic and hinge losses. The 
logistic loss is always positive, even when the point is accurately 
classified with high confidence (i.e., when yf(x)≫0), whereas the 
hinge loss is equal to zero when the point is accurately classified 
with good confidence (i.e., when yf(x)≥1). One can see that a 
sample (x, y) is a support vector if and only if yf(x)≥1, that is, if 
and only if ℓhinge(y, f(x))=0.
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Fig. 10 Decision function of a support vector machine classifier with a linear 
kernel when both classes are not strictly linearly separable. The support vectors 
are the training points within the margin of the decision function and the 
misclassified training points. The support vectors are highlighted with a black 
circle surrounding them 
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Fig. 11 Binary classification losses. The logistic loss is always positive, even 
when the point is accurately classified with high confidence (i.e., when 
yf(x)≫ 0), whereas the hinge loss is equal to zero when the point is accurately 
classified with good confidence (i.e., when yf(x)≥ 1)
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The optimal w coefficients for the original version are estimated 
by minimizing an objective function consisting of the sum of the 
hinge loss values and a ℓ2 penalty term (which is inversely propor-
tional to the margin): 

min
w 

n 

i =1 

maxð0, 1- yðiÞxðiÞ⊤wÞ þ  1 
2C

kwk2 2 

8.2 General 

Formulation with 

Kernels 

The SVM was later updated to non-linear decision functions with 
the use of kernels [12]. 

In order to have a non-linear decision function, one could map 
the input space I into another space (often called the feature space), 
denoted by G, using a function denoted by ϕ: 

ϕ : I → G 

x ↦ϕðxÞ 
The decision function would still be linear (with a dot product), but 
in the feature space: 

f ðxÞ=ϕðxÞ⊤ w 

Unfortunately, solving the corresponding minimization problem is 
not trivial: 

min
w 

n 

i =1 

max 0, 1- yðiÞϕðxðiÞÞ⊤ 
w þ 1 

2C
kwk2 2 ð3Þ 

Nonetheless, two mathematical properties make the use of 
non-linear transformations in the feature space possible: the kernel 
trick and the representer theorem. 

The kernel trick asserts that the dot product in the feature space 
can be computed using only the points from the input space and a 
kernel function, denoted by K: 

8x, x ′∈ I , ϕðxÞ⊤ ϕðx ′ Þ=K ðx, x ′ Þ 
The representer theorem [13, 14] asserts that, under certain 

conditions on the kernel K and the feature space G associated with 
the function ϕ, any minimizer of Eq. 3 admits the following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where α solves: 

min
α 

n 

i =1 

maxð0, 1- yðiÞ½Kα�iÞ þ  1 
2C 

α⊤ Kα
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where K is the n×n matrix consisting of the evaluations of the 
kernel on all the pairs of training samples: 8i, j∈{1, . . ., n}, 
Kij=K(x(i) , x( j) ). 

Because the hinge loss is equal to zero if and only if yf(x) i  
greater than or equal to 1, only the training samples (x(i) , y(i) ) such 
that y(i) f(x(i) )<1 have a nonzero αi coefficient. These points are the 
so-called support vectors, and this is why they are the only training 
samples contributing to the decision function of the model: 

SV = fi∈f1, . . . ,ng j  αi ≠0g 

f ðxÞ= 
n 

i =1 

αiK ðx, xðiÞÞ= 
i∈SV 

αiKðx, xðiÞÞ 

The kernel trick and the representer theorem show that it is 
more practical to work with the kernel K instead of the mapping 
function ϕ. Popular kernel functions include:

• The linear kernel:

K ðx, x ′ Þ= x⊤x ′ 

• The polynomial kernel:

Kðx, x 0Þ= ðγ x⊤ x 0 þ c0Þd with γ >0, c0 ≥0, d∈�

• The sigmoid kernel:

Kðx, x ′ Þ= tanh γ x⊤x ′ þ c0ð Þ  with γ >0, c0 ≥0 

• The radial basis function (RBF) kernel: 

Kðx, x ′ Þ= exp - γ kx - x ′ k2 2 with γ >0 

The linear kernel yields a linear decision function and is actually 
identical to the original formulation of the SVM (one can show that 
there is a mapping between the α and w coefficients). Non-linear 
kernels allow for non-linear, more complex, decision functions. 
This is particularly useful when the data is not linearly separable, 
which is the most common use case. Figure 12 illustrates the 
decision function and the margin of a SVM classification model 
for four different kernels. 

The SVM was also extended to regression tasks with the use of 
the ε-insensitive loss. Similar to the hinge loss, which is equal to zero 
for points that are correctly classified and outside the margin, the ε-
insensitive loss is equal to zero when the error between the true 
target value and the predicted value is not greater than ε: 

ℓε- insensitiveðy, f ðxÞÞ= max ð0, jy - f ðxÞj- εÞ
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RBF kernel Sigmoid kernel 

Fig. 12 Impact of the kernel on the decision function of a support vector machine 
classifier. A non-linear kernel allows for a non-linear decision function 

The objective function for the SVM regression method combines 
the values of ε-insensitive loss of the training points and the 
ℓ2 penalty: 

min
w 

n 

i =1 

max 0, yðiÞ -ϕðxðiÞÞ⊤ 
w - ε þ 1 

2C
kwk2 2 

Figure 13 illustrates the curves of three regression losses. The 
squared error loss takes very small values for small errors and very 
high values for high errors, whereas the absolute error loss takes 
small values for small errors and high values for high errors. Both 
losses take small but nonzero values when the error is small. On the 
contrary, the ε-insensitive loss is null when the error is small and 
otherwise equal to the absolute error loss minus ε.
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Fig. 13 Regression losses. The squared error loss takes very small values for 
small errors and very large values for large errors, whereas the absolute error 
loss takes small values for small errors and large values for large errors. Both 
losses take small but nonzero values when the error is small. On the contrary, 
the ε-insensitive loss is null when the error is small and otherwise equal the 
absolute error loss minus ε. When computed over several samples, the squared 
and absolute error losses are often referred to as mean squared error (MSE) and 
mean absolute error (MAE), respectively 

9 Multiclass Classification 

The classification methods that we presented so far, logistic regres-
sion and support vector machines, are binary classifiers: they can 
only be used when there are only two possible outcomes. However, 
in practice, it is common to have more than two possible outcomes. 
For instance, differential diagnosis of brain disorders is often 
between several, and not only two, diseases. 

Several strategies have been proposed to extend any binary 
classification method to multiclass classification tasks. They all rely 
on transforming the multiclass classification task into several binary 
classification tasks. In this section, we present the most commonly 
used strategies: one-vs-rest, one-vs-one, and error correcting output 
code [15]. Figure 14 illustrates the main ideas of these approaches. 
But first, we present a natural extension of logistic regression to 
multiclass classification tasks which is often referred to as multino-
mial logistic regression [5].
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One-vs-rest 

{1} vs. {2, 3, 4, 5} 

{2} vs. {1, 3, 4, 5} 

{3} vs. {1, 2, 4, 5} 

{4} vs. {1, 2, 3, 5} 

{5} vs. {1, 2, 3, 4} 

One-vs-one 

{1} vs. {2} 

{1} vs. {3} 

{1} vs. {4} 

{1} vs. {5} 

{2} vs. {3} 

{2} vs. {4} 

{2} vs. {5} 

{3} vs. {4} 

{3} vs. {5} 

{4} vs. {5} 

Output code 

{1, 3} vs. {2, 4, 5} 

{1, 4, 5} vs. {2, 3} 

{2} vs. {1, 3, 4, 5} 

{1, 2, 3} vs. {4, 5} 

{2, 5} vs. {1, 3, 4} 

{2, 3, 4} vs. {1, 5} 

{4} vs. {1, 2, 3, 5} 
... 

... 
... 

Fig. 14 Main approaches to convert a multiclass classification task into several 
binary classification tasks. In the one-vs-rest approach, each class is associated 
with a binary classification model that is trained to separate this class from all 
the other classes. In the one-vs-one approach, a binary classifier is trained on 
each pair of classes. In the error correcting output code approach, the classes 
are (randomly) split into two groups, and a binary classifier is trained for each 
split 

9.1 Multinomial 

Logistic Regression 

For binary classification, logistic regression is characterized by a 
hyperplane: the signed distance to the hyperplane is mapped into 
the probability of belonging to the positive class using the sigmoid 
function. However, for multiclass classification, a single hyperplane 
is not enough to characterize all the classes. Instead, each class C k is 
characterized by a hyperplane wk, and, for any input x, one can 
compute the signed distance x⊤ wk between the input x and the 
hyperplane wk. The signed distances are mapped into probabilities 
using the softmax function, defined as 

softmax x1, . . ., xq =
exp x1ð Þ
q 

j = 1 
exp xjð Þ , . . ., 

exp xqð Þ
q 

j =1 
exp xjð Þ  , as follows: 

8k∈f1, . . ., qg, Pðy= C kjx= xÞ= 
exp x⊤wkð Þ

q 
j =1 exp x

⊤wj 

The coefficients (wk)1≤k≤q are still estimated by maximizing the 
likelihood function: 

Lðw1, . . .,wqÞ= ∏ 
n 

i =1 
∏ 
q 

k=1 
P y= C kjx= xðiÞ 1yðiÞ = Ck 

which is equivalent to minimizing the negative log-likelihood:
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- log ðLðw1, . . .,wqÞÞ 

= -
n 

i =1 

q 

k=1 

1yðiÞ = C k 
log P y= C kjx= xðiÞ 

= 
n 

i =1

-
q 

k=1 

1yðiÞ = C k 
log 

exp xðiÞ⊤ wk 
q 

j =1 
exp xðiÞ⊤wjð Þ  

= 
n 

i =1 

ℓcross�entropy y
ðiÞ, softmax xðiÞ⊤w1, . . ., x

ðiÞ⊤wq 

where ℓcross entropy is known as the cross-entropy loss and is defined, 
for any label y and any vector of probabilities (π1, . . ., πq), as: 

ℓcross- entropyðy, ðπ1, . . . , πqÞÞ= -
q 

k=1 

1y = C k 
logπk 

This loss is commonly used to train artificial neural networks on 
classification tasks and is equivalent to the logistic loss in the 
binary case. 

Figure 15 illustrates the impact of the strategy used to handle a 
multiclass classification task on the decision function. 

9.2 One-vs-Rest A strategy to transform a multiclass classification task into several 
binary classification tasks is to fit a binary classifier for each class: the 
positive class is the given class, and the negative class consists of all 
the other classes merged into a single class. This strategy is known 
as one-vs-rest. The advantage of this strategy is that each class is 
characterized by a single model, so that it is possible to gain deeper 
knowledge about the class by inspecting its corresponding model. 
A consequence is that the predictions for new samples take into 
account the confidence of the models: the predicted class for a new 
input is the class for which the corresponding model is the most 
confident that this input belongs to its class. The one-vs-rest strat-
egy is the most commonly used strategy and usually a good default 
choice. 

9.3 One-vs-One Another strategy is to fit a binary classifier for each pair of classes: 
this strategy is known as one-vs-one. The advantage of this strategy is 
that the classes in each binary classification task are “pure”, in the 
sense that different classes are never merged into a single class. 
However, the number of binary classifiers that needs to be trained 
is larger for the one-vs-one strategy (1 2 qðq-1Þ) than for the one-
vs-rest strategy (q). Nonetheless, for the one-vs-one strategy, the 
number of training samples in each binary classification task is 
smaller than the total number of samples, which makes training 
each binary classifier usually faster. Another drawback is that this 
strategy is less interpretable compared to the one-vs-rest strategy, as 
the predicted class corresponds to the class obtaining the most



votes (i.e., winning the most one-vs-one matchups), which does 
not take into account the confidence in winning each matchup.1 

For instance, winning a one-vs-one matchup with 0.99 probability 
gives the same result as winning the same matchup with 0.51 
probability, i.e., one vote. 
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Multinomial One-vs.-rest 

One-vs.-one Output code 

Fig. 15 Illustration of the impact of the strategy used to handle a multiclass 
classification task on the decision function of a logistic regression model 

9.4 Error Correcting 

Output Code 

A substantially different strategy, inspired by the theory of error 
correction code, consists in merging a subset of classes into one 
class and the other subset into the other class, for each binary 
classification task. This data is often called the code book and can 
be represented as a matrix whose rows correspond to the classes and 
whose columns correspond to the binary classification tasks. The 
matrix consists only of -1 and + 1 values that represent the 
corresponding label for each class and for each binary task.2 For

1 The confidences are actually taken into account but only in the event of a tie. 
2 The values are 0 and 1 when the classifier does not return scores but only probabilities. 



any input, each binary classifier returns the score (or probability) 
associated with the positive class. The predicted class for this input 
is the class whose corresponding vector is the most similar to the 
vector of scores, with similarity being assessed with the Euclidean 
distance (the lower, the more similar). There exist advanced strate-
gies to define the code book, but it has been argued than a random 
code book usually gives as good results as a sophisticated one [16]. 
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10 Decision Functions with Normal Distributions 

Normal distributions are popular distributions because they are 
commonly found in nature. For instance, the distribution of 
heights and birth weights of human beings can be approximated 
using normal distributions. Moreover, normal distributions are 
particularly easy to work with from a mathematical point of view. 
For these reasons, a common model consists in assuming that the 
training input vectors are independently sampled from normal 
distributions. 

A possible classification model consists in assuming that, for 
each class, all the corresponding inputs are sampled from a normal 
distribution with mean vector μk and covariance matrix Σk: 

8i such that yðiÞ = C k, x
ðiÞ � N ðμk,ΣkÞ 

Using the probability density function of a normal distribution, one 
can compute the probability density of any input x associated with 
the distribution N ðμk,ΣkÞ of class C k: 

pxjy= C k
ðxÞ= 

1 

ð2πÞpjΣkj 
exp -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�

With such a probabilistic model, it is easy to compute the 
probability that a sample belongs to class C k using Bayes rule: 

Pðy= C kjx= xÞ= 
pxjy= C k

ðxÞPðy= C kÞ 
pxðxÞ 

With normal distributions, it is mathematically easier to work with 
log-probabilities:



Þ
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logPðy= C kjx= xÞ 
= log pxjy= C k

ðxÞþ logPðy= C kÞ- log pxðxÞ 
= -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�- 1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk

-
1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

ð4Þ 
It is also possible to make further assumptions on the covari-

ance matrices that lead to different models. In this section, we 
present the most commonly used ones: naive Bayes, linear discrimi-
nant analysis, and quadratic discriminant analysis. Figure 16 illus-
trates the covariance matrices and the decision functions for these 
models in the two-dimensional case. 

10.1 Naive Bayes The naive Bayes model assumes that, conditionally to each class C k, 
the features are independent and have the same variance σ2 k : 

8k, Σk = σ2 kI p 

Equation 4 can thus be further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 k 
x⊤ x þ 1 

σ2 k 
x⊤ μk -

1 

2σ2 k 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2σ2 

I p is the matrix of the quadratic term for class C k.

•
k 

wk = 1 
σ2 
μk is the vector of the linear term for class C k.

•
k 

w0k = - 1 
2σ2 

k 

μ⊤ 
k μk - log σk þ logPðy= C kÞ is the intercept for 

class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, naive Bayes is a quadratic model. The probabilities for 
input x to belong to each class C k can then easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j
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Naive Bayes 
(different conditional variances) 

Naive Bayes 
(identical conditional variances) 

Linear discriminant analysis Quadratic discriminant analysis 

Fig. 16 Illustration of decision functions with normal distributions. A 
two-dimensional covariance matrix can be represented as an ellipse. In the 
naive Bayes model, the features are assumed to be independent and to have the 
same variance conditionally to the class, leading to covariance matrices being 
represented as circles. When the covariance matrices are assumed to be 
identical, the decision functions are linear instead of quadratic 

With the naive Bayes model, it is relatively common to have the 
conditional variances σ2 k to all be equal: 

8k,Σk = σ2 kI p = σ2 I p 

In this case, Eq. 4 can be even further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 
x⊤ x þ 1 

σ2 
x⊤ μk -

1 

2σ2 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s
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w

•

here: 

wk = 1 σ2 μk is the vector of the linear term for class C k.

• w0k = - 1 
2σ2 μ

⊤ 
k μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2σ2 x

⊤x - log σ- p 
2 logð2πÞ- log pxðxÞ is a term that 

does not depend on class C k. 

In this case, naive Bayes becomes a linear model. 

10.2 Linear 

Discriminant Analysis 

Linear discriminant analysis (LDA) makes the assumption that all 
the covariance matrices are identical but otherwise arbitrary: 

8k, Σk =Σ 

Therefore, Eq. 4 can be further simplified: 

logPðy= C kjx= xÞ 
= -

1 
2
½x - μk�⊤ Σ-1½x - μk�- 1 

2 
logjΣjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 

x⊤Σ-1 x - x⊤Σ-1 μk - μ⊤ 
k Σ

-1 x þ μ⊤ 
k Σ

-1 μk

-
1 
2 
logjΣjþ logPðy= C kÞ- p 

2 
logð2πÞ- log pxðxÞ 

= - x⊤Σ-1 μk -
1 
2 
x⊤Σ-1 x -

1 
2 
μ⊤ 
k Σ

-1 μk þ logPðy= C kÞ- 1 
2 
logjΣj

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s 
w

•

here: 

wk= Σ-1 μk is the vector of coefficients for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2 x

⊤Σ-1 x - - 1 
2 logjΣj- p 

2 logð2πÞ- log pxðxÞ is a term 
that does not depend on class C k. 

Therefore, linear discriminant analysis is a linear model. When Σ is 
diagonal, linear discriminant analysis is identical to naive Bayes with 
identical conditional variances. 

The probabilities for input x to belong to each class C k can then 
easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤wk þ w0kð Þ  

k 
j =1 exp x

⊤wj þ w0j 

10.3 Quadratic 

Discriminant Analysis 

Quadratic discriminant analysis makes no assumption on the covari-
ance matrices Σk that can all be arbitrary. Equation 4 can be 
written as:



Þ
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logPðy= C kjx= xÞ 
= -

1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk -

1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkj 

þ logPðy= C kÞ- p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2Σ

-1 
k is the matrix of the quadratic term for class C k.

• wk =Σ-1 
k μk is the vector of the linear term for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 
k μk -

1 
2 logjΣkjþ logPðy= C kÞ is the intercept 

for class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, quadratic discriminant analysis is a quadratic model. 
The probabilities for input x to belong to each class C k can then 

easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j 

11 Tree-Based Methods 

11.1 Decision Tree Binary decisions based on conditional statements are frequently 
used in everyday life because they are intuitive and easy to under-
stand. Figure 17 illustrates a general approach when someone is ill. 
Depending on conditional statements (severity of symptoms, abil-
ity to quickly consult a specialist), the decision (consult your gen-
eral practitioner or a specialist, or call for emergency services) is 
different. Models with such an architecture are often used in 
machine learning and are called decision trees. 

A decision tree is an algorithm containing only conditional 
statements and can be represented with a tree [17]. This graph 
consists of:

• Decision nodes for all the conditional statements

• Branches for the potential outcomes of each decision node

• Leaf nodes for the final decision 

Figure 18 illustrates a decision tree and its corresponding decision 
function. For a given sample, the final decision is obtained by 
following its corresponding path, starting at the root node. 

A decision tree recursively partitions the feature space in order 
to group samples with the same labels or similar target values. At 
each node, the objective is to find the best (feature, threshold) pair 
so that both subsets obtained with this split are the most pure, that



is, homogeneous. To do so, the best (feature, threshold) pair is 
defined as the pair that minimizes an impurity criterion. 
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Severity of symptoms 

Consult your 
general practitioner 
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Can you quickly 
consult a specialist? 

Consult a specialist 
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Call for 
emergency services 

No

Severe 

Fig. 17 A general thought process when being ill. Depending on conditional 
statements (severity of symptoms, ability to quickly consult a specialist), the 
decision (consult your general practitioner or a specialist, or call for emergency 
services) is different 
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Fig. 18 A decision tree: (left) the rules learned by the decision tree and (right) the 
corresponding decision function 

Let S ⊆ X be a subset of training samples. For classification 
tasks, the distribution of the classes, that is, the proportion of 
each class, is used to measure the purity of the subset. Let pk be 
the proportion of samples from class C k in a given partition: 

pk = 
1 
jSj 

y∈S 

1y = C k 

Po

•

pular impurity criteria for classification tasks include: 

Gini index: ∑ kpk(1- pk)

• Entropy: - pk logðpkÞ
•

k 
Misclassification: 1-maxkpk



y∈S

58 Johann Faouzi and Olivier Colliot

0.0 0.2 0.4 0.6 0.8 1.0 
pk 

0.0 

0.1 

0.2 

0.3 

Im
pu

ri
ty
 

Gini index 
Entropy 

Fig. 19 Illustration of Gini index and entropy. The entropy function takes larger 
values than the Gini index, especially for pk< 0.8, which thus is more discrimi-
native against heterogeneous subsets (when most classes only represent only a 
small proportion of the samples) than Gini index 

Figure 19 illustrates the values of the Gini index and the entropy 
for a single class C k and for different proportions of samples pk. One 
can see that the entropy function takes larger values than the Gini 
index, especially for pk<0.8. Since the sum of the proportions is 
equal to 1, most classes only represent a small proportion of the 
samples. Therefore, a simple interpretation is that entropy is more 
discriminative against heterogeneous subsets than the Gini index. 
Misclassification only takes into account the proportion of the most 
common class and tends to be even less discriminative against 
heterogeneous subsets than both entropy and Gini index. 

For regression tasks, the mean error from a reference value 
(such as the mean or the median) is often used as the impurity 
criterion:

• Mean squared error: 1 jSj ðy - yÞ2 with y = 1 jSj y

•
y∈S y∈S 

Mean absolute error: 1 jSj jy -medianSðyÞj 
Theoretically, a tree can grow until every leaf node is perfectly 

pure. However, such a tree would have a lot of branches and would 
be very complex, making it prone to overfitting. Several strategies 
are commonly used to limit the size of the tree. One approach 
consists in growing the tree with no restriction and then pruning 
the tree, that is, replacing subtrees with nodes [17]. Other popular 
strategies to limit the complexity of the tree are usually applied 
while the tree is grown and include setting:

• A maximum depth for the tree

• A minimum number of samples required to be at an internal 
node



•
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• A minimum number of samples required to split a given 
partition

• A maximum number of leaf nodes

• A maximum number of features considered (instead of all the 
features) to find the best split

• A minimum impurity decrease to split an internal node 

11.2 Random Forest One limitation of decision trees is their simplicity. Decision trees 
tend to use a small fraction of the features in their decision function. 
In order to use more features in the decision tree, growing a larger 
tree is required, but large trees tend to suffer from overfitting, that 
is, having a low bias but a high variance. One solution to decrease 
the variance without much increasing the bias is to build an ensem-
ble of trees with randomness, hence the name random forest 
[18]. An overview of random forests can be found in Box 5. 

In a bid to have trees that are not perfectly correlated (thus 
building actually different trees), each tree is built using only a 
subset of the training samples obtained with random sampling. 
Moreover, for each decision node of each tree, only a subset of 
the features are considered to find the best split. 

The final prediction is obtained by averaging the predictions of 
each tree. For classification tasks, the predicted class is either the 
most commonly predicted class (hard-voting) or the one with the 
highest mean probability estimate (soft-voting) across the trees. 
For regression tasks, the predicted value is usually the mean of the 
predicted values across the trees. 

Box 5: Random Forest

• Random forest: ensemble of decision trees with randomness 
introduced to build different trees

• Decision tree: algorithm containing only conditional state-
ments and represented with a tree 

Regularization: maximum depth for each tree, minimum 
number of samples required to split a given partition, etc. 

11.3 Extremely 

Randomized Trees 

Even though random forests involve randomness in sampling 
both the samples and the features, trees inside a random forest 
tend to be correlated, thus limiting the variance decrease. In order 
to decrease even more the variance of the model (while possibly 
increasing its bias) by growing less correlated trees, extremely 
randomized trees introduce more randomness [19]. Instead of 
looking for the best split among all the candidate (feature,



threshold) pairs, one threshold is drawn at random for each 
candidate feature, and the best of these randomly generated 
thresholds is chosen as the splitting rule. 
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12 Clustering 

So far, we have presented classic machine learning methods for 
classification and regression, which are the main components of 
supervised learning. Each input x(i) had an associated output y(i) . In  
this section, we present clustering, which is an unsupervised 
machine learning task. In unsupervised learning, only the inputs 
x(i) are available, with no associated outputs. As the ground truth is 
not available, the objective is to extract information from the input 
data without supervising the learning process with the output data. 

Clustering consists in finding groups of samples such that:

• Samples from the same group are similar.

• Samples from different groups are different. 

For instance, clustering can be used to identify disease subtypes for 
heterogeneous diseases such as Alzheimer’s disease and Parkinson’s 
disease. 

In this section, we present two of the most common clustering 
methods: the k-means algorithm and the Gaussian mixture model. 

12.1 k-means The k-means algorithm divides a set of n samples, denoted by X, 
into a set of k disjoint clusters, each denoted by X j, such that 
X = fX1, . . ., X kg. 

Figure 20 illustrates the concept of this algorithm. Each cluster 
X j is characterized by its centroid, denoted by μj, that is, the mean of 

the samples in this cluster: 
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Centroid of cluster 2 
Cluster 3 
Centroid of cluster 3 

Fig. 20 Illustration of the k-means algorithm. The objective of the algorithm is to 
find the centroids that minimize the within-cluster sum-of-squares criterion. In 
this example, the inertia is approximately equal to 184.80 and is the lowest 
possible inertia, meaning that the represented centroids are optimal
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μj = 
1 
jX j j

xðiÞ∈X j 

xðiÞ 

The centroids fully define the set of clusters because each sample is 
assigned to the cluster whose centroid is the closest. 

The k-means algorithm aims at finding centroids that minimize 
the inertia, also known as within-cluster sum-of-squares criterion: 

min
fμ1, ..., μkg 

k 

j =1 xðiÞ∈X j 

kxðiÞ - μjk2 2 

The original algorithm used to find the centroids is often referred 
to as Lloyd’s algorithm [20] and is presented in Algorithm 1. After 
initializing the centroids, a two-step loop is repeated until conver-
gence (when the centroids are identical for two consecutive itera-
tions) consisting of: 

1. The assignment step, where the clusters are updated based on 
the current centroids 

2. The update step, where the centroids are updated based on the 
current clusters 

When clusters are well-defined, a point from a given cluster is likely 
to stay in this cluster. Therefore, the assignment step can be sped up 
thanks to the triangle inequality by keeping track of lower and 
upper bounds for distances between points and centers, at the 
cost of higher memory usage [21]. 

Algorithm 1 Lloyd’s algorithm (aka naive k-means algorithm) 

esult: Centroids {μ1, . . . ,μk} 
nitialize the centroids {μ1, . . . ,μk} ; 
hile not converged do 

Assignment step: Compute the clusters (i.e., assign each 
sample to its nearest centroid): 

∀j ∈ {1, . . . , k}, Xj = {x(i) ∈ X  | ‖x(i)−μj‖2 
2 =  min  

l
‖x(i)−μl‖2 

2} 

Update step: Compute the centroids of the updated clusters: 

∀j ∈ {1, . . . , k}, μj = 
1 
j

∑

(i) 

x(i)
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Even though the k-means algorithm is one of the simplest and 
most used clustering methods, it has several downsides that should 
be kept in mind. 

First, the number of clusters k is a hyperparameter. Setting a 
value much different from the actual number of clusters may yield 
poor clusters. 

Second, the inertia is not a convex function. Although Lloyd’s 
algorithm is guaranteed to converge, it may converge to a local 
minimum that is not a global minimum. Figure 21 illustrates the 
convergence to such centroids. Several strategies are often applied 
to address this issue, including sophisticated centroid initialization 
[22] and running the algorithm numerous times and keeping the 
best run (i.e., the one yielding the lowest inertia). 

Inertia = 184.80 

Inertia = 623.67 Inertia = 953.91 

Inertia = 952.08 Inertia = 613.62 

Fig. 21 Illustration of the convergence of the k-means algorithm to bad local 
minima. In the upper figure, the algorithm converged to a global minimum 
because the inertia is equal to the minimum possible value (184.80); thus, the 
obtained clusters are optimal. In the four other figures, the algorithm converged 
to a local minima that are not global minima because the inertias are higher than 
the minimum possible value; thus, the obtained clusters are suboptimal
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Third, inertia makes the assumption that the clusters are convex 
and isotropic. The k-means algorithm may yield poor results when 
this assumption does not hold, such as with elongated clusters or 
manifolds with irregular shapes. 

Fourth, the Euclidean distance tends to be inflated (i.e., the 
ratio of the distances of the nearest and farthest neighbors to a 
given target is close to 1) in high-dimensional spaces, making 
inertia a poor criterion in such spaces [23]. One can alleviate this 
issue by running a dimensionality reduction method such as princi-
pal component analysis prior to the k-means algorithm. 

12.2 Gaussian 

Mixture Model 

A mixture model makes the assumption that each sample is gener-
ated from a mixture of several independent distributions. 

Let k be the number of distributions. Each distribution Fj is 
characterized by its probability of being picked, denoted by πj, and 
its density pj with parameters θj, denoted by pj(�; θj). Let Δ= (Δ1, 
. . ., Δk) be a vector-valued random variable such that: 

k 

j =1 

Δj =1 and 8j∈f1, . . ., kg, PðΔj =1Þ=1-PðΔj =0Þ= πj 

and (x1, . . ., xk) be independent random variables such that xj�Fj. 
The samples are assumed to be generated from a random variable x 
with density px such that: 

x= 
k 

j =1 

Δjxj 

8x∈X, pxðx, θÞ= 
k 

j =1 

πj pj ðx; θj Þ 

A Gaussian mixture model is a particular case of a mixture 
model in which each distribution Fj is a Gaussian distribution 
with mean vector μj and covariance matrix Σj: 

8j∈f1, . . ., kg, F j = N ðμj ,Σj Þ 
Figure 22 illustrates the learned distributions from a Gaussian 
mixture model. 

The objective is to find the parameters θ that maximize the 
likelihood, with θ= fμjgk j =1 

, fΣjgk j =1 
, fπjgk j =1 

: 

LðθÞ= ∏ 
n 

i =1 
pX ðxðiÞ; θÞ 

For computational reasons, it is easier to maximize the 
log-likelihood:
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Fig. 22 Gaussian mixture model. For each estimated distribution, the mean 
vector and the ellipsis consisting of all the points within one standard deviation 
of the mean are plotted 

logðLðθÞÞ= 
n 

i =1 

logðpX ðxðiÞ; θÞÞ= 
n 

i =1 

log 
k 

j =1 

πj pj ðx; θj Þ 

Because the density pX(�; θ) is a weighted sum of Gaussian densities, 
the expression cannot be further simplified. 

In order to solve this maximization problem, an algorithm 
called expectation-maximization (EM) is often applied [24]. Algo-
rithm 2 describes the main concepts of this algorithm. After initi-
alizing the parameters of each distribution, a two-step loop is 
repeated until convergence (when the parameters are stable over 
consecutive loops):

• The expectation step, in which the probability for each sample x(i) 

to have been generated from distribution Fj is computed

• The maximization step, in which the probability and the para-
meters of each distribution are updated 

Because it is impossible to know which samples have been gener-
ated by each distribution, it is also impossible to directly maximize 
the log-likelihood, which is why we compute its expected value 
using the posterior probabilities, hence the name expectation step. 
The second step simply consists in maximizing the expected 
log-likelihood, hence the name maximization step.
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Algorithm 2 Expectation-maximization algorithm for Gauss-
ian mixture models 

esult: Mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 and 
probabilities {πj}k 

j=1 

nitialize the mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 

and probabilities {πj}k 
j=1 ; 

hile not converged do 

E-step: Compute the posterior probability γi(j) for each sample 
x(i) to have been generated from distribution Fj: 

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k}, γi(j) =  
πjpj(x(i);θj,Σj)∑k 
l=1 πlpj(x(i);θl,Σl) 

M-step: Update the parameters of each distribution Fj: 

∀j ∈ {1, . . . , k}, μj =
∑n 

i=1 γi(j)x(i)
∑n 

i=1 γi(j) 

∀j ∈ {1, . . . , k}, Σj =
∑n 

i=1 γi(j)[x(i) − μj][x(i) − μj]�∑n 
i=1 γi(j) 

j 1, . . . , k  , πj = 
1 n∑

γi(j) 

Lloyd’s and EM algorithms have a lot of similarities. In the first 
step, the assignment step assigns each sample to its closest cluster, 
whereas the expectation step computes the probability for each 
sample to have been generated from each distribution. In the 
second step, the update step computes the centroid of each cluster 
as the mean of the samples in a given cluster, while the maximiza-
tion step updates the probability and the parameters of each distri-
bution as a weighted average over all the samples. For these reasons, 
the k-means algorithm is often referred to as a hard-voting cluster-
ing method, as opposed to the Gaussian mixture model which is 
referred to as a soft-voting clustering method. 

The Gaussian mixture model has several advantages over the k-
means algorithm. 

First, the use of normal distribution densities instead of Euclid-
ean distances dwindles the inflation issue in high-dimensional 
spaces. Second, the Gaussian mixture model includes covariance 
matrices, allowing for clusters with elliptical shapes, while the k-
means algorithm only includes centroids, forcing clusters to have 
circular shapes.
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Nonetheless, the Gaussian mixture model also has several draw-
backs, sharing a few with the k-means algorithm. 

First, the number of distributions k is a hyperparameter. Setting 
a value much different from the actual number of clusters may yield 
poor clusters. Second, the log-likelihood is not a concave function. 
Like Lloyd’s algorithm, the EM algorithm is guaranteed to con-
verge, but it may converge to a local maximum that is not a global 
maximum. Several strategies are often applied to address this issue, 
including sophisticated centroid initialization [22] and running the 
algorithm numerous times and keeping the best run (i.e., the one 
yielding the highest log-likelihood). Third, the Gaussian mixture 
model has more parameters than the k-means algorithm. Therefore, 
it usually requires more samples to accurately estimate its para-
meters (in particular the covariance matrices) than the k-means 
algorithm. 

13 Dimensionality Reduction 

Dimensionality reduction consists in finding a good mapping from 
the input space into a space of lower dimension. Dimensionality 
reduction can either be unsupervised or supervised. 

13.1 Principal 

Component Analysis 

For exploratory data analysis, it may be interesting to investigate 
the variances of the p features and the 1 2 pðp-1Þ covariances or 
correlations. However, as the value of p increases, this process 
becomes growingly tedious. Moreover, each feature may explain a 
small proportion of the total variance. It may be more desirable to 
have another representation of the data where a small number of 
features explain most of the total variance, in other words to have a 
coordinate system adapted to the input data. 

Principal component analysis (PCA) consists in finding a repre-
sentation of the data through principal components [25]. The prin-
cipal components are a sequence of unit vectors such that the ith 
vector is the best approximation of the data (i.e., maximizing the 
explained variance) while being orthogonal to the first i-1 vectors. 

Figure 23 illustrates principal component analysis when the 
input space is two-dimensional. On the upper figure, the training 
data in the original space is plotted. Both features explain about the 
same amount of the total variance, although one can clearly see that 
both features are strongly correlated. Principal component analysis 
identifies a new Cartesian coordinate system based on the input 
data. On the lower figure, the training data in the new coordinate 
system is plotted. The first dimension explains much more variance 
than the second dimension.
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Fig. 23 Illustration of principal component analysis. On the upper figure, the training data in the original space 
(blue points with black axes) is plotted. Both features explain about the same amount of the total variance, 
although one can clearly see a linear pattern. Principal component analysis learns a new Cartesian coordinate 
system based on the input data (red axes). On the lower figure, the training data in the new coordinate system 
is plotted (green points with red axes). The first dimension explains much more variance than the second 
dimension 

13.1.1 Full 

Decomposition 

Mathematically, given an input matrix X∈n × p that is centered 
(i.e., the mean value of each column X:,j is equal to zero), the 
objective is to find a matrix W∈p × p such that:

• W is an orthogonal matrix, i.e., its columns are unit vectors and 
orthogonal to each other.

• The new representation of the input data, denoted by T, consists 
of the coordinates in the Cartesian coordinate system induced by 
W (whose columns form an orthogonal basis of p with the 
Euclidean dot product):

T =XW

• Each column of W maximizes the explained variance. 
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Each column wi= W:,i is a principal component. Each input vector 
x is transformed into another vector t using a linear combination of 
each feature with the weights from the W matrix: 

t = x⊤W 

The first principal component w(1) is the unit vector that max-
imizes the explained variance: 

w1 = arg max 
kwk=1 

f 
n 

i =1 

xðiÞ⊤ wk 
= arg max 

kwk=1 

fkXwkg 
= arg max 

kwk=1 

fw⊤ X⊤ Xwkg 

w1 = arg max 
w∈p 

w⊤X⊤ Xw  

w⊤w 

As X⊤ X is a positive semi-definite matrix, a well-known result from 
linear algebra is that w(1) is the eigenvector associated with the 
largest eigenvalue of X⊤ X. 

The kth component is found by subtracting the first k-1 
principal components from X: 

X̂ k =X -
k-1 

s =1 

XwðsÞwðsÞ⊤ 

and then finding the unit vector that explains the maximum vari-
ance from this new data matrix: 

wk = arg max 
kwk=1 

fk X̂ kwkg= arg max 
w∈p 

w⊤ X̂ 
⊤ 
k X̂ kw 

w⊤w 

One can show that the eigenvector associated with the kth largest 
eigenvalue of the X⊤ X matrix maximizes the quantity to be 
maximized. 

Therefore, the matrix W is the matrix whose columns are the 
eigenvectors of the X⊤ X matrix, sorted by descending order of 
their associated eigenvalues. 

13.1.2 Truncated 

Decomposition 

Since each principal component iteratively maximizes the remain-
ing variance, the first principal components explain most of the 
total variance, while the last ones explain a tiny proportion of the 
total variance. Therefore, keeping only a subset of the ordered 
principal components usually gives a good representation of the 
input data. 

Mathematically, given a number of dimensions l, the new rep-
resentation is obtained by truncating the matrix of principal com-
ponents W to only keep the first l columns, resulting in the 
submatrix W:,:l:



Classic Machine Learning Methods 69

−3 −2 −1 0 1 2 3 4 

Dimension 1 (92.46%) 

−1.0 

−0.5 

0.0 

0.5 

1.0 

1.5 

D
im

en
si
on

 2
 (
5.
31

%
) 

Setosa 
Versicolor 
Virginica 

Fig. 24 Illustration of principal component analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the first two principal components is shown in this figure. The 
first dimension explains most of the variance (92.46%) 

T 
~ 

=XW :,:l 

Figure 24 illustrates the use of principal component analysis as 
dimensionality reduction. The Iris flower dataset consists of 50 sam-
ples for each of 3 iris species (setosa, versicolor, and virginica) for 
which 4 features were measured, the length and the width of the 
sepals and petals, in centimeters. The projection of each sample on 
the first two principal components is shown in this figure. 

13.2 Linear 

Discriminant Analysis 

In Subheading 10, we introduced linear discriminant analysis 
(LDA) as a classification method. However, it can also be used as 
a supervised dimensionality reduction method. LDA fits a multi-
variate normal distribution for each class C k, so that each class is 
characterized by its mean vector μk∈p and has the same covariance 
matrix Σ∈p × p . However, a set of k points lies in a space of 
dimension at most k-1. For instance, a set of 2 points lies on a 
line, while a set of 3 points lies on a plane. Therefore, the subspace 
induced by the k mean vectors μk can be used as dimensionality 
reduction. 

There exists another formulation of linear discriminant analysis 
which is equivalent and more intuitive for dimensionality reduc-
tion. Linear discriminant analysis aims to find a linear projection so 
that the classes are separated as much as possible (i.e., projections of



samples from a same class are close to each other, while projections 
of samples from different classes are far from each other). 
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Mathematically, the objective is to find the matrix W∈p × l 

(with l≤ k-1) that maximizes the between-class scatter while also 
minimizing the within-class scatter: 

max 
W 

tr W⊤ SwWð Þ-1 
W⊤ SbWð Þ  

The within-class scatter matrix Sw summarizes the diffusion 
between the mean vector μk of class C k and all the inputs x(i) 

belonging to class C k, over all the classes: 

Sw = 
q 

k=1 yðiÞ = C k 

½xðiÞ - μk�½xðiÞ - μk�⊤ 

The between-class scatter matrix Sb summarizes the diffusion 
between all the mean vectors: 

Sb = 
q 

k=1 

nk½μk - μ�½μk - μ�⊤ 

where nk is the proportion of samples belonging to class C k and 

μ= q 
k=1nkμk = 1 n 

n 
i =1x

ðiÞ is the mean vector over all the input 

vectors. 
One can show that the W matrix consists of the first 

l eigenvectors of the matrix S -1 
w Sb with the corresponding eigen-

values being sorted in descending order. Just as in principal com-
ponent analysis, the corresponding eigenvalues can be used to 
determine the contribution of each dimension. However, the crite-
rion for linear discriminant analysis is different from the one from 
principal component analysis: it is to maximizing the separability of 
the classes instead of maximizing the explained variance. 

Figure 25 illustrates the use of linear discriminant analysis as a 
dimensionality reduction technique. We use the same Iris flower 
dataset as in Fig. 24 illustrating principal component analysis. The 
projection of each sample on the learned two-dimensional space is 
shown, and one can see that the first (horizontal) axis is more 
discriminative of the three classes with linear discriminant analysis 
than with principal component analysis. 

14 Kernel Methods 

Kernel methods allow for generalizing linear models to non-linear 
models with the use of kernel functions. 

As mentioned in Subheading 8, the main idea of kernel meth-
ods is to first map the input data from the original input space to a 
feature space and then perform dot products in this feature space.



Under certain assumptions, an optimal solution of the minimiza-
tion problem of the cost function admits the following form: 
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Fig. 25 Illustration of linear discriminant analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the learned two-dimensional space is shown in this figure 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where K is the kernel function which is equal to the dot product in 
the feature space: 

8x, x ′∈ I , Kðx, x ′ Þ=ϕðxÞ⊤ ϕðx ′ Þ 
As this term frequently appears, we denote by K the n ×n symmet-
ric matrix consisting of the evaluations of the kernel on all the pairs 
of training samples: 

8i, j∈f1, . . .,ng, Kij =KðxðiÞ, xðjÞÞ 
In this section, we present the extension of two models previ-

ously introduced in this chapter, ridge regression and principal 
component analysis, with kernel functions. 

14.1 Kernel Ridge 

Regression 

Kernel ridge regression combines ridge regression with the kernel 
trick and thus learns a linear function in the space induced by the 
respective kernel and the training data [2]. For non-linear kernels, 
this corresponds to a non-linear function in the original input 
space.
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Mathematically, the objective is to find the function f with the 
following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

that minimizes the sum of squared errors with a 
ℓ2 penalization term: 

min 
f 

n 

i =1 

yðiÞ - f ðxðiÞ 2 þ λkf k2 

The cost function can be simplified using the specific form of the 
possible functions: 

n 

i =1 

ðyðiÞ - f ðxðiÞÞ2 þ λkf k2 

= 
n 

i =1 

yðiÞ -
n 

j =1 

αj kðxðjÞ, xðiÞÞ 
2 

þ λ 
n 

i =1 

αiK ð�, xðiÞÞ 
2 

= 
n 

i =1 

yðiÞ -α⊤K :,i 
2 þ λα⊤Kα 

= ky -Kαk2 2 þ λα⊤Kα 

Therefore, the minimization problem is: 

min
α 

ky -Kαk2 2 þ λα⊤Kα 

for which a solution is given by: 

α⋆ = K þ λIð Þ-1 y 

Figure 8 illustrates the prediction function of a kernel ridge 
regression method with a radial basis function kernel. The predic-
tion function is non-linear as the kernel is non-linear. 

14.2 Kernel Principal 

Component Analysis 

As mentioned in Subheading 13, principal component analysis 
consists in finding the linear orthogonal subspace in the original 
input space such that each principal component explains the most 
variance. The optimal solution is given by the first eigenvectors of 
X⊤ X with the corresponding eigenvalues being sorted in descend-
ing order. 

With kernel principal component analysis, the objective is to 
find the linear orthogonal subspace in the feature space such that 
each principal component in the feature space explains the most 
variance [26]. The solution is given by the first l eigenvectors 
(αk)1≤k≤l of the K matrix with the corresponding eigenvalues 
being sorted in descending order. The eigenvectors are normalized 
in order to be unit vectors in the feature space.
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Projection with principal component analysis 

Projection with kernel principal component analysis 

Fig. 26 Illustration of kernel principal component analysis. Some non-linearly 
separable training data is plotted (top). The projected training data using 
principal component analysis remains non-linearly separable (middle). The 
projected training data using kernel principal component analysis (with a 
non-linear kernel) becomes linearly separable (bottom) 

Finally, the projection of any input x in the original space on the 
kth component can be computed as: 

ϕðxÞ⊤ αk = 
n 

i =1 

αkiKðx, xðiÞÞ 

Figure 26 illustrates the projection of some non-linearly separable 
classification data with principal component analysis and with ker-
nel principal component analysis with a non-linear kernel. The 
projected input data becomes linearly separable using kernel prin-
cipal component analysis, whereas the projected input data using 
(linear) principal component analysis remains non-linearly 
separable.
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15 Conclusion 

In this chapter, we described the main classic machine learning 
methods. Due to space constraints, the description of some of 
them was brief. The reader who seeks more details can refer to 
[5, 6]. All these approaches are implemented in the scikit-learn 
Python library [27]. A common point of the approaches presented 
in this chapter is that they use as input a set of given or pre-extracted 
features. On the contrary, deep learning approaches often provide 
an end-to-end learning setup within which the features are learned. 
These techniques are covered in Chaps. 3–6. 
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Chapter 3 

Deep Learning: Basics and Convolutional Neural Networks 
(CNNs) 

Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos, 
Olivier Colliot, and Vincent Lepetit 

Abstract 

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-
the-art performance in a variety of fields, including medical applications. Deep learning architectures can be 
categorized into different groups depending on their components. However, most of them share similar 
modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be 
presented to provide a better understanding of these powerful and broadly used algorithms. The analysis 
is structured around the main components of deep learning architectures, focusing on convolutional neural 
networks and autoencoders. 

Key words Perceptrons, Backpropagation, Convolutional neural networks, Deep learning, Medical 
imaging 

1 Introduction 

Recently, deep learning frameworks have become very popular, 
attracting a lot of attention from the research community. These 
frameworks provide machine learning schemes without the need 
for feature engineering, while at the same time they remain quite 
flexible. Initially developed for supervised tasks, they are nowadays 
extended to many other settings. Deep learning, in the strict sense, 
involves the use of multiple layers of artificial neurons. The first 
artificial neural networks were developed in the late 1950s with the 
presentation of the perceptron [1] algorithms. However, limita-
tions related to the computational costs of these algorithms during 
that period, as well as the often-miscited claim of Minsky and 
Papert [2] that perceptrons are not capable of learning non-linear 
functions such as the XOR, caused a significant decline of interest 
for further research on these algorithms and contributed to the 
so-called artificial intelligence winter. In particular, in their book 
[2], Minsky and Papert discussed that single-layer perceptrons are
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only capable of learning linearly separable patterns. It was often 
incorrectly believed that they also presumed this is the case for 
multilayer perceptron networks. It took more than 10 years for 
research on neural networks to recover, and in [3], some of these 
issues were clarified and further discussed. Even if during this 
period there was not a lot of research interest for perceptrons, 
very important algorithms such as the backpropagation algorithm 
[4–7] and recurrent neural networks [8] were introduced.
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After this period, and in the early 2000s, publications by Hin-
ton, Osindero, and Teh [9] indicated efficient ways to train multi-
layer perceptrons layer by layer, treating each layer as an 
unsupervised restricted Boltzmann machine and then using super-
vised backpropagation for the fine-tuning [10]. Such advances in 
the optimization algorithms and in hardware, in particular graphics 
processing units (GPUs), increased the computational speed of 
deep learning systems and made their training easier and faster. 
Moreover, around 2010, the first large-scale datasets, with Ima-
geNet [11] being one of the most popular, were made available, 
contributing to the success of deep learning algorithms, allowing 
the experimental demonstration of their superior performance on 
several tasks in comparison with other commonly used machine 
learning algorithms. Finally, another very important factor that 
contributed to the current popularity of deep learning techniques 
is their support by publicly available and easy-to-use libraries such 
as Theano [12], Caffe [13], TensorFlow [14], Keras [15], and 
PyTorch [16]. Indeed, currently, due to all these publicly available 
libraries that facilitate collaborative and reproducible research and 
access to resources from large corporations such as Kaggle, Google 
Colab, and Amazon Web Services, teaching and research about 
these algorithms have become much easier. 

This chapter will focus on the presentation and discussion of 
the main components of deep learning algorithms, giving the 
reader a better understanding of these powerful models. The chap-
ter is meant to be readable by someone with no background in deep 
learning. The basic notions of machine learning will not be 
included here; however, the reader should refer to Chap. 2 (reader 
without a background in engineering or computer science can also 
refer to Chap. 1 for a lay audience-oriented presentation of these 
concepts). The rest of this chapter is organized as follows. We will 
first present the deep feedforward networks focusing on percep-
trons, multilayer perceptrons, and the main functions that they are 
composed of (Subheading 2). Then, we will focus on the optimiza-
tion of deep neural networks, and in particular, we will formally 
present the topics of gradient descent, backpropagation, as well as 
the notions of generalization and overfitting (Subheading 3). Sub-
heading 4 will focus on convolutional neural networks discussing in 
detail the basic convolution operations, while Subheading 5 will 
give an overview of the autoencoder architectures.
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2 Deep Feedforward Networks 

In this section, we will present the early deep learning approaches 
together with the main functions that are commonly used in deep 
feedforward networks. Deep feedforward networks are a set of 
parametric, non-linear, and hierarchical representation models 
that are optimized with stochastic gradient descent. In this defini-
tion, the term parametric holds due to the parameters that we need 
to learn during the training of these models, the non-linearity due 
to the non-linear functions that they are composed of, and the 
hierarchical representation due to the fact that the output of one 
function is used as the input of the next in a hierarchical way. 

2.1 Perceptrons The perceptron [1] was originally developed for supervised binary 
classification problems, and it was inspired by works from neuros-
cientists such as Donald Hebb [17]. It was built around a 
non-linear neuron, namely, the McCulloch-Pitts model of a neu-
ron. More formally, we are looking for a function f(x;w, b) such that 
f ð:;w, bÞ : x∈p → fþ1, -1g where w and b are the parameters 
of f and the vector x= [x1, . . ., xp]

⊤ is the input. The training set is 
{(x(i) , y(i) )}. In particular, the perceptron relies on a linear model for 
performing the classification: 

f ðx;w, bÞ= 
þ1 if  w⊤x þ b ≥0

-1 otherwise 
: ð1Þ 

Such a model can be interpreted geometrically as a hyperplane 
that can appropriately divide data points that are linearly separable. 
Moreover, one can observe that, in the previous definition, a per-
ceptron is a combination of a weighted summation between the 
elements of the input vector x combined with a step function that 
performs the decision for the classification. Without loss of gener-
ality, this step function can be replaced by other activation functions 
such as the sigmoid, hyperbolic tangent, or softmax functions (see 
Subheading 2.3); the output simply needs to be thresholded to 
assign the + 1 or -1 class. Graphically, a perceptron is presented in 
Fig. 1 on which each of the elements of the input is described as a 
neuron and all the elements are combined by weighting with the 
models’ parameters and then passed to an activation function for 
the final decision. 

During the training process and similarly to the other machine 
learning algorithms, we need to find the optimal parameters w and 
b for the perceptron model. One of the main innovations of Rosen-
blatt was the proposition of the learning algorithm using an itera-
tive process. First, the weights are initialized randomly, and then 
using one sample (x(i) , y(i) ) of the training set, the prediction of the



perceptron is calculated. If the prediction is correct, no further 
action is needed, and the next data point is processed. If the 
prediction is wrong, the weights are updated with the 
following rule: the weights are increased in case the prediction is 
smaller than the ground-truth label y(i) and decreased if the predic-
tion is higher than the ground-truth label. This process is repeated 
until no further errors are made for the data points. A pseudocode 
of the training or convergence algorithm is presented in 
Algorithm 1 (note that in this version, it is assumed that the data 
is linearly separable). 
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Fig. 1 A simple perceptron model. The input elements are described as neurons 
and combined for the final prediction ŷ . The final prediction is composed of a 
weighted sum and an activation function 

Algorithm 1 Train perceptron 

procedure Train({(x(i), y(i))}) 
Initialization: initialize randomly the weights w and bias b 
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) �= y(i) do 

Pick i randomly 
error = y(i) − f(x(i);w, b) 
if error �= 0  then 

w ← w + error · x(i) 

b b + error 

Originally, the perceptron has been proposed for binary classi-
fication tasks. However, this algorithm can be generalized for the 
case of multiclass classification, fc(x;w, b), where c∈{1, . . ., C} are 
the different classes. This can be easily achieved by adding more 
neurons to the output layer of the perceptron. That way, the 
number of output neurons would be the same as the number of 
possible outputs we need to predict for the specific problem. Then, 
the final decision can be made by choosing the maximum of the 
different output neurons f n = max f cðx;w, bÞ. 

c∈f1, ...,CgFinally, in the following, we will integrate the bias b in the 
weights w (and thus add 1 as the first element of the input vector 
x= [1, x1, . . ., xp]

⊤ ). The model can then be rewritten as f(x;w) such 
that f ð:;wÞ : x∈pþ1 → fþ1, -1g.
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2.2 Multilayer 

Perceptrons 

The limitation of perceptrons to linear problems can be overcome 
by using multilayer perceptions, often denoted as MLP. An MLP 
consists of at least three layers of neurons: the input layer, a hidden 
layer, and an output layer. Except for the input neurons, each 
neuron uses a non-linear activation function, making it capable of 
distinguishing data that is not linearly separable. These layers can 
also be called fully connected layers since they connect all the 
neurons of the previous and of the current layer. It is absolutely 
crucial to keep in mind that non-linear functions are necessary for 
the network to find non-linear separations in the data (otherwise, 
all the layers could simply be collapsed together into a single 
gigantic linear function). 

2.2.1 A Simple Multilayer 

Network 

Without loss of generality, an MLP with one hidden layer can be 
defined as: 

zðxÞ= gðW 1 xÞ 
ŷ = f ðx;W 1 ,W 2Þ=W 2 zðxÞ 

, ð2Þ 

where gðxÞ :  →denotes the non-linear function (which can be 
applied element-wise to a vector), W1 the matrix of coefficients of 
the first layer, and W2 the matrix of coefficients of the second layer. 

Equivalently, one can write: 

yc = 
d1 

j =1 

W 2 
ðc,jÞgðW 1⊤ 

ðjÞxÞ, ð3Þ 

where d1 is the number of neurons for the hidden layer which 
defines the width of the network, W 1 

ðjÞ denotes the first column 
of the matrix W1 , and W 2 

ðc,jÞ denotes the c, j element of the matrix 
W2 . Graphically, a two-layer perceptron is presented in Fig. 2 on
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1 

W 1 W 2 

ŷ 

2 ŷ 

Fig. 2 An example of a simple multilayer perceptron model. The input layer is fed 
into a hidden layer (z), which is then combined for the last output layer providing 
the final prediction



which the input neurons are fed into a hidden layer whose neurons 
are combined for the final prediction.
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There were a lot of research works indicating the capacity of 
feedforward neural networks with a single hidden layer of finite size 
to approximate continuous functions. In the late 1980s, the first 
proof was published [18] for sigmoid activation functions (see 
Subheading 2.3 for the definition) and was generalized to other 
functions for feedforward multilayer architectures [19–21]. In par-
ticular, these works prove that any continuous function can be 
approximated under mild conditions as closely as wanted by a 
three-layer network. As N →1, any continuous function f can 
be approximated by some neural network f̂ , because each compo-
nent gðW T 

ðjÞxÞ behaves like a basis function and functions in a 
suitable space admit a basis expansion. However, since N may 
need to be very large, introducing some limitations for these 
types of networks, deeper networks, with more than one hidden 
layer, can provide good alternatives. 

2.2.2 Deep Neural 

Network 

The simple MLP networks can be generalized to deeper networks 
with more than one hidden layer that progressively generate 
higher-level features from the raw input. Such networks can be 
written as: 

z1ðxÞ= gðW 1 xÞ 
. . .  

zkðxÞ= gðWk zk-1ðxÞÞ 
. . .  

ŷ = f ðx;W 1 , . . .,W K Þ= zK ðzK -1ð. . .ðz1ðxÞÞÞÞ 

, ð4Þ 

where K denotes the number of layers for the neural network, 
which defines the depth of the network. In Fig. 3, a graphical 
representation of the deep multilayer perceptron is presented. 
Once again, the input layer is fed into the different hidden layers 
of the network in a hierarchical way such that the output of one 
layer is the input of the next one. The last layer of the network 
corresponds to the output layer, which makes the final prediction of 
the model. 

As for networks with one hidden layer, they are also universal 
approximators. However, the approximation theory for deep net-
works is less understood compared with neural networks with one 
hidden layer. Overall, deep neural networks excel at representing 
the composition of functions. 

So far, we have described neural networks as simple chains of 
layers, applied in a hierarchical way, with the main considerations 
being the depth of the network (the number of layers K) and the



width of each k layer (the number of neurons dk). Overall, there are 
no rules for the choice of the K and dk parameters that define the 
architecture of the MLP. However, it has been shown empirically 
that deeper models perform better. In Fig. 4, an overview of 
2 different networks with 3 and 11 hidden layers is presented 
with respect to the number of parameters and their accuracy. For 
each architecture, the number of parameters varies by changing the 
number of neurons dk. One can observe that, empirically, deeper 
networks achieve better performance using approximately the same 
or a lower number of parameters. Additional evidence to support 
these empirical findings is a very active field of research [22, 23]. 
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Fig. 3 An example of a deep neural network. The input layer, the kth layer of the deep neural network, and the 
output layer are presented in the figure 

Fig. 4 Comparison of two different networks with almost the same number of parameters, but different 
depths. Figure inspired by Goodfellow et al. [24] 

Neural networks can come in a variety of models and architec-
tures. The choice of the proper architecture and type of neural 
network depends on the type of application and the type of data.



2 j =0 j
are homogeneously, linearly separable.

Most of the time, the best architecture is defined empirically. In the 
next section, we will discuss the main functions used in neural 
networks. 
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2.3 Main Functions A neural network is a composition of different functions also called 
modules. Most of the times, these functions are applied in a sequen-
tial way. However, in more complicated designs (e.g., deep residual 
networks), different ways of combining them can be designed. In 
the following subsections, we will discuss the most commonly used 
functions that are the backbones of most perceptrons and multi-
layer perceptron architectures. One should note, however, that a 
variety of functions can be proposed and used for different deep 
learning architectures with the constraint to be differentiable – 
almost – everywhere. This is mainly due to the way that deep neural 
networks are trained, and this will be discussed later in the chapter. 

2.3.1 Linear Functions One of the most fundamental functions used in deep neural net-
works is the simple linear function. Linear functions produce a 
linear combination of all the nodes of one layer of the network, 
weighted with the parameters W. The output signal of the linear 
function is Wx, which is a polynomial of degree one. While it is easy 
to solve linear equations, they have less power to learn complex 
functional mappings from data. Moreover, when the number of 
samples is much larger than the dimension of the input space, the 
probability that the data is linearly separable comes close to zero 
(Box 1). This is why they need to be combined with non-linear 
functions, also called activation functions (the name activation has 
been initially inspired by biology as the neuron will be active or not 
depending on the output of the function). 

Box 1: Function Counting Theorem 
The so-called Function Counting Theorem (Cover [25]) 
counts the number of linearly separable dichotomies of 
n points in general position in p . The theorem shows that, 
out of the total 2n dichotomies, only Cðn, pÞ= 

p n-1 

When n>> p, the probability of a dichotomy to be line-
arly separable converges to zero. This indicates the need for 
the integration of non-linear functions into our modeling and 
architecture design. Note that n>> p is a typical regime in 
machine learning and deep learning applications where the 
number of samples is very large.
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Tanh Sigmoid ReLU 

(a) (b) (c) 

Fig. 5 Overview of different non-linear functions (in green) and their first-order derivative (blue). (a) Hyperbolic 
tangent function (tanh), (b) sigmoid, and (c) rectified linear unit (ReLU) 

2.3.2 Non-linear 

Functions 

One of the most important components of deep neural networks is 
the non-linear functions, also called activation functions. They 
convert the linear input signal of a node into non-linear outputs 
to facilitate the learning of high-order polynomials. There are a lot 
of different non-linear functions in the literature. In this subsec-
tion, we will discuss the most classical non-linearities. 

Hyperbolic Tangent 

Function (tanh) 

One of the most standard non-linear functions is the hyperbolic 
tangent function, aka the tanh function. Tanh is symmetric around 
the origin with a range of values varying from-1 to 1. The biggest 
advantage of the tanh function is that it produces a zero-centered 
output (Fig. 5a), thereby supporting the backpropagation process 
that we will cover in the next section. The tanh function is used 
extensively for the training of multilayer neural networks. Formally, 
the tanh function, together with its gradient, is defined as: 

g = tanh ðxÞ= 
ex - e - x 

ex þ e - x 

∂g 
∂x 

=1- tanh 2ðxÞ 
: ð5Þ 

One of the downsides of tanh is the saturation of gradients that 
occurs for large or small inputs. This can slow down the training of 
the networks. 

Sigmoid Similar to tanh, the sigmoid is one of the first non-linear functions 
that were used to compose deep learning architectures. One of the 
main advantages is that it has a range of values varying from 0 to 
1 (Fig. 5b) and therefore is especially used for models that aim to 
predict a probability as an output. Formally, the sigmoid function, 
together with its gradient, is defined as: 

g = σðxÞ= 
1 

1þ e - x 

∂g 
∂x 

= σðxÞð1- σðxÞÞ 
: ð6Þ
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Note that this is in fact the logistic function, which is a special 
case of the more general class of sigmoid function. As it is indicated 
in Fig. 5b, the sigmoid gradient vanishes for large or small inputs 
making the training process difficult. However, in case it is used for 
the output units which are not latent variables and on which we 
have access to the ground-truth labels, sigmoid may be a good 
option. 

Rectified Linear Unit (ReLU) ReLU is considered among the default choice of non-linearity. 
Some of the main advantages of ReLU include its efficient calcula-
tion and better gradient propagation with fewer vanishing gradient 
problems compared to the previous two activation functions 
[26]. Formally, the ReLU function, together with its gradient, is 
defined as: 

g = max ð0, xÞ 
∂g 
∂x 

= 
0, if x ≤0 

1, if x >0 

: ð7Þ 

As it is indicated in Fig. 5c, ReLU is differentiable anywhere 
else than zero. However, this is not a very important problem as the 
value of the derivative at zero can be arbitrarily chosen to be 0 or 
1. In [27], the authors empirically demonstrated that the number 
of iterations required to reach 25% training error on the CIFAR-10 
dataset for a four-layer convolutional network was six times faster 
with ReLU than with tanh neurons. On the other hand, and as 
discussed in [28], ReLU-type neural networks which yield a piece-
wise linear classifier function produce almost always high confi-
dence predictions far away from the training data. However, due 
to its efficiency and popularity, many variations of ReLU have been 
proposed in the literature, such as the leaky ReLU [29] or the 
parametric ReLU [30]. These two variations both address the 
problem of dying neurons, where some ReLU neurons die for all 
inputs and remain inactive no matter what input is supplied. In such 
a case, no gradient flows from these neurons, and the training of the 
neural network architecture is affected. Leaky ReLU and parametric 
ReLU change the g(x)=0 part, by adding a slope and extending 
the range of ReLU. 

Swish The choice of the activation function in neural networks is not 
always easy and can greatly affect performance. In [31], the authors 
performed a combination of exhaustive and reinforcement 
learning-based searches to discover novel activation functions. 
Their experiments discovered a new activation function that is 
called Swish and is defined as:



n
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g = x � σðβxÞ 
∂g 
∂x 

= βgðxÞ þ  σðβxÞð1- βgðxÞÞ 
, ð8Þ 

where σ is the sigmoid function and β is either a constant or a 
trainable parameter. Swish tends to work better than ReLU on 
deeper models, as it has been shown experimentally in [31] i  
different domains. 

Softmax Softmax is often used as the last activation function of a neural 
network. In practice, it normalizes the output of a network to a 
probability distribution over the predicted output classes. Softmax 
is defined as: 

SoftmaxðxiÞ= 
ex i 
C 
j e

x 
j 

: ð9Þ 

The softmax function takes as input a vector x of C real num-
bers and normalizes it into a probability distribution consisting of 
C probabilities proportional to the exponentials of the input num-
bers. However, a limitation of softmax is that it assumes that every 
input x belongs to at least one of the C classes (which is not the case 
in practice, i.e., the network could be applied to an input that does 
not belong to any of the classes). 

2.3.3 Loss Functions Besides the activation functions, the loss function (which defines 
the cost function) is one of the main elements of neural networks. It 
is the function that represents the error for a given prediction. To 
that purpose, for a given training sample, it compares the prediction 
f(x(i) ;W) to the ground truth y(i) (here we denote for simplicity as 
W all the parameters of the network, combining all the W1 , . . ., WK 

in the multilayer perceptron shown above). The loss is denoted as 
ℓ(y, f(x;W)). The average loss across the n training samples is called 
the cost function and is defined as: 

J ðW Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;W Þ , ð10Þ 

where {(x(i) , y(i) )}i=1..n composes the training set. The aim of the 
training will be to find the parameters W such that J(W) is mini-
mized. Note that, in deep learning, one often calls the cost function 
the loss function, although, strictly speaking, the loss is for a given 
sample, and the cost is averaged across samples. Besides, the objec-
tive function is the overall function to minimize, including the cost 
and possible regularization terms. However, in the remainder of 
this chapter, in accordance with common usage in deep learning, 
we will sometimes use the term loss function instead of cost 
function.
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In neural networks, the loss function can be virtually any func-
tion that is differentiable. Below we present the two most common 
losses, which are, respectively, used for classification or regression 
problems. However, specific losses exist for other tasks, such as 
segmentation, which are covered in the corresponding chapters. 

Cross-Entropy Loss One of the most basic loss functions for classification problems 
corresponds to the cross-entropy between the expected values and 
the predicted ones. It leads to the following cost function: 

J ðW Þ= -
n 

i =1 

log P y= yðiÞjx= xðiÞ;W , ð11Þ 

where P y= yðiÞjx= xðiÞ;W is the probability that a given sample is 
correctly classified. 

The cross-entropy can also be seen here as the negative 
log-likelihood of the training set given the predictions of the net-
work. In other words, minimizing this loss function corresponds to 
maximizing the likelihood: 

J ðW Þ= ∏ 
n 

i =1 

P y= yðiÞjx= xðiÞ;W : ð12Þ 

Mean Squared Error Loss For regression problems, the mean squared error is one of the most 
basic cost functions, measuring the average of the squares of the 
errors, which is the average squared difference between the pre-
dicted values and the real ones. The mean squared error is 
defined as: 

J ðW Þ= 
n 

i =1 

jj yðiÞ - f ðxðiÞ;W Þ jj 2 : ð13Þ 

3 Optimization of Deep Neural Networks 

Optimization is one of the most important components of 
neural networks, and it focuses on finding the parameters W that 
minimize the loss function J(W). Overall, optimization is a difficult 
task. Traditionally, the optimization process is performed by care-
fully designing the loss function and integrating its constraints to 
ensure that the optimization process is convex (and thus, one can 
be sure to find the global minimum). However, neural networks are 
non-convex models, making their optimization challenging, and, in 
general, one does not find the global minimum but only a local one. 
In the next sections, the main components of their optimization 
will be presented, giving a general overview of the optimization 
process, its challenges, and common practices.
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Fig. 6 The gradient descent algorithm. This first-order optimization algorithm is 
finding a local minimum by taking steps toward the opposite direction of the 
gradient 

3.1 Gradient Descent Gradient descent is an iterative optimization algorithm that is 
among the most popular and basic algorithms in machine learning. 
It is a first-order1 optimization algorithm, which is finding a local 
minimum of a differentiable function. The main idea of gradient 
descent is to take iterative steps toward the opposite direction of the 
gradient of the function that needs to be optimized (Fig. 6). 

That way, the parameters W of the model are updated by: 

W tþ1 ←W t - η 
∂J ðW t Þ 
∂W t , ð14Þ 

where t is the iteration and η, called learning rate, is the hyperpara-
meter that indicates the magnitude of the step that the algorithm 
will take. 

Besides its simplicity, gradient descent is one of the most com-
monly used algorithms. More sophisticated algorithms require 
computing the Hessian (or an approximation) and/or its inverse 
(or an approximation). Even if these variations could give better 
optimization guarantees, they are often more computationally 
expensive, making gradient descent the default method for 
optimization. 

In the case of convex functions, the optimization problem can 
be reduced to the problem of finding a local minimum. Any local 
minimum is then guaranteed to be a global minimum, and gradient 
descent can identify it. However, when dealing with non-convex 
functions, such as neural networks, it is possible to have many local 
minima making the use of gradient descent challenging. Neural 
networks are, in general, non-identifiable [24]. A model is said to 
be identifiable if it is theoretically possible, given a sufficiently large 
training set, to rule out all but one set of the model’s parameters. 
Models with latent variables, such as the hidden layers of neural 
networks, are often not identifiable because we can obtain equiva-
lent models by exchanging latent variables with each other.

1 First-order means here that the first-order derivatives of the cost function are used as opposed to second-order 
algorithms that, for instance, use the Hessian.



However, all these minima are often almost equivalent to each 
other in cost function value. In that case, these local minima are 
not a problematic form of non-convexity. It remains an open ques-
tion whether there exist many local minima with a high cost that 
prevent adequate training of neural networks. However, it is cur-
rently believed that most local minima, at least as found by modern 
optimization procedures, will correspond to a low cost (even 
though not to identical costs) [24].
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For W� to be a local minimum, we need mainly two conditions 
to be fulfilled:

• ∂J 
∂W 

ðW �Þ =0.

• All the eigenvalues of ∂2 J 

∂W 2 ðW �Þ to be positive. 

For random functions in n dimensions, the probability for the 
eigenvalues to be all positive is 1 n. On the other hand, the ratio of the 
number of saddle points to localminima increases exponentiallywith 
n [32]. A saddle point, or critical point, is a point where the deriva-
tives are zero without being a minimum of the function. Such points 
could result in a high error making the optimization with gradient 
descent challenging. In [32], this issue is discussed, and an optimi-
zation algorithm that leverages second-order curvature information 
is proposed to deal with this issue for deep and recurrent networks. 

3.1.1 Stochastic Gradient 

Descent 

Gradient descent efficiency is not enough when it comes to 
machine learning problems with large numbers of training samples. 
Indeed, this is the case for neural networks and deep learning which 
often rely on hundreds or thousands of training samples. Updating 
the parameters W after calculating the gradient using all the 
training samples would lead to a tremendous computational com-
plexity of the underlying optimization algorithm [33]. To deal with 
this problem, the stochastic gradient descent (SGD) algorithm is a 
drastic simplification. Instead of computing the ∂J ðW Þ 

∂W 
exactly, each 

iteration estimates this gradient on the basis of a small set of 
randomly picked examples, as follows: 

W tþ1 ←W t - ηtGðW tÞ, ð15Þ 
where 

GðW tÞ= 
1 
K 

K 

k=1 

∂J ðikÞW
t 

∂W 
, ð16Þ 

where J ik 
is the loss function at training sample ik, 

fðxðikÞ, yðikÞÞgk=1...K is the small subset of K training samples 
(K<<N). This subset of K samples is called a mini-batch or 
sometimes a batch.2 In such a way, the iteration cost of stochastic

2 Note that, as often in deep learning, the terminology can be confusing. In isolation, the term batch is usually a 
synonym of mini-batch. On the contrary, batch gradient descent means computing the gradient using all training 
samples and not only a mini-batch [24].



gradient descent will be OðKÞ and for gradient descent OðN Þ. The 
ideal choice for the batch size is a debated question. First, an upper 
limit for the batch size is often simply given the available GPU 
memory, in particular when the size of the input data is large (e.g., 
3D medical images). Besides, choosing K as a power of 2 often 
leads to more efficient computations. Finally, small batch sizes tend 
to have a regularizing effect which can be beneficial [24]. In any 
case, the ideal batch size usually depends on the application, and it 
is not uncommon to try different batch sizes. Finally, one calls an 
epoch a complete pass over the whole training set (meaning that 
each training sample has been used once). The number of epochs is 
the number of full passes over the whole training set. It should not 
be confused with the number of iterations which is the number of 
mini-batches that have been processed.
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Note that various improvements over traditional SGD have 
been introduced, leading to more efficient optimization methods. 
These state-of-the-art optimization methods are presented in 
Subheading 3.4. 

Box 2: Convergence of SGD Theorem 

In [34], the authors prove that stochastic gradient 
descent converges if the network is sufficiently overpara-
metrized. Let (x(i) , y(i) )1≤i≤n be a training set satisfying 
mini,j:i ≠ jkx(i)-x( j )k2> δ> 0. Consider fitting the data 
using a feedforward neural network with ReLU activa-
tions. Denote by D (resp. W ) the depth (resp. width) of 
the network. Suppose that the neural network is suffi-
ciently overparametrized, i.e.: 

W ≫ polynomial n,D, 
1 
δ 

: ð17Þ 

Then, with high probability, running SGD with some random 
initialization and properly chosen step sizes ηt yields J(W

t ) 
< E in t / log 1 ε. 

3.2 Backpropagation The training of neural networks is performed with backpropaga-
tion. Backpropagation computes the gradient of the loss function 
with respect to the parameters of the network in an efficient and 
local way. This algorithm was originally introduced in 1970. How-
ever, it started becoming very popular after the publication of [6], 
which indicated that backpropagation works faster than other 
methods that had been proposed back then for the training of 
neural networks.



3.3 Generalization

and Overfitting

Þ
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Fig. 7 A multilayer perceptron with one hidden layer 

The backpropagation algorithm works by computing the gra-
dient of the loss function (J) with respect to each weight by the 
chain rule, computing the gradient one layer at a time, and iterating 
backward from the last layer to avoid redundant calculations of 
intermediate terms in the chain rule. In Fig. 7, an example of a 
multilayer perceptron with one hidden layer is presented. In such a 
network, the backpropagation is calculated as: 

∂J ðW Þ 
∂w2 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w2 

∂J ðW Þ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂z1 

× 
∂z1 
∂w1 

: ð18Þ 

Overall, backpropagation is very simple and local. However, 
the reason why we can train a highly non-convex machine with 
many local minima, like neural networks, with a strong local 
learning algorithm is not really known even today. In practice, 
backpropagation can be computed in different ways, including 
manual calculation, numerical differentiation using finite difference 
approximation, and symbolic differentiation. Nowadays, deep 
learning frameworks such as [14, 16] use automatic differentiation 
[35] for the application of backpropagation. 

Similar to all the machine learning algorithms (discussed in 
Chapter 2), neural networks can suffer from poor generaliza-
tion and overfitting. These problems are caused mainly by the 
optimization of the parameters of the models performed in the 
{(xi, yi)}i=1,. .  .,n training set, while we need the model to per-
form well on other unseen data that are not available during the 
training. More formally, in the case of cross-entropy, the loss 
that we would like to minimize is: 

J ðW Þ= - log ∏ðx, yÞ∈T T 
P y= yjx= x;Wð , ð19Þ 

where TT is the set of any data, not available during training. In 
practice, a small validation set TV is used to evaluate the loss on 
unseen data. Of course, this validation set should be distinct from 
the training set. It is extremely important to keep in mind that the 
performance obtained on the validation set is generally biased 
upward because the validation set was used to perform early stop-
ping or to choose regularization parameters. Therefore, one should 
have an independent test set that has been isolated at the



beginning, has not been used in any way during training, and is 
only used to report the performance (see Chap. 20 for details). In 
case one cannot have an additional independent test set due to a 
lack of data, one should be aware that the performance may be 
biased and that this is a limitation of the specific study. 
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To avoid overfitting and improve the generalization perfor-
mance of the model, usually, the validation set is used to monitor 
the loss during the training of the networks. Tracking the training 
and validation losses over the number of epochs is essential and 
provides important insights into the training process and the 
selected hyperparameters (e.g., choice of learning rate). Recent 
visualization tools such as TensorBoard3 or Weights & Biases4 

make this tracking easy. In the following, we will also mention 
some of the most commonly applied optimization techniques that 
help with preventing overfitting. 

Early Stopping Using the reported training and validation errors, 
the best model in terms of performance and generalization power is 
selected. In particular, early stopping, which corresponds to select-
ing a model corresponding to an earlier time point than the final 
epoch, is a common way to prevent overfitting [36]. Early stopping 
is a form of regularization for models that are trained with an 
iterative method, such as gradient descent and its variants. Early 
stopping can be implemented with different criteria. However, 
generally, it requires the monitoring of the performance of the 
model on a validation set, and the model is selected when its 
performance degrades or its loss increases. Overall, early stopping 
should be used almost universally for the training of neural net-
works [24]. The concept of early stopping is illustrated in Fig. 8. 

Weight Regularization Similar to other machine learning meth-
ods (Chap. 2), weight regularization is also a very commonly used 
technique for avoiding overfitting in neural networks. More specif-
ically, during the training of the model, the weights of the network 
start growing in size in order to specialize the model to the training 
data. However, large weights tend to cause sharp transitions in the 
different layers of the network and, that way, large changes in the 
output for only small changes in the inputs [37]. To handle this 
problem, during the training process, the weights can be updated in 
such a way that they are encouraged to be small, by adding a penalty 
to the loss function, for instance, the ℓ2 norm of the parameters 
λkWk2 , where λ is a trade-off parameter between the loss and the 
regularization. Since weight regularization is quite popular in

3 https://www.tensorflow.org/tensorboard. 
4 https://wandb.ai/site.

https://www.tensorflow.org/tensorboard
https://wandb.ai/site


neural networks, different optimizers have integrated them into 
their optimization process in the form of weight decay.
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Validation 

Training 

Loss 

Time (epochs) 

Underfitting Overfitting 

Fig. 8 Illustration of the concept of early stopping. The model that should be selected corresponds to the 
dashed bar which is the point where the validation loss starts increasing. Before this point, the model is 
underfitting. After, it is overfitting 

Weight Initialization The way that the weights of neural net-
works will be initialized is very important, and it can determine 
whether the algorithm converges at all, with some initial points 
being so unstable that the algorithm encounters numerical difficul-
ties and fails altogether [24]. Most of the time, the weights are 
initialized randomly from a Gaussian or uniform distribution. 
According to [24], the choice of Gaussian or uniform distribution 
does not seem to matter very much; however, the scale does have a 
large effect both on the outcome of the optimization procedure 
and on the ability of the network to generalize. Nevertheless, more 
tailored approaches have been developed over the last decade that 
have become the standard initialization points. One of them is the 
Xavier Initialization [38] which balances between all the layers to 
have the same activation variance and the same gradient variance. 
More formally the weights are initialized as: 

Wi,j � Uniform -
6 

m þ n , 
6 

m þ n , ð20Þ 

where m is the number of inputs and n the number of outputs of 
matrix W. Moreover, the biases b are initialized to 0. 

Drop-out There are other techniques to prevent overfitting, such 
as drop-out [39], which involves randomly destroying neurons 
during the training process, thereby reducing the complexity of



the model. Drop-out is an ensemble method that does not need to 
build the models explicitly. In practice, at each optimization itera-
tion, random binary masks on the units are considered. The proba-
bility of removing a unit (p) is defined as a hyperparameter during 
the training of the network. During inference, all the units are 
activated; however, the obtained parameters W are multiplied 
with this probability p. Drop-out is quite efficient and commonly 
used in a variety of neural network architectures. 
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Fig. 9 Examples of data transformations applied in the MNIST dataset. Each of these generated samples is 
considered additional training data 

Data Augmentation Since neural networks are data-driven meth-
ods, their performance depends on the training data. To increase 
the amount of data during the training, data augmentation can be 
performed. It generates slightly modified copies of the existing 
training data to enrich the training samples. This technique acts as 
a regularizer and helps reduce overfitting. Some of the most com-
monly used transformations applied during data augmentation 
include random rotations, translations, cropping, color jittering, 
resizing, Gaussian blurring, and many more. In Fig. 9, examples 
of different transformations on different digits (first column) of the 
MNIST dataset [40] are presented. For medical images, the 
TorchIO library allows to easily perform data augmentation [41]. 

Batch Normalization To ensure that the training of the networks 
will be more stable and faster, batch normalization has been pro-
posed [42]. In practice, batch normalization re-centers and 
re-scales the layer’s input, mitigating the problem of internal



covariate shift which changes the distribution of the inputs of each 
layer affecting the learning rate of the network. Even if the method 
is quite popular, its necessity and use for the training have recently 
been questioned [43]. 
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3.4 State-of-the-Art 

Optimizers 

Over the years, different optimizers have been proposed and widely 
used, aiming to provide improvements over the classical stochastic 
gradient descent. These algorithms are motivated by challenges 
that need to be addressed with stochastic gradient descent and are 
focusing on the choice of the proper learning rate, its dynamic 
change during training, as well as the fact that it is the same for all 
the parameter updates [44]. Moreover, a proper choice of opti-
mizer could speed up the convergence to the optimal solution. In 
this subsection, we will discuss some of the most commonly used 
optimizers nowadays. 

3.4.1 Stochastic Gradient 

Descent with Momentum 

One of the limitations of the stochastic gradient descent is that 
since the direction of the gradient that we are taking is random, it 
can heavily oscillate, making the training slower and even getting 
stuck in a saddle point. To deal with this problem, stochastic 
gradient descent with momentum [45, 46] keeps a history of the 
previous gradients, and it updates the weights taking into account 
the previous updates. More formally: 

gt ← ρgt -1 þ ð1- ρÞGðW tÞ 
ΔW t ← - ηt g

t 

W tþ1 ←W t þ ΔW t 

, ð21Þ 

where gt is the direction of the update of the weights in time-step 
t and ρ∈ [0, 1] is a hyperparameter that controls the contribution 
of the previous gradients and current gradient in the current 
update. When ρ=0, it is the same as the classical stochastic gradient 
descent. A large value of ρ will mean that the update is strongly 
influenced by the previous updates. 

The momentum algorithm accumulates an exponentially 
decaying moving average of the past gradients and continues to 
move in their direction [24]. Momentum increases the speed of 
convergence, while it is also helpful to not get stuck in places where 
the search space is flat (saddle points with zero gradient), since the 
momentum will pursue the search in the same direction as before 
the flat region. 

3.4.2 AdaGrad To facilitate and speed up, even more, the training process, optimi-
zers with adaptive learning rates per parameter have been proposed. 
The adaptive gradient (AdaGrad) optimizer [47] is one of them. It 
updates each individual parameter proportionally to their compo-
nent (and momentum) in the gradient. More formally:
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gt ←GðW tÞ 
rt ← rt -1 þ gt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð22Þ 

where gt is the gradient estimate vector in time-step t, rt is the term 
controlling the per parameter update, and δ is some small quantity 
that is used to avoid the division by zero. Note that rt constitutes of 
the gradient’s element-wise product with itself and of the previous 
term rt-1 accumulating the gradients of the previous terms. 

This algorithm performs very well for sparse data since it 
decreases the learning rate faster for the parameters that are more 
frequent and slower for the infrequent parameters. However, since 
the update accumulates gradients of the previous steps, the updates 
could decrease very fast, blocking the learning process. This limita-
tion is mitigated by extensions of the AdaGrad algorithm as we 
discuss in the next sections. 

3.4.3 RMSProp Another algorithm with adaptive learning rates per parameter is the 
root mean squared propagation (RMSProp) algorithm, proposed 
by Geoffrey Hinton. Despite its popularity and use, this algorithm 
has not been published. RMSProp is an extension of the AdaGrad 
algorithm dealing with the problem of radically diminishing 
learning rates by being less influenced by the first iterations of the 
algorithm. More formally: 

gt ←GðW t Þ 
rt ← ρrt -1 þ ð1- ρÞgt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð23Þ 

where ρ is a hyperparameter that controls the contribution of the 
previous gradients and the current gradient in the current update. 
Note that RMSProp estimates the squared gradients in the same 
way as AdaGrad, but instead of letting that estimate continually 
accumulate over training, we keep a moving average of it, integrat-
ing the momentum. Empirically, RMSProp has been shown to be 
an effective and practical optimization algorithm for deep neural 
networks [24]. 

3.4.4 Adam The effectiveness and advantages of the AdaGrad and RMSProp 
algorithms are combined in the adaptive moment estimation 
(Adam) optimizer [48]. The method computes individual adaptive 
learning rates for different parameters from estimates of the first 
and second moments of the gradients. More formally:



a
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gt ←GðW tÞ 
s t ← ρ1s

t -1 þ ð1- ρ1Þgt 

rt ← ρ2r
t -1 þ ð1- ρ2Þgt gt 

ŝ t ←
s t 

1- ðρ1Þt 

r̂ t ←
rt 

1- ðρ2Þt 
ΔW t ← -

λ 

δþ r̂ t
p ŝ t 

W tþ1 ←W t þ ΔW t 

, ð24Þ 

where st is the gradient with momentum, rt accumulates the 
squared gradients with momentum as in RMSProp, and ŝ t and r̂ t 

are smaller than st and rt , respectively, but they converge toward 
them. Moreover, δ is some small quantity that is used to avoid the 
division by zero, while ρ1 and ρ2 are hyperparameters of the algo-
rithm. The parameters ρ1 and ρ2 control the decay rates of each 
moving average, respectively, and their value is close to 1. Empirical 
results demonstrate that Adam works well in practice and compares 
favorably to other stochastic optimization methods, making it the 
go-to optimizer for deep learning problems. 

3.4.5 Other Optimizers The development of efficient (in terms of speed and stability) 
optimizers is still an active research direction. RAdam [49] is  
variant of Adam, introducing a term to rectify the variance of the 
adaptive learning rate. In particular, RAdam leverages a dynamic 
rectifier to adjust the adaptive momentum of Adam based on the 
variance and effectively provides an automated warm-up custom-
tailored to the current dataset to ensure a solid start to training. 
Moreover, LookAhead [50] was inspired by recent advances in the 
understanding of loss surfaces of deep neural networks and pro-
vides a breakthrough in robust and stable exploration during the 
entirety of the training. Intuitively, the algorithm chooses a search 
direction by looking ahead at the sequence of fast weights gener-
ated by another optimizer. These are only some of the optimizers 
that exist in the literature, and depending on the problem and the 
application, different optimizers could be selected and applied. 

4 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a specific category of 
deep neural networks that employ the convolution operation in 
order to process the input data. Even though the main concept 
dates back to the 1990s and is greatly inspired by neuroscience [51] 
(in particular by the organization of the visual cortex), their wide-
spread use is due to a relatively recent success on the ImageNet 
Large Scale Visual Recognition Challenge of 2012 [27]. In contrast



to the deep fully connected networks that have been already dis-
cussed, CNNs excel in processing data with a spatial or grid-like 
organization (e.g., time series, images, videos, etc.) while at the 
same time decreasing the number of trainable parameters due to 
their weight sharing properties. The rest of this section is first 
introducing the convolution operation and the motivation behind 
using it as a building block/module of neural networks. Then, a 
number of different variations are presented together with exam-
ples of the most important CNN architectures. Lastly, the impor-
tance of the receptive field – a central property of such networks – 
will be discussed. 
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4.1 The Convolution 

Operation 

The convolution operation is defined as the integral of the product 
of the two functions ( f, g)5 after one is reversed and shifted over the 
other function. Formally, we write: 

hðtÞ= 
1

-1 
f ðt - τÞgðτÞ dτ: ð25Þ 

Such an operation can also be denoted with an asterisk (�), so it 
is written as: 

hðtÞ= ðf � gÞðtÞ: ð26Þ 
In essence, the convolution operation shows how one function 

affects the other. This intuition arises from the signal processing 
domain, where it is typically important to know how a signal will be 
affected by a filter. For example, consider a uni-dimensional con-
tinuous signal, like the brain activity of a patient on some electro-
encephalography electrode, and a Gaussian filter. The result of the 
convolution operation between these two functions will output the 
effect of a Gaussian filter on this signal which will, in fact, be a 
smoothed version of the input. 

A different way to think of the convolution operation is that it 
shows how the two functions are related. In other words, it shows 
how similar or dissimilar the two functions are at different relative 
positions. In fact, the convolution operation is very similar to the 
cross-correlation operation, with the subtle difference being that in 
the convolution operation, one of the two functions is inverted. In 
the context of deep learning specifically, the exact differences 
between the two operations can be of secondary concern; however, 
the convolution operation has more properties than correlation, 
such as commutativity. Note also that when the signals are symmet-
ric, both operations will yield the same result. 

In order to deal with discrete and finite signals, we can expand 
the definition of the convolution operation. Specifically, given two

5 Note that f and g have no relationship to their previous definitions in the chapter. In particular, f is not the deep 
learning model.



discrete signals f[k] and g[k], with k∈, the convolution operation 
is defined by:
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0 1 1 1 0 0 0 

0 0 1 1 1 0 0 

0 0 0 1 1 1 0 
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I 

∗ 
1 0 1 
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1 0 1 

K 

= 

1 4 3 4 1 

1 2 4 3 3 

1 2 3 4 1 

1 3 3 1 1 

3 3 1 1 0 
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×0 ×1 ×0 

×1 ×0 ×1 

Fig. 10 A visualization of the discrete convolution operation in 2D 

h½k�= 
n 
f ½k-n�g ½n�: ð27Þ 

Lastly, the convolution operation can be extended for multidi-
mensional signals similarly. For example, we can write the convolu-
tion operation between two discrete and finite two-dimensional 
signals (e.g., I[i, j], K[i, j]) as: 

H ½i, j �= 
m n 

I ½i-m, j -n�K ½m,n�: ð28Þ 

Very often, the first signal will be the input of interest (e.g., a 
large size image), while the second signal will be of relatively small 
size (e.g., a 3 ×3 or 4×4 matrix) and will implement a specific 
operation. The second signal is then called a kernel. In Fig. 10, a  
visualization of the convolution operation is shown in the case of a 
2D discrete signal such as an image and a 3 ×3 kernel. In detail, the 
convolution kernel is shifted over all locations of the input, and an 
element-wise multiplication and a summation are utilized to calcu-
late the convolution output at the corresponding location. Exam-
ples of applications of convolutions to an image are provided in 
Fig. 11. Finally, note that, as in multilayer perceptrons, a convolu-
tion will generally be followed by a non-linear activation function, 
for instance, a ReLU (see Fig. 12 for an example of activation 
applied to a feature map). 

In the following sections of this chapter, any reference to the 
convolution operation will mostly refer to the 2D discrete case. The



extension to the 3D case, which is often encountered in medical 
imaging, is straightforward. 
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1 0 -1  

1 0 -1  

1 0 -1  

1 1 1  

0 0 0

-1 -1 -1 

Original image Vertical edge detection Horizontal edge detection 

Fig. 11 Two examples of convolutions applied to an image. One of the filters acts as a vertical edge detector 
and the other one as a horizontal edge detector. Of course, in CNNs, the filters are learned, not predefined, so 
there is no guarantee that, among the learned filters, there will be a vertical/horizontal case detector, although 
it will often be the case in practice, especially for the first layers of the architecture 

Fig. 12 Example of application of a non-linear activation function (here a ReLU) to an image 

4.2 Properties of the 

Convolution Operation 

In the case of a discrete domain, the convolution operation can be 
performed using a simple matrix multiplication without the need of 
shifting one signal over the other one. This can be essentially 
achieved by utilizing the Toeplitz matrix transformation. The Toe-
plitz transformation creates a sparse matrix with repeated elements 
which, when multiplied with the input signal, produces the convo-
lution result. To illustrate how the convolution operation can be 
implemented as a matrix multiplication, let’s take the example of a 
3× 3 kernel (K) and a 4 ×4 input (I):



K =

k00 k01 k02 0

0 k00 k01 k

0 0 0 0

0 0 0 0

I = i00 i01 i02 i½
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K = 

k00 k01 k02 

k10 k11 k12 

k20 k21 k22 

and I = 

i00 i01 i02 i03 

i10 i11 i12 i13 

i20 i21 i22 i23 

i30 i31 i32 i33 

: 

Then, the convolution operation can be computed as a matrix 
multiplication between the Toepliz transformed kernel: 

k10 k11 k12 0 k20 k21 k22 0 0 0 0 0  

02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0  

k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 

0  k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 

and a reshaped input: 

03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33 �⊤ : 
The produced output will need to be reshaped as a 2×2 matrix 

in order to retrieve the convolution output. This matrix multiplica-
tion implementation is quite illuminating on a few of the most 
important properties of the convolution operation. These proper-
ties are the main motivation behind using such elements in deep 
neural networks. 

By transforming the convolution operation to a matrix multi-
plication operation, it is evident that it can fit in the formalization of 
the linear functions, which has already been presented in Subhead-
ing 2.3. As such, deep neural networks can be designed in a way to 
utilize trainable convolution kernels. In practice, multiple convolu-
tion kernels are learned at each convolutional block, while several of 
these trainable convolutional blocks are stacked on top of each 
other forming deep CNNs. Typically, the output of a convolution 
operation is called a feature map or just features. 

Another important aspect of the convolution operation is that 
it requires much fewer parameters than the fully connected 
MLP-based deep neural networks. As it can also be seen from the 

K matrix, the exact same parameters are shared across all locations. 
Eventually, rather than learning a different set of parameters for the 
different locations of the input, only one set is learned. This is 
referred to as parameter sharing or weight sharing and can greatly 
decrease the amount of memory that is required to store the 
network parameters. An illustration of the process of weight sharing 
across locations, together with the fact that multiple filters (result-
ing in multiple feature maps) are computed for a given layer, is 
illustrated in Fig. 13. The multiple feature maps for a given layer are 
stored using another dimension (see Fig. 14), thus resulting in a 3D



array when the input is a 2D image (and a 4D array when the input 
is a 3D image). 
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Fig. 13 For a given layer, several (usually many) filters are learned, each of them being able to detect a 
specific characteristic in the image, resulting in several feature/filter maps. On the other hand, for a given 
filter, the weights are shared across all the locations of the image 

Fig. 14 The different feature maps for a given layer are arranged along another dimension. The feature maps 
will thus be a 3D array when the input is a 2D image (and a 4D array when the input is a 3D image) 

Convolutional neural networks have proven quite powerful in 
processing data with spatial structure (e.g., images, videos, etc.). 
This is effectively based on the fact that there is a local connectivity 
of the kernel elements while at the same time the same kernel is 
applied at different locations of the input. Such processing grants a 
quite useful property called translation equivariance enabling the



4.3 Functions and

Variants

network to output similar responses at different locations of the 
input. An example of the usefulness of such a property can be 
identified on an image detection task. Specifically, when training a 
network to detect tumors in an MR image of the brain, the model 
should respond similarly regardless of the location where the anom-
aly can be manifested. 
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Lastly, another important property of the convolution opera-
tion is that it decouples the size of the input with the trainable 
parameters. For example, in the case of MLPs, the size of the weight 
matrix is a function of the dimension of the input. Specifically, a 
densely connected layer that maps 256 features to 10 outputs 
would have a size of W∈10 ×256 . On the contrary, in convolu-
tional layers, the number of trainable parameters only depends on 
the kernel size and the number of kernels that a layer has. This 
eventually allows the processing of arbitrarily sized inputs, for 
example, in the case of fully convolutional networks. 

An observant reader might have noticed that the convolution 
operation can change the dimensionality of the produced output. 
In the example visualized in Fig. 10, the image of size 7× 7, when 
convolved with a kernel of size 3× 3, produces a feature map of size 
of 5× 5. Even though dimension changes can be avoided with 
appropriate padding (see Fig. 15 for an illustration of this process) 
prior to the convolution operation, in some cases, it is actually 
desired to reduce the dimensions of the input. Such a decrease 
can be achieved in a number of ways depending on the task at 
hand. In this subsection, some of the most typical functions that 
are utilized in CNNs will be discussed. 

Fig. 15 The padding operation, which involves adding zeros around the image, allows to obtain feature maps 
that are of the same size as the original image
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Max pooling with 
2×2 filter and stride 2 

Input feature map 

Pooled feature map 

Fig. 16 Effect of a pooling operation. Here, a maximum pooling of size 2 × 2 with a stride of 2 

Downsampling Operations (i.e., Pooling Layers) In many 
CNN architectures, there is an extensive use of downsampling 
operations that aim to compress the size of the feature maps and 
decrease the computational burden. Otherwise referred to as pool-
ing layers, these processing operations are aggregating the values of 
their input depending on their design. Some of the most common 
downsampling layers are the maximum pooling, average pooling, or  
global average pooling. In the first two, either the maximum or the 
average value is used as a feature for the output across 
non-overlapping regions of a predefined pooling size. In the case 
of the global average pooling, the spatial dimensions are all repre-
sented with the average value. An example of pooling is provided in 
Fig. 16. 

Strided Convolution The strided convolution refers to the spe-
cific case in which, instead of applying the convolution operation 
for every location using a step size (or stride, s) of 1, different step 
sizes can be considered (Fig. 17). Such an operation will produce a 
convolution output with much fewer elements. Convolutional 
blocks with s>1 can be found on CNN architectures as a way to 
decrease the feature sizes in intermediate layers. 

Atrous or Dilated Convolution Dilated, also called atrous, con-
volution is the convolution with kernels that have been dilated by 
inserting zero holes (à trous in French) between the non-zero 
values of a kernel. In this case, an additional parameter (d) of the 
convolution operation is added, and it is changing the distance 
between the kernel elements. In essence, it is increasing the reach 
of the kernel but keeping the number of trainable parameters the 
same. For example, a dilated convolution with a kernel size of 3 ×3 
and a dilation rate of d=2 would be sparsely arranged on a 
5× 5 grid.
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Fig. 17 Stride operation, here with a stride of 2 

Transposed Convolution In certain circumstances, one needs 
not only to downsample the spatial dimensions of the input but 
also, usually at a later stage of the network, apply an upsample 
operation. The most emblematic case is the task of image segmen-
tation (see Chap. 13), in which a pixel-level classification is 
expected, and therefore, the output of the neural network should 
have the same size as the input. In such cases, several upsampling 
operations are typically applied. The upsampling can be achieved by 
a transposed convolution operation that will eventually increase the 
size of the output. In details, the transposed convolution is per-
formed by dilating the input instead of the kernel before applying a 
convolution operation. In this way, an input of size 5 ×5 will reach a 
size of 10×10 after being dilated with d=2. With proper padding 
and using a kernel of size 3× 3, the output will eventually double 
in size. 

4.4 Receptive Field 

Calculation 

In the context of deep neural networks and specifically CNNs, the 
term receptive field is used to define the proportion of the input 
that produces a specific feature. For example, a CNN that takes an 
image as input and applies only a single convolution operation with 
a kernel size of 3 ×3 would have a receptive field of 3 ×3. This 
means that for each pixel of the first feature map, a 3× 3 region of 
the input would be considered. Now, if another layer were to be 
added, with again 3 ×3 size, then the receptive field of the new 
feature map with respect to the CNN’s input would be 5× 5. In 
other words, the proportion of the input that is used to calculate 
each element of the feature map of the second convolution layer 
increases. 

Calculating the receptive field at different parts of a CNN is 
crucial when trying to understand the inner workings of a specific 
architecture. For instance, a CNN that is designed to take as an 
input an image of size 256× 256 and that requires information



4.5 Classical

Convolutional Neural

Network Architectures

from all parts of it should have a receptive field close to the size of 
the input. The receptive field can be influenced by all the different 
convolution parameters and down-/upsampling operations 
described in the previous section. A comprehensive presentation 
of mathematical derivations for calculating receptive fields for 
CNNs is given in [52]. 
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In the last decades, a variety of convolutional neural network archi-
tectures have been proposed. In this chapter, we cover only a few 
classical architectures for classification and regression. Note that 
classification and regression can usually be performed with the 
same architecture, just changing the loss function (e.g., cross-
entropy for classification, mean squared error for regression). 
Architectures for other tasks can be found in other chapters. 

A Basic CNN Architecture Let us start with the most simple 
CNN, which is actually very close to the original one proposed by 
LeCun et al. [53], sometimes called “LeNet.” Such architecture is 
typically composed of two parts: the first one is based on convolu-
tion operations and learns the features for the image and the second 
part flattens the features and inputs them to a set of fully connected 
layers (in other words, a multilayer perceptron) for performing the 
classification/regression (see illustration in Fig. 18). Note that, of 
course, the whole network is trained end to end: the two parts are 
not trained independently. In the first part, one combines a series of 
blocks composed of a convolution operation (possibly strided 
and/or dilated), a non-linear activation function (for instance, a 
ReLU), and a pooling operation. It is often a good idea to include a 
drawing of the different layers of the chosen architecture.

Input image Convolution 
+ 

Non-linearity 

Pooling Convolution 
+ 

Non-linearity 

Pooling 

Feature learning 

Fully 
connected 

Flatten 

Classification 

Fig. 18 A basic CNN architecture. Classically, it is composed of two main parts. The first one, using 
convolution operations, performs feature learning. The features are then flattened and fed into a set of fully 
connected layers (i.e., a multilayer perceptron), which performs the classification or the regression task



Unfortunately, there is no harmonized format for such a descrip-
tion. An example is provided in Fig. 19.
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Fig. 19 A drawing describing a CNN architecture. Classically, it is composed of two main parts. Here 
16@3 × 3 × 3 means that 16 features with a 3 × 3 × 3 convolution kernel will be computed. For the pooling 
operation, the kernel size is also mentioned (2 × 2). Finally, the stride is systematically indicated 

One of the first CNN architectures that follow this paradigm is 
the AlexNet architecture [54]. AlexNet was one of the first papers 
that empirically indicated that the ReLU activation function makes 
the convergence of CNNs faster compared to other non-linearities 
such as the tanh. Moreover, it was the first architecture that 
achieved a top 5 error rate of 18.2% on the ImageNet dataset, 
outperforming all the other methods on this benchmark by a 
huge margin (about 10%). Prior to AlexNet, best-performing 
methods were using (very sophisticated) pre-extracted features 
and classical machine learning. After this advance, deep learning 
in general and CNNs, in particular, became very active research 
directions to address different computer vision problems. This 
resulted in the introduction of a variety of architectures such as 
VGG16 [55] that reported a 7.3% error rate on ImageNet, intro-
ducing some changes such as the use of smaller kernel filters. 
Following these advances, and even if there were a lot of different 
architectures proposed during that period, one could mention the 
Inception architecture [56], which was one of the deepest archi-
tectures of that period and which further reduced the error rate on 
ImageNet to 6.7%. One of the main characteristics of this architec-
ture was the inception modules, which applied multiple kernel 
filters of different sizes at each level of the architecture. To solve 
the problem of vanishing gradients, the authors introduced auxil-
iary classifiers connected to intermediate layers, expecting to 
encourage discrimination in the lower stages in the classifier, 
increasing the gradient signal that gets propagated back, and 
providing additional regularization. During inference, these classi-
fiers were completely discarded. 

In the following section, some other recent and commonly 
used CNN architectures, especially for medical applications, will 
be presented.
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ResNet One of the most commonly used CNN architectures, even 
today, is the ResNet [57]. ResNet reduced the error rate on Ima-
geNet to 3.6%, while it was the first deep architecture that proposed 
novel concepts on how to gracefully go deeper than a few dozen of 
layers. In particular, the authors introduced a deep residual learning 
framework. The main idea of this residual learning is that instead of 
learning the desired underlying mapping of each network level, 
they learn the residual mapping. More formally, instead of learning 
the H(x) mapping after the convolutional and non-linear layers, 
they fit another mapping of F(x)=H(x)- x on which the original 
mapping is recast into F(x) + x. Feedforward neural networks can 
realize this mapping with “shortcut connections” by simply 
performing identity mapping, and their outputs are added to the 
outputs of the stacked layers. Such identity connections add neither 
additional complexity nor parameters to the network, making such 
architectures extremely powerful. 

Different ResNet architectures have been proposed even in the 
original paper. Even though the depth of the network is increased 
with the additional convolutions, especially for the 152-layer 
ResNet (11.3 billion floating point operations), it still has lower 
complexity (i.e., fewer parameters) than VGG16/VGG19 net-
works. Currently, different layered-size ResNet architectures 
pre-trained on ImageNet are used as backbones for various pro-
blems and applications, including medical imaging. Pre-trained 
ResNet models, even if they are 2D architectures, are commonly 
used on histopathology [58, 59], chest X-ray [60], or even brain 
imaging [61, 62], while the way that such pre-trained networks 
work for medical applications gathered the attention of different 
studies such as [63]. However, it should be noted that networks 
pre-trained on ImageNet are not always efficient for medical imag-
ing tasks, and there are cases where they perform poorly, much 
lower than simpler CNNs trained from scratch [64]. Nevertheless, 
a pre-trained ResNet is very often a good idea to use for a first try in 
a given application. Finally, there was an effort from the medical 
community to train 3D variations of ResNet architectures on a 
large amount of 3D medical data and release the pre-trained mod-
els. Such an effort is presented in [65] in which the authors trained 
and released different 3D ResNet architectures trained on different 
publicly available 3D datasets, including different anatomies such as 
the brain, prostate, liver, heart, and pancreas. 

EfficientNet A more recent CNN architecture that is worth men-
tioning in this section is the recently presented EfficientNet 
[66]. EfficientNets are a family of neural networks that are balanc-
ing all dimensions of the network (width/depth/resolution) auto-
matically. In particular, the authors propose a simple yet effective 
compound scaling method for obtaining these hyperpameters. In 
particular, the main compound coefficient ϕ uniformly scales



network width, depth, and resolution in a principled way: depth = 
αϕ , width = βϕ , resolution = γϕ s.t. α � β2 � γ2 ≈2, α≥1, β≥1, γ ≥1. 
In this formulation, the parameters α, β, γ are constants, and a small 
grid search can determine them. This grid search resulted in eight 
different architectures presented in the original paper. EfficientNet 
is used more and more for medical imaging tasks, as can be seen in 
multiple recent studies [67–69]. 
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5 Autoencoders 

An autoencoder is a type of neural network that can learn a com-
pressed representation (called the latent space representation) of 
the training data. As opposed to the multilayer perceptrons and 
CNNs seen until now that are used for supervised learning, auto-
encoders have widely been used for unsupervised learning, with a 
wide range of applications. The architecture of autoencoders is 
composed of a contracting path (called the encoder), which will 
transform the input into a lower-dimensional representation, and 
an expanding path (called the decoder), which will aim at recon-
structing the input as well as possible from the lower-dimensional 
representation (see Fig. 20). 

The loss is usually the ℓ2 loss and the cost function is then: 

J ðθ,ϕÞ= 
n 

i =1 

jj xðiÞ -DθðEϕðxðiÞÞÞk2 2, ð29Þ 

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the 
decoder (and θ its parameters). Note that, in Fig. 20, Dθ(Eϕ(x)) is 
denoted as x̂. More generally, one can write: 

J ðθ,ϕÞ=x�μxref d x,DθðEϕðxÞÞ , ð30Þ 
where μref is the reference distribution that one is trying to approx-
imate and d is the reconstruction function. When μref is the

Fig. 20 The general principle of a denoising autoencoder. It aims at learning of a 
low-dimensional representation (latent space) z of the training data. The 
learning is done by aiming to provide a faithful reconstruction x̂ of the input 
data x̂



empirical distribution of the training set and d is the ℓ2 norm, 
Eq. 30 is equivalent to Eq. 29.
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Many variations of autoencoders exist, to prevent autoencoders 
from learning the identity function and to improve their ability to 
capture important information and learn richer representations. 
Among them, sparse autoencoders offer an alternative method for 
introducing an information bottleneck without requiring a reduc-
tion in the number of nodes at the hidden features. This is done by 
constructing the loss function such that it penalizes activations 
within a layer. This is achieved by enforcing sparsity in the network 
and encouraging it to learn an encoding and decoding which relies 
only on activating a small number of neurons. This sparsity is 
enforced in two main ways, an ℓ1 regularization on the parameters 
of the network and a Kullback-Leibler divergence, which is a mea-
sure of the difference between two probability distributions. More 
information about sparse autoencoders could be found in 
[70]. Moreover, a quite common type of autoencoders is the 
denoising autoencoders [71], on which the model is tasked with 
reproducing the input as closely as possible while passing through 
some sort of information bottleneck (Fig. 20). This way, the model 
is not able to simply develop a mapping that memorizes the training 
data but rather learns a vector field for mapping the input data 
toward a lower-dimensional manifold. One should note here that 
the vector field is typically well-behaved in the regions where the 
model has observed data during training. In out-of-distribution 
data, the reconstruction error is both large and does not always 
point in the direction of the true distribution. This observation 
makes these networks quite popular for anomaly detection in med-
ical data [72]. Additionally, contractive autoencoders [73] are other 
variants of this type of models, adding the contractive regulariza-
tion loss to the standard autoencoder loss. Intuitively, it forces very 
similar inputs to have a similar encoding, and in particular, it 
requires the derivative of the hidden layer activations to be small 
with respect to small changes in the input. The denoising autoen-
coders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising 
autoencoders make the reconstruction error resistant to finite-
sized input perturbations, while the contractive autoencoders 
make the extracted features resistant to small input perturbations. 

Depending on the input type, different autoencoder architec-
tures could be designed. In particular, when the inputs are images, 
the encoder and the decoder are classically composed of convolu-
tional blocks. The decoder uses, for instance, transposed convolu-
tions to perform the expansion. Finally, the addition of skip 
connections has led to the U-Net [74] architectures that are com-
monly used for segmentation purposes. Segmentation architectures 
will be more extensively described in Chap. 13. Finally, variational 
autoencoders, which rely on a different mathematical formulation,



are not covered in the present chapter and are presented, together 
with other generative models, in Chap. 5. 
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6 Conclusion 

Deep learning is a very fast evolving field, with numerous still 
unanswered theoretical questions. However, deep learning-based 
models have become the state-of-the-art methods for a variety of 
fields and tasks. In this chapter, we presented the basic principles of 
deep learning, covering both perceptrons and convolutional neural 
networks. All architectures were feedforward and recurrent net-
works are covered in Chap. 4. Generative adversarial networks are 
covered in Chap. 5, along with other generative models. Chapter 6 
presents a recent class of deep learning methods, which does not 
use convolutions, and that are called transformers. Finally, through-
out the other chapters of the book, different deep learning archi-
tectures are presented for various types of applications. 
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Chapter 4 

Recurrent Neural Networks (RNNs): Architectures, Training 
Tricks, and Introduction to Influential Research 

Susmita Das, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy, 
and Imon Banerjee 

Abstract 

Recurrent neural networks (RNNs) are neural network architectures with hidden state and which use 
feedback loops to process a sequence of data that ultimately informs the final output. Therefore, RNN 
models can recognize sequential characteristics in the data and help to predict the next likely data point in 
the data sequence. Leveraging the power of sequential data processing, RNN use cases tend to be 
connected to either language models or time-series data analysis. However, multiple popular RNN 
architectures have been introduced in the field, starting from SimpleRNN and LSTM to deep RNN, and 
applied in different experimental settings. In this chapter, we will present six distinct RNN architectures and 
will highlight the pros and cons of each model. Afterward, we will discuss real-life tips and tricks for training 
the RNN models. Finally, we will present four popular language modeling applications of the RNN 
models –text classification, summarization, machine translation, and image-to-text translation– thereby 
demonstrating influential research in the field. 

Key words Recurrent neural network (RNN), LSTM, GRU, Bidirectional RNN (BRNN), Deep 
RNN, Language modeling 

1 Introduction 

Recurrent neural network (RNN) is a specialized neural network 
with feedback connection for processing sequential data or time-
series data in which the output obtained is fed back into it as input 
along with the new input at every time step. The feedback connec-
tion allows the neural network to remember the past data when 
processing the next output. Such processing can be defined as a 
recurring process, and hence the architecture is also known as 
recurring neural network. 

RNN concept was first proposed by Rumelhart et al. [1] in a  
letter published by Nature in 1986 to describe a new learning 
procedure with a self-organizing neural network. Another impor-
tant historical moment for RNNs is the (re-)discovery of Hopfield
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networks which is a special kind of RNN with symmetric connec-
tions where the weight from one node to another and from the 
latter to the former are the same (symmetric). The Hopfield net-
work [2] is fully connected, so every neuron’s output is an input to 
all the other neurons, and updating of nodes happens in a binary 
way (0/1). These types of networks were specifically designed to 
simulate the human memory.
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The other types of RNNs are input-output mapping networks, 
which are used for classification and prediction of sequential data. 
In 1993, Schmidhuber et al. [3] demonstrated credit assignment 
across the equivalent of 1,200 layers in an unfolded RNN and 
revolutionized sequential modeling. In 1997, one of the most 
popular RNN architectures, the long short-term memory 
(LSTM) network which can process long sequences, was proposed. 

In this chapter, we summarize the six most popular contempo-
rary RNN architectures and their variations and highlight the pros 
and cons of each. We also discuss real-life tips and tricks for training 
the RNN models, including various skip connections and gradient 
clipping. Finally, we highlight four popular language modeling 
applications of the RNN models –text classification, summariza-
tion, machine translation, and image-to-text translation– thereby 
demonstrating influential research in each area. 

2 Popular RNN Architectures 

In addition to the SimpleRNN architecture, many variations were 
proposed to address different use cases. In this section, we will 
unwrap some of the popular RNN architectures like LSTM, 
GRU, bidirectional RNN, deep RNN, and attention models and 
discuss their pros and cons. 

2.1 SimpleRNN SimpleRNN architecture, which is also known as SimpleRNN, 
contains a simple neural network with a feedback connection. It 
has the capability to process sequential data of variable length due 
to the parameter sharing which generalizes the model to process 
sequences of variable length. Unlike feedforward neural networks 
which have separate weights for each input feature, RNN shares the 
same weights across several time steps. In RNN, the output of a 
present time step depends on the previous time steps and is 
obtained by the same update rule which is used to obtain the 
previous outputs. As we will see, the RNN can be unfolded into a 
deep computational graph in which the weights are shared across 
time steps. 

The RNN operating on an input sequence x(t) with a time step 
index t ranging from 1 to τ is illustrated in Fig. 1. The time step 
index t may not necessarily refer to the passage of time in the real 
world; it can refer to the position in the sequence. The cycles in the



computational graph represent the impact of the past value of a 
variable on the present time step. The computational graph has a 
repetitive structure that unfolds the recursive computation of the 
RNN which corresponds to a chain of events. It shows the flow of 
the information, forward in the time of computing the outputs and 
losses and backward when computing the gradients. The unfolded 
computational graph is shown in Fig. 1. The equation 
corresponding to the computational graph is h(t) = f(h(t-1) , x(t) ; 
W), where h is the hidden state of the network, x is the input, t is 
the time step, and W denotes the weights of the network connec-
tions comprising of input-to-hidden, hidden-to-hidden, and 
hidden-to-output connection weights. 
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o 

h 

x 

Unfold 
h(....) h(....)h(t-1) h(t) h(t+1) 

x(t-1) x(t) x(t+1) 

o(t-1) o(t) o(t+1) 

Fig. 1 (Left) Circuit diagram for SimpleRNN with input x being incorporated into hidden state h with a feedback 
connection and an output o. (Right) The same SimpleRNN network shown as an unfolded computational graph 
with nodes at every time step 

2.1.1 Training 

Fundamentals 

Training is performed by gradient computation of the loss function 
with respect to the parameters involved in forward propagation 
from left to right of the unrolled graph followed by back-
propagation moving from right to left through the graph. Such 
gradient computation is an expensive operation as the runtime 
cannot be reduced by parallelism because the forward propagation 
is sequential in nature. The states computed in the forward pass are 
stored until they are reused in the back-propagation. The back-
propagation algorithm applied to RNN is known as back-propa-
gation through time (BPTT) [4]. 

The following computational operations are performed in 
RNN during the forward propagation to calculate the output and 
the loss. 

aðtÞ = b þ Whðt -1Þ þ UxðtÞ 

hðtÞ = tanhðaðtÞÞ 
oðtÞ = c þ VhðtÞ 

ŷðtÞ = σðoðtÞÞ
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where b and c are the biases and U, V , and W are the weight matrix 
for input-to-hidden connections, hidden-to-output connection, 
and hidden-to-hidden connections respectively, and σ is a sigmoid 
function. The total loss for a sequence of x values and its 
corresponding y values is obtained by summing up the losses over 
all time steps. 

τ 

t =1 

LðtÞ =Lððxð1Þ, . . . . . . , xðτÞÞ, ðyð1Þ, . . . . . . , yðτÞÞÞ 
To minimize the loss, the gradient of the loss function is 

calculated with respect to the parameters associated with it. The 
parameters associated with the nodes of the computational graph 
are U, V , W, b, c, x(t) , h(t) , o(t) , and L(t) . The output o(t) is the 
argument to the softmax to obtain the vector ŷ of probabilities over 
the output. During back-propagation, the gradient for each node is 
calculated recursively starting with the nodes preceding the final 
loss. It is then iterated backward in time to back-propagate gradi-
ents through time. tanh is a popular choice for activation function 
as it tends to avoid vanishing gradient problem by retaining 
non-zero value longer through the back-propagation process. 

2.1.2 SimpleRNN 

Architecture Variations 

Based on Parameter 

Sharing 

Variations of SimpleRNN can be designed depending upon the 
style of graph unrolling and parameter sharing [5]:

• Connection between hidden units. The RNN produces outputs at 
every time step, and the parameters are passed between hidden-
to-hidden units (Fig. 2a). This corresponds to the standard 
SimpleRNN presented above and is widely used.

• Connection between outputs to hidden units. The RNN produces 
outputs at every time step, and the parameters are passed from 
an output at a particular time step to the hidden unit at the next 
time step (Fig. 2b).

• Sequential input to single output. The RNN produces a single 
output at the end after reading the entire sequence and has 
connections between the hidden units at every time step 
(Fig. 2c). 

2.1.3 SimpleRNN 

Architecture Variations 

Based on Inputs and 

Outputs 

Different variations also exist depending on the number of inputs 
and outputs:

• One-to-one: The traditional RNN has one-to-one input to out-
put mapping at each time step t as shown in Fig. 3a.

• One-to-many: One-to-many RNN has one input at a time step 
for which it generates a sequence of outputs at consecutive time 
steps as shown in Fig. 3b. This type of RNN architecture is often 
used for image captioning.
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h(....) h(....)h(t-1) h(t) h(t+1) 

x(t-1) x(t) x(t+1) 
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o 

(a) (b) 

(c) 

Fig. 2 Types of SimpleRNN architectures based on parameter sharing: (a) SimpleRNN with connections 
between hidden units, (b) SimpleRNN with connections from output to hidden units, and (c) SimpleRNN with 
connections between hidden units that read the entire sequence and produce a single output

• Many-to-one: Many-to-one RNN has many inputs and one out-
put, at each time step as shown in Fig. 3c. This type of RNN 
architecture is used for text classification.

• Many-to-many: Many-to-many RNN architecture can be 
designed in two ways. First, the input is taken by the RNN and 
the corresponding output is given at the same time step as 
illustrated in Fig. 3d. This type of RNN is used for named entity 
recognition. Second, the input is taken by the RNN at each time 
step and the output is given by the RNN at the next time step 
depending upon all the input sequence as illustrated in 
Fig. 3e. Popular uses of this type of RNN architecture are in 
machine translation. 

2.1.4 Challenges of 

Long-Term Dependencies 

in SimpleRNN 

SimpleRNN works well with the short-term dependencies, but 
when it comes to long-term dependencies, it fails to remember 
the long-term information. This problem arises due to the vanish-
ing gradient or exploding gradient [6]. When the gradients are 
propagated over many stages, it tends to vanish most of the times 
or sometimes explodes. The difficulty arises due to the exponen-
tially smaller weight assigned to the long-term interactions com-
pared to the short-term interactions. It takes very long time to learn 
the long-term dependencies as the signals from these dependencies 
tend to be hidden by the small fluctuations arising from the short-
term dependencies.
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Fig. 3 (a) One-to-one RNN. (b) One-to-many RNN. (c) Many-to-one RNN. (d) Many-to-many RNN. (e) Many-to-
many RNN. x represents the input and o represents the output 

2.2 Long Short-Term 

Memory (LSTM) 

To address this long-term dependency problem, gated RNNs were 
proposed. Long short-term memory (LSTM) is a type of gated 
RNN which was proposed in 1997 [7]. Due to the property of 
remembering the long-term dependencies, LSTM has been a suc-
cessful model in many applications like speech recognition, 
machine translation, image captioning, etc. LSTM has an inner 
self loop in addition to the outer recurrence of the RNN. The 
gradients in the inner loop can flow for longer duration and are 
conditioned on the context rather than being fixed. In each cell, the 
input and output is the same as that of ordinary RNN but has a 
system of gating units to control the flow of information. Figure 4 
shows the flow of the information in LSTM with its gating units. 

There are three gates in the LSTM—the external input gate, 
the forget gate, and the output gate. The forget gate at time t and 
state si (f 

ðtÞ 
i ) decides which information should be removed from 

the cell state. The gate controls the self loop by setting the weight 
between 0 and 1 via a sigmoid function σ. When the value is near to 
1, the information of the past is retained, and if the value is near to



0, the information is discarded. After the forget gate, the internal 
state s

ðtÞ 
i is updated. Computation for external input gate (gt 

i ) is  
similar to that of forget gate with a sigmoid function to obtain a 
value between 0 and 1 but with its own parameters. The output 
gate of the LSTM also has a sigmoid unit which determines 
whether to output the value or to shut off the value ht i via the 
output gate qt i . 
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Fig. 4 Long short-term memory with cell state ct , hidden state ht , input xt , and output ot 
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xt is the input vector at time t, h(t) is the hidden layer vector, bi 
denote the biases, and Ui and Wi represent the input weights and 
the recurrent weights, respectively.
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Fig. 5 Gated recurrent neural network (GRU) with input xt and hidden unit ht 

2.3 Gated Recurrent 

Unit (GRU) 

In LSTM, the computation time is large as there are a lot of 
parameters involved during back-propagation. To reduce the com-
putation time, gated recurrent unit (GRU) was proposed in the 
year 2014 by Cho et al. with less gates than in LSTM [8]. The 
functionality of the GRU is similar to that of LSTM but with a 
modified architecture. The representation diagram for GRU can be 
found in Fig. 5. Like LSTM, GRU also solves the vanishing and 
exploding gradient problem by capturing the long-term dependen-
cies with the help of gating units. There are two gates in GRU, the 
reset gate and the update gate. The reset gate determines how 
much of the past information it needs to forget, and the update 
gate determines how much of the past information it needs to carry 
forward. 

The computation at the reset gate (rt i) and the update gate (u
t 
i), 

as well as hidden state (ht i) and the at time t, can be represented by the 
following: 

r
ðtÞ 
i = σðbr i þ 

j 

U r 
i,jx

ðtÞ 
j þ 

j 

W r 
i,jh

ðtÞ 
j Þ 

u
ðtÞ 
i = σðbu i þ 

j 

Uu 
i,jx

ðtÞ 
j þ 

j 

W u 
i,jh

ðtÞ 
j Þ 

h
ðtÞ 
i =u

ðt -1Þ 
i h

ðt -1Þ 
i þ ð1-uiÞ 

× σðbi þ 
j 

U i,jx
ðt -1Þ 
j þ 

j 

W i,j r
ðt -1Þ 
j h

ðt -1Þ 
j Þ 

where bi denotes biases and Ui and Wi denote initial and recurrent 
weights, respectively.
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When the reset gate value is close to 0, the previous hidden 
state value is discarded and reset with the present value. This 
enables the hidden state to forget the past information that is 
irrelevant for future. The update gate determines how much of 
the relevant past information to carry forward for future. 

The property of the update gate to carry forward the past 
information allows it to remember the long-term dependencies. 
For short-term dependencies, the reset gate will be frequently 
active to reset with current values and remove the previous ones, 
while, for long-term dependencies, the update gate will be often 
active for carrying forward the previous information. 

2.3.1 Advantage of LSTM 

and GRU over SimpleRNN 

The LSTM and GRU can handle the vanishing gradient issue of 
SimpleRNN with the help of gating units. The LSTM and GRU 
have the additive feature that they retain the past information by 
adding the relevant past information to the present state. This 
additive property makes it possible to remember a specific feature 
in the input for longer time. In SimpleRNN, the past information 
loses its relevance when new input is seen. In LSTM and GRU, any 
important feature is not overwritten by new information. Instead, it 
is added along with the new information. 

2.3.2 Differences 

Between LSTM and GRU 

There are a few differences between LSTM and GRU in terms of 
gating mechanism which in turn result in differences observed in 
the content generated. In LSTM unit, the amount of the memory 
content to be used by other units of the network is regulated by the 
output gate, whereas in GRU, the full content that is generated is 
exposed to other units. Another difference is that the LSTM com-
putes the new memory content without controlling the amount of 
previous state information flowing. Instead, it controls the new 
memory content that is to be added to the network. On the other 
hand, the GRU controls the flow of the past information when 
computing the new candidate without controlling the candidate 
activation. 

2.4 Bidirectional 

RNN (BRNN) 

In SimpleRNN, the output of a state at time t only depends on the 
information of the past x(1) , .. . ., x(t-1) and the present input x(t) . 
However, for many sequence-to-sequence applications, the present 
state output depends on the whole sequence information. For 
example, in language translation, the correct interpretation of the 
current word depends on the past words as well as the next words. 
To overcome this limitation of SimpleRNN, bidirectional RNN 
(BRNN) was proposed by Schuster and Paliwal in the year 
1997 [9]. 

Bidirectional RNNs combine an RNN which moves forward 
with time, beginning from the start of the sequence, with another 
RNN that moves backward through time, beginning from the end 
of the sequence. Figure 6 illustrates a bidirectional RNN with h(t)



the state of the sub-RNN that moves forward through time and g(t) 

the state of the sub-RNN that moves backward with time. The 
output of the sub-RNN that moves forward is not connected to 
the inputs of sub-RNN that moves backward and vice versa. The 
output o(t) depends on both past and future sequence data but is 
sensitive to the input values around t. 
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Fig. 6 Bidirectional RNN with forward sub-RNN having ht hidden state and 
backward sub-RNN having gt hidden state 

2.5 Deep RNN Deep models are more efficient than their shallow counterparts, 
and, with the same hypothesis, deep RNN was proposed by 
Pascanu et al. in 2014 [10]. In “shallow” RNN, there are generally 
three blocks for computation of parameters: the input state, the 
hidden state, and the output state. These blocks are associated with 
a single weight matrix corresponding to a shallow transformation 
which can be represented by a single-layer multilayer perceptron 
(MLP). In deep RNN, the state of the RNN can be decomposed 
into multiple layers. Figure 7 shows in general a deep RNN with 
multiple deep MLPs. However, different types of depth in an RNN 
can be considered separately like input-to-hidden, hidden-to-
hidden, and hidden-to-output layer. The lower layer in the hierar-
chy can transform the input into an appropriate representation for 
higher levels of hidden state. In hidden-to-hidden state, it can be 
constructed with a previous hidden state and a new input. This 
introduces additional non-linearity in the architecture which 
becomes easier to quickly adapt changing modes of the input. By 
introducing deep MLP in hidden-to-output state makes the layer 
compact which helps in summarizing the previous inputs and helps 
in predicting the output easily. Due to the deep MLP in the RNN 
architecture, the learning becomes slow and optimization is 
difficult.
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Fig. 7 Deep recurrent neural network 

2.6 Encoder– 
Decoder 

Encoder–decoder architecture was proposed by Cho et al. (2014) 
[8] to map a variable length input sequence to a variable length 
output sequence. Therefore, it is also known as sequence-to-
sequence architecture. Before encoder–decoder was introduced, 
there were RNN models which were used for sequence-to-
sequence applications, but they had limitations as the input and 
output sequences had to have the same length. Encoder–decoder 
was used for addressing variable length sequence-to-sequence pro-
blems such as machine translation or speech recognition where the 
input sequence and output sequence lengths may not be the same 
in most of the cases. Encoder and decoder are both RNNs where 
the encoder RNN encodes the whole input X = xð1Þ, . . . ::, xðnxÞ 

into a context vector c and outputs the context vector c which is 
fed as an input to the decoder RNN. The decoder RNN generates 
an output sequence Y = yð1Þ, . . . ::, yðny Þ. In the encoder–decoder 
model, the input length xðnxÞ and the output length yðny Þ can be 
different unlike the previous RNN models. The number of hidden 
layers in encoder and decoder are not necessarily be the same. The 
limitation of this architecture is that it fails to properly summarize a



long sequence if the context vector is too small. This problem was 
solved by Bahdanau et al. (2015) [11] by making the context vector 
a variable length sequence with added attention mechanism. 
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2.7 Attention Models 

(Transformers) 

Due to the sequential learning mechanism, the context vector 
generated by the encoder (see Subheading 2.6) is more focused 
on the later part of the sequence than on the earlier part. An 
extension to the encoder–decoder model was proposed by 
Bahdanau et al. [11] for machine translation where the model 
generates each word based on the most relevant information in 
the source sentence and previously generated words. Unlike the 
previous encoder–decoder model where the whole input sequence 
is encoded into a single context vector, this extended encoder– 
decoder model learns to give attention to the relevant words pres-
ent in the source sequence regardless of the position in the 
sequence by encoding the input sequence into sequences of vectors 
and chooses selectively while decoding each word. This mechanism 
of paying attention to the relevant information that are related to 
each word is known as attention mechanism. 

Although this model solves the problem for fixed-length con-
text vectors, the sequential decoding problem still persists. To 
decode the sequence in less time by introducing parallelism, self-
attention was proposed by Google Brain team, Ashish Vaswani et al. 
[12]. They invented the Transformer model which is based on self-
attention mechanism and was designed to reduce the computation 
time. It computes the representation of a sequence that relates to 
different positions of the same sequence. The self-attention mech-
anism was embedded in the Transformer model. The Transformer 
model has a stack of six identical layers each for encoding the 
sequence and decoding the sequence as illustrated in Fig. 8. Each 
layer of the encoder and decoder has sub-layers comprising multi-
head self-attention mechanisms and position-wise fully connected 
layers. There is a residual connection around the two sub-layers 
followed by normalization. In addition to the two sub-layers, there 
is a third layer in the decoder that performs multi-head attention 
over the output of the encoder stack. In the decoder, the multi-
head attention is masked to prevent the position from attending the 
later part of the sequence. This ensures that the prediction for a 
position p depends only on the positions less than p in the sequence. 
The attention function can be described as mapping a query and 
key-value pairs to an output. All the parameters involved in the 
computation are all vectors. To calculate the output, scalar 
dot product operation is performed on the query and all keys, 
and divide each key by dk 

p
(where dk is the dimension on 

the keys). Finally, the softmax is applied to it to obtain the 
weights on the values. The computation of attention function 
can be represented by the following equation:



AttentionðQ ,K ,V Þ= sof  tmaxð QKT 

dk 

p ÞV , where Q, K, and V are 

all matrices corresponding to query, keys, and values, respectively. A 
more in-depth coverage of Transformers is provided in Chap. 6. 
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Fig. 8 Transformer with six layers of encoders and six layers of decoders 

3 Tips and Tricks for RNN Training 

As previously stated, the vanishing gradient and exploding gradient 
problems are well-known concerns when it comes to properly 
training RNN models [13, 14]. The fundamental challenge arises 
from the fact that RNNs can be naturally unfolded, allowing their 
recurrent connections to perform feedforward calculations, which 
result in an RNN with the same number of layers as the number of 
elements in the sequence. Two major issues arise as a result:
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• Gradient vanishing problem. It becomes difficult to effectively 
learn long-term dependencies in sequences due to the gradient 
vanishing problem [6]. As a result, a prospective model predic-
tion will be essentially unaffected by earlier layers.

• Exploding gradient problem. Adding more layers to the network 
amplifies the effect of large gradients, increasing the risk of a 
learning derailment since significant changes to the network 
weights can be performed at each step, potentially causing the 
gradients to blow out exponentially. In fact, weights that are 
closer to the input layer will obtain larger updates than weights 
that are closer to the output layer, and the network may become 
unable to learn correlations between temporally distant events. 

To overcome these limitations, we need to create solutions so 
that the RNN model can work on various time scales, with some 
sections operating on fine-grained time scales and handling small 
details and others operating on coarse time scales and efficiently 
transferring information from the distant past to the present. In this 
section, we discuss several popular strategies to tackle these issues. 

3.1 Skip Connection The practice of skipping layers effectively simplifies the network by 
using fewer direct connected layers in the initial training stages. 
This speeds learning by reducing the impact of vanishing gradients, 
as there are fewer layers to propagate through. As the network 
learns the feature space during the training phase, it gradually 
restores the skipped layers. Lin et al. [15] proposed the use of 
such skip connections, which follows from the idea of incorporating 
delays in feedforward neural networks from Lang et al. [16]. Con-
ceptually, skip connections are a standard module in deep architec-
tures and are commonly referred to as residual networks, as 
described by He et al. [17]. They are responsible to skip layers in 
the neural network and feeding the output of one layer as the input 
to the next layers. This technique is used to allow gradients to flow 
through a network directly, without passing through non-linear 
activation functions, and it has been empirically proven that these 
additional steps are often beneficial for the model convergence 
[17]. Skip connections can be used through the non-sequential 
layer in two fundamental ways in neural networks:

• Additive Skip Connections. In this type of design, the data 
from early layers is transported to deeper layers via matrix addi-
tion, causing back-propagation to be done via addition 
(Fig. 9b). This procedure does not require any additional para-
meters because the output from the previous layer is added to 
the layer ahead. One of the most common techniques used in 
this type of architecture is to stack the skip residual blocks 
together and use an identity function to preserve the gradient 
[18]. The core concept is to use a vector addition to back-
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Fig. 9 Skip connection residual architectures: (a) concatenate output of previous layer and skip connection; (b) 
sum of the output of previous layer and skip connection 

propagate through the identity function. The gradient is then 
simply multiplied by one, and its value is preserved in the earlier 
layers.

• Concatenative Skip Connections. Another way for establish-
ing skip connections is to concatenate previous feature maps. 
The aim of concatenation is to leverage characteristics acquired 
in prior layers to deeper layers. In addition, concatenating skip 
connections provides an alternate strategy for assuring feature 
reusability of the same dimensionality from prior layers without 
the need to learn duplicate maps. Figure 9(a) illustrates a dia-
gram example of how the architecture looks like. The primary 
concept of the architecture is to allow subsequent layers to reuse 
intermediary representations, allowing them to maintain more 
information and enhance long-term dependency performance. 

3.2 Leaky Units One of the major challenges when training RNNs is capturing 
long-term dependencies and efficiently transferring information 
from distant past to present. An effective method to obtain coarse 
time scales is to employ leaky units [19], which are hidden units 
with linear self-connections and a weight on the connections that is 
close to one. In a leaky RNN, hidden units are able to access values 
from prior states and can be utilized to obtain temporal representa-
tions. Formula ht= α ht-1 + (1- α) ht expresses the state update



rule of a leaky unit, where α∈ (0, 1) is an example of a linear self-
connection from ht-1 to ht, and it is a parameter to be learned 
during the training stage. Essentially, α controls the information 
flow in the state. When α is near one, the state is almost unchanged, 
and information about the past is retained for a long time, and 
when α is close to zero, the information about the past is rapidly 
discarded, and the state is largely replaced by a new state ht. 

132 Susmita Das et al.

3.3 Clipping 

Gradients 

Gradient clipping is a technique that tries to overcome the explod-
ing gradient problem in RNN training, by constraining gradient 
norms (element-wise) to a predetermined minimum or maximum 
threshold value since the exploding gradients are clipped and the 
optimization begins to converge to the minimum point. Gradient 
clipping can be used in two fundamental ways:

• Clipping-by-value. Using this technique, we define a minimum 
clip value and a maximum clip value. If a gradient exceeds the 
threshold value, we clip the gradient to the maximum threshold. 
If the gradient is less than the lower limit of the threshold, we 
clip the gradient to the minimum threshold.

• Clipping-by-norm. The idea behind this technique is very 
similar to clipping-by-value. The key difference is that we clip 
the gradients by multiplying the unit vector of the gradients with 
the threshold. Gradient descent will be able to behave properly 
even if the loss landscape of the model is irregular since the 
weight updates will also be rescaled. This significantly reduces 
the likelihood of an overflow or underflow of the model. 

4 RNN Applications in Language Modeling 

Language modeling is the process of learning meaningful vector 
representations for language or text using sequence information 
and is generally trained to predict the next token or word given the 
input sequence of tokens or words. Bengio et al. [20] proposed a 
framework for neural network-based language modeling. RNN 
architecture is particularly suited to processing free-flowing natural 
language due to its sequential nature. As described by Mikolov et al. 
[21], RNNs can learn to compress a whole sequence as opposed to 
feedforward neural networks that compress only a single input 
item. Language modeling can be an independent task or be part 
of a language processing pipeline with downstream prediction or 
classification task. In this section, we will discuss applications of 
RNN for various language processing tasks.
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4.1 Text 

Classification 

Many interesting real-world applications concerning language data 
can be modeled as text classification. Examples include sentiment 
classification, topic or author identification, and spam detection 
with applications ranging from marketing to query-answering 
[22, 23]. In general, models for text classification include some 
RNN layers to process sequential input text [22, 23]. The embed-
ding of the input learnt by these layers is later processed through 
varying classification layers to predict the final class label. Many-to-
one RNN architectures are often employed for text classification. 

As a recent technical innovation, RNNs have been combined 
with convolutional neural networks (CNNs), thus combining the 
strengths of two architectures, to process textual data for classifica-
tion tasks. LSTMs are popular RNN architecture for processing 
textual data because of their ability to track patterns over long 
sequences, while CNNs have the ability to learn spatial patterns 
from data with two or more dimensions. Convolutional LSTM 
(C-LSTM) combines these two architectures to form a powerful 
architecture that can learn local phrase-level patterns as well as 
global sentence-level patterns [24]. While CNN can learn local 
and position-invariant features and RNN is good at learning global 
patterns, another variation of RNN has been proposed to introduce 
position-invariant local feature learning into RNN. This variation is 
called disconnected RNN (DRNN) [25]. Information flow 
between tokens/words at the hidden layer is limited by a hyper-
parameter called window size, allowing the developer to choose the 
width of the context to be considered while processing text. This 
architecture has shown better performance than both RNN and 
CNN on several text classification tasks [25]. 

4.2 Text 

Summarization 

Text summarization approaches can be broadly categorized into 
(1) extractive and (2) abstractive summarization. The first approach 
relies on selection or extraction of sentences that will be part of the 
summary, while the latter generates new text to build a summary. 
RNN architectures have been used for both types of summarization 
techniques. 

4.2.1 Extractive Text 

Summarization 

Extractive summarization frameworks use many-to-one RNN as a 
classifier to distinguish sentences that should be part of the sum-
mary. For example, a two-layer RNN architecture is presented in 
[26] where one layer processes words in one sentence and the other 
layer processes many sentences as a sequence. The model generates 
sentence-level labels indicating whether the sentence should be part 
of the summary or not, thus producing an extractive summary of 
the input document. Xu et al. have presented a more sophisticated 
extractive summarization model that not only extracts sentences to 
be part of the summary but also proposes possible syntactic com-
pressions for those sentences [27]. Their proposed architecture is a



combination of CNN and bidirectional LSTM, while a neural 
classifier evaluates possible syntactic compressions in the context 
of the sentence as well as the broader context of the document. 
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4.2.2 Abstractive Text 

Summarization 

Abstractive summarization frameworks expect the RNN to process 
input text and generate a new sequence of text that is the summary 
of input text, effectively using many-to-many RNN as a text gener-
ation model. While it is relatively straightforward for extractive 
summarizers to achieve basic grammatical correctness as correct 
sentences are picked from the document to generate a summary, 
it has been a major challenge for abstractive summarizers. Gram-
matical correctness depends on the quality of the text generation 
module. Grammatical correctness of abstractive text summarizers 
has improved recently due to developments in contextual text 
processing, language modeling, as well as availability of computa-
tional power to process large amounts of text. 

Handling of rare tokens/words is a major concern for modern 
abstractive summarizers. For example, proper nouns such as specific 
names of people and places occur less frequently in the text; how-
ever, generated summaries are incomplete and incomprehensible if 
such tokens are ignored. Nallapati et al. proposed a novel solution 
composed of GRU-RNN layers with attention mechanism by 
including switching decoder in their abstractive summarizer archi-
tecture [28] where the text generator module has a switch which 
can enable the module to choose between two options: (1) generate 
a word from the vocabulary and (2) point to one of the words in the 
input text. Their model is capable of handling rare tokens by 
pointing to their position in the original text. They also employed 
large vocabulary trick which limits the vocabulary of the generator 
module to tokens of the source text only and then adds frequent 
tokens to the vocabulary set until its size reaches a certain thresh-
old. This trick is useful in limiting the size of the network. 

Summaries have latent structural information, i.e., they convey 
information following certain linguistic structures such as “What-
Happended” or “Who-Action-What.” Li et al. presented a recur-
rent generative decoder based on variational auto-encoder (VAE) 
[29]. VAE is a generative model that takes into account latent 
variables, but is not inherently sequential in nature. With the his-
torical dependencies in latent space, it can be transformed into a 
sequential model where generative output is taking into account 
history of latent variables, hence producing a summary following 
latent structures. 

4.3 Machine 

Translation 

Neural machine translation (NMT) models are trained to process 
input sequence of text and generate an output sequence which is 
the translation of the input sequence in another language. As 
mentioned in Subheading 2.6, machine translation is a classic 
example of conversion of one sequence to another using encoder–



decoder architecture where lengths of both sequences may be 
different. In 2014, many-to-many RNN-based encoder–decoder 
architecture was proposed where one RNN encodes the input 
sequence of text to a fixed-length vector representation, while 
another RNN decodes the fixed-length vector to the target trans-
lated sequence [30]. Both RNNs are jointly trained to maximize 
the conditional probability of the target sequence given the input 
sequence. Later, attention-based modeling was added to vanilla 
encoder–decoder architecture for machine translation. Luong 
et al. discussed two types of attention mechanism in their work 
on NMT: (i) global and (ii) local attention [31]. In global atten-
tion, a global context vector is estimated by learning variable length 
alignment and attention scores for all source words. In local atten-
tion, the model predicts a single aligned position for the current 
target word and then computes a local context vector from atten-
tion predicted for source words within a small window of the 
aligned position. Their experiments show significant improvement 
in translation performance over models without attention. Local 
attention mechanism has the advantage of being computationally 
less expensive than global attention mechanism. 
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4.4 Image-to-Text 

Translation 

Image-to-text translation models are expected to convert visual 
data (i.e., images) into textual data (i.e., words). In general, the 
image input is passed through some convolutional layers to gener-
ate a dense representation of the visual data. Then, the embedded 
representation of the visual data is fed to an RNN to generate a 
sequence of text. Many-to-one RNN architectures are popular for 
this task. 

In 2015, Karpathy et al. [32] presented their influential work 
on training region convolutional neural network (RCNN) to gen-
erate representation vectors for image regions and bidirectional 
RNN to generate representation vectors for corresponding caption 
in semantic alignment with each other. They also proposed novel 
multi-modal RNN to generate a caption that is semantically aligned 
with the input image. Image regions were selected based on the 
ranked output of an object detection CNN. 

Xu et al. proposed an attention-based framework to generate 
image caption that was inspired by machine translation models 
[33]. They used image representations generated by lower convo-
lutional layers from a CNN model rather than the last fully 
connected layer and used an LSTM to generate words based on 
hidden state, last generated word, and context vector. They defined 
the context vector as a dynamic representation of the image gener-
ated by applying an attention mechanism on image representation 
vectors from lower convolutional layers of CNN. Attention mech-
anism allowed the model to dynamically select the region to focus 
on while generating a word for image caption. An additional 
advantage of their approach was intuitive visualization of the



model’s focus for generation of each word. Their visualization 
experiments showed that their model was focused on the right 
part of the image while generating each important word. 
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Such influential works in the field of automatic image caption-
ing were based on image representations generated by CNNs 
designed for object detection. Some recently proposed captioning 
models have sought to change this trend. Biten et al. proposed a 
captioning model for images used to illustrate new articles 
[34]. Their caption generation LSTM takes into account both 
CNN-generated image features and semantic embeddings to the 
text of corresponding new articles to generate a template of a 
caption. This template contains spaces for the names of entities 
like organizations and places. These places are filled in using atten-
tion mechanism on the text of the corresponding article. 

4.5 ChatBot for 

Mental Health and 

Autism Spectrum 

Disorder 

ChatBots are automatic conversation tools that have gained vast 
popularity in e-commerce and as digital personal assistants like 
Apple’s Siri and Amazon’s Alexa. ChatBots represent an ideal appli-
cation for RNN models as conversations with ChatBots represent 
sequential data. Questions and answers in a conversation should be 
based on past iterations of questions and answers in that conversa-
tion as well as patterns of sequences learned from other conversa-
tions in the dataset. 

Recently, ChatBots have found application in screening and 
intervention for mental health disorders such as autism spectrum 
disorder (ASD). Zhong et al. designed a Chinese-language Chat-
Bot using bidirectional LSTM in sequence-to-sequence framework 
which showed great potential for conversation-mediated interven-
tion for children with ASD [35]. They used 400,000 selected 
sentences from chatting histories involving children in many 
cases. Rakib et al. developed similar sequence-to-sequence model 
based on Bi-LSTM to design a ChatBot to respond empathetically 
to mentally ill patients [36]. A detailed survey of medical ChatBots 
is presented in [37]. This survey includes references to ChatBots 
built using NLP techniques, knowledge graphs, as well as modern 
RNN for a variety of applications including diagnosis, searching 
through medical databases, dialog with patients, etc. 

5 Conclusion 

Due to the sequential nature of their architecture, RNNs are 
applied for ordinal or temporal problems, such as language transla-
tion, text summarization, and image captioning, and are 
incorporated into popular applications such as Siri, voice search, 
and Google Translate. In addition, they are also often used to 
analyze longitudinal data in medical applications (i.e., cases where 
repeated observations are available at different time points for each



patient of a dataset). While research in RNN is still an evolving area 
and new architectures are being proposed, this chapter summarizes 
fundamentals of RNN including different traditional architectures, 
training strategies, and influential work. It may serve as a stepping 
stone for exploring sequential models using RNN and provides 
reference pointers. 
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Bahdanau D, Bougares F, Schwenk H, Bengio 
Y (2014) Learning phrase representations 
using RNN encoder-decoder for statistical 
machine translation. In: The 2014 conference 
on empirical methods in natural language pro-
cessing (EMNLP) 

31. Luong MT, Pham H, Manning CD (2015) 
Effective approaches to attention-based neural 
machine translation. Preprint. 
arXiv:150804025 

32. Karpathy A, Fei-Fei L (2015) Deep visual-
semantic alignments for generating image 
descriptions. In: Proceedings of the IEEE con-
ference on computer vision and pattern recog-
nition, pp 3128–3137 

33. Xu K, Ba J, Kiros R, Cho K, Courville A, 
Salakhudinov R, Zemel R, Bengio Y (2015) 
Show, attend and tell: neural image caption 
generation with visual attention. In: Interna-
tional conference on machine learning, PMLR, 
pp 2048–2057 

34. Biten AF, Gomez L, Rusinol M, Karatzas D 
(2019) Good news, everyone! context driven 
entity-aware captioning for news images. In: 
Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, pp 
12466–12475 

35. Zhong H, Li X, Zhang B, Zhang J (2020) A 
general chinese chatbot based on deep learning 
and its’ application for children with ASD. Int J 
Mach Learn Comput 10:519–526. https:// 
doi.org/10.18178/ijmlc.2020.10.4.967 

36. Rakib AB, Rumky EA, Ashraf AJ, Hillas MM, 
Rahman MA (2021) Mental healthcare chatbot 
using sequence-to-sequence learning and 
bilstm. In: Brain informatics, springer interna-
tional publishing, pp 378–387 

37. Tjiptomongsoguno ARW, Chen A, Sanyoto 
HM, Irwansyah E, Kanigoro B (2020) Medical 
chatbot techniques: a review. In: Silhavy R, 
Silhavy P, Prokopova Z (eds) Software engi-
neering perspectives in intelligent systems. 
Springer International Publishing, Cham, pp 
346–356

https://doi.org/10.18178/ijmlc.2020.10.4.967
https://doi.org/10.18178/ijmlc.2020.10.4.967
http://creativecommons.org/licenses/by/4.0/


Chapter 5 

Generative Adversarial Networks and Other Generative 
Models 

Markus Wenzel 

Abstract 

Generative networks are fundamentally different in their aim and methods compared to CNNs for classifi-
cation, segmentation, or object detection. They have initially been meant not to be an image analysis tool 
but to produce naturally looking images. The adversarial training paradigm has been proposed to stabilize 
generative methods and has proven to be highly successful—though by no means from the first attempt. 
This chapter gives a basic introduction into the motivation for generative adversarial networks (GANs) 

and traces the path of their success by abstracting the basic task and working mechanism and deriving the 
difficulty of early practical approaches. Methods for a more stable training will be shown, as well as typical 
signs for poor convergence and their reasons. 

Though this chapter focuses on GANs that are meant for image generation and image analysis, the 
adversarial training paradigm itself is not specific to images and also generalizes to tasks in image analysis. 
Examples of architectures for image semantic segmentation and abnormality detection will be acclaimed, 
before contrasting GANs with further generative modeling approaches lately entering the scene. This will 
allow a contextualized view on the limits but also benefits of GANs. 

Key words Generative models, Generative adversarial networks, GAN, CycleGAN, StyleGAN, 
VQGAN, Diffusion models, Deep learning 

1 Introduction 

Generative adversarial networks are a type of neural network archi-
tecture, in which one network part generates solutions to a task and 
another part compares and rates the generated solutions against a 
priori known solutions. While at first glimpse this does not sound 
much different from any loss function, which essentially also com-
pares a generated solution with the gold standard, there is one 
fundamental difference. A loss function is static, but the “judge” 
or “discriminator” network part is trainable (Fig. 1). This means 
that it can be trained to distinguish the generated from the true 
solutions and, as long as it succeeds in its task, a training signal for 
the generative part can be derived. This is how the notion of 
adversaries came into the name GAN. The discriminator part is
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trained to distinguish true from generated solutions, while the 
generative part is trained to arrive at the most realistic-appearing 
solutions, making them adversaries with regard to their aims.
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Fig. 1 The fundamental GAN setup for image generation consisting of a genera-
tor and a discriminator network; here, CNNs 

Generative adversarial networks are now among the most pow-
erful tools to create naturally looking images from many domains. 
While they have been created in the context of image generation, 
the original publication describes the general idea of how to make 
two networks learn by competing, regardless of the application 
domain. This key idea can be applied to generative tasks beyond 
image creation, including text generation, music generation, and 
many more. 

The research interest skyrocketed in the years after the first 
publication proposing an adversarial training paradigm [1]. Look-
ing at the number of web searches for the topic “generative adver-
sarial networks” shows how the interest in the topic has rapidly 
grown but also the starting decline of the last years. Authors since 
2014 have cast all kinds of problems into the GAN framework, to 
enable this powerful training mechanism for a variety of tasks, 
including image analysis tasks as well. This is surprising at first, 
since there is no immediate similarity between a generative task 
and, for example, a segmentation or detection task. Still, as evi-
denced by the success in these application areas, the adversarial 
training approach can be applied with benefits. Clearly, the decline 
in interest can to some degree be attributed to the emergence of 
best practices and proven implementations, while simultaneously 
the scientific interest has recently shifted to successor approaches. 
However, similar to the persistent relevance of CNN architectures 
like ResNets for classification, Mask R-CNNs for detection, or basic 
transformer architectures for sequence processing, GANs will



remain an important tool for image creation and image analysis. 
The adversarial training paradigm has become an ingredient to 
models apart from generative aims, providing flexible ways to -
custom-tailor loss components for given tasks (compare Figs. 2 
and 3). 
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Fig. 2 Google web search-based interest estimate for “generative adversarial networks” since 2014. Relative 
scale 

Fig. 3 Some of the most-starred shared GAN code repositories on Github, until 2018. Ranking within this 
selection in brackets 

2 Generative Models 

Generative processes are fundamentally hard to grasp computation-
ally. Their nature and purpose is to create something “meaningful” 
out of something less meaningful (even random). The first question 
to ask therefore is how this can even be possible for a computer 
program since, intuitively, creation requires an inventive spirit—call 
it creativity, to use the term humans tend to associate with this. To 
introduce some of the terminology and basic concepts that we will 
use in the remainder of this section, some remarks on human 
creativity will set the scene. 

In fact, creative human acts are inherently limited by our con-
cepts of the world, acquired by learning and experience through the



sensory means we have available, and by the available expressive 
means (tools, instruments, . . .) with which we can even conceive of 
creating something. This is true for any kind of creative act, includ-
ing writing, painting, wood carving, or any other art, and similarly 
also for computer programming, algorithm development, or sci-
ence in general. Our limited internal representation of the world 
around us frames our creative scope. 
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This is very comparable to the way computerized, pro-
grammed, or learned generative processes create output. They 
have either an in-build mechanism, or a way to acquire such a 
mechanism, that represents the tools by which creation is possible, 
as well as a model of the world that defines the scope of outputs. 
Practically, a CNN-based generative process uses convolutions as 
the in-built tool and is by this tool geared to produce image-like 
outputs. The convolutional layers, if not a priori defined, will 
represent a set of operations defined by a training process and 
limited in their expressiveness by the training material—by the 
fraction of the world that was presented. This will lead us to the 
fundamental notion of how to capture the variability of the “frac-
tion of the world” that is interesting and how to make a neural 
network represent this partial world knowledge. It is interesting to 
note at this point that neither for human creative artists nor for 
neural networks the ability to (re)create convincing results implies 
an understanding of the way the templates (in the real world) have 
come into existence. Generating convincing artifacts does not 
imply understanding nature. Therefore, GANs cannot explain the 
parts of nature they are able to generate. 

2.1 The Language of 

Generative Models: 

Distributions, Density 

Estimation, and 

Estimators 

Understanding the principles of generative models requires a basic 
knowledge of distributions. The reason is that—as already hinted at 
in the previous section—the “fraction of the world” is in fact 
something that can be thought of as a distribution in a parameter 
space. If you were to describe a part of the world in a computer-
interpretable way, you would define descriptive parameters. To 
describe persons, you could characterize them by simple measures 
like age, height, weight, hair and eye color, and many more. You 
could add blood pressure, heart rate, muscle mass, maximum 
strength, and more, and even a whole-genome sequencing result 
might be a parameter. Each of the parameters individually can be 
collected for the world population, and you will obtain a picture of 
how this parameter is “distributed” worldwide. In addition, para-
meters will be in relation with each other, for example, age and 
maximum strength. Countless such relationships exist, of which the 
majority are and probably will remain unknown. Those interrela-
tionships are called a joint distribution. Would you know the joint 
distribution, you could “create” a plausible parameter combination 
of a nonexisting human. Let us formalize these thoughts now.
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2.1.1 Distributions A distribution describes the frequency of particular observations 
when watching a random process. Plotting the number of occur-
rences over an axis of all possible observations creates a histogram. 
If the possible observations can be arranged on a continuous scale, 
one can see that observations cluster in certain areas, and we say 
that they create a “density” or are “dense” there. Hence, when 
trying to describe where densities are in parameter space, this is 
associated with the desire to reproduce or sample from distribu-
tions, like we want to do it to generate instances from a domain. 
Before being able to reproduce the function that generates obser-
vations, estimating where the dense areas are is required. This will 
in the most general sense be called density estimation. 

Sometimes, the shape of the distribution follows an analytical 
formula, for example, the normal distribution. If such a closed-
form description of the distribution can be given, for instance, the 
normal distribution, this distribution generalizes the shape of the 
histogram of observations and makes it possible to produce new 
observations very easily, by simply sampling from the distribution. 
When our observations follow a normal distribution, we mean that 
we expect to observe instances more frequently around the mean of 
the normal distribution than toward the tails. In addition, the 
standard deviation quantifies how much more likely observations 
close to the mean are compared to observations in the tails. We 
describe our observations with a parametric description of the 
observed density. 

In the remainder of this section, rather than providing a rigor-
ous mathematical definition and description of the mathematics of 
distributions and (probability) density estimation, we will intro-
duce the basic concepts and terminology in an intuitive way (also 
compare Box 1). Readers with the wish for a more in-depth treat-
ment can find tutoring material in the references [2–6]. 

Box 1: Probability Distributions: Terminology 

Several common terms regarding distributions have intuitive 
interpretations which are given in the following. Let a be an 
event from the probability distribution A, written as a�A, 
and b B an event from another probability distribution. 

In a medical example, A might be the distribution of 
possible neurological diseases and B the distribution of all 
possible variations of smoking behavior. 

Conditional Probability P(A|B) The conditional probability 
of a certain a�A, for exam-
ple, a stroke, might depend 
on the concrete smoking 
history of a person,

(continue



Box 1 (continued) 
described by b�B. The 
conditional probability is 
written as p(a|b) for the 
concrete instances or P(A| 
B) if talking about the 
entire probability distribu-
tions A and B. 

Joint Probability P(A, B) The probability of seeing 
instantiations of A and 
B together is termed the 
joint probability. Notably, 
if expanded, this will lead 
to a large table of probabil-
ities, joining each possible 
a�A (e.g., stroke, demen-
tia, Parkinson’s disease, 
etc.) with each possible 
b�B (casual smoker, fre-
quent smoker, nonsmoker, 
etc.). 

Marginal Probability The marginal probabilities 
of A and B (denoted, 
respectively, P(A) and 
P(B)) are the probabilities 
of each possible outcome 
across (and independent 
of) all of the possible out-
comes of the other distribu-
tion. For example, it is the 
probability of seeing non-
smokers across all neuro-
logical diseases or seeing a 
specific disease regardless of 
smoking status. It is said to 
be the probability of one 
distribution marginalized 
over the other probability 
distributions.
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2.1.2 Density Estimation We assume in the following that our observations have been pro-
duced by a function or process that is not known to us and that 
cannot be guessed from an arrangement of the observations. In a 
practical example, the images from a CT or MRI scanner are pro-
duced by such a function. Notably, the concern is less about the 
intractability of the imaging physics but about the appearance of the 
human body. The imaging physics might be modeled analytically 
up to a certain error. But the outer shape and inner structure of the



human body and its organs depend on a large amount of mutually 
influencing factors. Some of these factors are known and can even 
be modeled, but many are not. In particular, the interdependence 
of factors must be assumed to be intractable. What we can accumu-
late is measured data providing information about the body, its 
shape, and its function. While many measurement instruments 
exist in medicine, for this chapter, we will be concerned with images 
as our observations. In the following thought experiment, we will 
explore a naı̈ve way to model the distribution and try to generate 
images. 
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The first step is to examine the gray value distribution or, in 
other words, estimate the density of values. The most basic way for 
estimating a density is plotting a histogram. Let the value on the x 
axis be the image gray value of the medical image in question (in CT 
expressed in Hounsfield units (HU) and in arbitrary units for 
MRI). Two plots show histograms of a head MRI (Fig. 4) and an 
abdominal CT (Fig. 5). While the brain MRI suggests three or four 
major “bumps” of the histogram at about values 25, 450, and 
600, the abdominal CT doesn’t lend itself to such a description. 

In the next step, we want to describe the histograms through 
analytical functions, to make them amenable for computational

Fig. 4 Brain MRI (left) and histogram of gray values for one slice of a brain MRI 
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Fig. 5 Abdominal CT (left) and histogram of gray values for one slice of an abdominal CT



ends. This means we will aim to estimate an analytical description of 
the observations.
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Expectation maximization (EM; see Box 2) is an algorithm 
suitable for this task. EM enables us to perform maximum likeli-
hood estimation in the presence of unobserved (“latent) variables 
and incomplete data—this being the default assumption when 
dealing with real data. Maximum likelihood estimation (MLE) is 
the process of finding parameters of a parametric distribution to 
most accurately match the distribution to the observations. In 
MLE, this is achieved by adapting the parameters steered by an 
error metric that indicates the closeness of the fit; in short, a 
parameter optimization algorithm. 

Box 2: Expectation Maximization—Example 
Focusing on our density estimate of the MRI data, we want to 
use expectation maximization (EM) to optimize the para-
meters of a fixed number of Gaussian functions adding up to 
the closest possible fit to the empirical shape of the histogram. 

In our data, we observe “bumps” of the histogram. We 
can by image analysis determine that certain organs imaged by 
MRI lead to certain bumps in the histogram, since they are of 
different material and create different signal intensities. This, 
however, is unknown to EM—the so-called “latent” variables. 

The EM algorithm has two parts, the expectation step and 
the maximization step. They can, with quite far-reaching 
omission of details, be sketched as follows: 

Expectation takes each point (or a number of sampled 
points) of the distribution and estimates the 
expectation to which of the parameterized dis-
tribution to assign it to. Figuring out this 
assignment is the step of dealing with the 
“latent” variable of the observations. 

Maximization iterates over all parameterized distributions 
and adjusts their parameters to match the 
assigned points as well as possible. 

This process is iterated until a fitting error cannot be 
improved anymore. 

A short introductory treatment of EM with examples and 
applications is presented in [7]. The standard reference for the 
algorithm is [8].
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Fig. 6 A Gaussian mixture model (GMM) of four Gaussians was fit to the brain MRI data we have visualized as a 
histogram in Fig. 4 

In Fig. 6, a mixture of four Gaussian distributions has been fit 
to the brain MRI voxel value data seen before. 

It is tempting to model even more complex observations by 
mixing simple analytical distributions (e.g., Gaussian mixture mod-
els (GMMs)), but in general this will be intractable for two reasons. 
Firstly, realistic joint distributions will have an abundance of mixed 
maxima and therefore require a vast number of basic distributions 
to fit. Even basic normal distributions in high-dimensional param-
eter spaces are no longer functions with two parameters (μ, σ), but 
with a vector of means and a covariance matrix. Secondly, it is no 
longer trivial to sample from such high-dimensional joint distribu-
tions, and while some methods, among others Markov chain 
Monte Carlo methods, allow to sample from them, such numerical 
approaches are of such high computational complexity that it makes 
their use difficult in the context of deep neural network parameter 
estimation. 

We will learn about alternatives. In principle, there are different 
approaches for density (distribution) estimation, direct distribution 
estimation, distribution approximation, or even more indirectly, by



using a simple surrogate distribution that is made to resemble the 
unknown distribution as good as possible through a mapping 
function. We will see this in the further elaboration of generative 
modeling approaches. 
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2.1.3 Estimators and the 

Expected Value 

Assume we have found suitable mean values and standard devia-
tions for three normal distributions that together approximate the 
shape of the MRI data density estimate to our satisfaction. Such a 
combination of normal (Gaussian) distributions is called a Gaussian 
mixture model (GMM), and sampling from such a GMM is 
straightforward. We are thus able to sample single pixels in any 
number, and over time we will sample them such that their density 
estimate or histogram will look similar to the one we started with. 

However, if we want to generate a brain MRI image using a 
sampling process from our closed-form GMM representation of the 
distribution, we will notice that a very important notion wasn’t 
respected in our approach. We start with one slice of 512×512 
voxels and therefore randomly draw the required number of voxel 
values from the distribution. However, this will not yield an image 
that resembles one slice of a brain MRI, but will almost look like 
random noise, because we did not model the spatial relation of the 
gray values with respect to each other. Since the majority of voxels 
of a brain MRI are not independent of each other, drawing one new 
voxel from the distribution needs to depend on the spatial locations 
and gray values of all voxels drawn before. Neighboring voxels will 
have a higher likelihood of similar gray values than voxels far apart 
from each other, for example. More crucially, underneath the inter-
dependence lies the image generation process: the image values 
observed in a real brain MRI stem from actual tissue—and this is 
what defines their interdependence. This means the anatomy of the 
brain indirectly reflects itself in the rules describing the dependency 
of gray values of one another. 

For the modeling process, this implies that we cannot argue 
about single-voxel values and their likelihood, but we need to 
approach the generative process differently. One idea for a genera-
tive process has been implied in the above description already: pick 
a random location of the to-be-generated image and predict the 
gray value depending on all existing voxel values. Implemented 
with the method of mixture models, this results in unfathomably 
many distributions to be estimated, as for each possible “next 
voxel” location, any possible combination of already existing 
voxel numbers and positions needs to be considered. We will see 
in Subheading 5.1 on diffusion models how this general approach 
to image generation can still be made to work. 

A different sequential approach to image generation has also 
been attempted, in which pixels are generated in a defined order, 
starting at the top left and scanning the image row by row across 
the columns. Again, the knowledge about the already produced



pixels is memorized and used to predict the next voxel. This has 
been dubbed the PixelRNN (Pixel Recurrent Neural Network), 
which lends its general idea from text processing networks [9]. 
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Lastly, a direct approach to image generation could be formu-
lated by representing or approximating the full joint distribution of 
all voxels in one distribution that is tangible and to sample all voxels 
at once from this. The full joint distribution in this approach 
remains implicit, and we use a surrogate. This will actually be the 
approach implemented in GANs, though not in a naı̈ve way. 

Running the numbers of what a likelihood-based naı̈ve 
approach implies, the difficulties of making it work will become 
obvious. Consider an MRI image as the joint distribution of 
512×512 voxels (one slice of our brain MRI), where we approxi-
mated the gray value distribution of one voxel with a GMM with six 
parameters. This results in a joint distribution of 512×512×6=1, 
572, 864 parameters. Conceptually, this representation therefore 
spans a 1,572,864-dimensional space, in which every one brain 
MRI slice will be one data point. Referring back to the histograms 
of CT and MRI images in the figures above, we have seen continu-
ous lines with densities because we have collected all voxels of an 
entire medical image, which are many million. Still, we only covered 
one single dimension out of the roughly 1.5 million. Searching for 
the density in the 1,572,864-dimensional MRI-slice-space that is 
given by all collected brain MRI slices is the difficult task any 
generative algorithm has to solve. In this vastly large space, the 
brain MRI slices “live” in a very tiny region that is extremely hard to 
find. We say the images occupy a low-dimensional manifold within 
the high-dimensional space. 

Consider the maximum likelihood formulation 

θ̂ = argmax 
θ 

x�Pdata 
logQ θðxjθÞ ð1Þ 

where Pdata is the unknown data distribution and Qθ the distribu-
tion generated by the model which is parameterized by θ. θ can, for 
example, be the weights and biases of a deep neural network.1 In 
other words, the result of maximum likelihood estimation is para-
meters θ̂ so that the product of two terms, out of which only the 
second depends on the choice of θ, is maximal. The first term is the 
expectation of x with regard to the real data distribution. The 
second term is the (log of) the conditional probability (likelihood) 
of seeing the example x given the choice of θ under the model Qθ. 
Hence, maximizing the likelihood function means maximizing the 
probability that x is seen in Qθ, which will be the case when 
Q matches P as closely as possible given the parametric form of Q. 

1 We will use θ when referring to parameters of models in general but designate parameters of neural networks 
with w in accordance with literature.
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The maximum likelihood mechanism is very nicely illustrated in 
[10]. Here, it is also visually shown how finding the maximum 
likelihood estimate of parameters of the distribution can be done 
by working with partial derivatives of the likelihood function with 
respect to μ and σ2 and seeking their extrema. The partial deriva-
tives are called the score function and will make a reappearance 
when we discuss score-based and diffusion models later in Sub-
heading 5.1 on advanced generative models. 

2.1.4 Sampling from 

Distributions 

When a distribution is a model of how observed values occur, then 
sampling from this distribution is the process of generating random 
new values that could have been observed, with a probability similar 
to the probability to observe this value in reality. There are two 
basic approaches to sampling from distributions: generating a ran-
dom number from the uniform distribution (this is what a random 
number generator is always doing underneath) and feeding this 
number through the inverse cumulative density function (iCDF) 
of the distribution, which is the function that integrates the proba-
bility density function (PDF) of the distribution. This can only be 
achieved if the CDF is given in closed form. If it is not, the second 
approach to sampling can be used, which is called acceptance 
(or rejection) sampling. With f being the PDF, two random num-
bers x and y are drawn from the uniform distribution. The random 
x is accepted, if f(x)> y, and rejected otherwise. 

Our use case, as we have seen, involves not only high-
dimensional (multivariate) distributions but even more their joints, 
and they are not given in closed form. In such scenarios, sampling 
can be done still, using Markov chain Monte Carlo (MCMC) 
sampling, which is a framework using rejection sampling with 
added mechanisms to increase efficiency. While MCMC has favor-
able theoretic properties, it is still computationally very demanding 
for complex joint distributions, which leads to important difficul-
ties in the context of sampling from distributions we are facing in 
the domain of image analysis and generation. 

We are therefore at this point facing two problems: we can 
hardly hope to be able to estimate the density, and even if we 
could, we could practically not sample from it. 

3 Generative Adversarial Networks 

3.1 Generative vs. 

Discriminative Models 

To emphasize the difficulty that generative models are facing, com-
pare them to discriminative models. Discriminative models solve 
tasks like classification, detection, and segmentation, to name some 
of the most prominent examples. How classification models are in 
the class of discriminative models is obvious: discriminating exam-
ples is exactly classifying them. Detection models are also discrimi-
native models, though in a broader sense, in that they classify the



detection proposals into accepted object detections or rejected 
proposals, and even the bounding box estimation, which is often 
solved through bounding box regression, typically involves the 
discriminative prediction of template boxes. Segmentation, on the 
other hand, for example, using a U-Net, is only the extension of 
classic discriminative approaches into a fast framework that avoids 
pixel-wise inference through the model. It is common to all these 
models that they yield output corresponding to their input, in the 
sense that they extract information from the input image (e.g., an 
organ segmentation, a classification, or even a textual description of 
the image content) or infer additional knowledge about it (e.g., a 
volume measurement or an assessment or prediction of a treatment 
success given the appearance of the image). 
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Generative models are fundamentally different, in that they 
generate output potentially without any concrete input, out of 
randomness. Still, they are supposed to generate output that con-
forms to certain criteria. In the most general form and intuitive 
formulation, their output should “look natural.” We want to fur-
ther formalize the difference between the models in the following 
by using the perspective of distributions again. Figure 7 shows how 
discriminative and generative models have to construct differently 
complex boundaries in the representation space of the domain to 
accomplish their tasks. 

Discriminative models take one example and map it to a label— 
e.g., the class. This is also true for segmentation models: they do 
this for each image voxel. The conceptual process is that the model 
has to estimate the probabilities that the example (or the voxel) 
comes from the distribution of the different available classes. The 
distributions of all possible appearances of objects of all classes do

Fig. 7 The discriminative task compared to the generative task. Discriminative models only need to find the 
separating line between classes, while generative models need to delineate the part of space covering the 
classes (figure inspired by: https://developers.google.com/machine-learning/gan/generative)

https://developers.google.com/machine-learning/gan/generative


not need to be modeled analytically for this to be successful. It is 
only important to know them locally—for example, it is sufficient 
to delineate their borders or overlaps with other distributions of 
other classes, but not all boundaries are important.
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Generative models, on the other hand, are tasked to produce an 
example that is within a desired distribution. For this to work, the 
network has to learn the complete shape of this distribution. This is 
immensely complex, since all domains of practical importance in 
medical imaging are extremely high-dimensional and the distribu-
tions defining examples of interest within these domains are very 
small and hard to find. Also, they are neither analytically given nor 
normally distributed in their multidimensional space. But they have 
as many parameters as the output image of interest has voxels. 

As already remarked, different other approaches were devised 
to generate output before GANs entered the scene. Among the 
trainable ones, approaches comprised (restricted) Boltzmann 
machines, deep belief networks, or generative stochastic networks, 
variational autoencoders, and others. Some of them involved feed-
back loops in the inference process (the prediction of a generated 
example) and were therefore unstable to train using 
backpropagation. 

This was solved with the adversarial net framework proposed in 
2014 by Goodfellow et al. [1]. They tried to solve the downsides 
like computational intractability or instability of such previous gen-
erative models by introducing the adversarial training framework. 

To understand how GANs relate to one of the closest prede-
cessors, the variational autoencoder, we will review their basic 
layout next. We will learn how elegantly the GAN paradigm turns 
the previously unsupervised approach to generative modeling into a 
supervised one, with the benefit of much more control over the 
training process. 

3.2 Before GANs: 

Variational 

Autoencoders 

Generative adversarial networks (GANs) haven’t been the first or 
only attempt at generating realistically looking images (or any type 
of output, generally speaking). Apart from GANs, a related neural 
network-based approach to generative modeling is the variational 
autoencoder, which will be treated in more details below. Among 
other generative models with different approaches are as follows: 

Flow-based models This category of generative models attempt 
to model the data-generating distribution 
explicitly through an iterative process 
known as the normalizing flow [11], in 
which through repeated changes of variables 
a sequence of differentiable basis distribu-
tions is stacked to model the target distribu-
tion. The process is fully invertible, yielding 
models with desirable properties, since an



analytical solution to the data-generating dis-

GANs and Beyond 153

tribution allows to directly estimate densities 
to predict the likelihood of future events, 
impute missing data points, and of course 
generate new samples. Flow-based models 
are computation-intensive. They can be cate-
gorized as a method that returns an explicit, 
tractable density. Another method in this 
category is, for example, the PixelRNN [9] 
or the PixelCNN [12] which also serves for 
conditional image generation. RealNVP [13] 
also uses a chain of invertible functions. 

Boltzmann machines work fundamentally differently. They also 
return explicit densities but this time only 
approximate the true target distribution. In 
this regard, they are similar to variational 
autoencoders, though their method is based 
on Markov chains, and not a variational 
approach. Deep Boltzmann machines have 
been proposed already in 2009, uniting a 
Markov chain-based loss component with a 
maximum likelihood-based component and 
showing good results on, at that time, highly 
complex datasets. [14] Boltzmann machines 
are very attractive but harder to train and use 
than other comparably powerful alternatives 
that exist today. This might change with 
future research, however. 

Variational autoencoders (VAE) are a follow-up development 
of plain autoencoders, autoregressive models that in their essence 
try to reconstruct their input after transforming it, usually into a 
low-dimensional representation (see Fig. 8). This low-dimensional

Fig. 8 Schematic of an autoencoder network. The encoder, for images, for 
example, a CNN with a number of convolutional and pooling layers, condenses 
the defining information of the input image into the variables of the latent space. 
The decoder, again convolutions, but this time with upsampling layers, recreates 
a representation in image space. Input and output images are compared in the 
loss function, which drives the gradient descent



representation is often termed the “latent space,” implying that 
here hidden traits of the data-generating process are coded, which 
are essential to the reconstruction process. This is very akin to the 
latent variables estimated by EM. In the autoencoder, the encoder 
will learn to code its input in terms of these latent variables, while 
the decoder will learn to represent them again in the source 
domain. In the following, we will be discussing the application to 
images though, in principle, both autoencoders and their varia-
tional variant are general mechanisms working for any domain.
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We will later be interested in a behind-the-scene understanding 
of their modeling approach, which will be related to the employed 
loss function. We will then look at VAEs more extensively from the 
same vantage point: to understand their loss function—which is 
closest to the loss formulation of early GANs, the Kullback-Leibler 
divergence or KL divergence, DKL. 

With this tool in hand, we will examine how to optimize (train) 
a network with regard to KL divergence as the loss and understand 
key problems with this particular loss function. This will lead us to 
the motivation for a more powerful alternative. 

3.2.1 From AE to VAE VAEs are an interesting subject to study to emphasize the limits a 
loss function like KL divergence may place on a model. We will 
begin with a recourse to plain autoencoders to introduce the con-
cept of learning a latent representation. We will then proceed to 
modify the autoencoder into a variational formulation which brings 
about the switch to a divergence measure as a loss function. From 
these grounds, we will then show how GANs again modified the 
loss function to succeed in high-quality image generation. 

Figure 8 shows the schematic of a plain autoencoder (AE). As 
indicated in the sketch, input and output are of potentially very 
high dimensionality, like images. In between the encoder and 
decoder networks lies a “bottleneck” representation, which is, for 
example, a convolutional layer of orders of magnitude lower 
dimensionality (represented, for example, by a convolutional layer 
with only a few channels or a dense layer with a given low number 
of weights), which forces the network to find an encoding that 
preserves all information required for reconstruction. 

A typical loss function to use when training the autoencoder is, 
for example, cross entropy, which is applicable for sigmoid activa-
tion functions, or simply the mean squared error (MSE). Any loss 
shall essentially force the AE to learn the identity function between 
input and output. 

Let us introduce the notation for this. Let X be the input image 
tensor and X′ the output image tensor. With fw being the encoder 
function given as a neural network parameterized by weights and 
biases w and gv the decoder function parameterized by v, the loss 
hence works to make X=X′= gv( fw(X)).
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In a variational autoencoder,2 things work differently. Auto-
encoders like before use a fixed (deterministic) latent code to map 
the input to, while variational autoencoders will replace this with a 
distribution. We can call this distribution pw, indicating the param-
eterization by w. It is crucial to understand that a choice was made 
here that imposes conditions on the latent code. It is meant to 
represent the input data in a variational way: in a way following 
Bayes’ laws. Our mapping of the input image tensor X to the latent 
variable z is by this choice defined by

• The prior probability pw(z)

• The likelihood (conditional probability) pw(X|z)

• The posterior probability pw(z|X) 

Therefore, once we have obtained the correct parameters ŵ by 
training the VAE, we can produce a new output X′ by sampling a 
z(i) from the prior probability pŵðzÞ and then generate the example 
from the conditional probability through X ðiÞ = pŵ X z= zðiÞ . 

Obtaining the optimal parameters, however, isn’t possible 
directly. The searched optimal parameters are those that maximize 
the probability that the generated example X′ looks real. This 
probability can be rewritten as the aggregated conditional 
probabilities: 

pwðX ðiÞÞ= pwðX ðiÞjzÞpwðzÞdz: 

This, however, does not make the search any easier since we 
need to enumerate and sum up all z. Therefore, an approximation is 
made through a surrogate distribution, parameterized by another 
set of parameters, qv . Weng [15] shows in her explanation of the 
VAE the graphical model highlighting how qv is a stand-in for the 
unknown searched pw (see Fig. 9). 

The reason to introduce this surrogate distribution actually 
comes from our wish to train neural networks for the decoding/ 
encoding functions, and this requires us to back-propagate through 
the random variable, z, which of course cannot be done. Instead, if 
we have control over the distribution, we can select it such that the 
reparameterization trick can be employed. We define qv to be a 
multivariate Gaussian distribution with means and a covariance 
matrix that can be learned and a stochastic element multiplied to 
the covariance matrix for sampling [15, 16]. With this, we can back-
propagate through the sampling process. 

2 Though variational autoencoders are in general not necessarily neural networks, in our context, we restrict 
ourselves to this implementation and stick to the notation with parameters w and v, where in many publications 
they are denoted θ and ϕ.
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Fig. 9 The graphical model of the variational autoencoder. In a VAE, the variational decoder is pw(X|z), while 
the variational encoder is qv(z|X) (Figure after [15]) 

At this point, the two distributions need to be made to match: 
qv should be as similar to pw as possible. Measuring their similarity 
can be done in a variety of ways, of which Kulback-Leibler diver-
gence (KL divergence or KLD) is one. 

3.2.2 KL Divergence A divergence can be thought of as an asymmetric distance function 
between two probability distributions, P and Q, measuring the 
similarity between them. It is a statistical distance which is not 
symmetric, which means it will not yield the same value if measured 
from P to Q or the other way around: 

DKLðPkQ Þ≠DKLðQ kPÞ 

This can be seen when looking at the definition of KL 
divergence: 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ ð2Þ 

Sometimes, the measure DKL is also called the relative entropy 
or information gain of P over Q, which also indicates the 
asymmetry. 

To give the two distributions more meaning, let us associate 
them with a use case. P is usually the probability distribution of the 
example data, which can be our real images we wish to model, and 
is assumed to be unknown and high-dimensional. Q, on the other 
hand, is the modeled distribution, for example, parameterized by θ, 
similar to Eq. 1. Hence, Q is the distribution we can play with 
(in our case, optimize its parameters) to make them more similar to 
P. This means Q will get more informative with respect to the true 
P when we approach the optimal parameters.
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Box 3: Example: Calculating DKL 

When comparing the two distributions given in Fig. 10, the 
calculation of the Kullback-Leibler divergence, DKL, can 
explicitly be given by reading off the y values of the nine 
elements (columns) from Fig. 11 and inserting them into 
Eq. 2. 

The result of this calculation is for 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ 

=0:02 � log 
:02 
:01 

þ 0:04 � log 
:04 
:12

þ � � � þ  0:02 � log 
:02 
:022 

=0:004- 0:01 þ � � �- 0:0002 

=0:0801 

which we call “forward KL” as it calculates in the direction 
from the actual distribution P to the model distribution Q and 
for 

DKLðQ kPÞ = 
x 
Q ðxÞ log Q ðxÞ 

PðxÞ 

=0:01 � log 
0:01 
0:02

þ 0:12 � log 
0:12 
0:04

þ � � � þ  0:022 � log 
0:022 
0:02 

= -0:002-0:05þ � � � þ  0:0002 
=0:0899 

which we call “reverse KL.” 

Note that in the example in Box 3, there is both a P(X= xi) and 
Q(X= xi) for each i∈{0, 1, . . ., 8}. This is crucial for KL divergence 
to work as a loss function. 

3.2.3 Optimizing the KL 

Divergence 

Examine what happens in forward and reverse KL if this condition 
is not satisfied for some i. If in forward KL P has values everywhere 
but Q has not (or extremely small values), the quotient in the log

Fig. 10 Two distributions P and Q, here scaled to identical height



function will tend to infinity by means of the division by almost 
zero, and the term will be very large.
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Fig. 11 The distributions P and Q, scaled to unit density, with added labels 

Fig. 12 The distributions P (solid) and Qθ (dashed), in the initial configuration and after minimizing reverse KL 
DKL(Qθ|P). This time, in the initial configuration, Qθ has values greater than 0 where P has not (marked with 
green shading) 

In Fig. 12, we assume Qθ to be a unimodal normal distribution, 
i.e., a Gaussian, while P is any empirical distribution. In the left 
plots of the figure, we show a situation before minimizing the 
forward/reverse KL divergence between P and Qθ, in the right 
plots, the resulting shape of the Gaussian after minimization. 

When in the minimization of forward KL DKL(P|Qθ) Qθ is zero 
where P has values greater zero, KL goes to infinity in these regions 
(marked area in the start configuration of the top row in Fig. 12), 
since the denominator in the log function goes to zero. This, in 
turn, drives the parameters of Qθ to broaden the Gaussian to cover 
these areas, thereby removing the large loss contributions. This is 
known as the mean-seeking behavior of forward KL. 

Conversely, in reverse KL (bottom row in Fig. 12), in the 
marked areas of the initial configuration, P is zero in regions 
where Qθ has values greater than zero. This yields high-loss



contributions from the log denominator, in this case driving the 
Gaussian to remove these areas from Qθ. Since we assumed a 
unimodal Gaussian Q, the minimization will focus on the largest 
mode of the unknown P. This is known as the mode-seeking behav-
ior of reverse KL. 
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Forward KL tends to overestimate the target distribution, 
which is exaggerated in the right plot in Fig. 12. In contrast, reverse 
KL tends to underestimate the target distribution, for example, by 
dropping some of its modes. Since underestimation is the more 
desirable property in practical settings, reverse KL is the loss func-
tion of choice, for example, in variational autoencoders. The down-
side is that as soon as target distribution P and model distribution 
Qθ have no overlap, KL divergence evaluates to infinity and is 
therefore uninformative. One countermeasure to take is to add 
noise to Qθ, so that there is guaranteed overlap. This noise, how-
ever, is not desirable in the model distribution Qθ since it disturbs 
the generated output. 

Another way to remedy the problem of KL going to infinity is 
to adjust the calculation of the divergence, which is done in Jensen-
Shannon divergence (JS divergence, DJS) defined as 

DJS = 
1 
2
ðDKLðPkM Þ þ  DKLðQ θkM ÞÞ, ð3Þ 

where M = PþQ θ 
2 . In the case of nonoverlapping P and Qθ, this 

evaluates to constant log 2, which is still not providing information 
about the closeness but is computationally much friendlier and does 
not require the addition of a noise term to achieve numerical 
stability. 

3.2.4 The Limits of VAE In the VAE, reverse KL is used. Our optimization goal is maximiz-
ing the likelihood to produce realistic looking examples—ones with 
a high pw(x). Simultaneously, we want to minimize the difference 
between the real and estimated posterior distributions qv and pw . 
This can only be achieved through a reformulation of reverse KL 
[15]. After some rearranging of reverse KL, the loss of the varia-
tional autoencoder becomes 

LVAEðw, vÞ = - log pwðX Þ þ  DKLðqvðzjX ÞkpwðzjX ÞÞ 
= -z�qvðzjX Þ log pwðX jzÞ þ  DKLðqvðzjX ÞkpwðzÞÞ 

ð4Þ 
ŵ and v̂ are the parameters maximizing the loss. 

We have seen how mode-seeking reverse KL divergence limits 
the generative capacity of variational autoencoders through the 
potential underrepresentation of all modes of the original 
distribution.



160 Markus Wenzel

KL divergence and minimizing the ELBO also have a second 
fundamental downside: there is no way to find out how close our 
solution is to the obtainable optimum. We measure the similarity to 
the target distribution up to the KL divergence, but since the true 
pŵð:Þ is unknown, the stopping criterion in the optimization has to 
be set by another metric, e.g., to a maximum number of iterations 
or corresponding to an improvement of the loss below some ε. 

The original presentation of the variational autoencoder was 
given as one example of the general framework called the autoen-
coding variational Bayes. This publication presented the above 
ideas in a thorough mathematical formulation, starting from a 
directed graphical model that poses the abstract problem. The 
authors also develop the seminal “reparameterization trick” to 
make the loss formulation differentiable and with this to make the 
search for the autoencoder parameters amenable to gradient 
descent optimizers [16]. The details are beyond this introductory 
treatment. 

3.3 The Fundamental 

GAN Approach 

At the core of the adversarial training paradigm is the idea to create 
two players competing in a minimax game. In such games, both 
players have access to the same variables but have opposing goals, so 
that they will manipulate the variables in different directions. 

Referring to Fig. 13, we can see the generative part in orange 
color, where random numbers are drawn from the latent space and, 
one by one, converted into a set of “fake images” by the generator

Fig. 13 Schematic of a GAN network. Generator (orange) creates fake images based on random numbers 
drawn from a latent space. These together with a random sample of real images are fed into the discriminator 
(blue, right). The discriminator looks at the batch of real/fake images and tries to assign the correct label (“0” 
for fake, “1” for real)
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network, in the figure implemented by a CNN. Simultaneously, 
from a database of real images, a matching number of examples are 
randomly drawn. The real and fake images are composed into one 
batch of images which are fed into the discriminator. On the right 
side, the discriminator CNN is indicated in blue. It takes the batch 
of real and fake images and decides for each if it appears real 
(yielding a value close to “1”) or fake (“0”).
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The error signal is computed from the number of correct 
assignments the discriminator can do on the batch of generated 
and real images. Both the generator and the discriminator can then 
update their parameters based on this same error signal. Crucially, 
the generator has the aim to maximize the error, since this signifies 
that it has successfully fooled the discriminator into taking the fake 
images for real, while the discriminator weights are updated to 
minimize the same error, indicating its success in telling true and 
fake examples apart. This is the core of the competitive game 
between generator and discriminator. 

Let us introduce some abbreviations to designate GAN com-
ponents. We will denote the generator and discriminator networks 
with G and D, respectively. The objective of GAN training is a game 
between generator and discriminator, where both affect a common 
loss function J, but in opposed directions. Formally, this can be 
written as 

min 
G 

max 
D 

J ðG,DÞ, 

with the GAN objective function 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ� ð5Þ 
D will attempt to maximize J by maximizing the probability to 
assign the correct labels to real and generated examples: this is the 
case if D(x)=1, maximizing the first loss component, and if 
D(G(z))=0, maximizing the second loss component. The genera-
tor G, instead, will attempt to generate realistic examples that the 
discriminator labels with “1,” which corresponds to a minimization 
of log 1-D G z . 

3.4 Why Early GANs 

Were Hard to Train 

GANs with this training objective implicitly use JS divergence for 
the loss, which can be seen by examining the GAN training objec-
tive. Consider the ideal discriminator D for a fixed generator. Its 
loss is minimal for the optimal discriminator given by [1] 

D̂ðxÞ= 
pdataðxÞ 

pdataðxÞ þ  pGðxÞ
: ð6Þ 

Substituting D̂ in Eq. 5 yields (without proof) the implicit use 
of the Jensen-Shannon divergence if the above training objective is 
employed:
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J ðG, D̂Þ=2DJSðpdatakpGÞ- log 4: ð7Þ 
This theoretical result shows that a minimum in the GAN 

training can be found when the Jensen-Shannon divergence is 
zero. This is achieved for identical probability distributions pdata 
and pG or, equivalently, when the generator perfectly matches the 
data distribution [17]. 

Unfortunately, it also shows that this loss is, like KL divergence, 
only helpful when target distribution (i.e., data distribution) and 
model distribution have overlapping support. Therefore, added 
noise can be required to approximate the target distribution. In 
addition, the training criterion saturates if the discriminator in the 
early phase of training perfectly distinguishes between fake and real 
examples. The generator will therefore no longer obtain a helpful 
gradient to update its weights. An approach thought to prevent this 
was proposed by Goodfellow et al. [1]. The generator loss was 
turned from the minimization problem into a maximization prob-
lem that has the same fixed point in the overall minimax game but 
prevents saturation: instead of minimizing logð1-DðGðzÞÞÞ, one 
maximizes log D G z [1]. 

3.5 Improving GANs GAN training has quickly become notorious for the difficulties it 
posed upon the researchers attempting to apply the mechanism to 
real-world problems. We have qualitatively attributed a part of these 
problems to the inherently difficult task of density estimation and 
motivated the intuition that while fewer samples might suffice to 
learn a decision boundary in a discriminative task, many more 
examples are required to build a powerful generative model. 

In the following, some more light shall be shed on the reasons 
why GAN training might fail. Typical GAN problems comprise the 
following: 

Mode dropping is the phenomenon in forward KL caused by 
regions of the data distribution not being 
covered by the generator distribution, which 
implies large probabilities of samples coming 
from Pdata and very small probabilities of ori-
ginating from PG. This drives forward KL 
toward infinity and punishes the generator 
for not covering the entire data distribution 
[18]. If all modes but one are dropped, one 
can call this mode collapse: the generator only 
generates examples from one mode of the 
distribution. 

Poor convergence can be caused by a discriminator learning to 
distinguish real and fake examples very early— 
which is also very likely to happen throughout 
the GAN training. This is rooted in the



observation that by the generative process
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that projects from a low-dimensional latent 
space into the high-dimensional pG, the sam-
ples in pG are not close to each other but 
rather inhabit “islands” [18]. The discrimina-
tor can learn to find them and thereby differ-
entiate between true and false samples easily, 
which causes the gradients driving generator 
optimization to vanish [17]. 

Poor sample quality despite a high log likelihood of the model is a 
consequence of the practical independence of 
sample quality and model log likelihood. 
Theis et al. [19] show that neither does a 
high log likelihood imply generated sample 
fidelity nor do visually pleasing samples 
imply a high log likelihood. Therefore, train-
ing a GAN with a loss function that effectively 
implements maximizing a log likelihood term 
is not an ideal choice—but exactly corre-
sponds to KL minimization. 

Unstable training is a consequence of reformulating the genera-
tor loss into maximizing logDðGðzÞÞ. It can 
be shown [18] that this choice effectively 
makes the generator struggle between a 
reverse KL divergence favoring mode-seeking 
behavior and a negative JS divergence actually 
driving the generator into examples different 
from the real data distribution. 

There have been many subsequent authors touching these 
topics, but already Arjovsky and Bottou [18] have shown best 
practices of how to overcome these problems. 

Among the solutions proposed for GAN improvements are 
some that prevent the generator from producing only too similar 
samples in one batch, some that keep the discriminator insecure 
about the true labels of real and fake examples, and more, which 
Creswell et al. [17] have summarized in their GAN overview. A 
collection of best practices compiled from these sources is pre-
sented in Box 4. It is almost impossible to write a cookbook for 
successful, converging, stable GAN training. For almost every tip, 
there is a caveat or situation where it cannot be applied. The 
suggestions below therefore are to be taken with a grain of salt 
but have been used by many authors successfully.
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Box 4: Best Practices for Stable GAN Training 

General measures. GAN training is sensitive to hyperpara-
meters, most importantly the learning rate. Mode collapse 
might already be mitigated by a lower learning rate. Also, 
different learning rates for generator and discriminator 
might help. Other typical measures are batch normalization 
(or instance normalization in case of small batch sizes; mind 
however that batch normalization can taint the randomness of 
latent vector sampling and in general should not be used in 
combination with certain GAN loss functions), use of trans-
posed convolutions instead of parameter-free upsampling, 
and strided convolutions instead of down-sampling. 

Feature matching. One typical observation is that nei-
ther discriminator nor generator converges. They play their 
“cat-and-mouse” game too effectively. The generator pro-
duces a good image, but the discriminator learns to figure it 
out, and the generator shifts to another good image, and 
so on. 

A remedy for this is feature matching, where the ℓ2 dis-
tance between the average feature vectors of real and fake 
examples is computed instead of a cross-entropy loss on the 
logits. Because per batch the feature vectors change slightly, 
this introduces randomness that helps to prevent discrimina-
tor overconfidence. 

Minibatch discrimination. When the generator only 
produces very convincing but extremely similar images, this 
is an indication for mode collapse. 

This can be counteracted by calculating a similarity metric 
between generated samples and penalizing the generator for 
too little variation. Minibatch discrimination is considered to 
be superior in performance to feature matching. 

One-sided label smoothing. Deep classification models 
often suffer from overconfidence, focusing on only very few 
features to classify an image. If this happens in a GAN, the 
generator might figure this out and only produce the feature 
the discriminator uses to decide for a real example. 

A simple measure to counteract this is to provide not a 
“1” as a label for the real images in the batch but a lower 
value. This way, the discriminator is penalized for overconfi-
dence (when it returns a value close to “1”). 

Cost function selection. Several sources list possible 
GAN cost functions. Randomly trying them one by one 
might work, but often some of the above measures, in partic-
ular learning rate and hyperparameter tuning, might be more 
successful first steps.
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Besides these methods, one area of discussion concerned the 
question if there is a need of balancing discriminator and generator 
learning and convergence at all. The argument was that a converged 
discriminator will as well yield a training signal to the generator as a 
non-converged discriminator. Practically, however, many authors 
described carefully designed update schedules, e.g., updating the 
generator once per a given number of discriminator updates. 

Many more ideas exist: weight updating in the generator using 
an exponential moving average of previous weights to avoid “for-
getting,” different regularization and conditioning techniques, and 
injecting randomness into generator layers anew. Some we will 
encounter later, as they have proven to be useful in more recent 
GAN architectures. 

Despite the recent advances in stabilizing GAN training, even 
the basic method described so far, with the improvements made in 
the seminal DCGAN publication [20], finds application until 
today, e.g., for the de novo generation of PET color images 
[21]. The usefulness of an approach as presented in their publica-
tion might be doubted, since the native PET data is obviously not 
colored. The authors use 2D histograms of the three-color channel 
combinations to compare true and fake examples. As we have 
discussed earlier, this is likely a poor metric since it does not allow 
insights into the high-dimension joint probability distribution 
underlying the data-generating process. Figure 14 shows an exam-
ple comparison of some generated examples compared to original 
PET images. 

Fig. 14 PET images generated from random noise using a DCGAN architecture. Image taken from [21] 
(CC-BY4.0)
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To address many of the GAN training dilemmas, Arjovsky and 
Bottou [18] have proposed to employ the Wasserstein distance as a 
replacement for KL or JS divergence already in their examination of 
the root causes of poor GAN training results and have later 
extended this into their widely anticipated approach we will focus 
on next [22, 23]. We will also see more involved and recent 
approaches to stabilize and speed up GAN training in later sections 
of this chapter (Subheading 4). 

3.6 Wasserstein 

GANs 

Wasserstein GANs were appealing to the deep learning and GAN 
scene very quickly after Arjovsky et al.’s [22] seminal publication 
because of a number of traits their inventors claimed they’d have. 
For one, Wasserstein GANs are based on the theoretical idea that 
the change of the loss function to the Wasserstein distance should 
lead to improved results. This combined with the reported bench-
mark performance would already justify attention. But Wasserstein 
GANs additionally were reported to train much more stably, 
because, as opposed to previous GANs, the discriminator would 
be trained to convergence in every iteration, instead of demanding 
a carefully and heuristically found update schedule for generator 
and discriminator. In addition, the loss was directly reported to 
correlate with visual quality of generated results, instead of being 
essentially meaningless in a minimax game. 

Wasserstein GANs are therefore worth an in-depth treatment in 
the following sections. 

3.6.1 The Wasserstein 

(Earthmover) Distance 

The Wasserstein distance figuratively measures how, with an opti-
mal transport plan, mass can be moved from one configuration to 
another configuration with minimal work. Think, for example, of 
heaps of earth. Figure 15 shows two heaps of earth, P and 
Q (discrete probability distributions), both containing the same 
amount of earth in total, but in different concrete states x and 
y out of all possible states. 

Work is defined as the shovelfuls of earth times the distance it is 
moved. In the three rows of the figure, earth is moved (only within 
one of P or Q, not from one to the other), in order to make the 
configuration identical. First, one shovelful of earth is moved one 
pile further, which adds one to the Wasserstein distance. Then, two 
shovelfuls are moved three piles, adding six to the final Wasserstein 
distance of DW=7. 

Note that in an alternative plan, it would have been possible to 
move two shovelfuls of earth from p4 to p1 (costing six) and one 
from p4 to p3, which is the inverse transport plan of the above, 
executed on P, and leading to the same Wasserstein distance. The 
Wasserstein distance is in fact a distance, not a divergence, because 
it yields the same result regardless of the direction. Also note that



we implicitly assumed that P and Q share their support,3 but that in 
case of disjunct support, only a constant term would have to be 
added, which grows with the distance between the support regions. 
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Fig. 15 One square is one shovel full of earth. Transporting the earth shovel-wise 
from pile to pile amasses performed work: the Wasserstein (earthmover) dis-
tance. The example shows a Wasserstein distance of DW= 7 

Many other transport plans are possible, and others can be 
equally cheap (or even cheaper—it is left to the reader to try this 
out). Transport plans need not modify only one of the stocks but 
can modify both to reach the optimal strategy to make them 
identical. Algorithmically, the optimal solution to the question of 
the optimal transport plan can be found by formulating it as a linear 
programming problem. However, enumerating all transport plans 
and computing the linear programming algorithm are intractable 
for larger and more complex “heaps of earth.” Any nontrivial GAN 
will need to estimate transport of such complex “heaps,” so they

3 The support, graphically, is the region where the distribution is not equal to zero.



suffer this intractability problem. Consequently, in practice, a dif-
ferent approach must be taken, which we will sketch below.4
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Formalizing the search for the optimal transport plan, we look 
at all possible joint distributions of our P and Q, forming the set of 
all possible transport plans, and denote this set Π(P, Q), implying 
that for all γ ∈Π(P, Q), P and Q will be their marginal distribu-
tions.5 This, in turn, means that by definition ∑xγ(x, y)=P( y) and 
∑yγ(x, y)=Q(x). 

For one concrete transport plan γ that works between a state 
x in P and a state y in Q, we are interested in the optimal transport 
plan γ(x, y). Let kx- yk be the Euclidian distance to shift earth 
between x and y, and then multiplying this with every value of γ (the 
amount of earth shifted) leads to 

DWðP ,Q Þ= inf 
γ∈Π x, y 

kx - ykγðx, yÞ, 

which can be rewritten to obtain 

DWðP ,Q Þ= inf 
γ�ΠðP,Q Þ 

ðx,yÞ�γkx- yk: ð8Þ 

It measures both the distance of two distributions with disjunct 
support and the difference between distributions with perfectly 
overlapping support because it includes both, the shifting of earth 
and the distance to move it. 

Practically, though, this result cannot be used directly, since the 
Linear Programming problem scales exponentially with the num-
ber of dimensions of the domain of P and Q, which are high for 
images. To our disadvantage, we additionally need to differentiate 
the distance function if we want to use it for deep neural network 
training using backpropagation. However, we cannot obtain a 
derivative from our distance function in the given form, since, in 
the linear programming (LP) formulation, our optimized distribu-
tion (as well as the target distribution) end up as constraints, not 
parameters. 

Fortunately, we are not interested in the transport plan γ itself, 
but only in the distance (of the optimal transport plan). We can 
therefore use the dual form of the LP problem, in which the 
constraints of the primal form become parameters. With some 
clever definitions, the problem can be cast into the dual form, finally 
yielding 

4 An extensive treatment of Wasserstein distance and optimal transport in general is given in the 1.000-page 
treatment of Villani’s book [24], which is freely available for download. 
5 This section owes to the excellent blog post of Vincent Herrmann, at https://vincentherrmann.github.io/ 
blog/wasserstein/. Also recommended is the treatment of the “Wasserstein GAN” paper by Alex Irpan at https:// 
www.alexirpan.com/2017/02/22/wasserstein-gan.html. An introductory treatment of Wasserstein distance is 
also found in [25, 26].

https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
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DWðP ,Q Þ= kf kL ≤1sup x�P f ðxÞ-x�Q f ðxÞ 
with a function f that has to adhere to a constraint called the 
1-Lipschitz continuity constraint, which requires f to have a slope 
of at most magnitude 1 everywhere. f is the neural network, and 
more specifically for a GAN, the discriminator network. 
1-Lipschitzness can be achieved trivially by clipping the weights 
to a very small interval around 0. 

3.6.2 Implementing 

WGANs 

To implement the distance as a loss function, we rewrite the last 
result again as 

DWðP ,Q Þ= max 
w∈W 

x�P ½DwðxÞ�-z�Q ½DwðGwðzÞÞ�: ð9Þ 
Note that in opposition to other GAN losses we have seen 

before, there is no logarithm anymore, because, this time, the 
“discriminator” is no longer a classification network that should 
learn to discriminate true and fake samples but rather serves as a 
“blank” helper function that during training learns to estimate the 
Wasserstein distance between the sets of true and fake samples. 

Box 5: Spectral Normalization 

Spectral normalization is applied to the weight matrices of a 
neural network to ensure a boundedness of the error function 
(e.g., Lipschitzness of the discriminator network in the 
WGAN context). This helps convergence like any other nor-
malization method, as it provides a guaranty that gradient 
directions are stable around the current point, allowing larger 
step widths. 

The spectral norm (or matrix norm) measures how far a 
matrix A can stretch a vector x: 

jjAjj= max 
x ≠0 

jjAxjj 
jjxjj 

The numerical value of the spectral norm of A can be 
shown to be just its maximum singular value. To compute the 
maximum singular value, an algorithmic idea helps: the power 
iteration method, which yields the maximal eigenvector. 

Power iteration uses the fact that any matrix will rotate a 
random vector toward its largest eigenvector. Therefore, by 
iteratively calculating AX 

jAxj, the largest eigenvector is obtained 
eventually. 

In practice, it is observed that a single iteration is already 
sufficient to achieve the desired normalizing behavior.
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Consequently, the key ingredient is the Lipschitzness con-
straint of the discriminator network,6 and how to enforce this in a 
stable and regularized way. It soon turned out that weight clipping 
is not an ideal choice. Rather, two other methods have been pro-
posed: the gradient penalty approach and normalizing the weights 
with the spectral norm of the weight matrices. 

Both have been added to the standard catalogue of 
performance-boosting measures in GAN training ever since, 
where in particular spectral normalization (cf. Box 5) is attractive 
as it can be implemented very efficiently, has a sound theoretical and 
mathematical foundation, and ensures stable and efficient training. 

3.6.3 Example 

Application: Brain 

Abnormality Detection 

Using WGAN 

One of the first applications of Wasserstein GANs in a practical use 
case was presented in the medical domain, specifically in the context 
of attributing visible changes of a diseased patient with respect to a 
normal control to locations in the images [27]. The way this 
detection problem was cast into a GAN approach (and then solved 
with a Wasserstein GAN) was to delineate the regions that make the 
images of a diseased patient look “diseased,” i.e., find the residual 
region, that, if subtracted from the diseased-looking image, would 
make it look “normal.” 

Figure 16 shows the construction of the VA-GAN architecture 
with images from a mocked dataset for illustration. For the authors’ 
results, see their publication and code repository.7 

For their implementation, the authors note that neither batch 
normalization nor layer normalization helped convergence and 
hypothesize that the difference between real and generated exam-
ples may be a reason that in particular batch normalization may in 
fact have an adverse effect especially during the early training phase. 
Instead, they impose an ℓ1 norm loss component on the U-Net-
generated “visual (feature) attribution” (VA) map to ensure it to be 
a minimal change to the subject. This serves to prevent the genera-
tor from changing the subject into some “average normal” image 
that it may otherwise learn. They employ an update regime that 
trains the critic network for more iterations than the generator, but 
doesn’t train it to convergence as proposed in the original WGAN 
publications. Apart from these measures, in their code repository, 
the authors give several practical hints and heuristics that may 
stabilize the training, e.g., using a tanh activation for the generator 
or exploring other dropout settings and in general using a large 
enough dataset. They also point out that the Wasserstein distance 
isn’t suited for model selection since it is too unstable and not 
directly correlated to the actual usefulness of the trained model. 

6 The discriminator network in the context of continuous generator loss functions like the Wasserstein-based loss 
is called a “critique” network, as it no longer discriminates but yields a metric. For ease of reading, this chapter 
sticks to the term “discriminator.” 
7 https://github.com/baumgach/vagan-code.

https://github.com/baumgach/vagan-code
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Fig. 16 An image of a diseased patient is run through a U-Net with the goal to yield a map that, if added to the 
input image, results in a modified image that fools the discriminator (“critique”) network into classifying it as a 
“normal” control. The map can be interpreted as the regions attributed to appear abnormal, giving rise to the 
name of the architecture: visual attribution GAN (VA-GAN) 

This is one more reason to turn in the next section to an 
important topic in the context of validation for generative models: 
How to quantify their results? 

3.7 GAN 

Performance Metrics 

One imminent question has so far been postponed, though it 
implicitly plays a crucial role in the quest for “better” GANs: 
How to actually measure the success of a GAN or the performance 
in terms of result quality? 

GANs can be adapted to solve image analysis tasks like segmen-
tation or detection (cf. Subheading 3.6.3). In such cases, the qual-
ity and success can be measured in terms of task-related 
performance (Jaccard/Dice coefficient for segmentation, overlap 
metrics for detection etc.). 

Performance assessment is less trivial if the GAN is meant to 
generate unseen images from random vectors. In such scenarios, 
the intuitive criterion is how convincing the generated results are. 
But convincing to whom? One could expose human observers to 
the real and fake images, ask them to tell them apart, and call a GAN 
better than a competing GAN if it fools the observer more consis-
tently.8 Since this is practically infeasible, metrics were sought that 
provide a more objective assessment. 

8 In fact, there is only very little research on the actual performance of GANs in fooling human observers, though 
guides exist on how to spot “typical” GAN artifacts in generated images. These are older than the latest GAN 
models, and it can be hypothesized that the lack of such literature is indirect confirmation of the overwhelming 
capacity of GANs to fool human observers.
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The most widely used way to assess GAN image quality is the 
Fréchet inception distance (FID). This distance is conceptually 
related to the Wasserstein distance. It has an analytical solution to 
calculate the distance of Gaussian (normal) distributions. In the 
multivariate case, the Fréchet distance between two distributions 
X and Y is given by the squared distance of their means μX (resp. 
μY) and a term depending on the covariance matrix describing their 
variances ΣX (resp. ΣY): 

dðX ,Y Þ= jjμX - μY jj2 þ TrðΣX þ ΣY -2 ΣXΣY 

p Þ: ð10Þ 
The way this distance function is being used is often the score, 

which is computed as follows:

• Take two batches of images (real/fake, respectively).

• Run them through a feature extraction or embedding model. 
For FID, the inception model is used, pretrained on ImageNet. 
Retain the embeddings for all examples.

• Fit each one multivariate normal distribution to the embedded 
real/fake examples.

• Calculate their Fréchet distance according to the analytical for-
mula in Eq. 10. 

This metric has a number of downsides. Typically, if computed 
for a larger batch of images, it decreases, although the same model 
is being evaluated. This bias can be remedied, but FID remains the 
most used metric still. Also, if the inception network cannot capture 
the features of the data FID should be used on, it might simply be 
uninformative. This is obviously a grave concern in the medical 
domain where imaging features look much different from natural 
images (although, on the other hand, transfer learning for medical 
classification problems proved to work surprisingly well, so that 
apparently convolutional filters trained on photographs also extract 
applicable features from medical images). In any case, the selection 
of the pretrained embedding model brings a bias into the validation 
results. Lastly, the assumption of a multivariate normal distribution 
for the inception features might not be accurate, and only describ-
ing it through their means and covariances is a severe reduction of 
information. Therefore, a qualitative evaluation is still required. 

One obvious additional question arises: If the ultimate metric 
to judge the quality of the generator is given by, for example, the 
FID, why can’t it be used as the optimization goal instead of 
minimizing a discriminator loss? In particular, as the Fréchet dis-
tance is a variant of the Wasserstein distance, an answer to this 
question is not obvious. In fact, feature matching as described in 
Box 4 exactly uses this type of idea, and likewise, it has been 
partially adopted in recent GAN architectures to enhance the sta-
bility of training with a more fine-grained loss component than a 
pure categorical cross-entropy loss on the “real/fake” classification 
of the discriminator.
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Related recent research is concerned with the question how 
generated results can automatically be detected to counteract 
fraudulent authors. So-called forensic algorithms detect patterns 
that point out generated images. This research puts up the question 
how to detect fake images reliably. Solutions based on different 
analysis directions encompass image fingerprinting and frequency-
domain analysis [28–31]. 

4 Selected GAN Architectures You Should Know 

In the following, we will examine some GAN architectures and 
GAN developments that were taken up by the medical community 
or that address specific needs that might make them appealing, e.g., 
for limited data scenarios. 

4.1 Conditional GAN GANs cannot be told what to produce—at least that was the case 
with early implementations. It was obvious, though, that a properly 
trained GAN would imprint the semantics of the domain onto its 
latent space, which was evidenced by experiments in which the 
latent space was traversed and images of certain characteristics 
could be produced by sampling accordingly. Also, it was found 
that certain dimensions of the latent space can correspond to 
certain features of the images, like hair color or glasses, so that 
modifying them alone can add or take away such visible traits. 

With the improved development of conditional GANs [32] 
following a number of GANs that modeled the conditioning 
input more explicitly, another approach was introduced that was 
based on the U-Net architecture as a generator and a favorable 
discriminator network that values local style over a full-image 
assessment. 

Technically, the formulation of a conditional GAN is straight-
forward. Recalling the value function (learning objective) of GANs 
from Eq. 5, 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ�, 
We now want to condition the generation on some additional 

knowledge or input. Consequently, both the generator G and the 
discriminator D will receive an additional “conditioning” input, 
which we call x. This can be a class label but also any other asso-
ciated information. Very commonly, the additional input will be an 
image, as, for example, for image translation application (e.g., 
transforming from one image modality to another such as, for 
instance, MRI to CT). The result is the cGAN objective function: 

J cGANðG,DÞ=x�pdata ½logDðxjyÞ� þ z�pG ½1- logDðGðzjyÞÞ�
ð11Þ
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Fig. 17 A possible architecture for a cGAN. Left: the generator network takes the base images x as input and 
generates a translated image ŷ . The discriminator receives either this pair of images or a true pair x, y (right). 
The additional generator reconstruction loss (often a ℓ1 loss) is calculated between y and ŷ 

Isola et al. [32] describe experiments with MNIST handwritten 
digits, where a simple generator with two layers of fully connected 
neurons was used, and similarly for the discriminator. x was set to 
be the class label. In a second experiment, a CNN creates a feature 
representation of images, and the generator is trained to generate 
textual labels (choosing from a vocabulary of about 250.000 
encoded terms) for the images conditioned on this feature 
representation. 

Figure 17 shows a possible architecture to employ a cGAN 
architecture for image-to-image translation. In this diagram, the 
conditioning input is the target image that the trained network shall 
be able to produce based on some image input. The generator 
network therefore is a U-Net. The discriminator network can be 
implemented, for example, by a classification network. This net-
work always receives two inputs: the conditioning image (x in 
Fig. 17) and either the generated output ŷ or the true paired 
image y.
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Fig. 18 Input and output of a pix2pix experiment. Online demo at https://affinelayer.com/pixsrv/ 

Note that the work of Isola et al. [32] introduces an additional 
loss term on the generator that measures the ℓ1 distance between 
the generated and ground truth image, which is (with variables as in 
Eq. 11) 

J ℓ1ðGÞ=x;y;zky -Gðx, zÞk1, 
where 1 is the ℓ1 norm. 

The authors do not further justify this loss term apart from 
stating that ℓ1 is preferred over ℓ2 to encourage less blurry results. It 
can be expected that this loss component provides a good training 
signal to the generator when the discriminator loss doesn’t, e.g., in 
the beginning of the training with little or no overlap of target and 
parameterized distributions. The authors propose to give the ℓ1 loss 
orders of magnitudes more weight than the discriminator loss 
component to value accurate translations of images over “just” 
very plausible images in the target domain. 

The cGAN, namely, in the configuration with a U-Net serving 
as the generative network, was very quickly adopted by artists and 
scientists, thanks to the free implementation pix2pix.9 One example 
created with pix2pix is given in Fig. 18, where the cGAN was 
trained to produce cat images from line drawings. 

One application in the medical domain was proposed, for 
example, by Senaras et al. [33]. The authors used a U-Net as a 
generator to produce a stained histopathology image from a label 
image that has two distinct labels for two kinds of cell nuclei. Here, 
the label image is the conditioning input to the network. Conse-
quently, the discriminator network, a classification CNN tailored to

9 https://github.com/phillipi/pix2pix.

https://affinelayer.com/pixsrv/
https://github.com/phillipi/pix2pix


the patch-based classification of slides, receives two inputs: the 
histopathology image and a label image.
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Another example employed an augmented version of the con-
ditional GAN to translate CT to MR images of the brain, including 
a localized uncertainty estimate about the image translation suc-
cess. In this work, a Bayesian approach to model the uncertainty 
was taken by including dropout layers in the generator model [34]. 

Lastly, a 3D version of the pix2pix approach with a 3D U-Net 
as a generative network was devised to segment gliomas in multi-
modal brain MRI using data from the 2020 International Multi-
modal Brain Tumor Segmentation (BraTS) challenge [35]). The 
authors called their derived model vox2vox, alluding to the exten-
sion to 3D data [36]. 

More conditioning methods have been developed over the 
years, some of which will be sketched further on. It is common to 
this type of GANs that paired images are required to train the 
network. 

4.2 CycleGAN While cGANs require paired data for the gold standard and condi-
tioning input, this is often hard to come by, in particular in medical 
use cases. Therefore, the development of the CycleGAN set a 
milestone as it alleviates this requirement and allows to train 
image-to-image translation networks without paired input samples. 

The basic idea in this architecture is to train two mapping 
functions between two domains and to execute them in sequence 
so that the resulting output is considered to be in the origin domain 
again. The output is compared against the original input, and their 
ℓ1 or ℓ2 distance establishes a novel addition to the otherwise usual 
adversarial GAN loss. This might conceptually remind one of the 
autoencoder objectives: reproduce the input signal after encoding 
and decoding; only this time, there is no bottleneck but another 
interpretable image space. This can be exploited to stabilize the 
training, since the sequential concatenation of image translation 
functions, which we will call G and F, can be reversed. Figure 19 
shows a schematic of the overall process (left) and one incarnation 
of the cycle, here from image domain X to Y and back (middle). 

CycleGANs employ several loss terms in training: two adver-
sarial losses JðG,DY Þ and JðF ,DX Þ and two cycle consistency 
losses, of which one J cycðG, F Þ is indicated rightmost in Fig. 19. 
Zhu et al. [37] presented the initial publication with a participation 
of the cGAN author Isola [37]. The cycle consistency losses are ℓ1 
losses in their implementation, and the GAN losses are least square 
losses instead of negative log likelihood, since more stable training 
was observed with this choice. 

Almahairi et al. [38] provided an augmented version [38], 
noting that the original implementation suffers from the inability 
to generate stochastic results in the target domain Y but rather 
learns a one-to-one mapping between X and Y and vice versa. To



alleviate this problem, the generators are conditioned on one latent 
space each for both directions, so that, for the same input 
x∈X, G will now produce multiple generated outputs in Y 
depending on the sample from the auxiliary latent space (and 
similarly in reverse). Still, F has to recreate a x̂ minimizing the 
cycle consistency loss for each of these samples. This also remedies a 
second criticism brought forward against vanilla CycleGANs: these 
networks can learn to hide information in the (intermediate) target 
image domain that fool the discriminator but help the backward 
generator to minimize the cycle consistency loss more efficiently 
[39]. Chu et al. [39] use adaptive histogram equalization to show 
that in visually empty regions of the intermediate images informa-
tion is present. This is a finding reminiscent of adversarial attacks, 
which the authors elaborate on in their publication. 
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Fig. 19 Cycle GAN. Left: image translation functions G and F convert between two domains. Discriminators DX 
and DY give adversarial losses in both domains. Middle: for one concrete translation of an image x, the 
translation to Y and back to X is depicted. Right: after the translation cycle, the original and back-translated 
result are compared in the cycle consistency loss 

Zhang et al. [40] show a medical application. In their work, a 
CycleGAN has been used to train image translation and segmenta-
tion models on unpaired images of the heart, acquired with MRI 
and CT and with gold standard expert segmentations available for 
both imaging datasets. The authors proposed to learn more pow-
erful segmentation models by enriching both datasets with artifi-
cially generated data. To this end, MRIs are converted into CT 
contrast images and vice versa using GANs. Segmentation models 
for MRI and CT are then trained on dataset consisting of original 
images and their expert segmentations and augmented by the con-
verted images, for which expert segmentations can be carried over 
from their original domain. To achieve this, it is of importance that 
the converted (translated) images accurately depict the shape of the 
organs as expected in the target domain, which is enforced using 
the shape consistency loss. 

In the extended setup of the CycleGAN with shape and cycle 
consistency, three different loss types instead of the original two are 
combined during training: 

Adversarial GAN losses JGAN. This loss term is the same as 
defined, e.g., in Eq. 5.



cyc 1 

original CycleGAN authors dis-
cussed above. 

Shape consistency losses J shape. The shape consistency loss is a new 
addition proposed by the authors. 
A cross-correlation loss takes into 
account two segmentations, the 
first being the gold standard seg-
mentation mx for an x∈X and one 
segmentation produced by a seg-
menter network S that was trained 
on domain Y and receives the 
translated image ŷ =GðxÞ. 
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Fig. 20 Cycle GAN with shape consistency loss (rightmost part of figure). Note that the figure shows only one 
direction to ease readability 

Cycle consistency losses J . This is the ℓ loss presented by the 

Figure 20 depicts the three loss components, of which the first 
two are known already from Fig. 19. 

Note that the description as well as Fig. 20 only show one 
direction for cycle and shape consistency loss. Both are duplicated 
into the other direction and combined into the overall training 
objective, which then consists of six components. 

In several other works, the CycleGAN approach was extended 
and combined with domain adaption methods for various segmen-
tation tasks and also extended to volumetric data [41–43]. 

4.3 StyleGAN and 

Successor 

One of the most powerful image synthesis GANs to date is the 
successor of StyleGAN, StyleGAN2 [44, 45]. The authors, at the 
time of writing researching at Nvidia, deviate from the usual GAN 
approach in which an image is generated from a randomly sampled 
vector from a latent space. Instead, they use a latent space that is 
created by a mapping function f which is in their architecture 
implemented as a multilayer perceptron which maps from a 
512-dimensional space Z into a 512-dimensional space W. The 
second major change consisted of the so-called adaptive instance 
normalization layer, AdaIN, which implements a normalization to 
zero-mean and unit variance of each feature map, followed by a 
multiplicative factor and an additive bias term. This serves to



reweight the importance of feature maps in one layer. To ensure the 
locality of the reweighting, the operation is followed by the non-
linearity. The scaling and bias are two components of y= (ys, yb), 
which is the result of a learnable affine transformation A applied to a 
sample from W. 
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Fig. 21 StyleGAN architecture, after [44]. Learnable layers and transformations are shown in green, the AdaIN 
function in blue 

In their experiments, Karras et al. [44] recognized that after 
these changes, the GAN actually no longer depended on the input 
vector drawn from W itself, so the random latent vector was 
replaced by a static vector fed into the GAN. The y, which they 
call styles, remained to be results from a vector randomly sampled 
from the new embedding space W. 

Lastly, noise is added in each layer, which serves to allow the 
GAN to produce more variation without learning to produce it 
from actual image content. The noise, like the latent vector, is fed 
through learnable transformations B, before it is added to the 
unnormalized feature maps. The overall architecture is sketched 
in Fig. 21. 

In the basic setup, one sample is drawn from W and fed 
through per-layer learned A to gain per-layer different interpreta-
tions of the style, y= (ys, yb). This can be changed, however, and the 
authors show how using one random sample w1 in some of the layer 
blocks and another sample w2 in the remaining; the result will be a 
mixture of styles of both individual samples. This way, the coarse 
attributes of the generated image can stem from one sample and the 
fine detail from another. Applied to a face generator, for example, 
pose and shape of the face are determined in the coarse early layers 
of the network, while hair structure and skin texture are the fine



details of the last layers. The architecture and results gained wide-
spread attention through a website,10 which recently was followed 
up by further similar pages. Results are depicted in Fig. 22. 
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Fig. 22 Images created with StyleGAN; https://this{person—artwork—cat—horse—chemical}doesnotexist. 
com. Last accessed: 2022-01-14 

The crucial finding in StyleGAN was that the mapping function 
F transforming the latent space vector from Z to W serves to ensure 
a disentangled (flattened) latent space. Practically, this means that if 
interpolating points zi between two points z1 and z2 drawn from Z 
and reconstructing images from these interpolated points zi, 
semantic objects might appear (in a StyleGAN-generating faces, 
for example, a hat or glasses) that are neither part of the generated 
images from the first point z1 nor the second point z2 between 
which it has been interpolated. Conversely, if interpolating in W , 
this “semantic discontinuity” is no longer the case, as the authors 
show with experiments in which they measure the visual change of 
resulting images when traversing both latent spaces. 

In their follow-up publications, the same authors improve the 
performance even further. They stick to the basic architecture but 
redesign the generative network pertaining to the AdaIN function. 
In addition, they add their metric from [44] that was meant to 
quantify the entanglement of the latent space as a regularizer. The 
discriminator network was also enhanced, and the mechanisms of 
StyleGAN that implement the progressive growing have been suc-
cessively replaced by more performance-efficient setups. In their 
experiments, they show a growth of visual and measured quality 
and removal of several artifacts reported for StyleGAN [45]. 

4.4 Stabilized GAN 

for Few-Shot Learning 

GAN training was very demanding both regarding GPU power, in 
particular for high-performance architectures like StyleGAN and 
StyleGAN2, and, as importantly, availability of data. StyleGAN2, 
for example, has typical training times of about 10 days on a Nvidia 
8-GPU Tesla V100. The datasets comprised at least tens of 
thousands of images and easily orders of magnitude more. Particu-
larly in the medical domain, such richness of data is typically hard 
to find. 

10 https://thispersondoesnotexist.com/.
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Fig. 23 The FastGAN generator network. Shortcut connections through feature map weighting layers (called 
skip-layer excitation, SLE) transport information from low-resolution feature maps into high-resolution feature 
maps. For details regarding the blocks, see text 

The authors of [46] propose simple measures to stabilize the 
training of a specific GAN architecture, which they design from 
scratch using a replacement for residual blocks, arranged in an 
architecture with very few convolutional layers, and a loss that 
drives the discriminator to be less certain when it gets closer to 
convergence. In sum, this achieves very fast training and yields 
results competitive with prior GANs [46] and outperforming 
them in low-data situations. 

The key ingredients to the architecture are shortcut connec-
tions in the generator model that rescale feature maps of higher 
resolution with learnable weights derived from low resolutions. 
The effect is to make fine details simultaneously more independent 
of direct predecessor feature maps and yet ensure consistency across 
scales. 

A random seed vector of length 256 enters the first block (“Up 
Conv”), where it is upscaled to a 256× 4× 4 tensor. In Fig. 23, the 
further key blocks of the architecture are “upsample” and “SLE” 
blocks. 

Upsample blocks consist of a nearest-neighbor upsampling fol-
lowed by a 3×3 convolution, batch normalization, and 
nonlinearity. 

SLE blocks (seen in the top right inset in the architecture 
diagram) don’t touch the incoming high-resolution 
input (entering from top into the block) but comprise a 
pooling layer that in each SLE block is set up to yield a



4 ×4 stack of feature maps, followed by a convolution to
reduce to a 1 ×1 tensor, which is then in a 1×1 convo-
lution brought to the same number of channels as the 
high-resolution input. This vector is then multiplied to 
the channels of the high-resolution input. 
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Fig. 24 The FastGAN self-supervision mechanism of the discriminator network. Self-supervision manifests 
through the loss term indicated by the curly bracket between reconstructions from feature maps and 
resampled/cropped versions of the original real image, J recon 

Secondly, the architecture introduces a self-supervision feature 
in the discriminator network. The discriminator network (see 
Fig. 24) is a simple CNN with strided convolutions in each layer, 
halving resolution in each feature map. In the latest (coarsest) 
feature maps, simple up-scaling convolutional networks are 
attached that generate small images, which are then compared in 
loss functions (J recon in Fig. 24) to down-sampled versions of the 
real input image. This self-supervision of the discriminator is only 
performed for real images, not for generated ones. 

The blocks in the figure spell out as follows: 

Down Conv Block consists of two convolutional layers with strided 
4 ×4 convolutions, effectively reducing the res-
olution from 10242 to 2562 . 

Residual Blocks have two sub-items, “Conv Block A” being a 
strided 4×4 convolution to half resolution, 
followed by a padded 3×3 convolution. 
“Conv Block B” consists of a strided 2×2 aver-
age pooling that quarters resolution, followed 
by a 1 ×1 convolution, so that both blocks 
result in identically shaped tensors, which are 
then added.



� ½ ð ð ÞÞ�

4 ×4 convolution without strides or padding, 
so that the incoming 82 feature map is reduced 
to 52 . 

Decoder The decoder networks are four blocks of 
upsampling layers each followed by 3 ×3 
convolutions. 
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Fig. 25 FastGAN as implemented by the authors has been used to train a CT slice generative model. Images 
are not cherry-picked, but arranged by similar anatomical regions 

Conv Block C consists of a 1 ×1 convolution followed by a 

The losses employed in the model are the discriminator loss 
consisting of the hinge version of the usual GAN loss, with the 
added regularizing reconstruction loss between original real sam-
ples and their reconstruction, and the generator loss plainly being 
JG =z Z D G z . 

The model is easy to train on modest hardware and little data, 
as evidenced by own experiments on a set of about 30 chest CTs 
(about 2500 image slices, converted to RGB). Figure 25 shows 
randomly picked generated example slices, roughly arranged by 
anatomical content. It is to be noted that organs appear mirrored 
in some images. On the other hand, no color artifacts are visible, so 
that the model has learned to produce only gray scale images. 
Training time for 50,000 iterations on a Nvidia TitanX GPU was 
approximately 10 hours.
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Fig. 26 The VQGAN+CLIP combination creates images from text inputs, here: “A 
child drawing of a dark garden full of animals” 

4.5 VQGAN In a recent development, a team of researchers combined techni-
ques for text interpretation with a dictionary of elementary image 
elements feeding into a generative network. The basic architecture 
component that is employed goes back to vector quantization 
variational autoencoders (VQ-VAE), where the latent space is no 
longer allowed to be continuous, but is quantized. This allows to 
use the latent space vectors in a look-up table: the visual elements. 

Figure 26 was created using code available online, which 
demonstrates how images of different visual styles can be created 
using the combination of text-based conditioning and a powerful 
generative network. 

The basis for image generation is the VQGAN (“vector quan-
tization generative adversarial network”) [47], which learns repre-
sentations of input images that can later steer the generative 
process, in an adversarial framework. The conditioning is achieved 
with the CLIP (“Contrastive Image-Language Pretraining”) model 
that learns a discriminator that can judge plausible images for a text 
label or vice versa [48]. 

The architecture has been developed with an observation in 
mind that puts the benefits and drawbacks of convolutional and 
transformer architectures in relation to each other. While the local-
ity bias of convolutional architectures is inappropriate if overall 
structural image relations should be considered, it is of great help 
in capturing textural details that can exist anywhere, like fur, hair, 
pavement, or grass, but where the exact representation of hair

https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ


positions or pavement stones is irrelevant. On the other hand, 
image transformers are known to learn convolutional operators 
implicitly, posing a severe computational burden without a visible 
impact on the results. Therefore, Esser et al. [47] suggest to com-
bine convolutional operators for local detail representation and 
transformer-based components for image structure. 
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Since the VQGAN as a whole is no longer a pure CNN but for a 
crucial component uses a transformer architecture, this model will 
be brought up again briefly in Subheading 5.2. 

The VQGAN architecture is derived from the VQ-VAE (vector 
quantization variational autoencoder) [49], adding a reconstruc-
tion loss through a discriminator, which turns it into a GAN. At the 
core of the architecture is the quantization of estimated codebook 
entries. Among the quantized entries in the codebook, the closest 
entry to the query vector coding, an image patch is determined. 
The found codebook entry is then referred to by its index in the 
codebook. This quantization operation is non-differentiable, so for 
end-to-end training, gradients are simply copied through it during 
backpropagation. 

The transformer can then efficiently learn to predict codebook 
indices from those comprising the current version of the image, and 
the generative part of the architecture, the decoder, produces a new 
version of the image. Learning expressive codebook entries is 
enforced by a perceptual loss that punishes inaccurate local texture, 
etc. Through this, the authors can show that high compression 
levels can be achieved—a prerequisite to enable efficient, yet com-
prehensive, transformer training. 

5 Other Generative Models 

We have already seen how GANs were not the first approach to 
image generation but have prevailed for a time when they became 
computationally feasible and in consequence have been better 
understood and improved to accomplish tasks in image analysis 
and image generation with great success. In parallel with GANs, 
other fundamentally different generative modeling approaches 
have also been under continued development, most of which have 
precursors from the “before-GAN” era as well. To give a compre-
hensive outlook, we will sketch in this last section the state of the art 
of a selection of these approaches.11 

11 The research on the so-called flow-based models, e.g., normalizing flows, has been omitted in this chapter, 
though acknowledging their emerging relevance also in the context of image generation. Flow-based models are 
built from sequences of invertible transformations, so that they learn data distributions explicitly at the expense of 
sometimes higher computational costs due to their sequential architecture. When combined, e.g., with a powerful 
GAN, they allow innovative applications, for example, to steer the exploration of a GAN’s latent space to achieve 
fine-grained control over semantic attributes for conditional image generation. Interested readers are referred to 
the literature [11, 13, 50–52].
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5.1 Diffusion and 

Score-Based Models 

Diffusion models take a completely different approach to distribu-
tion estimation. GANs implicitly represent the target distribution 
by learning a surrogate distribution. Likelihood-based models like 
VAE approximate the target distribution explicitly, not requiring 
the surrogate. In diffusion models, however, the gradient of the log 
probability density function is estimated, instead of looking at the 
distribution itself (which would be the unfathomable integral of the 
gradient). This value is known as the Stein score function, leading 
to the notion that diffusion models are one variant of score-based 
models [53]. 

The simple idea behind this class of models is to revert a 
sequential noising process. Consider some image. Then, perform 
a large number of steps. In each step, add a small amount of noise 
from a known distribution, e.g., the normal distribution. Do this 
until the result is indistinguishable from random noise. 

The denoising process is then formulated as a latent variable 
model, where T-1 latents successively progress from a noise image 
xT � N ðxT ;0, IÞ to the reconstruction that we call x0� q(x0). The 
reconstructed image, x0, is therefore obtained by a reverse process 
qθ(x0:T). Note that each step in this chain can be evaluated in closed 
form [54]. Several model implementations of this approach exist, 
one being the deep diffusion probabilistic model (DDPM). Here, a 
deep neural network learns to perform one denoising step given the 
so-far achieved image and a t∈{1, . . ., T}. Iterative application of 
the model to the result of the last iteration will eventually yield a 
generated image from noise input. 

Autoregressive diffusion models (ARDMs) [55] follow yet 
another thought model, roughly reminiscent of PixelRNNs we 
have briefly mentioned above (see Subheading 3.2). Both share 
the approach to condition the prediction of the next pixel or pixels 
on the already predicted ones. Other than in the PixelRNN, how-
ever, the specific ARDM proposed by the authors does not rely on a 
predetermined schedule of pixel updates, so that these models can 
be categorized as latent variable models. 

As of late, the general topic of score-based methods, among 
which diffusion models are one variant, received more attention in 
the research community, fueled by a growing body of publications 
that report image synthesis results that outperform GANs [53, 56, 
57]. Score function-based and diffusion models superficially share 
the similar concept of sequentially adding/removing noise but 
achieve their objective with very different means: where score 
function-based approaches are trained by score-matching and 
their sampling process uses Langevin dynamics [58], diffusion 
models are trained using the evidence lower bound (ELBO) and 
sample with a decoder, which is commonly a neural network. 
Figure 27 visualizes an example for a score function. 

Score function-based (sometimes also score-matching) genera-
tive models have been developed to astounding quality levels, and



the recent works of Yang Song and others provide accessible blog 
posts,12 and a comprehensive treatment of the subject in several 
publications [53, 58, 59]. 
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Fig. 27 The Stein score function can be conceived of as the gradient of the log probability density function, 
here indicated by two Gaussians. The arrows represent the score function 

In the work of Ho et al. [54], the stepwise reverse (denoising) 
process is the basis of the denoising diffusion probabilistic models 
(DDPM). The authors emphasize that a proper selection of the 
noise schedule is crucial to fast, yet high-quality, results. They point 
out that their work is a combination of diffusion probabilistic 
models with score-matching models, in this combination also gen-
eralizing and including the ideas of autoregressive denoising mod-
els. In an extension of Ho et al.’s [54] work by Nichol and Dhariwal 
[57], an importance sampling scheme was introduced that lets the 
denoising process steer the most easy to predict next image ele-
ments. Equipped with this new addition, the authors can show that, 
in comparison to GANs, a wider region of the target distribution is 
covered by the generative model. 

5.2 Transformer-

Based Generative 

Models 

The basics of how attention mechanisms and transformer architec-
tures work will be covered in the subsequent chapter on this 
promising technology (Chapter 6). Attention-based models, pre-
dominantly transformers, have been used successfully for some time 
in sequential data processing and are now considered the superior 
alternative to recurrent networks like long-short-term memory 
(LSTM) networks. Transformers have, however, only recently 
made their way into the image analysis and now also the image 
generation world. In this section, we will only highlight some 
developments in the area of generative tasks. 

12 https://yang-song.github.io/blog/.

https://yang-song.github.io/blog/


188 Markus Wenzel

Google Brain/Google AI’s 2018 publication on so-called 
image transformers [60], among other tasks, shows successful con-
ditional image generation for low-resolution input images to 
achieve super-resolution output images, and for image inpainting, 
where missing or removed parts of input images are replaced by 
content produced by the image transformer. 

OpenAI have later shown that even unmodified language trans-
formers can succeed to model image data, by dealing in sheer 
compute power for hand modeling of domain knowledge, which 
was the basis for the great success of previous unsupervised image 
generation models. They have trained Image GPT (or iGPT for 
short), a multibillion parameter language transformer model, and it 
excels in several image generation tasks, though only for fairly small 
image sizes [61] 

In the recent past, StyleSwin has been proposed by Microsoft 
Research Asia [62], enabling high-resolution image generation. 
However, the approach uses a block-wise attention window, 
thereby potentially introducing spatial incoherencies at block 
edges, which they have to correct for. 

“Taming transformers” [47], another recent publication 
already mentioned above, uses what the authors call a learned 
template code book of image components, which is combined 
with a vector quantization GAN (VQGAN). The VQGAN is struc-
turally modeled after the VQ-VAE but adds a discriminator net-
work. A transformer model in this architecture composes these 
code book elements and is interrogated by the GAN variational 
latent space, conditioned on a textual input, a label image, or other 
possible inputs. The GAN reconstructs the image from the 
so-quantized latent space using a combination of a perceptual loss 
assessing the overall image structure and a patch-based high-reso-
lution reconstruction loss. By using a sliding attention window 
approach, the authors prevent patch border artifacts known from 
StyleSwin. Conditioning on textual input makes use of parts of the 
CLIP [48] idea (“Contrastive Language-Image Pretraining”), 
where a language model was train in conjunction with an image 
encoder to learn embeddings of text-image pairs, sufficient to solve 
many image understanding tasks with competitive precision, with-
out specific domain adaption. 

It is evidenced by the lineup of institutions that training image 
transformer models successfully is nothing that can be achieved 
with modest hardware or on even a medium-scale image database. 
In particular for the medical area, where data is comparatively 
scarce even under best assumptions, the power of such models 
will only be available in the near future if domain transfer learning 
can be successfully achieved. This, however, is a known strength of 
transformer architectures.
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Chapter 6 

Transformers and Visual Transformers 

Robin Courant, Maika Edberg, Nicolas Dufour, and Vicky Kalogeiton 

Abstract 

Transformers were initially introduced for natural language processing (NLP) tasks, but fast they were 
adopted by most deep learning fields, including computer vision. They measure the relationships between 
pairs of input tokens (words in the case of text strings, parts of images for visual transformers), termed 
attention. The cost is exponential with the number of tokens. For image classification, the most common 
transformer architecture uses only the transformer encoder in order to transform the various input tokens. 
However, there are also numerous other applications in which the decoder part of the traditional trans-
former architecture is also used. Here, we first introduce the attention mechanism (Subheading 1) and then 
the basic transformer block including the vision transformer (Subheading 2). Next, we discuss some 
improvements of visual transformers to account for small datasets or less computation (Subheading 3). 
Finally, we introduce visual transformers applied to tasks other than image classification, such as detection, 
segmentation, generation, and training without labels (Subheading 4) and other domains, such as video or 
multimodality using text or audio data (Subheading 5). 

Key words Attention, Transformers, Visual transformers, Multimodal attention 

1 Attention 

Attention is a technique in Computer Science that imitates the way 
in which the brain can focus on the relevant parts of the input. In 
this section, we introduce attention: its history (Subheading 1.1), 
its definition (Subheading 1.2), its types and variations (Subhead-
ings 1.3 and 1.4), and its properties (Subheading 1.5). 

To understand what attention is and why it is so useful, con-
sider the following film review: 

While others claim the story is boring, I found it fascinating. 

Is this film review positive or negative? The first part of the 
sentence is unrelated to the critic’s opinion, while the second part 
suggests a positive sentiment with the word ‘fascinating’. To a 
human, the answer is obvious; however, this type of analysis is not 
necessarily obvious to a computer. 
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Typically, sequential data require context to be understood. In 
natural language, a word has a meaning because of its position in 
the sentence, with respect to the other words: its context. In our 
example, while “boring” alone suggests that the review is negative, 
its contextual relationship with other words allows the reader to 
reach the appropriate conclusion. In computer vision, in a task like 
object detection, the nature of a pixel alone cannot be identified: we 
need to account for its neighborhood, its context. So, how can we 
formalize the concept of context in sequential data? 

1.1 The History of 

Attention 

This notion of context is the motivation behind the introduction of 
the attention mechanism in 2015 [1]. Before this, language trans-
lation was mostly relying on encoder-decoder architectures: recur-
rent neural networks (RNNs) [2] and in particular long-short-term 
memory (LSTMs) networks were used to model the relationship 
among words [3]. Specifically, each word of an input sentence is 
processed by the encoder sequentially. At each step, the past and 
present information are summarized and encoded into a fixed-
length vector. In the end, the encoder has processed every word 
and outputs a final fixed-length vector, which summarizes all input 
information. This final vector is then decoded and finally translates 
the input information into the target language. 

However, the main issue of such structure is that all the infor-
mation is compressed into one fixed-length vector. Given that the 
sizes of sentences vary and as the sentences get longer, a fixed-
length vector is a real bottleneck: it gets increasingly difficult not to 
lose any information in the encoding process due to the vanishing 
gradient problem [1]. 

As a solution to this issue, Bahdanue et al. [1] proposed the 
attention module in 2015. The attention module allows the model 
to consider the parts of the sentence that are relevant to predicting 
the next word. Moreover, this facilitates the understanding of 
relationships among words that are further apart. 

Given two lists of tokens, X ∈N × dx and Y ∈N × dy , attention 
encodes information from Y into X, where N is the length of inputs 
X and Y and dx and dy are their respective dimensions. For this, we 
first define three linear mappings, query mapping W Q ∈dx × dq , 
key mapping W K ∈dy × dk , and value mapping W V ∈dy × dv , 
where dq, dk, and dv are the embedding dimensions in which the 
query, key, and value are going to be computed, respectively. 

Then, we define the query Q, key K, and value V [4] as: 

Q =XW Q 

K =YW K 

V =YW V
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Next, the attention matrix is defined as: 

AðQ ,K Þ= Softmax 
QK⊤ 

dk 

p : ð1Þ 

This is illustrated in the left part of Fig. 1. The nominator 

QKT ∈N ×N represents how each part of the input in X attends 
to each part of the input in Y.1 This dot product is then put 
through the softmax function to normalize its values and get posi-
tive values that add to 1. However, for large values of dk, this may 
result in the softmax to have incredibly small gradients, so it is 
scaled down by dk 

p 
. 

The resulting N×N matrix encodes the relationship between X 
with respect to Y : it measures how important a token in X is with 
respect to another one in Y . 

Finally, the attention output is defined as: 

AttentionðQ ,K ,V Þ=AðQ ,K ÞV : ð2Þ 
Figure 1 displays this. The attention output encodes the infor-

mation of each token by taking into account the contextual infor-
mation. Therefore, through the learnable parameters—queries, 
keys, and values—the attention layers learn a token embedding 
that takes into account their relationship. 

Contextual Relationships How does Eq. 2 encode contextual 
relationships? To answer this question, let us reconsider analyzing 
the sentiment of film reviews. To encode contextual relationships 
into the word embedding, we first want a matrix representation of 
the relationship between all words. To do so, given a sentence of 
length N, we take each word vector and feed it to two different 
linear layers, calling one output “query” and the other output 
“key”. We pack the queries into the matrix Q and the keys into 
the matrix K, by taking their product (QKT ). The result is a N×N 
matrix that explains how important the i-th word (row-wise) is to 
understand the j-th word (column-wise). This matrix is then scaled 
and normalized by the division and softmax. Next, we feed the 
word vectors into another linear layer, calling its output “value”. 
We multiply these two matrices together. The results of their prod-
uct are attention vectors that encode the meaning of each word, by 
including their contextual meaning as well. Given that each of these 
queries, keys, and values is learnable parameter, as the attention 
layer is trained, the model learns how relationships among words 
are encoded in the data. 

1 Note that in the literature, there are two main attention functions: additive attention [1] and dot-product 
attention (Eq. 1). In practice, the dot product is more efficient since it is implemented using highly optimized 
matrix multiplication, compared to the feed-forward network of the additive attention; hence, the dot product is 
the dominant one.
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Fig. 1 Attention block. Next to each element, we denote its dimensionality. 
Figure inspired from [4] 

1.3 Types of 

Attention 

There exist two dominant types of attention mechanisms: self-
attention and cross attention [4]. In self-attention, the queries, 
keys, and values come from the same input, i.e., X=Y; in  cross 
attention, the queries come from a different input than the key and 
value vectors, i.e., X≠Y. These are described below in Subheadings 
1.3.1 and 1.3.2, respectively. 

1.3.1 Self-Attention In self-attention, the tokens of X attend to themselves (X=Y). 
Therefore, it is modeled as follows: 

SAðX Þ=AttentionðXW Q ,XW K ,XW V Þ: ð3Þ 
Self-attention formalizes the concept of context. It learns the 

patterns underlying how parts of the input correspond to each 
other. By gathering information from the same set, given a 
sequence of tokens, a token can attend to its neighboring tokens 
to compute its output. 

1.3.2 Cross Attention Most real-world data are multimodal—for instance, videos contain 
frames, audios, and subtitles, images come with captions, etc. 
Therefore, models that can deal with such types of multimodal 
information have become essential.
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Cross attention is an attention mechanism designed to handle 
multimodal inputs. Unlike self-attention, it extracts queries from 
one input source and key-value pairs from another one (X≠Y ). It 
answers the following question: “Which parts of input X and input 
Y correspond to each other?” Cross attention (CA) is defined as: 

CAðX ,Y Þ=AttentionðXW Q ,YW K ,YW V Þ: ð4Þ 

Attention is typically employed in two ways: (1) multi-head self-
attention (MSA, Subheading 1.4) and (2) masked multi-head 
attention (MMA, Subheading 1.4). 

Attention Head We call attention head the mechanism presented 
in Subheading 1.2, i.e., query-key-value projection, followed by 
scaled dot product attention (Eqs. 1 and 2). 

When employing an attention-based model, relying only on a 
single attention head can inhibit learning. Therefore, the multi-
head attention block is introduced [4]. 

Multi-head Self-Attention (MSA) MSA is shown in Fig. 2 and is 
defined as: 

MSAðX Þ =Concatðhead1ðX Þ, . . . , headhðX ÞÞW O , 

headiðX Þ = SAðX Þ , 8i ∈f1, hg, ð5Þ 

where Concat is the concatenation of h attention heads and 

W O ∈hdv × d is projection matrix. This means that the initial 
embedding dimension dx is decomposed into h× dv and the com-
putation per head is carried out independently. The independent 
attention heads are usually concatenated and multiplied by a linear 
layer to match the desired output dimension. The output dimen-
sion is often the same as the input embedding dimension d. This 
allows an easier stacking of multiple blocks. 

Multi-head Cross Attention (MCA) Similar to MSA, MCA is 
defined as: 

MCAðX ,Y Þ =Concatðhead1ðX ,Y Þ, . . . , headhðX ,Y ÞÞW O , 

headiðX ,Y Þ =CAðX ,Y Þ , 8i ∈f1, hg: 
ð6Þ 

Masked Multi-head Self-Attention (MMSA) The MMSA layer 
[4] is another variation of attention. It has the same structure as the 
multi-head self-attention block (Subheading 1.4), but all the later 
vectors in the target output are masked. When dealing with sequen-
tial data, this can help make training parallel.
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Fig. 2 Multi-head self-attention block (MSA). First, the input X is projected to 
queries, keys, and values and then passed through h attention blocks. The 
h resulting attention outputs are then concatenated together and finally 
projected to a d-dimensional output vector. Next to each element, we denote 
its dimensionality. Figure inspired from [4] 

1.5 Properties of 

Attention 

While attention encodes contextual relationships, it is permutation 
equivalent, as the mechanism does not account for the order of the 
input data. As shown in Eq. 2, the attention computations are all 
matrix multiplication and normalizations. Therefore, a permuted 
input results in a permuted output. In practice, however, this may 
not be an accurate representation of the information. For instance, 
consider the sentences “the monkey ate the banana” and “the 
banana ate the monkey.” They have distinct meanings because of 
the order of the words. If the order of the input is important, 
various mechanisms, such as the positional encoding, discussed in 
Subheading 2.1.2, are used to capture this subtlety. 

2 Visual Transformers 

The transformer architecture was introduced in [4] and is the first 
architecture that relies purely on attention to draw connections 
between the inputs and outputs. Since its debut, it revolutionized 
deep learning, making breakthroughs in numerous fields, including



2.1 Basic

Transformers

natural language processing, computer vision, chemistry, and biol-
ogy, thus making its way to becoming the default architecture for 
learning representations. Recently, the standard transformer [4] has 
been adapted for vision tasks [5]. And again, visual transformer has 
become one of the central architectures in computer vision. 
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In this section, we first introduce the basic architecture of 
transformers (Subheading 2.1) and then present its advantages 
(Subheading 2.2). Finally, we describe the vision transformer (Sub-
heading 2.3). 

As shown in Fig. 3, the transformer architecture [4] is an encoder-
decoder model. First, it embeds input tokens X= (x1, . . ., xN) into 
a latent space, resulting in latent vectors Z= (z1, . . ., zN), which are 
fed to the decoder to output Y = (y1, . . ., yM). The encoder is a 
stack of L layers, with each one consisting of two sub-blocks: multi-
head self-attention (MSA) layers and a multilayer perceptron 
(MLP). The decoder is also a stack of L layers, with each one 
consisting of three sub-blocks: masked multi-head self-attention 
(MMSA), multi-head cross attention (MCA), and MLP. 

Overview Below, we describe the various parts of the transformer 
architecture, following Fig. 3. First, the input tokens are converted 
into the embedding tokens (Subheading 2.1.1). Then, the posi-
tional encoding adds a positional token to each embedding token 
to denote the order of tokens (Subheading 2.1.2). Then, the 
transformer encoder follows (Subheading 2.1.3). This consists of 
a stack of L multi-head attention, normalization, and MLP layers 
and encodes the input to a set of semantically meaningful features. 
After, the decoder follows (Subheading 2.1.4). This consists of a 
stack of L masked multi-head attention, multi-head attention, and 
MLP layers followed by normalizations and decodes the input 
features with respect to the output embedding tokens. Finally, the 
output is projected to linear and softmax layers. 

2.1.1 Embedding The first step of transformers consists in converting input tokens2 

into embedding tokens, i.e., vectors with meaningful features. To 
do so, following standard practice [6], each input is projected into 
an embedding space to obtain embedding tokens Ze . The embed-
ding space is structured in a way that the distance between a pair of 
vectors is relative to the semantic similarity of their associated 
words. For the initial NLP case, this means that we get a vector of 
each word, such that the vectors that are closer together have 
similar meanings. 

2 Note the initial transformer architecture was proposed for natural language processing (NLP), and therefore the 
inputs were words.
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Fig. 3 The transformer architecture. It consists of an encoder (left) and a decoder 
(right) block, each one consisting from a series of attention blocks (multi-head 
and masked multi-head attention) and MLP layers. Next to each element, we 
denote its dimensionality. Figure inspired from [4] 

2.1.2 Positional Encoding As discussed in Subheading 1.5, the attention mechanism is posi-
tional agnostic, which means that it does not store the information 
on the position of each input. However, in most cases, the order of 
input tokens is relevant and should be taken into account, such as 
the order of words in a sentence matter as they may change its 
meaning. Therefore, [4] introduced the Positional Encoding 

PE ∈N × dx , which adds a positional token to each embedding 
token Z e ∈N × dx .
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Sinusoidal Positional 

Encoding 

The sinusoidal positional encoding [4] is the main positional 
encoding method, which encodes the position of each token with 
sinusoidal waves of multiple frequency. For an embedding token 

Z e ∈N × dx , its positional encoding PE ∈N × dx is defined as: 

PEði, 2jÞ = sin 
i 

100002j=d 

PEði, 2j þ 1Þ = cos 
i 

100002j=d 
, 8i, j ∈½j1,nj�× ½j1, dj�: 

ð7Þ 

Learnable Positional 

Encoding 

An orthogonal approach is to let the model learn the positional 
encoding. In this case, PE ∈N × dx becomes a learnable parameter. 
This, however, increases the memory requirements, without neces-
sarily bringing improvements over the sinusoidal encoding. 

Positional Embedding After its computation, either the positional encoding PE is added 
to the embedding tokens or they are concatenated as follows: 

Z pe =Ze þ PE, or  

Z pe =ConcatðZe ,PEÞ, 
ð8Þ 

where Concat denotes vector concatenation. Note that the concat-
enation has the advantage of not altering the information contained 
in Ze , since the positional information is only added to the unused 
dimension. Nevertheless, it augments the input dimension, leading 
to higher memory requirements. Instead, the addition does pre-
serve the same input dimension while altering the content of the 
embedding tokens. When the input dimension is high, this content 
altering is trivial, as most of the content is preserved. Therefore, in 
practice, for high dimension, summing positional encodings is 
preferred, whereas for low dimensions concatenating them prevails. 

2.1.3 Encoder Block The encoder block takes as input the embedding and positional 
tokens and outputs features of the input, to be decoded by the 
decoder block. It consists of a stack of L multi-head self-attention 
(MSA) layers and a multilayer perceptron (MLP). Specifically, the 
embedding and positional tokens, Z pe 

x ∈N × d , go through a 
multi-head self-attention block. Then, a residual connection with 
layer normalization is deployed. In the transformer, this operation 
is performed after each sub-layer. Next, we feed its output to an 
MLP and a normalization layer. This operation is performed 
L times, and each time the output of each encoder block (of size 
N× d) is the input of the subsequent block. In the L-th time, the 
output of the normalization is the input of the cross-attention 
block in the decoder (Subheading 2.1.4).
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2.1.4 Decoder Block The decoder has two inputs: first, an input that constitutes the 
queries Q ∈N × d of the encoder, and, second, the output of the 
encoder that constitutes the key-value K ,V ∈N × d pair. Similar 
to Subheadings 2.1.1 and 2.1.2, the first step constitutes encoding 
the output token to output embedding token and output positional 
token. These tokens are fed into the main part of the decoder, 
which consists of a stack of L masked multi-head self-attention 
(MMSA) layers, multi-head cross-attention (MCA) layers, and 
multilayer perceptron (MLP) followed by normalizations. Specifi-
cally, the embedding and positional tokens, Z pe 

y ∈N × d , g  
through a MMSA block. Then, a residual connection with layer 
normalization follows. Next, an MCA layer (followed by normali-
zation) maps the queries to the encoded key values before forward-
ing the output to an MLP. Finally, we project the output of the 
L decoder blocks (of dimension N × dy) through a linear layer and 
get output probability through a softmax layer. 

2.2 Advantages of 

Transformers 

Since their introduction, the transformers have had a significant 
impact on deep learning approaches. 

In natural language processing (NLP), before transformers, 
most architectures used to rely on recurrent modules, such as 
RNNs [2] and in particular LSTMs [3]. However, recurrent models 
process the input sequentially, meaning that, to compute the cur-
rent state, they require the output of the previous state. This makes 
them tremendously inefficient, as they are impossible to parallelize. 
On the contrary, in transformers, each input is processed indepen-
dent of the others, and the multi-head attention can perform 
multiple attention computations at once. This makes transformers 
highly efficient, as they are highly parallelizable. 

This results in not only exceptional scalability, both in the 
complexity of the model and the size of datasets, but also relatively 
fast training. Notably, the recent switch transformers [7] was pre-
trained on 34 billion tokens from the C4 dataset [8], scaling the 
model to over 1 trillion parameters. 

This scalability [7] is the principal reason for the power of the 
transformer. While it was originally introduced for translation, it 
refrains from introducing many inductive biases, i.e., the set of 
assumptions that the user makes about the structure of the model 
input. In doing so, the transformer relies on data to learn how they 
are structured. Compared to its counterparts with more biases, the 
transformer requires much more data to produce comparable 
results [5]. However, if a sufficient amount of data is available, 
the lack of inductive bias becomes a strength. By learning the 
structure of the data from the data, the transformer is able to 
learn better without human assumptions hindering [9]. 

In most tasks involving transformers, the model is first pre-
trained on a large dataset and then fine-tuned for the task at hand 
on a smaller dataset. The pretraining phase is essential for



transformers to learn the global structure of the specific input 
modality. For fine-tuning, typically fewer data suffice as the model 
is already rich. For instance, in natural language processing, BERT 
[10], a state-of-the-art language model, is pretrained on a 
Wikipedia-based dataset [11], with over 6 million articles and 
Book Corpus [12] with over 10,000 books. Then, this model can 
be fine-tuned on much more specific tasks. In computer vision, the 
vision transformer (ViT) is pretrained on the JFT-300M dataset, 
containing over 1 billion labels for 300 million images [5]. Hence, 
with a sufficient amount of data, transformers achieve results that 
were never possible before in various areas of machine learning. 
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2.3 Vision 

Transformer 

Transformers offer an alternative to CNNs that have long held a 
stranglehold on computer vision. Before 2020, most attempts to 
use transformers for vision tasks were still highly reliant on CNNs, 
either by using self-attention jointly with convolutions [13, 14] or  
by keeping the general structure of CNNs while using self-attention 
[15, 16]. 

The reason for this is rooted in the two main weaknesses of the 
transformers. First, the complexity of the attention operation is 
high. As attention is a quadratic operation, the number of para-
meters skyrockets quickly when dealing with visual data, i.e., 
images—and even more so with videos. For instance, in the case 
of ImageNet [17], inputting a single image with 256×256=65, 
536 pixels in an attention layer would be too heavy computation-
ally. Second, transformers suffer from lack of inductive biases. Since 
CNNs were specifically created for vision tasks, their architecture 
includes spatial inductive biases, like translation equivariance and 
locality. Therefore, the transformers have to be pretrained on a 
significantly large dataset to achieve similar performances. 

The vision transformer (ViT) [5] is the first systematic 
approach that uses directly transformers for vision tasks by addres-
sing both aforementioned issues. It rids the concept of convolu-
tions altogether, using purely a transformer-based architecture. In 
doing so, it achieves the state of the art on image recognition on 
various datasets, including ImageNet [17] and CIFAR-100 [18]. 

Figure 4 illustrates the ViT architecture. The input image is first 
split into 16×16 patches, flattened, and mapped to the expected 
dimension through a learnable linear projection. Since the image 
size is reduced to 16× 16, the complexity of the attention mecha-
nism is no longer a bottleneck. Then, ViT encodes the positional 
information and attaches a learnable embedding to the front of the 
sequence, similarly to BERT’s classification token [10]. The output 
of this token represents the entirety of the input—it encodes the 
information from each part of the input. Then, this sequence is fed 
into an encoder block, with the same structure as in the standard 
transformers [4]. The output of the classification token is then fed 
into an MLP that outputs class probabilities.
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Fig. 4 The vision transformer architecture (ViT). First, the input image is split into patches (bottom), which are 
linearly projected (embedding), and then concatenated with positional embedding tokens. The resulting tokens 
are fed into a transformer, and finally the resulting classification token is passed through an MLP to compute 
output probabilities. Figure inspired from [5] 

Due to the lack of inductive biases, when ViT is trained only on 
mid-sized datasets such as ImageNet, it scores some percentage 
points lower than the state of the art. Therefore, the proposed 
model is first pretrained on the JFT-300M dataset [19] and then 
fine-tuned on smaller datasets, thereby increasing its accuracy by 
13%. 

For a complete overview of visual transformers and follow-up 
works, we invite the readers to study [9, 20]. 

3 Improvements over the Vision Transformer 

In this section, we present transformer-based methods that 
improve over the original vision transformer (Subheading 2.3)  in  
two main ways. First, we introduce approaches that are trained on 
smaller datasets, unlike ViT [5] that requires pretraining on 
300 million labeled images (Subheading 3.1). Second, we present 
extensions over ViT that are more computational-efficient than 
ViT, given that training a ViT is directly correlated to the image 
resolution and the number of patches (Subheading 3.2).



3.1 Data Efficiency
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As discussed in Subheading 2.3, the vision transformer (ViT) [5] is  
pretrained on a massive proprietary dataset (JFT-300M) which 
contains 300 million labeled images. This need arises with trans-
formers because we remove the inductive biases from the architec-
ture compared to convolutional-based networks. Indeed, 
convolutions contain some translation equivariance. ViT does not 
benefit from this property and thus has to learn such biases, requir-
ing more data. JFT-300M is an enormous dataset, and to make ViT 
work in practice, better data-efficiency is needed. Indeed, collecting 
that amount of data is costly and can be infeasible for most tasks. 

Data-Efficient Image Transformers (DeiT) [21] The first work 
to achieve an improved data efficiency is DeiT [21] . The main idea 
of DeiT is to distil the inductive biases from a CNN into a trans-
former (Fig. 5). DeiT adds another token that works similarly to the 
class token. When training, ground truth labels are used to train the 
network according to the class token output with a cross-entropy 
(CE) loss. However, for the distillation network, the output labels 
are compared to the labels provided from a teacher network with a

Fig. 5 The DeiT architecture. The architecture features an extra token, the 
distillation token. This token is used similarly to the class token. 
Figure inspired from [21]



cross-entropy loss. The final loss for a N-categorical classification 
task is defined as follows:
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LhardDistill 
global = 

1 
2
ðLCEðΨðZ classÞ, yÞ þ  LCEðΨðZ distillÞ, yT ÞÞ, 

LCEðŷ, yÞ = -
1 
N 

N 

i =1 

yi log ŷ i þ ð1- yiÞ log ð1- ŷ iÞ 
ð9Þ 

withΨ the softmax function, Zclass the class token output, Zdistill the 
class token output, y the ground truth label, and yT the teacher label 
prediction. 

The teacher network is a Convolutional Neural Network 
(CNN). The main idea is that the distillation head will provide 
the inductive biases needed to improve the data efficiency of the 
architecture. By doing this, DeiT achieves remarkable performance 
on the ImageNet dataset, by training “only” on ImageNet-1K 
[17], which contains 1.3 million images. 

Convit [22] The main disadvantage of DeiT [21] is that it 
requires a pretrained CNN, which is not ideal, and it would be 
more convenient to not have this requirement. The CNN has a 
hard inductive bias constraint that can be a major limitation. 
Indeed, if enough data is available, learning the biases from the 
data can result in better representations. 

Convit [22] overpasses this issue by including the inductive bias 
of CNNs into a transformer in a soft way. Specifically, if the induc-
tive bias is limiting the training, the transformer can discard it. The 
main idea is to include the inductive bias into the ViT initialization. 
Therefore, before beginning training, the ViT is equivalent to a 
CNN. Then, the network can progressively learn the needed biases 
and diverge from the CNN initialization. 

Compact Convolutional Transformer [23], DeiT [21], and 
Convit [22] successfully achieve data efficiency at the ImageNet 
scale. However, ImageNet is a big dataset with 1.3 million images, 
whereas most datasets are significantly smaller. 

To reach higher data efficiency, the compact convolutional 
transformer [23] uses a CNN operation to extract the patches and 
then uses these patches in a transformer network (Fig. 6). The 
compact convolutional transformer comes with some modifications 
that lead to major improvements. First, by having a more complex 
encoding of patches, the system relies on the convolutional induc-
tive biases at the lower scales and then uses a transformer network 
to remove the locality constraint of the CNN. Second, the authors 
show that discarding the “class” token results in higher efficiency. 
Specifically, instead of the class token, the compact convolutional 
transformer pools together all the patches token and classifies on 
top of this pooled token. These two modifications enable using



3.2 Computational

Efficiency

smaller transformers while improving both the data efficiency and 
the computational efficiency. Therefore, these improvements allow 
the compact convolutional transformer to be successfully trained 
on smaller datasets, such as CIFAR or MNIST. 
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Fig. 6 Compact convolutional transformers. This architecture features a convolutional-based patch extraction 
to leverage a smaller transformer network, leading to higher data efficiency. Figure inspired from [23] 

The vision transformer architecture (Subheading 2.3) suffers from 
a Oðn2Þ complexity with respect to the number of tokens. When 
considering small resolution images or big patch size, this is not a 
limitation; for instance, for an image of 224×224 resolution with 
16× 16 patches, this amounts to 196 tokens. However, when 
needing to process larger images (for instance, 3D images in medi-
cal imaging) or when considering smaller patches, using and train-
ing such models becomes prohibitive. For instance, in tasks such as 
segmentation or image generation, it is needed to have more 
granular representations than 16× 16 patches; hence, it is crucial 
to solve this issue to enable more applications of vision transformer. 

Swin Transformer [24] One idea to make transformers more 
computation-efficient is the Swin transformer [24]. Instead of 
attending every patch in the image, the Swin transformer proposes 
to add a locality constraint. Specifically, the patches can only attend 
other patches that are limited to a vicinity window K. This restores 
the local inductive bias of CNNs. To allow communication across



patches throughout the network, the Swin transformer shifts the 
attention windows from one operation to another (Fig. 7). There-
fore, the Swin transformer is quadratic with regard to the size of the 
window K but linear with respect to the number of tokens n with 
complexityOðnK 2Þ. In practice, however, K is small, and this solves 
the quadratic complexity problem of attention. 
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Fig. 7 Shifting operation in the Swin transformer [24]. Between each attention operation, the attention window 
is shifted so that each patch can communicate with different patches than before. This allows the network to 
gain more global knowledge with the network’s depth. Figure inspired from [24] 

Perceiver [25, 26] Another idea for more computation-efficient 
visual transformers is to make a more drastic change to the archi-
tecture. If instead of using self-attention the model uses cross 
attention, the problem of the quadratic complexity with regard to 
the number of tokens can be solved. Indeed, computing the cross 
attention between two sets of length m and n, respectively, has 
complexity OðmnÞ. This idea is introduced in the perceiver 
[25, 26]. The key idea is to have a smaller set of latent variables 
that will be used as queries and that will retrieve information in the 
image token set (Fig. 8). Since this solves the quadratic complexity 
issue, it also removes the need of using patches; hence, in the case of 
transformers, each pixel is mapped to a single token. 

4 Vision Transformers for Tasks Other than Classification 

Subheadings 1–3 introduce visual transformers for one main appli-
cation: classification. Nevertheless, transformers can be used for 
numerous other tasks than classification. 

In this section, we present some fundamental vision tasks where 
transformers have had a major impact: object detection in images 
(Subheading 4.1), image segmentation (Subheading 4.2), training



4.1 Object Detection

with Transformers

visual transformers without labels (Subheading 4.3), and image 
generation using generative adversarial networks (GANs) (Sub-
heading 4.4). 
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Fig. 8 The perceiver architecture [25, 26]. A set of latent tokens retrieve information from the image through 
cross attention. Self-attention is performed between the tokens to refine the learned representation. These 
operations are linear with respect to the number of image tokens. Figure inspired from [25, 26] 

Detection is one of the early tasks that have seen improvements 
thanks to transformers. Detection is a combined recognition and 
localization problem; this means that a successful detection system 
should both recognize whether an object is present in an image and 
localize it spatially in the image. Carion et al. [14] is the first 
approach that uses transformers for detection. 

DEtection TRansformer (DETR) [14] DETR first extracts 
visual representations with a convolutional network (Fig. 9).3 

Then, the encodings are processed by a transformer network. 
Finally, the processed tokens are provided to a transformer decoder. 
The decoder uses cross attention between a set of learned tokens 
and the image tokens encoded by the encoder and outputs a set of 
tokens. Each output token is then passed through a feed-forward 
network that predicts if an object is present in an image or not; if 
the object is indeed present, the network also predicts the class and 
spatial location of the object, i.e., coordinates within the image. 

4.2 Image 

Segmentation with 

Transformers 

The goal of image segmentation is to assign to each pixel of an image 
the label of the object it belongs to. The segmenter [27] is a purely 
ViT approach addressing image segmentation. The idea is to first use 
ViT to encode the image. Then, the segmenter learns a token per

3 Note that, in DETR, the transformer is not directly used to extract the visual representation. Instead, it focuses 
on refining the visual representation to extract the object information.



4.3 Training

Transformers Without

Labels

semantic label. The encoded patch tokens and the semantic tokens 
are then fed to a second transformer. Finally, by computing the scalar 
product between the semantic tokens and the image tokens, the 
network assigns a label to each patch. Figure 10 displays this.
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Fig. 9 The DETR architecture. It refines a CNN visual representation to extract object localization and classes. 
Figure inspired from [14] 

Fig. 10 The segmenter architecture. It is a purely ViT-based approach to perform semantic segmentation. 
Figure inspired from [27] 

Visual transformers have initially been trained for classification 
tasks. However, this tasks requires having access to massive 
amounts of labeled data, which can be hard to obtain 
(as discussed in Subheading 3.1). Subheadings 3.1 and 3.2 present 
ways to train ViT more efficiently. However, it would also be 
interesting to be able to train this type of networks with “cheaper” 
data. Therefore, the goal of this part is to introduce unsupervised 
learning with transformers, i.e., training transformers without any 
labels.
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Fig. 11 The DINO training procedure. It consists in matching the outputs between 
two networks (p1 and p2) having two different augmentations (X1 and X2) of the 
same image as input (X). The parameters of the teacher model are updated with 
an exponential moving average (ema) of the student parameters. Figure inspired 
from [28] 

Self-DIstillation with NO labels (DINO) [28] DINO is one of 
the first works that trains a ViT with self-supervised learning 
(Fig. 11). The main idea is to have two ViT models following the 
teacher-student paradigm: the first model is updated through gra-
dient descent, and the second is an exponential moving average of 
the first one. Then, the whole two-stream DINO network is trained 
using two augmentations of the same image, which are each passed 
to one of the two networks. The goal of the training is to match the 
output between the two networks, i.e., no matter the augmenta-
tion in the input data, both networks should produce the same 
result. The main finding of DINO is that the ViT is capable of 
learning a semantic understanding of the image, as the attention 
matrices display some semantic information. Figure 12 visualizes 
the attention matrix of the various ViT heads trained with DINO. 

Masked Autoencoders (MAE) [29] Another way to train a ViT 
without supervision is by using an autoencoder architecture. 
Masked autoencoders (MAE) [29] perform a random masking of 
the input token and give the task to reconstruct the original image 
to a decoder. The encoder learns a representation that performs



4.4 Image

Generation with

Transformers and

Attention

well in a given downstream task. This is illustrated in Fig. 13. One 
of the key observations of the MAE work [29] is that the decoder 
does not need to be very good for the encoder to achieve good 
performance: by using only a small decoder, MAE successfully 
trains a ViT in an autoencoder fashion. 
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Fig. 12 DINO samples. Visualization of the attention matrix of ViT heads trained with DINO. The ViT discovers 
the semantic structure of an image in an unsupervised way 

Fig. 13 The MAE training procedure. After masking some tokens of an image, the remaining tokens are fed to 
an encoder. Then a decoder tries to reconstruct the original image from this representation. Figure inspired 
from [29] 

Attention and vision transformers have also helped in developing 
fresh ideas and creating new architectures for generative models 
and in particular for generative adversarial networks (GANs). 

GANsformers [30] GANsformers are the most representative 
work of GANs with transformers, as they are a hybrid architecture 
using both attention and CNNs. The GANsformer architecture is 
illustrated in Fig. 14. The model first splits the latent vector of a 
GAN into multiple tokens. Then, a cross-attention mechanism is 
used to improve the generated feature maps, and at the same time, 
the GANsformer architecture retrieves information from the gen-
erated feature map to enrich the tokens. This mechanism allows the 
GAN to have better and richer semantic knowledge, which is 
showed to be useful for generating multimodal images. 

StyleSwin [31] Another approach for generative modeling is to 
purely use a ViT architecture like StyleSwin [31]. StyleSwin is a 
GAN that leverages a similar type of attention as the Swin trans-
former [24]. This allows to generate high-definition images with-
out having to deal with the quadratic cost problem.
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Fig. 14 GANsformer architecture. A set of latents contribute to bring information 
to a CNN feature map. Figure inspired from [30] 

5 Vision Transformers for Other Domains 

In this section, we present applications of visual transformers to 
other domains. First, we describe multimodal transformers 
operating with vision and language (Subheading 5.1), then we 
describe video-level attention and video transformers (Subheadings 
5.2 and 5.3), and finally we present multimodal video transformers 
operating with vision, language, and audio (Subheading 5.4). 

5.1 Multimodal 

Transformers: Vision 

and Language 

As transformers have found tremendous success in both natural 
language processing and computer vision, their use in vision-
language tasks is also of interest. In this section, we describe some 
representative multimodal methods for vision and language: ViL-
BERT (Subheading 5.1.1), DALL-E (Subheading 5.1.3), and 
CLIP (Subheading 5.1.2). 

5.1.1 ViLBERT Vision-and-language BERT (VilBERT) [32] is an example of archi-
tecture that fuses two modalities. It consists of two parallel streams, 
each one working with one modality. The vision stream extracts



bounding boxes from images via an object detection network, by 
encoding their position. The language stream embeds word vectors 
and extracts feature vectors using the basic transformer encoder 
block [4] (Fig. 3 left). These two resulting feature vectors are then 
fused together by a cross-attention layer (Subheading 1.3.2). This 
follows the standard architecture of the transformer encoder block, 
where the keys and values of one modality are passed onto the MCA 
block of the other modality. The output of the cross-attention layer 
is passed into another transformer encoder block, and these two 
layers are stacked multiple times. 
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The language stream is initialized with BERT trained on Book 
Corpus [12] and Wikipedia [11], while the visual stream is initi-
alized with Faster R-CNN [33]. On top of the pretraining of each 
stream, the whole architecture is pretrained on the Conceptual 
Captions dataset [34] on two pretext tasks. 

ViLBERT has been proven powerful for a variety of multimodal 
tasks. In the original paper, ViLBERT was fined-tuned to a variety 
of tasks, including visual question answering, visual commonsense 
reasoning, referring expressions, and caption-based image retrieval. 

5.1.2 CLIP Connecting Text and Images (CLIP) [35] is designed to address 
two major issues of deep learning models: costly datasets and 
inflexibility. While most deep learning models are trained on labeled 
datasets, CLIP is trained on 400 million text-image pairs that are 
scraped from the Internet. This reduces the labor of having to 
manually label millions of images that are required to train powerful 
deep learning models. When models are trained on one specific 
dataset, they also tend to be difficult to extend to other applica-
tions. For instance, the accuracy of a model trained on ImageNet is 
generally limited to its own dataset and cannot be applied to real-
world problems. To optimize training, CLIP models learn to per-
form a wide variety of tasks during pretraining, and this task allows 
for zero-shot transfer to many existing datasets. While there are still 
several potential improvements, this approach is competitive to 
supervised models that are trained on specific datasets. 

CLIP Architecture and 

Training 

CLIP is used to measure the similarity between the text input and 
the image generated from a latent vector. At the core of the 
approach is the idea of learning perception from supervision 
contained in natural language. Methods which work on natural 
language can learn passively from the supervision contained in the 
vast amount of text on the Internet. 

Given a batch of N (image, text) pairs, CLIP is trained to 
predict which of the N×N possible (image, text) pairings across a 
batch actually occurred. To do this, CLIP learns a multimodal 
embedding space by jointly training an image encoder and a text 
encoder to maximize the cosine similarity of the image and text



embeddings of the N real pairs in the batch while minimizing the 
cosine similarity of the embeddings of the N2-N incorrect pair-
ings. A symmetric cross-entropy loss over these similarity scores is 
optimized. 
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Two different architectures were considered for the image 
encoder. For the first, ResNet-50 [36] is used as the base architec-
ture for the image encoder due to its widespread adoption and 
proven performance. Several modifications were made to the origi-
nal version of ResNet. For the second architecture, ViT is used with 
some minor modifications: first, adding an extra layer normaliza-
tion to the combined patch and position embeddings before the 
transformer and, second, using a slightly different initialization 
scheme. 

The text encoder is a standard transformer [4] (Subheading 
2.1) with the architecture modifications described in [35]. As a base 
size, CLIP uses a 63M-parameter 12-layer 512-wide model with 
eight attention heads. The transformer operates on a lowercased 
byte pair encoding (BPE) representation of the text with a 49,152 
vocab size [37]. The max sequence length is capped at 76. The text 
sequence is bracketed with [SOS] and [EOS] tokens,4 and the 
activations of the highest layer of the transformer at the [EOS] 
token are treated as the feature representation of the text which is 
layer normalized and then linearly projected into the multimodal 
embedding space. 

5.1.3 DALL-E and 

DALL-E 2 

DALL-E [38] is another example of the application of transformers 
in vision. It generates images from a natural language prompt— 
some examples include “an armchair in the shape of an avocado” 
and “a penguin made of watermelon.” It uses a decoder-only 
model, which is similar to GPT-3 [39]. DALL-E uses 12 billion 
parameters and is pretrained on Conceptual Captions [34] with 
over 3.3 million text-image pairs. DALL-E 2 [40] is the upgraded 
version of DALL-E, based on diffusion models and CLIP (Sub-
heading 5.1.2), and allows better performances with more realistic 
and accurate generated images. In addition to producing more 
realistic results with a better resolution than DALL-E, DALL-E 
2 is also able to edit the outputs. Indeed, with DALL-E 2, one can 
add or remove realistically an element in the output and can also 
generate different variations of the same output. These two models 
clearly demonstrate the powerful nature and scalability of transfor-
mers that are capable of efficiently processing a web-scale amount 
of data. 

4 [SOS], start of sequence; [EOS], end of sequence
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5.1.4 Flamingo Flamingo [41] is a visual language model (VLM) tackling a wide 
range of multimodal tasks based on few-shot learning. This is an 
adaptation of large language models (LLMs) handling an extra 
visual modality with 80B parameters. 

Flamingo consists of three main components: a vision encoder, 
a perceiver resampler, and a language model. First, to encode 
images or videos, a vision convolutional encoder [42] is pretrained 
in a contrastive way, using image and text pairs.5 Then, inspired by 
the perceiver architecture [25] (detailed in Subheading 1.3.2), the 
perceiver resampler takes a variable number of encoded visual fea-
tures and outputs a fixed-length latent code. Finally, this visual 
latent code conditions the language model by querying language 
tokens through cross-attention blocks. Those cross-attention 
blocks are interleaved with pretrained and frozen language model 
blocks. 

The whole model is trained using three different kinds of 
datasets without annotations (text with image content from web-
pages [41], text and image pairs [41, 43], and text and video pairs 
[41]). Once the model is trained, it is fine-tuned using few-shot 
learning techniques to tackle specific tasks. 

5.2 Video Attention Video understanding is a long-standing problem, and despite 
incredible computer vision advances, obtaining the best video rep-
resentation is still an active research area. Videos require employing 
effective spatiotemporal processing of RGB and time streams to 
capture long-range interactions [44, 45] while focusing on impor-
tant video parts [46] with minimum computational resources [47]. 

Typically, video understanding benefits from 2D computer 
vision, by adapting 2D image processing methods to 3D spatio-
temporal methods [48]. And through the Video Vision Trans-
former (ViViT) [49], history repeats itself. Indeed, with the rise 
of transformers [4] and the recent advances in image classification 
[5], video transformers appear as logical successors of CNNs. 

However, in addition to the computationally expensive video 
processing, transformers also require a lot of computational 
resources. Thus, developing efficient spatiotemporal attention 
mechanisms is essential [25, 49, 50]. 

In this section, we first describe the general principle of video 
transformers (Subheading 5.2.1), and then, we detail three differ-
ent attention mechanisms used for video representation (Subhead-
ings 5.2.2, 5.2.3, and 5.2.4). 

5 The text is encoded using a pretrained BERT model [10].
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5.2.1 General Principle Generally, inputs of video transformers are RGB video clips 

X ∈F ×H ×W ×3 , with F frames of size H×W. 
To begin with, video transformers split the input video clip 

X into ST tokens x i ∈K , where S and T are, respectively, the 
number of tokens along the spatial and temporal dimension and 
K is the size of a token. 

To do so, the simplest method extracts nonoverlapping 2D 
patches of size P×P from each frame [5], as used in TimeSformer 
[50]. This results in S=HW/P2 , T=F, and K=P2 . 

However, there exist more elegant and efficient token extrac-
tion methods for videos. For instance, in ViViT [49], the authors 
propose to extract 3D volumes from videos (involving T≠F) t  
capture spatiotemporal information within tokens. In TokenLear-
ner [47], they propose a learnable token extractor to select the 
most important parts of the video. 

Once raw tokens xi are extracted, transformer architectures aim 
to map them into d-dimensional embedding vectors Z ∈ST × d 

using a linear embedding E ∈d ×K : 

Z = ½zcls ,Ex1,Ex2, . . .,ExST � þ  PE, ð10Þ 
where zcls  ∈d is a classification token that encodes information 
from all tokens of a single sample [10] and PE ∈ST × d is a 
positional embedding that encodes the spatiotemporal position of 
tokens, since the subsequent attention blocks are permutation 
invariant [4]. 

In the end, embedding vectors Z pass through a sequence of 
L transformer layers. A transformer layer ℓ is composed of a series of 
multi-head self-attention (MSA) [4], layer normalization 
(LN) [51], and MLP blocks: 

Y ℓ =MSAðLNðZ ℓÞÞ þ Z ℓ , 

Z ℓþ1 =MLPðLNðY ℓÞÞ þ Y ℓ :
ð11Þ 

In this way, as shown in Fig. 2, we denote four different 
components in a video transformer layer: the query-key-value 
(QKV) projection, the MSA block, the MSA projection, and the 
MLP. For a layer with h heads, the complexity of each component is 
[4]:

• QKV projection: Oðh:ð2ST ddk þ ST ddvÞ
• MSA: OðhS2 T 2 :ðdk þ dvÞÞ
• MSA projection: OðST hdvdÞ
• MLP: OðST d2Þ 

We note that the MSA complexity is the most impacting com-
ponent, with a quadratic complexity with respect to the number of 
tokens. Hence, for comprehension and clarity purposes, in the rest 
of the section, we consider the global complexity of a video trans-
former with L layers to equal to OðLS2 T 2Þ.
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Fig. 15 Full space-time attention mechanism. Embedding tokens at layer ℓ- 1, 
Z(ℓ-1) are all fed simultaneously through a unique spatiotemporal attention 
block. Finally, the spatiotemporal embedding is passed through an MLP and 
normalized to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [50] 

5.2.2 Full Space-Time 

Attention 

As described in [49, 50], full space-time attention mechanism is the 
most basic and direct spatiotemporal attention mechanism. As 
shown in Fig. 15, it consists in computing self-attention across all 
pairs of extracted tokens. 

This method results in a heavy complexity of OðLS2 T 2Þ 
[49, 50]. This quadratic complexity can fast be memory-
consuming, in which it is especially true when considering videos. 
Therefore, using full space-time attention mechanism is 
impractical [50]. 

5.2.3 Divided Space-

Time Attention 

A smarter and more efficient way to compute spatiotemporal atten-
tion is the divided space-time attention mechanism, first described 
in [50]. 

As shown in Fig. 16, it relies on computing spatial and temporal 
attention separately in each transformer layer. Indeed, we first 
compute the spatial attention, i.e., self-attention within each tem-
poral index, and then the temporal attention, i.e., self-attention 
across all temporal indices.
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Fig. 16 Divided space-time attention mechanism. Embedding tokens at layer 
ℓ- 1, Z(ℓ-1) are first processed along the temporal dimension through a first 
MSA block, and the resulting tokens are processed along the spatial dimension. 
Finally, the spatiotemporal embedding is passed through an MLP and normalized 
to output embedding tokens of the next layer, Zℓ . Figure inspired from [50] 

The complexity of this attention mechanism is OðLST :ðS þ 
T ÞÞ [50]. By separating the calculation of the self-attention over 
the different dimensions, one tames the quadratic complexity of the 
MSA module. This mechanism highly reduces the complexity of a 
model with respect to the full space-time complexity. Therefore, it 
is reasonable to use it to process videos [50]. 

5.2.4 Cross-Attention 

Bottlenecks 

An even more refined way to reduce the computational cost of 
attention calculation consists of using cross attention as a bottle-
neck. For instance, as shown in Fig. 17 and mentioned in Subhead-
ing 3.2, the perceiver [25] projects the extracted tokens xi into a



very low-dimensional embedding through a cross-attention block 
placed before the transformer layers. 
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Fig. 17 Attention bottleneck mechanism. Raw input patches and embedding 
tokens at layer ℓ- 1, Z(ℓ-1) are fed to a cross-attention block (CA) and then 
normalized and projected. Finally, the resulting embedding is passed through a 
transformer to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [25] 

Here, the cross-attention block placed before the L transformer 
layers reduce the input dimension from ST to N, where N≪ ST,6 

thus resulting in a complexity of OðSTN Þ. Hence, the total com-
plexity of this attention block is OðSTN þ LN 2Þ. It reduces again 
the complexity of a model with respect to the divided space-time 
attention mechanism. We note that it enables to design deep archi-
tectures, as in the perceiver [25], and then it enables the extraction 
of higher-level features. 

5.2.5 Factorized Encoder Lastly, the factorized encoder [49] architecture is the most efficient 
with respect to the complexity/performance trade-off. 

As in divided space-time attention, the factorized encoder aims 
to compute spatial and temporal attention separately. Nevertheless, 
as shown in Fig. 18, instead of mixing spatiotemporal tokens in 
each transformer layer, here, there exist two separate encoders:

6 In practice, N≤512 for perceiver [25], against ST=16×16× (32/2)=4096 for ViViT-L [49]



First, a representation of each temporal index is obtained, thanks to 
a spatial encoder with Ls layers. Second, these tokens are passed 
through a temporal encoder with Lt layers (i.e., L=Ls +Lt).
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Fig. 18 Factorized encoder mechanism. First, a spatial transformer processes input tokens along the spatial 
dimension. Then, a temporal transformer processes the resulting spatial embedding along the temporal 
dimension. Figure inspired from [25] 

Hence, the complexity of a such architecture has two main 
components: the spatial encoder complexity of OðLsS

2Þ and the 
temporal encoder complexity of OðLtT

2Þ. It results in a global 
complexity of OðLsS

2 þ LtT
2Þ. Thus, it leads to very lightweight 

models. However, as it first extracts per-frame features and then 
aggregates them to a final representation, it corresponds to a late-
fusion mechanism, which can sometimes be a drawback as it does 
not mix spatial and temporal information simultaneously [52]. 

5.3 Video 

Transformers 

In this section, we present two modern transformer-based archi-
tectures for video classification. We start by introducing the Time-
Sformer architecture in Subheading 5.3.1 and then the ViViT 
architecture in Subheading 5.3.2. 

5.3.1 TimeSformer TimeSformer [50] is one of the first architectures with space-time 
attention that impacted the video classification field. It follows the 
same structure and principle described in Subheading 5.2.1. 

First, it takes as input an RGB video clip sampled at a rate of 
1/32 and decomposed into 2D 16 ×16 patches. 

As shown in Fig. 19, the TimeSformer architecture is based on 
the ViT architecture (Subheading 2.3), with 12 12-headed MSA 
layers. However, the added value compared to the ViT is that 
TimeSfomer uses the divided space-time attention mechanism (Sub-
heading 5.2.3). Such attention mechanism enables to capture high-
level spatiotemporal features while taming the complexity of the 
model. Moreover, the authors introduce three variants of the archi-
tecture: (i) TimeSformer, the standard version of the model, that 
operates on 8 frames of 224×224; (ii) TimeSformer-L, a configu-
ration with high spatial resolution, that operates on 16 frames of 
448×448; and (iii) TimeSformer-HR, a long temporal range setup, 
that operates on 96 frames of 224× 224.
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Fig. 19 TimeSformer architecture. The TimeSformer first projects input to 
embedding tokens, which are summed to positional embedding tokens. The 
resulting tokens are then passed through L divided space-time attention blocks 
and then linearly projected to obtain output probabilities 

Finally, the terminal classification token embedding is passed 
through an MLP to output a probability for all video classes. 
During inference, the final prediction is obtained by averaging the 
output probabilities from three different spatial crops of the input 
video clip (top left, center, and bottom right). 

TimeSformer achieves similar state-of-the-art performances as 
the 3D CNNs [53, 54] on various video classification datasets, such 
as Kinetics-400 and Kinetics-600 [55]. Note the TimeSformer is 
much faster to train (416 training hours against 3840 hours [50] 
for a SlowFast architecture [54]) and, also, more efficient (0.59 
TFLOPs against 1.97 TFLOPs [50] for a SlowFast architecture 
[53]). 

5.3.2 ViViT ViViT [49] is the main extension of the ViT [5] architecture 
(Subheading 2.3) for video classification. 

First, the authors use a 16 tubelet embedding instead of a 2D 
patch embedding, as mentioned in Subheading 5.2.1. This alter-
nate embedding method aims to capture the spatiotemporal



information from the tokenization step, unlike standard architec-
tures that fuse spatiotemporal information from the first attention 
block. 
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Fig. 20 ViViT architecture. The ViViT first projects input to embedding tokens, 
which are summed to positional embedding tokens. The resulting tokens are first 
passed through Ls spatial attention blocks and then through Lt temporal attention 
blocks. The resulting output is linearly projected to obtain output probabilities 

As shown in Fig. 20, the ViViT architecture is based on factor-
ized encoder architecture (Subheading 5.2.5) and consists of one 
spatial and one temporal encoder operating on input clips with 
32 frames of 224×224. The spatial encoder uses one of the three 
ViT variants as backbone.7 For the temporal encoder, the number

7 ViT-B: 12 12-headed MSA layers; ViT-L: 24 16-headed MSA layers; and ViT-H: 32 16-headed MSA layers.



of layers does not impact much the performance, so that, according 
to the performance/complexity trade-off, the number MSA layers 
is fixed at 4. The authors show that such architecture reaches high 
performances while reducing drastically the complexity.
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Finally, as in TimeSformer (Subheading 5.3.1), ViViT outputs 
probabilities for all video classes through the last classification token 
embedding and averages the obtained probabilities across three 
crops of each input clip (top left, center, and bottom right). 

ViViT outperforms both 3D CNNs [53, 54] and TimeSformer 
[50] on the Kinetics-400 and Kinetics-600 datasets [55]. Note the 
complexity of this architecture is highly reduced in comparison to 
other state-of-the-art models. For instance, the number of FLOPs 
for a ViViT-L/16×16× 2 is 3.89 ×1012 against 7.14 ×1012 for a 
TimeSformer-L [50] and 7.14× 1012 for a SlowFast [53] 
architecture. 

5.4 Multimodal Video 

Transformers 

Nowadays, one of the main gaps between artificial and human 
intelligence is the ability for us to process multimodal signals and 
to enrich the analysis by mixing the different modalities. Moreover, 
until recently, deep learning models have been focusing mostly on 
very specific visual tasks, typically based on a single modality, such as 
image classification [5, 17, 18, 56, 57], audio classification [25, 52, 
58, 59], and machine translation [10, 60–63]. These two factors 
combined have pushed researchers to take up multimodal 
challenges. 

The default solution for multimodal tasks consists in first cre-
ating an individual model (or network) per modality and then in 
fusing the resulting single-modal features together [64, 65]. Yet, 
this approach fails to model interactions or correlations among 
different modalities. However, the recent rise of attention [4, 5, 
49] is promising for multimodal applications, since attention per-
forms very well at combining multiple inputs [25, 52, 66, 67]. 

Here, we present two main ways of dealing with several 
modalities: 

1. Concatenating tokens from different modalities into one 
vector [25, 66]. The multimodal video transformer 
(MM-ViT) [66] combines raw RGB frames, motion features, 
and audio spectrogram for video action recognition. To do so, 
the authors fuse tokens from all different modalities into a 
single-input embedding and pass it through transformer layers. 
However, a drawback of this method is that it fails to distin-
guish well one modality to another. To overcome this issue, the 
authors of the perceiver [25] propose to learn a modality 
embedding in addition to the positional embedding (see Sub-
headings 3.2 and 5.2.1). This allows associating each token
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with its modality. Nevertheless, given that (i) the complexity of 
a transformer layer is quadratic with respect to the number of 
tokens (Subheading 5.2.1) and (ii), with this method, the 
number of tokens is multiplied by the number of modalities, 
it may lead to skyrocketing computational cost [66]. 

2. Exploiting cross attention [52, 67, 68]. Several modern 
approaches exploit cross attention to mix multiple modalities, 
such as [52] for audio and video, [67] for text and video, and 
[68] for audio, text, and video. The commonality among all 
these methods is that they exploit the intrinsic properties of 
cross attention by querying one modality with a key-value pair 
from the other one [52, 67]. This idea can be easily generalized 
to more than two modalities by computing cross attention 
across each combination of modalities [68]. 

6 Conclusion 

Attention is an intuitive and efficient technique that enables 
handling local and global cues. 

On this basis, the first pure attention architecture, the trans-
former [4], has been designed for NLP purposes. Quickly, the 
computer vision field has adapted the transformer architecture for 
image classification, by designing the first visual transformer model: 
the vision transformer (ViT) [5]. 

However, even if transformers naturally lead to high perfor-
mances, the raw attention mechanism is a computationally greedy 
and heavy technique. For this reason, several enhanced and refined 
derivatives of attention mechanisms have been proposed [21–26]. 

Then, rapidly, a wide variety of other tasks have been con-
quered by transformer-based architectures, such as object detection 
[14], image segmentation [27], self-supervised learning [28, 29], 
and image generation [30, 31]. In addition, transformer-based 
architectures are particularly well suited to handle multidimen-
sional tasks. This is because multimodal signals are easily combined 
through attention blocks, in particular vision and language cues 
[32, 35, 38] and spatiotemporal signals are also easily tamed, as in 
[25, 49, 50]. 

For these reasons, transformer-based architectures enabled 
many fields to make tremendous progresses in the last few years. 
In the future, transformers will need to become more and more 
computationally efficient, e.g., to be usable on cellphones, and will 
play a huge role to tackle multimodal challenges and bridge 
together most AI fields.
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Chapter 7 

Clinical Assessment of Brain Disorders 

Stéphane Epelbaum and Federica Cacciamani 

Abstract 

The clinical evaluation of brain diseases strictly depends on patient’s complaint and observation of their 
behavior. The specialist, often the neurologist, chooses whether and how to assess cognition, motor system, 
sensory perception, and autonomic nervous system. They may also decide to request a more in-depth 
examination, such as neuropsychological and language assessments and imaging or laboratory tests. From 
the synthesis of all these results, they will be able to make a diagnosis. The neuropsychological assessment in 
particular is based on the collection of medical history, on the clinical observation, and on the administra-
tion of standardized cognitive tests validated in the scientific literature. It is therefore particularly useful 
when a neurological disease with cognitive and/or behavioral manifestation is suspected. The introduction 
of machine learning methods in neurology represents an important added value to the evaluation per-
formed by the clinician to increase the diagnostic accuracy, track disease progression, and assess treatment 
efficacy. 

Key words Clinical assessment, Neurological examination, Neuropsychology, Cognitive scores 

1 Introduction 

1.1 What Is a 

Disease? Why Are 

Clinical Assessments 

Important? 

A disease is a specific set of processes, often biological or histologi-
cal, that induce symptoms (subjectively felt), which negatively affect 
the individual’s normal functioning (e.g., discomfort, pain, 
suffering), are often associated with a complaint, and will manifest 
by signs (objectively measured), for instance, decreased motor 
strength or slowed speech. Symptoms and signs taken together 
define a syndrome (e.g., headache, vomiting, stiff neck point to a 
meningeal syndrome), and the syndromes are contextually inter-
preted by physicians to hypothesize on a given disease. If, for 
instance, the meningeal syndrome appears brutally and is very 
intense, the suspected disease will be meningeal hemorrhage. If it 
appears subacutely over a few hours and is accompanied by a fever, 
the physician will rather surmise a meningitis. Box 1 introduces the 
main medical definitions. 
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A clinical evaluation is therefore requested by the patient him-
self/herself or by a clinician (general practitioner, specialist, psy-
chologist, etc.). The aim is to better characterize the symptoms and 
the underlying disease. 

Box 1 Main Medical Definitions 

Disease Physiological (biological and/or pathological) process 
(es) causing pejorative clinical manifestations 

Symptom Subjective manifestation of a disease (pain, memory 
complaint, nausea, etc.) 

Sign Objective manifestation of a disease upon medical 
examination (decreased reflex, elevated blood pressure, 
etc.) 

Syndrome Association of symptoms and signs that can be related to a 
set of diseases (e.g., headache, nausea, and neck stiffness 
are a meningeal syndrome that can correspond to either 
meningitis or meningeal hemorrhage) 

Clinical 
assessment 

Stereotyped interrogation, observation, and examination of 
an individual by a trained healthcare provider in order to 
collect his/her symptoms and signs to determine a 
syndrome and hypothesize a main disease diagnosis and 
differential diagnoses 

During their studies, physicians learn over a few years a large 
quantity of diagnostic and prognostic “decision trees” based on the 
co-occurrence of every set of symptoms and signs. The learning is 
structured so that frequent and severe diseases are more studied, 
while rare or orphan diseases and those considered less severe are 
covered more briefly. For instance, the few symptoms described 
above will most likely be recognized and diagnosed well by any 
physician as well as the degree of urgency they imply. This learning 
is based on aggregated knowledge at one point in time which is 
always susceptible to change. A clear example of such changes is 
Alzheimer’s disease (AD) which was considered a rare form of 
dementia of the young from its seminal description in 1906 [1] 
until the 1980s when it was finally identified by numerous patho-
logical studies to be the predominant cause of dementia in the 
elderly [2]. Importantly, clinical assessment requires tools to be 
performed, such as the famous reflex hammer used by neurologists 
or cognitive tests used by the neuropsychologist. Machine learning, 
and the decision support system that it entails, may be considered as 
such a tool, although it has the peculiarity of being harder to 
comprehend for most clinicians which may be a specific challenge 
for its implementation.



2 The Neurological Examination
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Every clinical assessment, whether conducted in the routine 
practice of medicine or in biomedical research, has to adhere to strict 
ethical rules that warrant the trust the patient puts in their healthcare 
providers. The main rules are that of beneficence; non-maleficence; 
respect for any individual notwithstanding their race, gender, reli-
gion, or personal beliefs; and medical confidentiality. 

Finally, the current development of digital and information 
technologies is rapidly changing the scope of clinical assessments. 
Prior to consultation, auto-assessment and patient empowerment 
are promoted through the development of specific applications to 
explicitly diagnose or monitor a disease [3, 4] and patient education 
and access to relevant information [5]. The main issue concerning 
this last point is the exponential growth of these digital solutions 
and the risk of misinformation that can sometime lead the patient 
toward unethical care [6]. 

1.2 Peculiarities of 

Clinical Assessment of 

Brain Disorders 

The brain has functionally distinct regions, so there is a topograph-
ical correspondence between the location of the lesion in the brain 
and the symptom. The characterization of symptoms therefore 
allows to trace which brain region is affected. This helps in identify-
ing the underlying disease. The motor and sensory cortices are 
perfect examples of this functional topography often depicted as 
homunculi [7]. 

Clinical evaluations for brain disorders thus follow a standar-
dized procedure. In addition to the symptoms and signs appraisal, 
the physician often makes an assumption as to where the nervous 
system is affected. This often overlaps with the syndromic defini-
tion: “frontotemporal dementia” implies that the lesions are in the 
frontotemporal cortices. However, this is not always the case as 
some diseases and syndromes still bear the name of the physician 
who was the first to describe it. While most neurologists know that 
a parkinsonism (or Parkinson syndrome) is due to basal ganglia 
lesions, it is not implied in its name. 

2.1 General 

Information on the 

Neurological 

Examination 

The neurological examination begins with the collection of anam-
nestic data, that is, the complete history recalled and recounted by a 
patient or their entourage, including complaint, medical history, 
lifestyle, concurrent treatments, etc. During the collection of anam-
nestic data, the clinician also carefully observes patient’s behavior. 
The neurologist then proceeds with the examination of brain func-
tion, which is oriented by the complaint, and often includes cogni-
tive screening tests and examination of motor system, sensitivity, 
and autonomic nervous system. Usually, this examination has more 
formal and structured parts (this can be, for example, a systematic 
evaluation of reflexes always in the same order or the use of a 
specific scale to assess sensory or cognitive function) and other



Personal and family history with, if necessary, a family tree.

In a formal evaluation, especially in cohort studies and clinical

more informal ones. In fact, the clinician chooses case by case on 
the basis of what is required and what is available to the physician at 
the time of the said assessment. For example, they may use a lay 
journal in their office to ask a patient to describe a complex photo-
graph in order to get a general idea of their visuospatial perception 
skills. This is quite time-consuming, and, depending on the 
patient’s case, presence of entourage, and thoroughness of the 
clinician, an initial visit can take from 0.5 h to 2 h to capture the 
essential features necessary to formulate a diagnosis, prognosis, and 
care plan. If the neurologists deem it necessary, they may request 
additional tests or examinations, such as a neuropsychological eval-
uation, language assessment, laboratory tests, imaging tests, etc. 

For applying machine learning techniques, the results of formal 
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exams are usually more adequate because they offer quantitative 
measures. However, this may change over the coming years as 
solutions are being developed to analyze informal material. This 
may include clinical reports or videos of patient examinations. 
Another example is natural language processing tools that may 
help in identifying semantic deficits in patients suffering from 
incipient dementia [8]. The context of data acquisition is very 
important and can greatly impact its quality. Among the different 
contexts, we can cite “routine clinical practice,” “retrospective or 
prospective observational studies,” and “clinical trials” that have 
increasing levels of quality due to the level of standardization of 
data acquisition and monitoring. 

2.2 Clinical Interview A clinical interview precedes any objective assessment. It is adapted 
to the patient’s complaint and as standardized as possible so as not 
to forget any question. It consists of: 

– 

– Lifestyle (including alcohol intake and smoking). 

– Past or current treatments. 

– As accurate as possible description of the illness made by the 
patient and/or their informant. It is important to know the 
intensity of the symptoms, their frequency, the chronological 
order of their appearance, the explorations already carried out, 
and the treatments undertaken as well as their effectiveness. 

trials, symptoms can be assessed thanks to different scales, some of 
which will be presented in this chapter, depending on the clinical 
variable of interest. These scales’ results will also be used to monitor 
the disease evolution, notably in order to test new treatments. 

The interview process is probably the most important part of 
the whole clinical assessment. It will allow delineating the patient’s 
medical issue, which in turn will determine the next steps of the 
examination and management plan. It also creates a relation of trust 
that is essential for the future adhesion of the patient to the physi-
cian’s propositions.
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2.3 Evaluation of 

Cognition and 

Behavior 

The assessment of cognition and behavior can be carried out by the 
neurologist using more or less in-depth tests depending on the 
situation, or a complete neuropsychological assessment can be 
requested and carried out separately by a neuropsychologist (see 
Subheading 3 of this chapter). The assessment of cognition is 
guided by the cognitive complaint of the patient and/or the infor-
mant [9]. However, on the one hand, it is possible that the patient 
is not fully aware of their deficits. This is a symptom called anosog-
nosia (which literally means lack of knowledge of the disease) and is 
typical of various forms of dementia, including AD and frontotem-
poral dementia, but also brain damage due, for example, to stroke 
in certain regions of the brain. On the other hand, a cognitive 
complaint can be due to anxiety, depression, and personality traits 
and may have no neurological basis. The medical doctor can use 
simple tests in their daily practice such as the Mini-Mental State 
Examination (MMSE) [10]. For a more detailed description of the 
MMSE, please refer to Subheading 3 of this chapter. 

2.4 Evaluation of 

Motor System 

The examination of motor function starts as soon as the physician 
greets their patient in the waiting room. They will immediately 
observe the patient’s walk and their bodily movements. Then, in 
their office, the observation will continue to search, for example, for 
a muscular atrophy or fascicules (i.e., muscular shudder detected by 
looking at the skin of the patient). This purely observational phase 
is followed by a formal examination, provoking objective signs. 

One goal of motor assessment is to assess muscle strength. This 
is done segmentally, that is, carried out by evaluating the function 
of muscle groups that perform the same action, for example, the 
muscles that allow the elbow to flex. The neurologist gives a score 
ranging from 0 to 5, where 0 indicates that they did not detect any 
movement and 5 indicates normal movement strength. 

A second aspect which is assessed is muscle tone. It is explored 
by passively mobilizing the patient joints. Hypertonia, or rigidity, is 
an increase in the tone. When the neurologist moves the joint, it 
may remain rigidly in that position (plastic or parkinsonian hyper-
tonia), or the limb may immediately return to the resting position 
as soon as the neurologist stops manipulating it (spastic or elastic 
hypertonia). Hypotonia is a reduction of muscle tone, i.e., lack of 
tension or resistance to passive movement. This is observed in 
cerebellar lesions and chorea. 

Another goal of motor assessment is evaluating deep tendon 
reflexes. Using a reflex hammer, the neurologist taps the tendons 
(e.g., Achilles’ tendon for the Achillean reflex). The deep tendon 
reflexes will be categorized as (1) normal, (2) increased and 
polykinetic (i.e., a single tap provokes more than one movement), 
(3) diminished or abolished (as in peripheral nervous system dis-
eases), and (4) pendular (as in cerebellar syndrome). Often evi-
denced in case of increased reflexes, Babinski’s sign is the lazy and



Box 2 MDS-UPDRS Structures

Part I: Non-motor experiences of Part II: Motor experiences of

Part III: Motor examination Part IV: Motor complications

majestic extension of the big toe followed by the other toes in 
response to the scraping of the outer part of the foot plant. It is 
pathognomonic (i.e., totally specific) of a pyramidal syndrome, 
which is named after the axonal fiber tract that is altered: the 
pyramidal fasciculus. Motor assessment also includes evaluation of 
tremors and posture. 

Once again, specific scales exist to robustly and homogeneously 
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assess some of these signs such as the Unified Parkinson’s disease 
rating scale (UPDRS) in Parkinson’s disease [11]. For more infor-
mation, the Movement Disorder Society UPDRS Revision Task 
Force has made the questionnaire available [12]. We report 
MDS-UPDRS items in Box 2. There are 65 items, 60 of which 
with a score from 0 to 4 (0, normal; 1, slight; 2, mild; 3, moderate; 
and 4, severe) and 5 with yes/no responses. 

daily living 
13 items. Less than 10 min 

1. Cognitive impairment 
2. Hallucinations and psychosis 
3. Depressed mood 
4. Anxious mood 
5. Apathy 
6. Features of dopamine 

dysregulation syndrome 
7. Nighttime sleep problems 
8. Daytime sleepiness 
9. Pain and other sensations 

10. Urinary problems 
11. Constipation problems 
12. Lightheadedness on standing 
13. Fatigue 

daily living 
13 items. It does not involve 
examiner time; items are answered 
by the patient or caregiver 
independently. 

1. Speech 
2. Salivation and drooling 
3. Chewing and swallowing 
4. Eating tasks 
5. Dressing 
6. Hygiene 
7. Handwriting 
8. Doing hobbies and other 

activities 
9. Turning in bed 

10. Tremor 
11. Getting out of bed, car, or 

deep chair 
12. Walking and balance 
13. Freezing 

33 items (18 items with different 
duplicates corresponding to the right 
or left side or to different body parts). 
15 min 

1. Speech 
2. Facial expression 
3. Rigidity of neck and four 

extremities 
4. Finger taps 
5. Hand movements 

Six items. 5 min 

1. Time spent with dyskinesia 
2. Functional impact of 

dyskinesias 
3. Time spent in the OFF state 
4. Functional impact of 

fluctuations 
5. Complexity of motor 

fluctuations 
6. Painful OFF-state dystonia 

(continued)



Box 2 (continued)

6. Pronation/supination
7. Toe tapping
8. Leg agility
9. Arising from chair
10. Gait
11. Freezing of gait
12. Postural stability
13. Posture
14. Global spontaneity of

movement
15. Postural tremor of hands
16. Kinetic tremor of hands
17. Rest tremor amplitude
18. Constancy of rest tremor

2.5 Evaluation of Sensitivity is the ability to feel different tactile sensations: normal

very close stimuli.

–
blind prehension. The doctor can also ask the patient if the

–

2.6 Other The physician evaluation will also assess the autonomic nervous

2.7 Summary of the

Neurological

Evaluation

described in the report, and the physician specifies:

– A syndromic group of signs and symptoms

– The presumed location of brain damage
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Sensitivity (or crude) tact, pain, hot, or cold. Once again, it depends on the 
anatomical regions and tracts affected by a pathological process. 
The anterior spinothalamic tract carries information about crude 
touch. The lateral spinothalamic tract conveys pain and tempera-
ture. Assessment includes measuring: 

– Epicritic sensitivity: test the patient’s ability to discriminate two 

Deep sensitivity: test the direction of position of the joints by the 

vibrations of a diapason on joint bones (knee, elbow) are felt. 

Discrimination of hot and cold; sensitivity to pain. 

Evaluations system which, when impaired, can induce tensile disorders: 
hypo-/hypertension, orthostatic hypotension (without compen-
satory acceleration of pulse), diarrhea, sweating disorders, accom-
modation disorders, and sexual disorders. They will also evaluate 
cerebellar functions: balance, coordination (which when impaired 
causes ataxia), and tremor. 

Finally, clinicians will assess cranial nerves’ functions. Cranial 
nerves are those coming out of the brainstem and have various 
functions including olfaction, vision, eye movements, face sensori-
motricity, and swallowing. They are tested once again in a standar-
dized way from the first one to the twelfth. 

At the end of this examination, the signs and symptoms are



3 Neuropsychological

3.1 Generalities on

Neuropsychological

Assessment

Neuropsychology is concerned with how cognitive functions (see
Box ) and behavior are correlated with anatomo-physiological
brain mechanisms. Thanks to the scientific-technological advances

3

retains few pieces of information for the time needed to
perform a certain task, using mechanisms such as mental

Episodic memory allows long-term conscious memory of a
potentially infinite number of events (episodes) and
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– A main diagnostic hypothesis 

– Possibly, secondary hypotheses (differential diagnosis) 

– Additional examination strategy through neuroimaging or addi-
tional examinations to refine disease diagnosis 

– A therapeutic program 

Assessment 

made in recent decades and the advent of increasingly sensitive 
structural and functional imaging techniques, we have discovered 
that human cognition has a modular architecture in which each 
module—whose operationalization depends on the reference 
framework—corresponds to a specific function [13]. This allowed 
us to understand which brain regions or structures we expect to be 
damaged when we observe a certain cognitive deficit [14–17]. The 
role of the neuropsychologist can be summarized in two core 
activities: assessment and intervention. In this chapter, we will 
focus on neuropsychological assessment, which produces data 
that is typically used by machine learning algorithms. 

Neuropsychological assessment includes a clinical interview, 
followed by the measurement of cognitive functions using standar-
dized tests and finally the interpretation of the results. This is 
applicable in diagnostic settings, to monitor disease progression if 
the diagnosis has previously been made or to measure the effective-
ness of a treatment. 

Box 3 Main Cognitive Functions 

Memory Short-term memory or working memory temporarily 

repetition 

contexts (time and place) in which they occurred 
Semantic memory allows the long-term conscious memory 
of a potentially infinite number of facts, concepts, and 
vocabulary, which constitute the knowledge that the 
individual has of the world 

Procedural memory is the memory of how things are done 
(e.g., tying shoelaces) and how objects are used 

(continued)



Box 3 (contin

Attention

abilities and the objects and between the objects themselves and

Language
phonological, morphological, syntactic, semantic, and

Executive
functions

making, mental flexibility, etc.

Social
cognition

that of others in social situations

Neuropsyc
is first and foremost a branch of psychology. The clinical interview

h
regarding medical history, lifestyle, and familiarity), observes
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ued) 

Selective attention is the ability to select relevant 
information from the environment 

Sustained attention is the ability to persist for a relatively 
long time on a certain task 

Visuospatial Estimation of spatial relationships between the individual 

identification of visual characteristics of a stimulus such 
as its orientation 

Oral and written production and comprehension, at a 

pragmatic level 

Superior cognitive functions such as planning, 
organization, performance monitoring, decision-

Using information previously learned more or less 
explicitly to explain and predict one’s own behavior and 

hology is therefore an interdisciplinary discipline. It 

that precedes t 
disciplines. T 

he administration of tests is typical of psychological 
e clinician collects anamnestic information (i.e., 

patient behavior, and builds a relationship of trust and collabora-
tion with him/her. All of these are crucial aspects in any type of 
psychological interview. In addition, the neuropsychologist must 
also be able to understand whether the cognitive complaint or the 
deficits detected are linked to brain damage or whether they are 
psychogenic. To do this, they assess, qualitatively or quantitatively 
depending on the situation, the mood of the patient and the 
presence of any anxiety syndromes, psychotic symptoms, etc. 

Neuropsychology also has obvious points in common with 
neurology, since it is interested in the evaluation and intervention 
on the cognitive-behavioral manifestation of pathologies of the 
central nervous system. Over the past decades, much knowledge 
has been gained on the relationship between cognition and brain, 
and many tests have been developed. As a result, neuropsychologi-
cal assessment has split off from neurological examination, assum-
ing a separate role [18].



3.2 Psychometric

Properties of

Neuropsychological

Tests

The use of cognitive tests is the specificity of the neuropsychologi-
cal assessment. 

Each new test is developed according to a rigid and rigorous 
methodology, trying to minimize all possible sources of error or 
bias, and based on scientific evidence. For example, a test that aims 
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to assess learning skills might include a list of words for the partici-
pant to memorize and then recall. These words will not be ran-
domly selected but carefully chosen based on characteristics such as 
frequency of use, length, phonology, etc. The procedures for 
administering neuropsychological tests are also standardized. The 
situation (i.e., materials, instructions, test conditions, etc.) is the 
same for all individuals and dictated by the administration manuals 
provided with each test. 

All tests, before being published, are validated for their psycho-
metric properties and normed. A normative sample is selected 
according to certain criteria which may change depending on the 
situation [19]. In most cases, these are large samples of healthy 
individuals from the general population, stratified by age, sex, 
and/or level of education. In other cases, more specific samples 
are preferred. The goal is to identify how the score is distributed in 
the normative sample. In this way, we can determine if the score 
obtained by a hypothetical patient is normal (i.e., around the 
average of the normative distribution) or pathological (i.e., far 
from the average). Establishing how far from the average an obser-
vation must be in order to be considered abnormal is a real matter 
of debate [20]. Many neuropsychological scores, as well as many 
biological or physical attributes, follow a normal distribution in the 
general population. The most used metrics to determine pathology 
thresholds are z scores and percentiles. For a given patient, the 
neuropsychologist usually computes the z score by subtracting the 
mean of the normative sample from the raw score obtained by the 
patient and then dividing the result by the standard deviation 
(SD) of the normative sample. The distribution of z scores will 
have a mean of 0 and a SD of 1. We can also easily find the percentile 
corresponding to the z score. Most often, a score below the fifth 
percentile (or z score = -1.65) or the second percentile (or z-
score =-2) is considered pathological. As an example, intelligence, 
or intelligence quotient (IQ), is an attribute that follows a normal 
distribution. It is conventionally measured with the Wechsler Adult 
Intelligence Scale, also known as WAIS [21], or the Wechsler 
Intelligence Scale for Children, also known as WISC [22]. The 
distribution of IQs has a mean of 100 and a SD of 15 points. 
Around 68% of individuals in the general population achieve an 
IQ of 100 ± 15 points. Scores between 85 and 115 are therefore 
considered to be average IQs (therefore normal). Ninety-five per-
cent of individuals are in a range within 30 points of 100, thus



between 70 and 130. Scores between 70 and 85 and those between 
115 and 130 indicate borderline intelligence and medium-to-
higher intelligence, respectively. Finally, only a little more than 2% 
of people are located in the two tails, respectively. An IQ below 
70 is therefore considered pathological and indicative of intellectual 
disability. An IQ above 130 is indicative of superior intelligence. 

Another reason a new test is administered to a normative 
sample is to evaluate its psychometric properties to understand 
whether it is suitable for clinical or research use [23]. The two 
main properties worth mentioning are reliability and validity [24]. 

Reliability indicates the consistency of a measure or in other 
words the proportion of variance in the observed scores attribut-
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able to the actual variance of the measured function, and not to 
measurement errors [25]. Reliability may be assessed in various 
ways. Internal consistency, for example, indicates whether the 
items of a test all measure the same cognitive function. A common 
procedure to evaluate it is to randomly divide the test into two 
halves and calculate the correlation between them. Test–retest 
reliability indicates the ability of a test to provide the same score 
consistently over time. No undesirable event, such as a pathological 
event, should have occurred between the two assessments and 
cause the patient to score worse (or better) on the second one. 
Another bias that could undermine test–retest reliability is practice 
effect, which refers to a gain in scores that occurs when the respon-
dent is retested with the same cognitive test. This gain does not 
reflect a real improvement in the function assessed [26]. Parallel 
forms of the same test are often used to avoid these problems. 
Another measure of reliability is the consistency between different 
examiners (inter-rater reliability). In fact, despite the standardiza-
tion described above, some degree of variance may remain between 
examiners [27]. 

Validity is the capacity of a test to measure what it actually 
proposes to measure and not similar constructs [28]. The validity 
of a test can be assessed by calculating the correlation between the 
score of interest with another measure that is theoretically supposed 
to be correlated. The following are some types of validity com-
monly assessed when developing or validating a new 
neuropsychological test: content validity (i.e., the test only mea-
sures what it is supposed to measure), substantive validity (i.e., the 
test is developed on the basis of theoretical knowledge and empiri-
cal evidence), convergent validity (i.e., individuals belonging to a 
certain homogeneous group have a similar score on the same test), 
and divergent validity (i.e., individuals belonging to two different 
groups have different scores on the same test, e.g., patients versus 
controls).



3.3 Realization of a

Neuropsychological

Assessment and

3.4 The Example of a

Cognitive Test: The

Mini-Mental State

During an assessment, the neuropsychologist chooses the most 
appropriate tests for the patient, ensures that they are performed 
correctly, and interprets their results. Indeed, each neuropsycho-
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Interpretation of Its 

Results 

logical assessment is tailored to the patient’s needs. To assess a 
certain cognitive function, the clinician can choose a specific test 
depending on the patient’s level of education, the presence of any 
sensory deficits (e.g., tests involving verbal material will be pro-
posed to a visually impaired patient), as well as the diagnostic 
hypothesis. 

Once anamnestic data has been collected and the cognitive 
scores have been obtained, the goal is to interpret these results 
and define the patient’s cognitive profile. Defining a cognitive 
profile means identifying which cognitive functions are preserved 
and which are impaired. In the event that one or more impaired 
cognitive deficits are detected, it is necessary to specify at what level 
the deficit is located and its severity. For example, a patient may 
have a memory disorder whose severity can be identified by com-
paring their score to normative data as described above. Depending 
on the test used, the neuropsychologist will be able to define 
whether this memory disorder is due to difficulties in creating 
new memory traces (linked to the medial temporal lobe [14]), or 
to difficulties in retrieving existing traces (linked to the prefrontal 
lobe [16]), and so on. By describing the impaired and preserved 
cognitive mechanisms and by referring to what we know about 
brain correlates of cognitive function, the neuropsychologist will 
be able to detect a pattern. This may be a cortical syndrome, such as 
in the event of alteration of language or visuospatial functions [29]; 
a subcortico-frontal profile, involving, for example, impaired exec-
utive functions [30]; a subcortical profile, often involving slow 
information processing [31]; etc. 

It is important to clarify that the aim of the neuropsychological 
assessment is not to diagnose a disease, but to describe a cognitive 
profile. This is only one of the elements taken into account by a 
physician, often a neurologist, to make the diagnosis. The physician 
will determine which disease or pathological condition underlies 
the cognitive impairment, by combining the evidence from other 
tests, such as laboratory tests, imaging, and neurological examina-
tion, as described above. 

The Mini-Mental State Examination, also known as MMSE, is one 
of the most widely used tools in both clinical practice and research, 
validated in many languages and adapted to administration in many 

Examination (MMSE) countries. It is a screening tool for adults, which allows assessing 
global cognition quickly and easily through a paper–pencil test 
lasting 5–10 min.



Temporal orientation [5 points, 1 per item]
The respondent is asked to say the day of the week, the day of the month, the

The MMSE includes 30 questions, each with a binary score

presented in Box . The total score ranges from 0 to 30. AnMMSE4

Box 4 MMSE Questions and Scoring System 
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month, the year, and the season 

Spatial orientation [5 points, 1 per item] 
The respondent is asked to say the floor and the name of the hospital or 
practice, district, town, and country. 

Short-term memory [3 points, 1 per word] 
The examiner names three objects (apple, table, and penny in the English 
version), and the respondent repeats them immediately 

Attention [5 points, 1 per subtraction] 
The respondent subtracts 7 from 100 five times 

Verbal learning [3 points, 1 per word] 
The respondent recalls the three previously learned words 

Denomination [2 points, 1 per object] 
The respondent names two objects indicated by the examiner, often a pen 
and a watch 

Repetition [1 point] 
The respondent repeats the sentence “No ifs, ands, or buts” 

Listening comprehension [3 points, 1 per task] 
The respondent is asked to take a sheet with their right hand, fold it in half, 
and throw it on the ground 

Written comprehension [1 point] 
The respondent executes a written command, often “Close your eyes” 

Writing [1 point] 
The respondent writes a sentence that contains a verb and a subject 

Praxico-constructive and visuospatial skills [1 point] 
Copy of two intersecting pentagons showed by the examiner 

(0 for wrong answer and 1 for correct answer). More details are 

score of 18 or less indicates severe impairment of cognitive func-
tions. A score between 18 and 24 indicates moderate to mild 
impairment. A score of 25 is considered borderline. And a score 
of 26–30 indicates cognitive normality. Different diagnostic thresh-
olds have been proposed as they depend—mainly—on age, educa-
tion, and setting [32]. In clinical settings, a score below 24 is 
commonly considered pathological [33]. In research contexts, it 
is more common to use a cut-off of 26 (pathological if <26) 
[34]. The MMSE is therefore very useful for getting an idea of 
the patient’s cognitive functioning, also facilitating effective com-
munication between professionals.



clinical setting [36]. Lower coefficients may be related to lower

4 Clinical Examinatio

Neurology is a broad branch of medicine that deals with all pathol-
ogies affecting the central and peripheral nervous system, also
including blood vessels and muscles, such as neurodegenerative

4.1 Diversity of Brain

Disorders and Clinical

Evaluation

Neurodegenerative disorders affecting
mostly cognition or behavior

Alzheimer’s disease
Frontotemporal dementia

Movement disorders Parkinson’s disease

Concerning psychometric properties, internal consistency is 
reported to vary significantly according to the setting. Alpha coef-
ficient was around 0.30 in the general population [35] and 0.96 in a 
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variability in community-based samples where the majority of par-
ticipants are healthy and often highly educated. Regarding test– 
retest reliability, healthy individuals scored better at retest (about 
one point higher) when they repeated the MMSE about 3 months 
after the first assessment. Patients with cognitive impairment, on 
the contrary, did not show such learning. In [10], the MMSE also 
had good validity in discriminating patients with Alzheimer’s 
dementia, depression, and schizophrenia. 

n by Pathology 

diseases, epilepsy, sleep disorders, vascular diseases, headaches, 
movement disorders, neuro-oncology, etc. Clinical evaluation is 
therefore tailored to the complaint and symptoms. The purpose is 
to propose a treatment or follow the evolution of the disease. There 
is therefore a need for sensitive clinical tests that allow for early 
detection of abnormalities, so that treatment can be administered 
more promptly. 

As science advances, medicine is getting increasingly specialized. 
Although “general neurologists” are the majority in the domain, 
the field is segmented in different subspecialties in university hos-
pitals, each with their topic and diseases of interest, and dedicated 
tools for innovative studies. We briefly describe these subspecialties 
below (see Box 5). 

Box 5 Non-exhaustive List of the Main Neurological 
Diseases 

Lewy body dementia 
Primary progressive aphasia 

Essential tremor 
Dystonia 

(continued)



Epilepsy Generalized idiopathic epilepsy
Absence

traumatic, post-stroke, etc.)

Stroke or neurovascular diseases

Neuro-oncology
Oligodendroglioma

Brain metastasis

Peripheral nerve diseases

Headaches Migraine

Sleep disorders

diseases

Myopathies

4.1.1 Neurodegenerative

Disorders Affecting Mostly

Cognition or Behavior

They include Alzheimer’s disease, Lewy body and frontotemporal
dementias, as well rarer conditions
aphasias. This field relies heavily on n
Although progress has been achieved in diagnosis of these condi-

4.1.2 Movement

Disorders

the dopamine levels in the brain (one of the main neurotransmitters
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Partial idiopathic epilepsy 
Secondary epilepsy (post-

Ischemic stroke 
Brain hemorrhage 
Cerebral venous thrombosis 

Meningioma 

Astrocytoma 
Glioblastoma 

Mononeuropathy 
Polyneuropathy 
Radiculopathy 
Plexopathy 

Tension-type headache 

Sleep apnea 
Narcolepsy 

Inflammatory and demyelinating brain Multiple sclerosis 
Sarcoidosis 

Neurogenetic diseases Huntington’s chorea 
Spinocerebellar ataxia 

Neuromuscular disorders Amyotrophic lateral sclerosis 
Myasthenia 

such as primary progressive 
europsychological evaluation. 

tions (especially Alzheimer’s disease) these last decades, therapeutic 
unmet needs remain high. 

These include Parkinson’s disease but also dystonia, myoclonus, 
tics, and tremors. Different treatment options have emerged for 
this group of diseases in the last years. These include drugs based on 

for movement) and deep brain stimulation which requires the 
implantation of electrodes to stimulate or inhibit specific regions 
of the basal ganglia.



4.1.3 Epilepsy

4.1.4 Stroke or

Neurovascular Diseases

4.1.5 Neuro-oncology

4.1.6 Peripheral Nerve

Diseases

4.1.7 Headaches

4.1.8 Sleep Disorders

This broad term refers to the abnormal electric activity of neurons 
in brain regions or in the whole brain inducing seizures. They are 
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defined by the co-occurrence of symptoms or signs, and these 
electric abnormalities are detected by electroencephalography 
(EEG). Many anti-epileptic drugs exist to decrease the seizure 
frequency in these patients. Some patients present with pharma-
coresistant epilepsy. For such patients, surgery, which aims at 
resecting part of the brain in order to suppress seizures, can be a 
treatment option. 

Acute stroke is managed in stroke emergency units. A stroke can be 
either a brain infarction or a hemorrhage. They are not primary 
diseases of the brain tissue but of the arteries, capillaries, and veins 
that irrigate it. Treatment options range from rapid clot removal in 
ischemia (whether by thrombolysis or neuroradiological interven-
tion), anti-aggregating or anticoagulation therapy, and physical or 
speech rehabilitation. 

This specialty deals with brain tumors, which may be malignant or 
benign. There are close connections with neurosurgery units and 
neuropathology which play a valuable role in analyzing the micro-
structure of the tumor in order to achieve a precise diagnosis. 
Treatments typically rely on a combination of surgery, radiotherapy, 
and chemotherapy. 

They include all the diseases of the nerves outside of the brain, 
brainstem, or spine. These diseases induce motor, sensory, and 
autonomous impairments and are diagnosed through a combina-
tion of medical examination and electromyographic (EMG) record-
ings. Treatment options are very dependent on the cause of the 
disease which can range from simple mechanic compression of a 
nerve requiring mild surgery (carpal syndrome) to hepatic graft in 
some rare conditions (TTR mutation causing familial transthyretin 
amyloidosis). 

Although headaches are highly prevalent, specialists are rare in 
university hospital as these conditions (including migraine) are 
often cared for in private practice offices, except for the most urgent 
causes which are managed by emergency units. Treatments aim to 
decrease the frequency of the crisis (preventative treatments) for the 
most severe cases or the pain during a given crisis. 

Sleep disorders are sometimes managed by neurologists for some 
diseases (like narcolepsy) or pneumologists (since sleep apneas are 
among the most frequent cause of sleep impairment) or psychia-
trists (tackling insomnia, often associated with psychiatric comor-
bidities). A sleep recording called polysomnography is sometimes



4.1.9 Inflammatory and

Demyelinating Brain

4.1.10 Neurogenetic

Diseases

4.1.11 Neuromuscular

Disorders

4.2 Importance of a

Correct and Timely

required to assess the most complex problems. Physicians can 
prescribe continuous positive airway pressure devices which keep 
the airways opened during sleep. 

The most emblematic of this group is multiple sclerosis in which 
the autoimmune system turns against the individual, penetrates the 

Clinical Assessment of Brain Disorders 249

Diseases blood–brain barrier, and attacks the myelin which allows the rapid 
diffusion of the neuronal electric signal along the axons. This is one 
of the most advanced fields of neurology regarding treatment. 
Since the start of the twenty-first century, specific therapies pre-
venting the crossing of the blood–brain barrier of lymphocytes 
revolutionized the management of multiple sclerosis [37]. 

Neurogenetic diseases are a group of rare diseases (like Hunting-
ton’s chorea) due to a genetic mutation. These diseases usually 
follow a Mendelian mode of inheritance. They have the particular-
ity to be detectable (through genetic testing after a specific 
counseling) which gives the opportunity to study them in their 
premorbid phase (i.e., before the onset of typical symptoms in a 
group of mutation carriers). Innovative gene therapies are actually 
being developed in some of these neurogenetic conditions 
[38]. Note that there also exist genetic forms of diseases which 
are in majority sporadic (e.g., familial forms of Alzheimer’s disease). 

These are diseases affecting the motor neurons such as amyotrophic 
lateral sclerosis, the neuromuscular synapse like myasthenia, or 
specifically the muscles in myopathies. To the exception of myas-
thenia, few treatment options exist in this particular field of 
neurology. 

Neurologists have a saying: “time is brain.” The correct and timely 
identification of a neurological disease is indeed crucial to be able to 

Diagnostic 

Classification 

mitigate and sometimes reverse the signs and symptoms. As such, 
machine learning techniques may be very useful tools both in the 
context of slow-paced diseases such as Alzheimer’s which are often 
diagnosed quite late or not at all [39] and to optimize the patient 
flow in emergency care, in case of stroke, for instance. This frame-
work is theoretical as in practice some diseases can interact to 
induce symptoms. For instance, dementia is often of mixed origin, 
due to the association of degenerative (Alzheimer’s disease) and 
vascular alterations. A walking deficit can be due to Parkinson’s 
disease but also in part to arthrosis, etc. The correct identification 
of a disease is in part probabilistic, and this can lead to heterogene-
ity in the collected data from the clinical assessment.
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5 Conclusion 

Clinical assessment is central in neurology for the assessment of the 
patient because it is the direct reflection of what he/she feels and 
experiences. Indeed, according to regulatory agencies, a treatment 
is deemed effective if it has an effect on the clinical expression of the 
disease (e.g., on cognition, motor skills, sensitivity, autonomy, and 
survival) and not on intermediate markers such as imaging, biology, 
or others. 

Machine learning is bringing clinical evaluation into a new era 
because it allows to go beyond the intuitions of the individual 
physician and could associate signs that were previously not seen 
as part of a disease type or subtype. However, the researcher should 
always remember that the best algorithm is only as good as the data 
it runs on, which depends on the clinician’s understanding of how 
and why these particular data are collected and will be used for. So, 
for discovery, validation, and clinical implementation of new 
machine learning techniques, basic knowledge of the possible dis-
crepancies and biases one may experience going from research 
setting to clinical practice is paramount. 
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Chapter 8 

Neuroimaging in Machine Learning for Brain Disorders 

Ninon Burgos 

Abstract 

Medical imaging plays an important role in the detection, diagnosis, and treatment monitoring of brain 
disorders. Neuroimaging includes different modalities such as magnetic resonance imaging (MRI), X-ray 
computed tomography (CT), positron emission tomography (PET), or single-photon emission computed 
tomography (SPECT). 
For each of these modalities, we will explain the basic principles of the technology, describe the type of 

information the images can provide, list the key processing steps necessary to extract features, and provide 
examples of their use in machine learning studies for brain disorders. 

Key words Magnetic resonance imaging, Computed tomography, Positron emission tomography, 
Single-photon emission computed tomography, Neuroimaging, Medical imaging, Machine learning, 
Deep learning, Feature extraction, Preprocessing 

1 Introduction 

Medical imaging plays a key role in brain disorders. In clinical care, 
it is vital for detection, diagnosis, and treatment monitoring. It is 
also an essential tool for research to characterize the anatomical, 
functional, and molecular alterations in brain disorders, to better 
understand the pathophysiology, or to evaluate the effects of new 
treatments in clinical trials, for instance. Medical imaging of the 
brain is referred to as neuroimaging and involves different modal-
ities such as X-ray computed tomography (CT), magnetic reso-
nance imaging (MRI), positron emission tomography (PET), or 
single-photon emission computed tomography (SPECT). 

Most neuroimaging modalities have been developed in the 
1970s (Fig. 1). The first CT image of a brain was acquired in 
1971 [1, 2]. This technology results from the discovery of X-rays 
by Wilhelm Röntgen in 1895 [3]. A few years later, PET [4] and 
then SPECT [5, 6] cameras were developed. Both modalities result 
from the discovery of natural radioactivity in 1896 by Henri Bec-
querel [7]. The first MR image of a brain goes back to 1978 [8]
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following the discovery of nuclear magnetic resonance in 1946 by 
Felix Bloch [9]. Some of these imaging modalities were later com-
bined into hybrid scanners. The first prototype combining PET and 
CT was introduced into the clinical arena in 1998 [10], while the 
first PET and MR images of a brain simultaneously acquired were 
reported in 2007 [11, 12]. The first commercial SPECT/CT sys-
tem dates back to 1999 [13], while SPECT/MR systems are still 
under development [14].
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Fig. 1 Timeline of the main developments in neuroimaging 

CT and MRI are the modalities of choice when studying brain 
anatomy, while SPECT and PET are used to image particular 
biological processes. Note that MRI is a versatile modality that 
allows studying both the structure and function of the brain, 
through the acquisition of different sequences. The use of these 
imaging modalities differs between clinical practice and research 
contexts. For example, CT is the main modality used in hospitals on 
adults [15], while MRI is by far the modality the most used for the 
study of brain disorders with machine learning (Fig. 2, top). The 
two most studied disorders with machine learning are brain tumors 
and dementia, mainly Alzheimer’s disease (Fig. 2, bottom). 

This chapter will start by shortly describing the nature of 
neuroimages, detailing the type of features that can be extracted 
from them, and listing software tools that can be used to do so. We 
will then briefly describe the principles of the imaging modalities 
the most used in machine learning studies: anatomical, diffusion, 
and functional MRI, CT, PET, and SPECT. For each modality, we 
will report the processing steps often perform to extract features, 
explain the type of information provided, and give examples of their 
use in machine learning studies.
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Fig. 2 Distribution by imaging modality (top) and brain disorder (bottom) of 1327 articles presenting a study 
using machine learning. Note that these numbers should only be taken as rough indicators as they result from 
a non-exhaustive literature search. The Scopus query and the resulting articles (after some manual filtering) 
are available as a public Zotero library (https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_ 
brain_disorders/library) 

2 Manipulating Neuroimages 

In clinical routine, neuroimages are primarily exploited through 
visual inspection by a radiologist (or a neuroradiologist, who is a 
radiologist with an additional specialization in brain imaging, in 
expert hospitals) or a nuclear medicine physician. This results in a 
radiological report that is a written text describing the character-
istics of the brain of the patient, its alterations, and possibly the 
most likely diagnosis. Note that neuroimaging exploration is usu-
ally requested by a neurologist or a psychiatrist and is associated 
with an indication that may correspond to the exploration of a set of 
symptoms (for instance, the exploration of a dementia syndrome) 
or to the confirmation of a potential diagnosis. Neuroimaging

https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_brain_disorders/library
https://www.zotero.org/groups/4623150/neuroimaging_with_ml_for_brain_disorders/library


alone will thus usually not provide a diagnosis. It will rather bring 
arguments in favor, or against, a potential diagnosis (for instance, in 
the exploration of a dementia syndrome, MRI can bring positive 
arguments for a diagnosis of Alzheimer’s disease due to the 
observed atrophy in specific areas or on the contrary exclude this 
diagnosis by showing that the syndrome is due to a different cause 
such as a brain tumor). Overall, the diagnosis will generally be made 
by the neurologist or the psychiatrist based on a combination of 
clinical examination and a set of multimodal data (clinical and 
cognitive tests, radiological report, biomarkers, etc.). 
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However, the use of neuroimages goes way beyond visual 
inspection and is subject to quantification using image processing 
procedures. This is particularly true in research even though image 
processing tools are also increasingly used in clinical routine. A 
characteristic of these tools that differentiates them from general 
purpose image processing tools is their ability to handle three-
dimensional (3D) images. 

2.1 The Nature of 3D 

Medical Images 

Most medical imaging devices acquire 3D images. This is the case 
of all the ones presented in this chapter (MRI, CT, PET, and 
SPECT). If 2D images are essentially 2D arrays of elements called 
pixels (for picture elements), 3D images are 3D arrays of elements 
called voxels (for volume elements). Depending on the imaging 
modality, voxel values will represent different properties of the 
underlying tissues. For example, in a CT image, they will be pro-
portional to linear attenuation coefficients. The shape and size of a 
voxel will also depend on the imaging modality (or the type of 
sequence in MRI). When its three dimensions are of equal lengths, 
the voxel is isotropic; otherwise, it is anisotropic (see Fig. 3). For 
instance, a typical voxel size for a T1-weighted MR image is about 
1× 1× 1 mm3 , while it is about 3× 3× 3 mm3 for a functional MR 
image. Most neuroimaging modalities will have a voxel dimension 
between 0.5 mm and 5 mm. 

Even though most neuroimages are 3D, they are visualized as 
2D slices along different planes: axial, coronal, or sagittal (see 
Fig. 4). Multiple tools exist to visualize neuroimages. Several are 
available within suites such as FSLeyes,1 Freeview,2 or medInria,3 

while others are independent such as Vinci,4 Mango,5 or Horos.6 

Note that viewers may interpolate the images they display, which 
may be misleading (see Fig. 5 for an illustration). 

1 FSLeyes: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes. 
2 Freeview: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide. 
3 medInria: https://med.inria.fr. 
4 Vinci: https://vinci.sf.mpg.de. 
5 Mango: http://ric.uthscsa.edu/mango. 
6 Horos: https://horosproject.org.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
https://med.inria.fr
https://vinci.sf.mpg.de
http://ric.uthscsa.edu/mango
https://horosproject.org


2.2 Extracting

Features from

Neuroimages
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Fig. 3 Most neuroimaging modalities are three-dimensional. Left: volume rendering of an excavated 
T1-weighted MR image. Middle: voxel grid with isotropic, i.e., cubic, voxels overlaid on the MRI. Right: 
voxel grid with anisotropic, i.e., rectangular, voxels overlaid on the MRI 

Fig. 4 Axial, coronal, and sagittal slices extracted from a T1-weighted MR image 

When using machine learning to analyze images, one will often 
extract features. These features can be grouped into four categories 
that we will now describe and are illustrated in Fig. 6. Note that 
these features are conceptually the same for the different modalities 
but their actual content will differ (e.g., volume of a region for 
anatomical MRI vs average uptake in this region for PET). 
Modality-specific preprocessing and corrections often need to be 
applied before neuroimages can be analyzed; these will be described 
in Subheadings 3, 4, and 5.
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Fig. 5 Axial slice of a T1-weighted MRI with an isotropic voxel size originally of 1× 1× 1 mm3 (left) and 
downsampled to 2× 2× 2 mm3 (right) displayed without interpolation or with linear interpolation. If the 
difference with or without interpolation is subtle at 1 × 1 × 1 mm3 , it is well visible at 2 × 2 × 2 mm3 

Voxel-Based Features As mentioned previously, all the imaging 
modalities described in this chapter produce volumetric images. 
The whole 3D image can be used as input of a machine learning 
algorithm. In that case, each subject is seen as a collection of values 
at each voxel of the image. These values can simply be the intensity 
of the image at each voxel after some minimal preprocessing (which 
is very often what is used in deep learning) or some more complex 
value extracted from the image (for instance, gray-level density 
from anatomical MRI; see Subheading 3.1). A prerequisite is often 
to align the images studied in a common space, by registering each 
image to a template and/or by performing a group-wise registra-
tion, thus guaranteeing a voxel-wise correspondence across subjects 
[16]. Note that this correspondence becomes particularly impor-
tant when using a machine learning algorithm that takes as input a 
vector in which each element implicitly represents the same infor-
mation for each subject (e.g., logistic regression or support vector 
machine). 

Vertex-Based Features Studying the surface of the cortex is natu-
ral given its shape: it is a convoluted ribbon delimited by inner and 
outer surfaces. Moreover, surface-based characteristics can provide 
useful information such as for developmental or neurodegenerative 
diseases. Surfaces can be represented as meshes consisting of verti-
ces, edges, and faces. The vertices encode position and properties 
such as cortical thickness. In the vertex-based feature scenario, each 
subject is seen as a collection of values at each vertex of the surface. 
Classical values computed at each vertex include cortical thickness 
and local surface area (see Subheading 3.1). As for voxel-based 
features, images studied are usually aligned in a common space to 
ensure a vertex-wise correspondence across subjects [17, 18].
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Fig. 6 Examples of voxel, vertex, regional, and graph features that can be extracted from neuroimages. It is, for 
instance, possible to extract voxel-based features from CT and SPECT images, vertex-based features from 
anatomical T1-weighted (T1w) MRI or PET images, regional features from diffusion MRI, and graph-based 
features from functional MRI. Note that the modalities are just examples. For instance, voxel-based features 
can be extracted for any modality. See Subheadings 3, 4, and 5 for a description of the imaging modalities
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Regional Features The brain can be divided into subregions 
according to different criteria that can be anatomical or functional 
[16]. When considering regional features, each subject is seen as a 
collection of values for each region of the brain defined by an atlas. 
Many atlases exist, either anatomical or functional, with different 
degrees of granularity. A list can be found online.7 Classical values 
include the volume of a given region or the average image signal 
within a region. 

Graph-Based Features A last way to represent an image is 
through a graph where nodes will correspond to brain regions 
and edges will encode a particular property (for instance, anatomi-
cal or functional connections, possibly together with their 
strength). Graphs can directly be used as features, but network 
indices characterizing global and local graph topology, e.g., effi-
ciency or degree, can also be computed [19]. 

2.3 Neuroimaging 

Software Tools 

The features described above can be obtained using neuroimaging 
software tools. However, an important step before any preproces-
sing or analysis is to properly organize data. The neuroimaging 
community proposed the Brain Imaging Data Structure [20], 
which specifies how to organize data in folders and sub-folders on 
disk and how to name the files. It also details the metadata necessary 
to describe neuroimaging experiments. 

Many tools exist to process neuroimages.8 The historical 
generic frameworks include SPM9 [21], FSL10 [22], FreeSurfer11 

[23], or ANTs12 [24]. Some tools are modality-specific such as 
MRtrix13 [25], dedicated to diffusion MRI, or AFNI14 [26], dedi-
cated to functional MRI. Recent initiatives aim to make the use of 
neuroimaging tools easier by distributing them in containers (e.g., 
BIDSApps15 [27]), by providing in a single environment tools from 
preprocessing to machine learning (e.g., Nilearn16 [28]), or by 
providing automatic pipelines that do not require a particular

7 List of atlases: https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources. 
8 List of open source medical imaging software tools: https://idoimaging.com. 
9 SPM: https://www.fil.ion.ucl.ac.uk/spm. 
10 FSL: https://fsl.fmrib.ox.ac.uk. 
11 FreeSurfer: https://surfer.nmr.mgh.harvard.edu. 
12 ANTs: http://stnava.github.io/ANTs. 
13 MRtrix: https://www.mrtrix.org. 
14 AFNI: https://afni.nimh.nih.gov. 
15 BIDSApps: https://bids-apps.neuroimaging.io/apps. 
16 Nilearn: https://nilearn.github.io.

https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources
https://idoimaging.com
https://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk
https://surfer.nmr.mgh.harvard.edu
http://stnava.github.io/ANTs
https://www.mrtrix.org
https://afni.nimh.nih.gov
https://bids-apps.neuroimaging.io/apps
https://nilearn.github.io


expertise in image processing (e.g., Clinica17 [29]). Other tools 
facilitate the application of deep learning approaches to neuroi-
mages or medical images in general: for instance, MONAI,18 

TorchIO19 [30], or ClinicaDL20 [31].
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3 Magnetic Resonance Imaging 

Magnetic resonance imaging is the modality of choice to study 
brain anatomy, thanks to its high-resolution and excellent soft-
tissue contrast, but the applications of MRI go well beyond study-
ing anatomy. This technique can be used to examine tissue micro-
architecture (diffusion MRI, covered in Subheading 3.2) or neuro-
nal activity (functional MRI, covered in Subheading 3.3) but also to 
visualize the brain vasculature (MR angiography), study tissue per-
fusion and permeability (perfusion MRI), assess iron deposits and 
calcifications (susceptibility-based imaging), or measure the levels 
of different metabolites (MR spectroscopy). Note that MRI is an 
extremely versatile modality and that new sequences are constantly 
developed to study other brain characteristics. 

3.1 Anatomical MRI In MRI, most images are obtained by exploiting a magnetic prop-
erty, called spin, of the hydrogen atomic nuclei found in the water 
molecules present in the human body. In the absence of a strong 
external magnetic field, the directions of the proton’s spins are 
random, thus cancelling each other out (Fig. 7a). When the spins 
enter a strong external magnetic field (B0), they align either parallel 
or antiparallel, and they all precess around the B0 axis, referred to as 
the z axis (Fig. 7b). As a result, they cancel each other out in the 
transverse (x, y) plane, but they add up along the z axis. The result 
of this vector addition, called net magnetization M0, is propor-
tional to the proton density (Fig. 7c). With the application of a 
radio frequency pulse denoted as B1, the system of spins and the net 
magnetization are tipped by an angle determined by the strength 
and duration of the radio frequency pulse. For a 90∘ radio fre-
quency pulse, the magnetization along the z axis (Mz) becomes 
zero and the magnetization in the transverse plane (Mxy) becomes 
equal to M0 (Fig. 7d). As this radio frequency pulse provides 
energy, or excites, the spins, we also talk of radio frequency 
excitation. 

3.1.1 Basic Principles 

17 Clinica: https://www.clinica.run. 
18 MONAI: https://monai.io. 
19 TorchIO: https://torchio.readthedocs.io. 
20 ClinicaDL: https://clinicadl.readthedocs.io.

https://www.clinica.run
https://monai.io
https://torchio.readthedocs.io
https://clinicadl.readthedocs.io
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Fig. 7 MRI physics in a nutshell. (a) In the absence of a magnetic field, the directions of the proton’s spins are 
random. (b) When the spins enter a strong external magnetic field (B0), they align either parallel or antiparallel, 
and they all precess around the B0 axis. (c) The net magnetization M0 is proportional to the proton density. (d) 
With the application of a radio frequency pulse, the system of spins is tipped 

When the radio frequency pulse is then turned off, two phe-
nomena occur. First, the system of spins relaxes back to its preferred 
energy state of being parallel with B0 in a time T1, called longitu-
dinal or spin-lattice relaxation time, and the longitudinal magneti-
zation Mz slowly recovers to its original magnitude M0. Second, 
each spin starts precessing at a frequency that is slightly different 
from the one of its neighboring spins because the field of the MRI 
scanner is not uniform and because each spin is influenced by the 
small magnetic fields of the neighboring spins. When the spins are 
completely dephased, they are evenly spread in the transverse plane, 
and Mxy becomes zero. Mxy decreases at a much faster rate than 
that at which Mz recovers to M0. The transverse relaxation time T2, 
also called spin-spin relaxation time, describes the Mxy decrease 
because of interference from neighboring spins, while T2* 
describes the decrease because of both spin-spin interactions and 
nonuniformities of B0. Finally, the MRI signal is obtained by 
measuring the transverse magnetization as an electrical current by 
induction. 

The contrast in MR images depends on three main parameters: 
the proton density, the longitudinal relaxation time T1, and the 
transverse relaxation time T2. These parameters can be adjusted by 
changing the time at which the signal is recorded, called echo time, 
and the interval between successive excitation pulses, called repeti-
tion time. A T1-weighted image is created by choosing a short 
repetition time, a T2-weighted image by choosing a long echo 
time, and a proton density (PD)-weighted image by minimizing 
both T1 and T2 weighting of the image (long repetition time and 
short echo time). The corresponding images are referred to as 
T1-weighted MRI, T2-weighted MRI, and PD-weighted MRI. 
Note that many variations of these sequences exist (for instance, 
gradient-echo vs spin-echo) and the corresponding



3.1.2 Extracting Features

from Anatomical MRI

implementation by different manufacturers usually comes with a 
specific commercial name (e.g., MPRAGE is a T1-weighted 
sequence available on Siemens scanners). Furthermore, many 
more anatomical sequences exist including T2*-weighted, 
T2-FLAIR (fluid-attenuated inversion recovery), or DIR (double 
inversion recovery). Examples are displayed in Fig. 8. The set of 
sequences chosen by the radiologist will depend on the potential 
disease that is being investigated. Some examples in the context of 
machine learning are given in Subheading 3.1.3. 
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Fig. 8 Example of anatomical MR images. T1-weighted, T2-weighted, and T2-FLAIR images of a patient with 
multiple sclerosis from the MSSEG MICCAI 2016 challenge data set [32, 33] 

Several preprocessing steps are often necessary before analyzing 
anatomical MR images to correct imperfections and ease their 
comparison. 

Bias Field Correction MR images can be corrupted by a 
low-frequency and smooth signal caused by magnetic field inho-
mogeneity. This bias field induces variations in the intensity of the 
same tissue in different locations of the image, which deteriorates 
the performance of image analysis algorithms such as registration or 
segmentation. Several methods exist to correct these intensity inho-
mogeneities, the most popular being the N4 algorithm [34] avail-
able in ANTs [24]. 

Intensity Rescaling and Standardization As MRI is usually not a 
quantitative imaging modality, MR images can have different inten-
sity ranges, and the intensity distribution of the same tissue type 
may be different between two images, which might affect the 
subsequent image preprocessing steps. The first point can be dealt 
with by globally rescaling the image, for example, between 0 and



1, using the minimum and maximum intensity values. More robust 
choices exist such as the z-score normalization (at each voxel, one 
subtracts the mean intensity of the image, and the result is divided 
by the standard deviation across the image), which can be made 
even more robust by only considering a percentile of the intensities 
for computing the mean and standard deviation. Intensity standar-
dization, to solve the second point, can be achieved using techni-
ques such as histogram matching [35]. 
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Skull Stripping Extracranial tissues can be an obstacle for image 
analysis algorithms [36]. A large number of methods have been 
developed for brain extraction, also called skull stripping. Some are 
available in neuroimaging software platforms, such as FSL [22] or  
BrainSuite [37], and others as independent tools21,22 

[38, 39]. Note that these methods can be sensitive to the presence 
of noise and artefacts, which can result in over or under segmenta-
tion of the brain. 

Image Registration Medical image registration consists in spa-
tially aligning two or more images, either globally (rigid and affine 
registration) or locally (nonrigid registration), so that voxels in 
corresponding positions contain comparable information. A large 
number of software tools have been developed for MRI-based 
registration [40]. They are available in all the major platforms 
(e.g., SPM [21], FSL [22], FreeSurfer [23], or ANTs [24]). 

Image Segmentation Medical image segmentation consists in 
partitioning an image into a set of nonoverlapping regions. When 
processing brain images, these regions can correspond to tissue 
types, e.g., gray matter, white matter, and cerebrospinal fluid 
[41], but also to anatomical (e.g., hippocampus, pons) or func-
tional (e.g., language network, sensorimotor network) regions 
defined by an atlas [42]. As for registration, many tools have been 
developed for MRI-based segmentation and are available, among 
others, in SPM [21], FSL [22], FreerSurfer [23], or ANTs [24]. 

Resulting Features Based on the combination of one, several, or 
all, of the previously mentioned preprocessing steps, various types 
of features can be extracted that correspond to those described in 
Subheading 2.2. For deep learning algorithms, which usually 
exploit voxel-based features, it is quite common to perform only 
very basic preprocessing. At the simplest, it can be intensity nor-
malization (this step is mandatory for deep learning methods to 
work correctly). It is often combined with a bias field correction

21 HD-BET: https://github.com/MIC-DKFZ/HD-BET. 
22 SynthStrip: https://surfer.nmr.mgh.harvard.edu/docs/synthstrip.

https://github.com/MIC-DKFZ/HD-BET
https://surfer.nmr.mgh.harvard.edu/docs/synthstrip
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and a linear registration to a common space. Another common type 
of voxel-based features is that of tissue density maps (e.g., gray 
matter or white matter density) [43]. Their extraction involves 
bias field correction, registration to a common space, and tissue 
segmentation. Common vertex-based features are the local thick-
ness and the local surface area [44]. Regional features are usually 
the volume of different regions of the brain, but they can also be the 
average intensity within the region or the average of another image-
derived value. They can as well be related to lesions (for instance, 
the volume of multiple sclerosis lesions or of different compart-
ments of a brain tumor) rather than anatomical regions. Finally, 
graph-based features can also be computed from anatomical MRI 
[45] even though this representation is more common for diffusion 
MRI and functional MRI.
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3.1.3 Examples of 

Applications in Machine 

Learning Studies 

T1-weighted MRI is the sequence the most commonly found in 
machine learning studies applied to brain disorders. Several features 
can be extracted from T1-weighted MRI such as the volume of the 
whole brain or of regions of interest; the density of a particular 
tissue, e.g., gray matter; or the local cortical thickness and surface 
area. All these features, as well as the raw T1-weighted MR images, 
have, for example, largely been used for the computer-aided diag-
nosis of dementia, in particular Alzheimer’s disease, as they high-
light atrophy, i.e., the neuronal loss that is a marker of 
neurodegenerative diseases [46–49]. 

T1-weighted MR images acquired with and without the injec-
tion of a contrast agent are often used in the context of brain tumor 
detection and segmentation, progression assessment, and survival 
prediction as they allow distinguishing active tumor structures 
[50]. Such tasks also typically rely on another sequence called 
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) that 
allows visualizing a wide range of lesions on top of tumors [51], 
such as those appearing with multiple sclerosis [52, 53] o  
age-related white matter hyperintensities (also called leukoaraiosis, 
which is linked to small vessel disease). 

3.2 Diffusion-

Weighted MRI 

Diffusion MRI [54, 55] allows visualizing tissue micro-
architecture, thanks to the diffusion of water molecules. Depending 
on their surroundings, water molecules are able to either move 
freely, e.g., in the extracellular space, or move following surround-
ing constraints, e.g., within a neuron. In the former situation, the 
diffusion is isotropic, while in the later it is anisotropic. Contrast in 
a diffusion MR image originates from the fact that following the 
application of an excitation pulse, water molecules that move in a 
particular direction, and so the protons they contain, do not have 
the same magnetic properties as the ones that move randomly but 
not far from their origin point. The excitation pulse is parametrized 
by a weighting coefficient b: the higher the b-value, the more

3.2.1 Basic Principles



sensitive the acquisition is to water diffusion, but the lower the 
signal-to-noise ratio. Several diffusion MRI volumes, each volume 
corresponding to a particular b-value and gradient direction, are 
usually acquired. See examples in Fig. 9 (top row).
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Fig. 9 Example of diffusion-weighted MR images. Top: diffusion volumes acquired using different b-values 
(0 and 1000 s/mm2 ) and gradient directions. Bottom: parametric maps resulting from diffusion tensor 
modeling (fractional anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD; and mean diffusivity, MD) 

3.2.2 Extracting Features 

from Diffusion MRI 

Diffusion MR images are typically acquired with echo-planar imag-
ing, a technique that spatially encodes the MRI signal in a way that 
enables fast acquisitions with a relatively high signal-to-noise ratio. 
However, echo-planar imaging induces geometric distortions and 
signal losses known as magnetic susceptibility artifacts. Other arti-
facts include eddy currents (due to the rapid switching of diffusion 
gradients), intensity inhomogeneities (as for anatomical MRI), and 
potential movements of the subject during the acquisition. These 
artifacts need to be corrected before further analyzing the images. 
Various methods exist to do so; they are reviewed in [56]. Two 
widely used tools enabling the preprocessing of diffusion MR 
images are FSL [22] and MRtrix [25], but others exist23 [56]. 

23 List of tools and software packages to process diffusion MRI: https://github.com/dmripreprocessing/ 
neuroimage-review-2022.

https://github.com/dmripreprocessing/neuroimage-review-2022
https://github.com/dmripreprocessing/neuroimage-review-2022


Neuroimaging in Machine Learning for Brain Disorders 267

Once artifacts have been corrected, diffusion MR images can be 
analyzed in different ways. One of the earliest strategy for modeling 
water diffusion is the diffusion tensor imaging (DTI) model 
[57]. Such model can output parametric maps describing several 
diffusion properties: fractional anisotropy (FA, directional prefer-
ence of diffusion), mean diffusivity (MD, overall diffusion rate, also 
called apparent diffusion coefficient), axial diffusivity (AD, diffu-
sion rate along the main axis of diffusion), and radial diffusivity 
(RD, diffusion rate in the transverse direction). Examples of para-
metric maps are displayed in Fig. 9 (bottom row). DTI tractogra-
phy [58] goes one step further by reconstructing white matter 
tracts. Other diffusion models have been developed to better char-
acterize tissue micro-architecture. This is, for example, the case of 
neurite orientation dispersion and density imaging (NODDI) [59], 
which enables the study of neurite morphology by disentangling 
neurite density and orientation dispersion that both independently 
influence fractional anisotropy. 

One can then again compute most of the different types of 
features covered in Subheading 2.2. Voxel-based features will rep-
resent the value of a given parametric map (e.g., FA, MD). Surface-
based features are seldom used because diffusion MRI often focuses 
on the white matter even though it is in principle possible to project 
maps that are of interest in the gray matter onto the cortical surface. 
Regional features represent the average of a given map (e.g., FA, 
MD) in a set of anatomical regions. Graph-based features can be 
computed as follows, vertices are often regions of the cortex, and 
edges correspond to the connection strength, which can be 
derived, for instance, from the number of tracts connecting two 
regions or the average FA within those tracts. 

3.2.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly used diffusion MRI to assess 
white matter integrity. This has been done in a very wide variety of 
disorders. For example, fractional anisotropy and mean diffusivity 
have been used to differentiate cognitively normal subjects from 
patients with mild cognitive impairment or Alzheimer’s disease 
[60, 61]. Diffusion MRI has also been exploited to perform 
tumor grading or subtyping [62] following the assumption that 
the cellular structure may differ between cancerous and healthy 
tissues. 

3.3 Functional MRI When a region of the brain gets activated by a cognitive task, two 
phenomena occur: a local increase in cerebral blood flow and 
changes in oxygenation concentration [63]. Functional MRI 
(fMRI) is used to measure the latter phenomenon. The blood-
oxygen-level-dependent (BOLD) contrast originates from the fact 
that hemoglobin molecules that carry oxygen have different mag-
netic properties than hemoglobin molecules that do not carry 
oxygen. 

3.3.1 Basic Principles
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Task fMRI consists in inducing particular neural states, for 
example, by performing tasks involving the visual or auditory sys-
tems and then comparing the signals recorded during the different 
states. As the differences observed are small, it is important to 
preserve at best the signal-to-noise ratio that could be degraded 
because of head motion or polluted by fluctuations of the cardiac 
and respiratory cycles. This is done by quickly acquiring multiple 
image volumes with echo-planar imaging. The BOLD signal also 
varies when the brain is not performing any particular task 
[64]. These spontaneous fluctuations are studied with resting-
state fMRI. 

3.3.2 Extracting Features 

from Functional MRI 

The preprocessing of functional MR images has two main objec-
tives: limit the effect of nonneural sources of variability and correct 
acquisition-related artifacts [65]. Preprocessing steps can, for 
example, include susceptibility distortion correction (as for diffu-
sion MRI); head motion correction, by registering each volume in 
the time series to a reference volume (e.g., the first volume); slice-
timing correction, to eliminate differences between the time of 
acquisition of each slice in the volume; or physiologic noise correc-
tion, by temporal filtering [63, 65]. These preprocessing steps can 
be performed using tools such as SPM [21], FSL [22], or AFNI 
[26], but also using the dedicated fMRIPrep workflow [65]. 

The majority of machine learning studies in brain disorders 
focuses on resting-state rather than task fMRI [66]. This can be 
explained by the fact that the resting-state protocol is simpler and 
allows multi-site studies (as it is less sensitive to changes in local 
experimental settings) [66], which should result in larger samples. 
Depending on the application, preprocessed resting-state fMRI 
data may be further processed to extract features. One can directly 
use voxel-based features (or vertex-based features by projecting the 
functional MRI signal onto the cortical surface) [67]. Nevertheless, 
to the best of our knowledge, the most common features are graph-
based. Indeed, most supervised algorithms for classification or 
regression use brain networks extracted from resting-state time 
series. In these networks, also called connectomes, the vertices 
correspond to brain regions, which size may vary, and the edges 
encode the functional connectivity strength, which corresponds to 
the correlation between time series. 

3.3.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning methods exploiting resting-state fMRI data have 
been used to investigate brain development and aging, but also 
neurodegenerative and psychiatric disorders [66]. Functional con-
nectivity patterns have, for instance, been used to distinguish 
patients with schizophrenia from healthy controls [68] or discrimi-
nate schizophrenia and bipolar disorder from healthy controls [69].



Neuroimaging in Machine Learning for Brain Disorders 269

4 X-Ray Imaging 

X-ray imaging is built on the work of Röntgen who observed that if 
a “hand be held before the fluorescent screen, the shadow shows 
the bones darkly, with only faint outlines of the surrounding 
tissues” [3]. 

4.1 X-Ray and 

Angiography 

When an X-ray beam passes through the body, part of its energy is 
absorbed or scattered: the number of X-ray photons is reduced by 
attenuation (Fig. 10, left). On the opposite side of the body, 
detectors capture the remaining X-ray photons, and an image is 
generated. In an X-ray image, the contrast, defined as the relative 
intensity change produced by an object, originates from the varia-
tions in linear attenuation coefficient with tissue type and density. 

X-ray imaging provides excellent contrast between bone, air, 
and soft tissue but very little contrast between the different types of 
soft tissue, hence its limited use when studying brain disorders. 
However, coupled with the injection of an iodine-based contrast 
agent, X-ray imaging enables visualizing cerebral blood vessels and 
detecting potential abnormalities such as an aneurysm. This tech-
nique is called X-ray angiography. 

4.2 Computed 

Tomography 

Although the X-ray images produced were originally in 2D, X-ray 
computed tomography enables the reconstruction of 3D images by 
rotating the X-ray source and detectors around the body (Fig. 10, 
right). Rather than using the absolute values of the linear attenua-
tion coefficients, CT image intensities are expressed in a standard

4.2.1 Basic Principles 

Fig. 10 Left: attenuation of X-rays by matter. As it passes through a material of thickness Δx and linear 
attenuation coefficient μ, the X-ray beam is attenuated. Its intensity decreases exponentially with the distance 
travelled: Io= Ii e

-μΔx , where Ii and Io are the input and output X-ray intensities. Right: third-generation CT. A 
3D image is created by rotating the X-ray source and detectors around the body



unit, the Hounsfield unit (HU). The tissue attenuation coefficient 
is compared to the attenuation value of water and displayed on the 
Hounsfield scale:
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xHU  =1000× 
xμ - μwater 
μwater - μair 

where μwater and μair are the linear attenuation coefficients of water 
and air, respectively. For example, air has an attenuation of -1000 
HU, water of 0 HU, and cortical bone between 500 and 1900 HU. 

As for 2D X-ray imaging, the injection of an iodine-based 
contrast agent improves the visualization of cerebral blood vessels. 
This technique, called CT angiography, is not the only one relying 
on a contrast agent. CT perfusion tracks the bolus of contrast agent 
over time and measures the resulting change in signal intensity. 
Perfusion parameters such as the cerebral blood flow or volume 
can then be derived [70]. 

4.2.2 Extracting Features 

from CT Images 

Contrary to MRI, CT images usually do no require extensive pre-
processing steps [71]. It can however be useful to extract the head 
from the hardware elements visible on the image (e.g., the bed or 
pillow) or extract the brain. This can be done using thresholding 
and morphological operators. Another common step is spatial 
normalization. 

In the context of stroke, non-contrast CT is useful to detect an 
intracranial hemorrhage, which appears brighter than the sur-
rounding tissues, or to estimate the extent of early ischemic injury, 
which results in a loss of gray-white matter differentiation. CT 
angiography can help identify a potential intracranial arterial occlu-
sion, and CT perfusion allows differentiating the regions with 
nonviable/non-salvageable tissue, which have very low cerebral 
blood flow and volume, from the viable and potentially salvageable 
regions [70]. These techniques may also be employed in the con-
text of brain tumors. In particular, contrast-enhanced CT can 
detect areas presenting a blood-brain barrier breakdown [72]. An 
example of CT acquired before and after contrast injection is dis-
played in Fig. 11. 

To the best of our knowledge, CT is most often used in 
machine learning in the form of voxel-based features (the image 
intensities after some minimal preprocessing steps). 

4.2.3 Examples of 

Applications in Machine 

Learning Studies 

The vast majority of machine learning studies relying on CT 
images, particularly non-contrast CT, focus on cerebrovascular 
disorders [73, 74]. Non-contrast CT images were, for example, 
used for the detection of intracranial hemorrhage and its five sub-
types [75]. A first neural network was in charge of identifying the 
presence or absence of intracranial hemorrhage and a second of 
determining the intracranial hemorrhage subtype, which depends



on the bleeding location [75]. In [76], non-contrast CT and CT 
perfusion images were used to segment the core of stroke lesions, as 
the lesion volume is a key measurement to assess the prognosis of 
acute ischemic stroke patients. 
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Fig. 11 Example of CT images. Non-contrast CT images, whose window levels were adjusted to better 
visualize bone or brain tissues and contrast-enhanced CT image of a patient with lymphoma. Case courtesy of 
Dr Yair Glick, Radiopaedia.org, rID: 94844 

5 Nuclear Imaging 

In X-ray CT imaging, the photons that are detected originate from 
an X-ray source. In nuclear imaging, and more precisely emission 
computed tomography, the photons detected are emitted from a 
radiopharmaceutical that has been intravenously injected to the 
patient. 

5.1 Positron 

Emission Tomography 

Positron emission tomography is an imaging technique that 
requires the injection of a substance labeled with a positron-
emitting radioactive isotope [77]. The labeled substance is 
distributed throughout the patient’s body by the blood circulation 
and accumulates in target regions. The positrons emitted by the 
radioactive isotope combine with the electrons present in the tis-
sues and annihilate. Each annihilation produces two nearly collinear 
photons (Fig. 12). The two photons are simultaneously detected by 
two opposing detectors, and a coincidence event is assigned to a 
line of response connecting the two detectors. 

5.1.1 Basic Principles 

Note that the most common isotope in clinical routine is 
fluorine-18 (18 F), which has the advantage of a relatively long 
half-life (110 min) and thus does not require the presence of a 
cyclotron at the scanning site. Nevertheless, other isotopes are

https://radiopaedia.org
https://radiopaedia.org/cases/94844


used. In particular, carbon-11 (11 C), which has a shorter half-life 
(20 min), is often used in research facilities equipped with a 
cyclotron. 
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Fig. 12 PET annihilation. When a positron (e+ ) and an electron (e-) collide, they 
annihilate and create a pair of collinear gamma rays (γ) 

Fig. 13 Illustration of PET data detection. Without time-of-flight, the annihilation is located with equal 
probability along the line of response, while with time-of-flight it is located in a limited portion of the line of 
response 

In a time-of-flight PET system, the difference in arrival times 
between the two coincident photons is measured. Without time-of-
flight information, the annihilation is located with equal probability 
along the line of response, while with time-of-flight information, 
the annihilation site can be reduced to a limited range (Fig. 13), 
thus decreasing the spatial uncertainty and increasing the signal-to-
noise ratio. Once reconstructed, the PET image is a map of the 
radioactivity distribution throughout the body. 

Two main protocols exist when acquiring PET data. Most 
acquisitions are static: the radiotracer is injected several minutes 
before the acquisition (e.g., between 30 and 60 min), which gives



the tracer time to diffuse in the body and accumulate in the target 
regions. The subject is then placed in the scanner and the acquisi-
tion lasts typically around 15 min. In the dynamic protocol, the 
subject is first installed in the scanner, and the acquisition starts at 
the same time the tracer is being injected. This allows recording 
how the tracer diffuses in the body. Dynamic acquisitions are less 
common than static ones because of their duration of 60–90 min, 
which reduces patient throughput. In both static and dynamic 
protocols, the acquisition is often split in frames of fix (in the static 
case) or increasing (in the dynamic case) duration. A static acquisi-
tion of 15 min can typically be split into three frames of 5 min, 
resulting in three PET volumes, each corresponding to the average 
amount of radioactivity detected at each voxel during the time 
frame. 
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18 F-fluorodeoxyglucose (FDG) is the most widely used PET 
radiopharmaceutical [77, 78]. As an analogue of glucose, FDG is 
transported to a cell, but, unlike glucose, it remains trapped in the 
cell. This radiopharmaceutical is an excellent marker of changes in 
glucose metabolism. In the brain, FDG acts as an indirect marker of 
synaptic dysfunction and is part of the diagnosis of epilepsy and 
neurodegenerative diseases, such as Alzheimer’s disease [79]. 

If 18 F-FDG is a nonspecific tracer, other radiopharmaceuticals 
target specific molecular or biological processes and are thus pref-
erentially used for studying specific diseases. Amyloid tracers, such 
as the 11 C Pittsburgh compound B, 18 F-florbetapir, 18 F-florbeta-
ben and 18 F-flutemetamol, which bind to fibrillar Aβ plaques, or 
tau tracers, such as 18 F-flortaucipir, and 18 F-MK-6240, which bind 
to neurofibrillary tangles, are, for example, used in the diagnosis of 
dementia syndromes [80]. Examples are displayed in Fig. 14. Of  
note, the so-called amyloid tracers are in fact not specific of amyloid 
and also bind to myelin in the white matter, making them of

Fig. 14 Example of PET images. Left: 18 F-FDG PET displaying brain glucose metabolism. Middle: 18 F-flortau-
cipir PET displaying the presence of tau neurofibrillary tangles. Right: 18 F-florbetapir PET displaying the 
presence of amyloid plaques. All the images correspond to the same Alzheimer’s disease patient from the 
ADNI study [83]



interest for demyelinating disorders such as multiple sclerosis 
[81]. 11 C-methionine and 18 F-fluoroethyltyrosine are both used 
in neuro-oncology [82]. Note that these are just examples of tracers 
and dozens of tracers exist for imaging specific molecular or 
biological processes.
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5.1.2 Extracting Features 

from PET Images 

The reconstruction procedure of the PET signal already includes 
several corrections (e.g., attenuation and scatter corrections), but 
several processing steps can be performed before further analyzing 
PET images. The first one is often motion correction. This is 
typically done by rigidly registering each frame to a reference 
frame. The registered frames are then averaged to form a single 
volume. To allow for intersubject comparison, brain PET images 
need to be intensity normalized, for example, to compensate for 
variations in the patients’ weight or dose injected. Standardized 
uptake value ratios (SUVRs) are generated by dividing a PET image 
by the mean uptake in a reference region. This region can be 
obtained from an atlas, and in this case chosen depending on the 
tracer and disorder suspected, or in a data-driven manner [84]. Par-
tial volume correction can be performed to limit the spill out of 
activity outside of the region where the tracer is meant to accumu-
late [85] using tools such as PETPVC [86]. Finally, PET images 
can also be spatially normalized. If an anatomical image (preferably 
MRI but also CT) of the subject is available, the PET image is 
rigidly registered to the anatomical image, and the anatomical 
image is registered to a template, often in standard space. By 
composing the two transformations, the PET image is spatially 
normalized. Alternatively, if no anatomical image is available, the 
PET image can directly be registered to a PET template, for exam-
ple, as implemented in SPM [87]. Dynamic PET images are further 
processed to extract quantitative physiological data using kinetic 
modeling, which is introduced in [77, 78]. 

One can then obtain different types of features, as described in 
Subheading 2.2. Voxel-based features will very often be the SUVR 
at each voxel, usually after spatial normalization. Vertex-based fea-
tures will generally be the SUVR projected onto the cortical surface 
[88]. Regional features will usually correspond to the average 
SUVR in each region of a parcellation. Graph-based features are 
less used than for diffusion or functional MRI but are still employed 
to study the so-called metabolic connectivity [89]. 

5.1.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly exploited brain PET images 
in the context of dementia [90]. For example, the usefulness of 
18 F-FDG PET to differentiate patients with Alzheimer’s disease 
from healthy controls and patients with stable mild cognitive 
impairment from those who subsequently progressed to Alzhei-
mer’s disease has been shown in [48, 91, 92]. 18 F-FDG PET has 
also been used to differentiate frontotemporal dementia from



Alzheimer’s disease [93]. In neuro-oncology, 11 C-methionine has 
been used to predict glioma survival [94] or to differentiate recur-
rent brain tumor from radiation necrosis [95]. 
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Fig. 15 Illustration of a two-head SPECT system with a parallel hole collimator. 
The photons whose emission direction is perpendicular to the detector heads 
have a higher probability of being detected (solid lines) 

5.2 Single-Photon 

Emission Computed 

Tomography 

Single-photon emission computed tomography is an imaging tech-
nique that requires the injection of a substance labeled with an 
isotope that directly emits gamma radiation. Typical isotopes 
employed in neurology are technetium-99m (99m Tc) and iodine-
123 (123 I). As for PET, the labeled substance is distributed 
throughout the patient’s body by the blood circulation and accu-
mulates in target regions. The photons emitted are detected by one 
to three detector heads, called gamma cameras, that rotate around 
the patient. Having multiple heads allows reducing image acquisi-
tion time and improving sensitivity as more photons can be 
detected. Collimators are placed in front of the detector heads to 
localize the origin of the gamma rays: a gamma ray moving from the 
patient toward the camera has a higher probability of being 
detected if its direction aligns with the collimator (Fig. 15) 
[96]. Once reconstructed, the SPECT image is a map of the radio-
activity distribution throughout the body. Both dynamic and static 
protocols exist when acquiring SPECT data. 

5.2.1 Basic Principles 

SPECT is able to visualize and quantify changes in cerebral 
blood flow and neurotransmitter systems, such as the dopamine 
system [97, 98]. To image cerebral blood flow, the two most widely 
used tracers are 99m Tc-HMPAO and 99m Tc-ECD [97, 99]. These 
tracers can, for example, be employed in the context of dementia as 
a decrease in neural function will result in a decrease in cerebral 
blood flow in different regions. SPECT plays a key role when 
studying Parkinsonian syndromes, which are characterized by a 
loss of dopaminergic neurons. In this context, tracers targeting 
the dopaminergic system, such as 123 I-β-CIT and 123 I-FP-CIT



(also called DaTscan), are employed to differentiate essential 
tremor from neurodegenerative Parkinsonian syndromes or distin-
guish dementia with Lewy bodies from other dementias 
[98]. Examples of SPECT images are displayed in Fig. 16. 
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Fig. 16 Examples of SPECT images. Left: 99m Tc-HMPAO SPECT images of a normal control and an epileptic 
patient (http://spect.yale.edu) [100]. Right: 123 I-FP-CIT SPECT images of a normal control and a patient with 
Parkinson’s disease from the PPMI study [101] 

5.2.2 Extracting Features 

from SPECT Images 

After the reconstruction of a SPECT image, which includes several 
corrections, two processing steps are typically performed: intensity 
normalization and spatial normalization [97, 98]. As for PET, the 
intensity of a SPECT image can be normalized using a reference 
region, and the image can be spatially normalized by directly regis-
tering it to a SPECT template or by registering it first to an 
anatomical image. 

As for PET, the most common feature types are voxel-based 
(the normalized signal at each voxel) and regional features (often 
the average normalized signal within a region). To the best of our 
knowledge, vertex-based and graph-based features are rarely used 
although they could in principle be computed. 

5.2.3 Examples of 

Applications in Machine 

Learning Studies 

Machine learning studies have mainly exploited brain SPECT 
images for the computer-aided diagnosis of Parkinsonian syn-
dromes [102]. 123 I-FP-CIT SPECT was, for instance, used to 
distinguish Parkinson’s disease from healthy controls [103, 104], 
predict future motor severity [105], discriminate Parkinson’s dis-
ease from non-Parkinsonian tremor [104], or identify patients 
clinically diagnosed with Parkinson’s disease but who have scans 
without evidence of dopaminergic deficit [104]. 

In studies targeting dementia, both 99m Tc-HMPAO [106] and 
99m Tc-ECD [107] tracers were used to differentiate between 
images from healthy subjects and images from Alzheimer’s disease 
patients.

http://spect.yale.edu
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Fig. 17 Example of 18 F-FDG PET, CT, T1-weighted MRI, and fused images 

6 Conclusion 

Neuroimaging plays a key role for the study of brain disorders. If 
some modalities provide information regarding the anatomy of the 
brain (CT and MRI), others provide functional or molecular infor-
mation (MRI, PET, and SPECT). To provide a complete picture of 
biological processes and their alterations, it is often necessary to 
combine multiple brain imaging modalities (Fig. 17). This can be 
done by acquiring images with multiple standalone systems or with 
hybrid systems such as SPECT/CT, PET/CT, or PET/MRI 
scanners [108]. 

When analyzing neuroimages, both modality-specific and 
modality-agnostic processing steps must often be performed. 
These should be performed with care to obtain reliable features. 
Machine learning and deep learning are widely used to analyze 
neuroimaging data. The most common tasks are classification for 
computer-aided diagnosis, prognosis and disease subtyping, and 
segmentation to characterize anatomical structures and lesions. 
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Routier A, Burgos N, Jacquemont T, 
Fontanella S, Durrleman S, Epelbaum S, 
Bertrand A, Colliot O (2021) Reproducible 
evaluation of diffusion MRI features for auto-
matic classification of patients with Alzhei-
mer’s disease. Neuroinformatics 19(1): 
57–78. https://doi.org/10.1007/s12021-
020-09469-5 

62. Park YW, Oh J, You SC, Han K, Ahn SS, Choi 
YS, Chang JH, Kim SH, Lee SK (2019) 
Radiomics and machine learning may accu-
rately predict the grade and histological sub-
type in meningiomas using conventional and 
diffusion tensor imaging. Eur Radiol 29(8): 
4068–4076. https://doi.org/10.1007/ 
s00330-018-5830-3 

63. Glover GH (2011) Overview of functional 
magnetic resonance imaging. Neurosurg 
C l i n  22 (2 ) :133–139 .  h t tp s ://do i .  
org/10.1016/j.nec.2010.11.001 

64. Fox MD, Raichle ME (2007) Spontaneous 
fluctuations in brain activity observed with 
functional magnetic resonance imaging. Nat 
Rev Neurosci 8(9):700–711. https://doi. 
org/10.1038/nrn2201 

65. Esteban O, Markiewicz CJ, Blair RW, Moodie 
CA, Isik AI, Erramuzpe A, Kent JD, 
Goncalves M, DuPre E, Snyder M, Oya H, 
Ghosh SS, Wright J, Durnez J, Poldrack RA, 
Gorgolewski KJ (2019) fMRIPrep: A robust 
preprocessing pipeline for functional MRI. 
Nat Methods 16(1):111–116. https://doi. 
org/10.1038/s41592-018-0235-4 

66. Khosla M, Jamison K, Ngo GH, Kuceyeski A, 
Sabuncu MR (2019) Machine learning in 
resting-state fMRI analysis. Magn Reson 
Imag ing  64 :101–121.  h t tps ://doi .  
org/10.1016/j.mri.2019.05.031 

67. Fischl B, Sereno MI, Tootell RB, Dale AM 
(1999) High-resolution intersubject averag-
ing and a coordinate system for the cortical 
surface. Hum Brain Mapp 8(4):272–284. 
https://doi.org/10.1002/(SICI)1097-0193 
(1999)8:4%3C272::AID-HBM10%3E3.0. 
CO;2-4 

68. Kim J, Calhoun VD, Shim E, Lee JH (2016) 
Deep neural network with weight sparsity 
control and pre-training extracts hierarchical 
features and enhances classification perfor-
mance: evidence from whole-brain resting-
state functional connectivity patterns of 
schizophrenia. NeuroImage 124:127–146. 
https://doi.org/10.1016/j.neuroimage.201 
5.05.018 

69. Rashid B, Arbabshirani MR, Damaraju E, 
Cetin MS, Miller R, Pearlson GD, Calhoun 
VD (2016) Classification of schizophrenia 
and bipolar patients using static and dynamic 
resting-state fMRI brain connectivity. Neuro-
Image  134 :645–657 .  h t t p s ://do i .  
org/10.1016/j.neuroimage.2016.04.051 

70. Wannamaker R, Buck B, Butcher K (2019) 
Multimodal CT in Acute Stroke. Curr Neurol 
Neurosci  Rep  19(9):63.  https://doi.  
org/10.1007/s11910-019-0978-z 

71. Muschelli J (2019) Recommendations for 
processing head CT data. Front Neuroinform 
13:61. https://doi.org/10.3389/fninf.  
2019.00061 

72. Chourmouzi D, Papadopoulou E, Marias K, 
Drevelegas A (2014) Imaging of Brain 
Tumors. Surg Oncol Clin 23(4):629–684. 
https://doi.org/10.1016/j.soc.2014.0 
7.004 

73. Yeo M, Tahayori B, Kok HK, Maingard J, 
Kutaiba N, Russell J, Thijs V, Jhamb A, Chan-
dra RV, Brooks M, Barras CD, Asadi H 
(2021) Review of deep learning algorithms 
for the automatic detection of intracranial 
hemorrhages on computed tomography 
head imaging. Journal of NeuroInterven-
tional Surgery 13(4):369–378. https://doi. 
org/10.1136/neurintsurg-2020-017099 

74. Buchlak QD, Milne MR, Seah J, Johnson A, 
Samarasinghe G, Hachey B, Esmaili N, 
Tran A, Leveque JC, Farrokhi F, 
Goldschlager T, Edelstein S, Brotchie P 
(2022) Charting the potential of brain com-
puted tomography deep learning systems. J

https://doi.org/10.1016/j.neuroimage.2021.118830
https://doi.org/10.1016/j.neuroimage.2021.118830
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.1002/nbm.3785
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1088/1361-6560/aa5dbe
https://doi.org/10.1088/1361-6560/aa5dbe
https://doi.org/10.1007/s12021-020-09469-5
https://doi.org/10.1007/s12021-020-09469-5
https://doi.org/10.1007/s00330-018-5830-3
https://doi.org/10.1007/s00330-018-5830-3
https://doi.org/10.1016/j.nec.2010.11.001
https://doi.org/10.1016/j.nec.2010.11.001
https://doi.org/10.1038/nrn2201
https://doi.org/10.1038/nrn2201
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.mri.2019.05.031
https://doi.org/10.1016/j.mri.2019.05.031
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C272::AID-HBM10%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C272::AID-HBM10%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C272::AID-HBM10%3E3.0.CO;2-4
https://doi.org/10.1016/j.neuroimage.2015.05.018
https://doi.org/10.1016/j.neuroimage.2015.05.018
https://doi.org/10.1016/j.neuroimage.2016.04.051
https://doi.org/10.1016/j.neuroimage.2016.04.051
https://doi.org/10.1007/s11910-019-0978-z
https://doi.org/10.1007/s11910-019-0978-z
https://doi.org/10.3389/fninf.2019.00061
https://doi.org/10.3389/fninf.2019.00061
https://doi.org/10.1016/j.soc.2014.07.004
https://doi.org/10.1016/j.soc.2014.07.004
https://doi.org/10.1136/neurintsurg-2020-017099
https://doi.org/10.1136/neurintsurg-2020-017099


A,

282 Ninon Burgos

Clin Neurosci 99:217–223. https://doi. 
org/10.1016/j.jocn.2022.03.014 

75. Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, 
Wang X, Bai J, Cao K, Song Q, Zhang H, 
Chen W, Guo X, Xia J (2019) Precise diagno-
sis of intracranial hemorrhage and subtypes 
using a three-dimensional joint convolutional 
and recurrent neural network. Eur Radiol 
29(11):6191–6201. https://doi.org/10.100 
7/s00330-019-06163-2 

76. Clerigues A, Valverde S, Bernal J, Freixenet J, 
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Chapter 9 

Electroencephalography and Magnetoencephalography 

Marie-Constance Corsi 

Abstract 

In this chapter, we present the main characteristics of electroencephalography (EEG) and magnetoenceph-
alography (MEG). More specifically, this chapter is dedicated to the presentation of the data, the way they 
can be acquired and analyzed. Then, we present the main features that can be extracted and their applica-
tions for brain disorders with concrete examples to illustrate them. Additional materials associated with this 
chapter are available in the dedicated Github repository. 

Key words Electroencephalography, Magnetoencephalography, Evoked activity, Oscillatory activity, 
Brain-computer interfaces 

1 Introduction 

This chapter aims at providing an overview of electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) to help the 
reader with no previous experience with these modalities to under-
stand the information that can be extracted and their neurophysio-
logical meaning in the perspective to be used for brain disorders. 
These two modalities, which share common characteristics, are 
often designated together with the acronym M/EEG. 

To this end, instead of providing an exhaustive presentation of 
the M/EEG clinical applications, we focused on the main aspects 
related to these modalities. As a result, this chapter is organized as 
follows: We first describe the basic principles in terms of origins of 
the signals and electrophysiological activity exploited in M/EEG 
(Subheading 2). We then present the principles of M/EEG experi-
ments (Subheading 3), the data analysis techniques (Subheading 
4), and in particular features that can be extracted from the data 
(Subheading 5). The last part of this chapter presents illustrations 
of M/EEG applications to brain disorders (Subheading 6). To go 
further, additional resources are provided to the reader in Boxes 
1 and 2 and in a dedicated Github repository. 
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2 Basic Principles 

Being able to extract the information of interest to perform a 
classification from M/EEG data requires to have some neurophysi-
ological background knowledge to assess the relevance of the 
selected features. This paragraph aims at providing some general 
elements regarding the origin of the signals and the recorded 
activity. 

2.1 Origin of the 

Signals 

Neurons create electrical signals, transmitted to other cells via 
synapses. First, an action potential (AP) arrives at a synaptic cleft 
(step 1 in Fig. 1) where it will transmit chemical information via 
neurotransmitters (step 2 in Fig. 1) that generate postsynaptic 
potentials (PSPs) and local currents (step 3 in Fig. 1). A PSP will 
create a current sink and will propagate until the cell body to 
generate a current source (step 4 in Fig. 1). As a result, the PSP 
creates an electrical dipole consisting in a negative pole (i.e., the 
sink) and a positive pole (i.e., the source). This dipole will generate 
primary (intracellular) currents and secondary (extracellular) cur-
rents. M/EEG signals result from postsynaptic potentials. More 
specifically, M/EEG signals result from the spatial and temporal 
summation of the activity of a large population of synchronous 
neurons. But notable differences exist between MEG and EEG. 

Fig. 1 Origin of M/EEG signals
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Table 1 
Main features to compare MEG and EEG 

Items MEG EEG 

Measurement Magnetic field, + intracellular currents Difference of potentials, + 
extracellular currents 

Spatial resolution 1 cm 2–3 cm  

Temporal resolution 1 ms or less 

Amplitudes ≈ 100 fT ≈ 100 μVolts 

Advantages – Absolute values – Portable 

– Less affected by bone – Focal – Cost 

– Focal 

Drawbacks – Financial constraints – Need of a reference 

– Mechanical constraints – Affected by bone 

– Diffuse 

Firstly, regarding the signals themselves, MEG signals are 
mainly caused by intracellular currents generated by the PSP at 
the dendrite level and less by the extracellular currents; EEG signals 
correspond to a difference between electrical potentials, mainly due 
to extracellular currents. Secondly, regarding the sensitivity toward 
the dipole orientation, EEG is sensitive both to radial currents 
(activity located at the gyrus level) and to tangential currents (gen-
erated within sulci) even though it has stronger sensitivity to radial 
currents, whereas MEG is more sensitive to tangential currents. 
Finally, regarding the sensitivity toward the conductivity, EEG is 
strongly attenuated and deformed by crossing through the skull, 
whereas MEG is less sensitive to the different layers crossed (i.e., 
skull, brain, etc.). Such differences between MEG and EEG have an 
impact on the way data are preprocessed, analyzed, and, therefore, 
interpreted. The differences between MEG and EEG are summar-
ized in Table 1. 

2.2 Evoked and 

Oscillatory Activity 

There are two main types of electrophysiological activity of interest 
that are exploited in the M/EEG domain: the evoked and the 
oscillatory activity. Evoked responses are weak variations of electro-
magnetic activity resulting from a stimulation (for instance, in 
response to a task performance by the participant). Given their 
amplitude, it is often necessary to average signals over chunks of 
signals, referred as epochs, to reduce noise. To identify and describe 
these evoked responses, there is a specific way to name them 
according to their latency, their amplitude, their shape, and the



polarity. Let’s take an example (see Fig. 2), which represent evoked 
responses from a study where we simulated a visual stimulation. We 
first see a positive deflection occurring 300 ms after the presenta-
tion of the stimulation, which is referred to as P300. These waves 
can reflect different mechanisms: the early components are mostly 
exogenous and are related to the stimulus characteristics; the late 
components are endogenous and are related to the performed task 
and to the subject’s state. 
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Fig. 2 Evoked activity. Results from a simulation where two sources, located in the visual area, generated an 
activity after a stimulus. On the right, we plotted the associated time course over the scalp (synthetic signals), 
resulting from the averaging of 1000 repetitions. One can observe notably a positive wave around t= 300 
ms. The code to generate this figure is accessible via the dedicated Github repository 

The oscillatory activity, or induced activity, results from the 
summation of the activity in a given brain region. These rhythms 
are mainly defined by their frequency, their amplitude, their shape, 
their location, and their duration. In Fig. 3, we provided examples 
of the main rhythms found in the literature. Each frequency band is 
referred to by a Greek letter. Delta ([0.5–3 Hz]) and Theta ([3–7 
Hz]) rhythms are, respectively, detected in deep and slight sleeps. 
Alpha ([8–12 Hz] in posterior areas) and Mu ([7–13 Hz] in central 
areas) rhythms are both observed in quiet watch and resting state 
(with the eyes closed for Alpha). Beta ([13–30 Hz]) rhythm is 
detected during the active watch and during cognitive tasks such 
as motor imagery, for instance. Gamma rhythm (divided into two 
sub-rhythms: slow in 30–70 Hz and fast beyond 70 Hz) is observed 
during specific cognitive processing. 

3 M/EEG Experiments 

This section provides an overview of the devices currently used and 
the main steps that constitute an M/EEG experiment. As a take-
home message, in Table 1, we propose a comparison of the main 
features of MEG and EEG.

https://github.com/mccorsi/ML-for-Brain-Disorders_MEEG
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Fig. 3 We plotted the time course associated with the main rhythms that one can observe from M/EEG 
recordings. These plots were obtained from synthetic signals. The code to generate this figure is accessible 
via the dedicated Github repository 

3.1 Instrumentation EEG signals are recorded through the use of electrodes placed over 
the scalp. The EEG relies on the difference of potentials. The first 
EEG recordings have been performed by Hans Berger in 1924. He 
described the oscillatory activity at 8 Hz occurring in the posterior 
area of the scalp when the subject is awake with his eyes closed. 
There are different types of electrodes: wet/dry electrodes and 
active/passive electrodes. Wet electrodes are generally made of 
tin, silver, or silver chloride material (Ag/AgCl). They need an 
electrolytic gel to enable the conduction between the skin and the 
electrode. Dry electrodes are made of stainless steel that behaves as 
a conductor between the skin and the electrode. The active electro-
des contain an electronic module that performs a pre-amplification 
of the signal to ensure the stability of the system toward changes in 
impedance and noise. The passive electrodes do not use a 
pre-amplification module. 

Naming Even though some differences may be found from one 
EEG device to another, there are some standardized ways to name 
and localize EEG sensors (also called channels). Each channel is 
often referred to by a letter and a number. Most of the time, odd 
channels are located on the left hemisphere and the even ones on 
the right hemisphere. The letters correspond to the area: frontal, 
temporal, parietal, central, and occipital. In addition to the sensors 
themselves, one can also find landmarks: nasion, inion, and pre-
auricular points. An example of such naming is shown in Fig. 4b.

https://github.com/mccorsi/ML-for-Brain-Disorders_MEEG
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Fig. 4 M/EEG instrumentation. (a) EEG experimental setup. (b) Example of EEG montage. For an illustrative 
purpose, each color corresponds to a brain area. Each circle represents either a sensor or a landmark. Sensors 
appear in color while landmarks appear in gray. Sensors are designated with a letter and a number. The letter 
is indicative of the brain region. Odd numbers correspond to the left hemisphere and even ones to the right 
hemisphere. (c) MEG experimental setup
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List of Montages Depending on the scientific question to be 
addressed and, therefore, the brain areas of interest, different mon-
tages can be found. One can build an EEG montage from less than 
5 electrodes to up to 256 channels. EEG measurements rely on a 
difference of electrical potentials. For this purpose, two montages 
can be considered: the referential montage and the bipolar mon-
tage. In the referential montage, each difference of electrical poten-
tials considers an electrode placed over the scalp and a reference. As 
a result, each electrode placed over the scalp is compared to the 
reference electrode. The choice of the reference is crucial. The most 
commonly chosen locations for the reference electrodes are the 
mastoids (i.e., temporal bone behind the ears), even though several 
studies prefer placing the reference at the vertex (Cz, i.e., midline 
central of the scalp). Again, the location depends on the scientific 
question to be addressed. The bipolar montage consists of 
performing the difference between two electrodes placed over the 
scalp, after the experiment. Another electrode, referred to as 
ground electrode, is used. Among the privileged locations is the 
scapula (i.e., shoulder blade). An example of an EEG setup and a 
standard montage are proposed in Fig. 4a, b. For a complete 
description of the standardized EEG electrode arrays, the reader 
can refer to [1]. 

Future of EEG Hardware In the past years, there has been an 
increased interest in developing wearable EEG, to remove wires and 
to reduce its dimension but also to enable long-lasting recordings 
in a less constrained environment. Three bottlenecks need to be 
overcome: the EEG electrodes, hard to put on and to keep in place 
on the head; the EEG hardware, to make it less power-consuming 
and miniaturized; and the EEG software, to propose the most 
intelligible and reliable information regarding the captured brain 
activity [2]. In particular, EEG systems that rely on dry EEG 
electrodes get more and more attention. By not requiring conduc-
tive gel, it reduces the preparation time. Recent studies relying on 
commercialized dry electrodes systems show performances close to 
those obtained with wet electrodes [2]. 

Sensors and Main Devices The difficulty here is to detect signals 
that are 109 weaker than the Earth magnetic field. The current 
devices rely on superconducting quantum interference devices 
(SQUIDs) that can detect small MEG signals [3]. One of the first 
proof of concept was made by D. Cohen in the 1970s [4]. The 
SQUIDs present a sensitivity, defined here as the smallest variation 
of magnetic field that can be detected by the sensor, of 1 f  T = Hz

p 
. 

To obtain such performance, a magnetic shielding room is required 
to remove the environmental noise, and a part of the device needs 
to be cooled via a cryogenic system (see Fig. 4c). Two types of



sensors are used to record MEG signals: magnetometers and gra-
diometers. Magnetometers measure the magnetic field, whereas the 
gradiometers measure the gradient of the magnetic field. They are 
used for noise elimination and consist in a combination of magnet-
ometers. The main difference from one manufacturer to another 
lies in the type of gradiometers used:
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• CTF manufacturer: radial gradiometers consisting of two mag-
netometers placed one above the other

• MEGIN manufacturer: planar gradiometers consisting of two 
magnetometers placed side by side 

The type of gradiometer has an influence on the way brain activity 
is recorded and, therefore, on how to interpret the recorded signal 
[5]. Magnetometers and radial gradiometers are more sensitive to 
sources around the sensor, whereas planar gradiometers are more 
sensitive to sources located right below the sensor (Fig. 5). 

New Generation of Sensors The current devices rely on a cryogenic 
cooling system that engenders technical and financial constraints. 
New cryogenic-free sensors have recently emerged: the optically 
pumped magnetometers (OPMs) [6, 7]. Developing cryogenic-
free sensors presents two main advantages: an increase in the ampli-
tude of the signal recorded by the sensor and a reduction of the 
dimension of the magnetic shielding room. Recent studies proved 
that OPMs present a better signal-to-noise ratio than EEG [8], can 
detect deep sources [9], and can be suited for pediatric or move-
ment disorder studies [10]. Promising results could be obtained 
with triaxial measurements obtained from OPMs [11, 12]. 

3.2 Data Acquisition Depending on the tasks and on the hardware used, the duration of 
an M/EEG experiment may vary. This section aims to present the 
main steps that constitute the data acquisition. 

The first step consists in preparing all the materials to perform 
the experiment. For EEG, it will consist in cleaning the locations 
where electrodes will be in contact with the skin (e.g., forehead and 
mastoids). The electrodes and the EEG cap are then placed. Several 
key distances can be measured to verify that the cap is well-placed or 
to record fiducial points to be matched to other modalities after-
ward (e.g., MRI). Then, the experimenter needs to ensure that the 
communication between the electrodes and the scalp is established. 
For that purpose, an assessment of the impedance is made for each 
electrode. The lower it is, the better it is. In the case of wet 
electrodes, the experimenter has to inject gel at each sensor loca-
tion. Once the impedances are lower than a certain threshold, 
typically a few kOhms, then the experiment can start. Regarding 
MEG, the experimenter places head-tracking coils to measure the 
head position before each recording. It helps preventing from large
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Fig. 5 Examples of artifacts in M/EEG. (a) Cardiac artifacts recorded with magnetometers. (b) Ocular artifacts 
recorded with EEG. (c) Power line noise recorded with gradiometers. Given its characteristics, plotting the 
power spectra enables to elicit it easily. The code to generate this figure is accessible via the dedicated Github 
repository

https://github.com/mccorsi/ML-for-Brain-Disorders_MEEG
https://github.com/mccorsi/ML-for-Brain-Disorders_MEEG


head movements that could lead to motion artefacts and error in 
the localization of source activity. The locations of fiducial points 
(nasion, left and right preauricular points) are registered. The 
information is stored in each data file. The subject is then placed 
in the magnetic shielding room after taking off all the elements that 
could generate magnetic interference with the device (e.g., jewels, 
belt). The experimenter helps the subject to place his/her head in 
the MEG helmet. Once the subject is in a comfortable position, the 
experimenter will save the head position that will be used as refer-
ence during the whole session.
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Once the subject is correctly installed, the experimenter can 
start some pre-recordings to check the quality of the signal and give 
specific instructions to the subjects accordingly (e.g., loosening the 
jaw to avoid muscular artifacts). Finally, the experimenter can give 
further instructions regarding the task to perform before starting 
the recordings. After the end of session, the data are stored in 
specific servers to be processed. 

4 Data Analysis 

This sections aims at providing recommendations for analyzing 
M/EEG data. An overview of the main steps of the M/EEG data 
analysis is provided in Fig. 6. 

4.1 Types of 

Artifacts/Noise 

The notion of artifacts depends strongly on the signal of interest. 
Here, we consider as artifacts the signals that make the recording 
more difficult and may hamper the analysis of the brain activity 
recorded with EEG and/or MEG. Such artifacts can be divided 
into two categories: the neurophysiological artifacts and the envi-
ronmental noise. This section aims at presenting their main 
features. 

4.1.1 Neurophysiological 

Artifacts 

This category of artifacts corresponds to noise generated by the 
subjects themselves, whether it is voluntarily or not. In a nutshell, it 
is important to bear in mind that the brain is far from being the only 
organ that generates electromagnetic activity. In particular, the eyes 
and the heart produce electromagnetic activity, which shows an 
amplitude higher than that of the brain. As a result, the main 
neurophysiological artifacts are related to cardiac activity and ocular 
activity (via blinks and saccades) and can be visually spotted out 
during an M/EEG recording (see Fig. 5a, b). A possible way to 
reduce the ocular artifacts is to instruct the subject to avoid moving 
their eyes and, for short recordings only, to avoid eyes blinking. 
Another neurophysiological artifact may be induced by the sub-
jects’ voluntarily motion. Indeed, motion engenders muscular 
activity that can distort the recorded brain signals. Typical examples 
are jaw clenching and swallowing. They generate high-frequency
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Head movement compensation & 
environmental noise removal +QC 

Raw signals 

Advanced analysis 

Time-frequency analysis 

Connectivity Networks 

Event-related potentials 

Individual MRI 
or template 

Source reconstruction + QC 

Data inspection 

Artifacts removal + QC 

MEG only 

M/EEG 

Fig. 6 Data analysis in M/EEG: general workflow. QC stands for quality check. Source reconstruction is not 
compulsory but advisable in specific cases. The code to generate this figure is accessible via the dedicated 
Github repository

https://github.com/mccorsi/ML-for-Brain-Disorders_MEEG


activity that propagates to temporal electrodes. In the specific case 
of MEG, the device consisting in a helmet, it is strongly sensitive to 
head motion. A possible way to reduce the muscular artifacts is to 
instruct the subjects to remain as quiet as possible and to avoid 
moving their jaws.
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4.1.2 Environmental 

Noise 

This category refers to the artifacts generated by the environment 
that surrounds the experimental setup. They can be magnetic (e.g., 
magnetized devices that can interfere with the MEG sensors), 
linked with mechanical vibrations (e.g., presence of a tramway 
nearby), or simply associated with power line (occurring at 50 Hz 
or 60 Hz; see Fig. 5c). We do not aim at being exhaustive. We 
simply want the reader to be aware of the possible sources of 
environmental noise when analyzing M/EEG signals even though 
the Faraday cage and the shielded room, used respectively, in EEG 
and MEG, can partly prevent them. 

4.1.3 System Noise This category refers to artifacts generated by the sensors them-
selves. For example, in MEG, one can observe SQUID jumps or 
saturation. In both MEG and EEG, one can have broken sensors. 

4.2 Preprocessing This section aims at presenting the main steps that constitute the 
preprocessing pipeline, dedicated to artifact removal. This is prob-
ably the most crucial part when analyzing M/EEG data. Indeed, 
the point here is to remove noise without eliminating information 
of interest or distorting the signal. Attention must be paid to build 
the pipeline the most suited to the dataset and to the scientific 
question to be addressed. As such, the first thing to do when 
working with a new dataset is to extensively study it, in particular, 
inspecting the M/EEG signals but also the associated broadband 
power spectra. This preliminary step enables to identify most of the 
artifacts and, more importantly, if they have a specific temporal 
and/or frequency signature (e.g., presence of periodic artifacts). 

From this point, it is possible to choose a specific strategy to 
remove the observed noise. In the case of cardiac and ocular arti-
facts, given their clear pattern, an efficient way to isolate and reduce 
them consists in applying independent component analysis (ICA) 
[13]. One can visually identify the components to be removed from 
both the temporal and the topographies (to avoid removing too 
many components) and manually select them. Another possibility, 
more reproducible, consists of using biosignals (e.g., electrocardio-
gram and electrooculogram) and to compute correlations between 
time series. This technique enables to ensure the robustness of the 
decision of removing a component. 

In the case of artifacts at a specific frequency (e.g., power line 
noise at 50 Hz or 60 Hz), one can consider applying notch filters. 
With the same philosophy, in the case of muscular activity, applying 
a low-pass filter with a cutoff frequency at 40 Hz can be of interest.



Nevertheless, one objection can be raised: the signal distortion 
induced by the filtering. As previously explained, here, we aim at 
finding a trade-off between removing artifacts and preserving the 
information of interest. That is why the pipeline strongly depends 
on the scientific question to be addressed. In the case of muscular 
activity, if someone is interested in the activity in the gamma band 
(>30 Hz), applying a low-pass filter will be a poor choice, and as 
such, removing noisy trials can be an option. Regarding head 
motion, as explained in Subheading 3.2, MEG systems enable to 
register the head position. Methods relying notably on signal space 
separation [14] can correct small movements (i.e., less that several 
centimeters). 
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Another type of artifacts consists of a broken channel. To avoid 
having a different number of sensors from one subject to another, 
the proposed solution depends on the sensor location. If the sensor 
has four neighbors, strategies relying on the interpolation can be 
considered. It consists in creating a virtual sensor that is the linear 
combination of the signals recorded by the broken sensor’s neigh-
bors. If the sensor is located on the periphery, the interpolation is 
no longer reliable. The experimenter may consider removing the 
channel from the dataset. In the specific case of MEG, after an 
optional head movement correction step, if SQUID jump artifacts 
remain, one should consider reapplying the head movement cor-
rection on the raw data after having labeled as “bad” the sensors 
that show jumps. The bad MEG channels will be reconstructed. 

Once the pipeline has been chosen and tested, it is important to 
check that the signals have been correctly preprocessed. This step 
corresponds to the quality check. There are different possibilities to 
perform it. The qualitative way would consist in superimposing 
preprocessed and postprocessed signals (which can be displayed as 
time series and/or power spectra) and to visualize potential differ-
ences. A more reliable way would consist in identifying a judgment 
criterion to assess to which extent the output signals are noisy. 
Possible metrics are the variance, the z-score, or the kurtosis. 
Using one of these metrics on the output may lead to both noisy 
channels and trials to be discarded. As a rule of thumb, the trial 
elimination must not exceed 10% of the total number of trials to 
ensure to have enough data to perform a relevant analysis [15]. 

4.3 Source 

Reconstruction 

It is possible to directly analyze the signals recorded by the sensors. 
In such a case, one will say that the analysis is performed in the space 
of the sensors. However, it is also possible to go one step further 
and estimate the activity within the brain. This processing step is 
called source reconstruction and consists in estimating the neural 
correlates M/EEG signal location. It can be performed when one 
wants to have access to a higher spatial resolution to provide a more 
accurate description, and interpretation, of the neurophysiological 
phenomena occurring. For that purpose, both direct and inverse 
problems need to be solved [15, 16].
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4.3.1 Direct Problem Here, we aim at modeling the electromagnetic field produced by a 
cerebral source with known characteristics. For that purpose, it is 
necessary to consider both a physical model of the sources and a 
model that predicts the way that these sources will generate elec-
tromagnetic fields at the scalp level. The simplest model is the 
spherical model, which considers the head as an ensemble of 
spheres. Each sphere corresponds to a given tissue (brain, cerebro-
spinal fluid, skull, or skin) characterized by a given conductivity. 
Even though it is possible to adjust the spheres to the geometry of 
the head or restrict them to a limited number of regions of interest, 
this model is an oversimplification of the head geometry. More 
realistic models rely on geometrical reconstruction of the different 
layers that form the head tissues, directly extracted from the anato-
mical magnetic resonance imaging (MRI) data of, ideally, the par-
ticipant (the MRI thus needs to be acquired separately) or a 
dedicated template (e.g., MNI Colin 27). They consist in building 
meshes of the interfaces between different tissues. We can cite three 
approaches: the boundary element method (BEM) [17] that is the 
most widely used, the finite difference method (FDM), and the 
finite element method (FEM). Another model, called overlapping 
spheres [18], consists of fitting a given sphere under each sensor. 

Even though there are no guidelines regarding the choice of 
the method, we could provide some elements of recommendations: 
given the high sensitivity of the EEG toward variations in terms of 
conductivity, the BEM model can be a tool of choice. As for the 
MEG, being less sensitive to changes in conductivity, the overlap-
ping spheres can be considered. 

4.3.2 Inverse Problem One of the main challenges of the inverse problem lies in the 
nonuniqueness of its solution. In other words, a large number of 
brain activity patterns could generate the same signature detected at 
the sensor level. Therefore, some constraints or assumptions are 
essential to lead to a unique solution that reflects the best the 
acquired data [15, 16]. In this section, we aim at providing a 
short overview of the methods that are the most used in routine. 

The dipole modeling methods rely on a source modeling via a 
reduced number of equivalent dipoles where each of them repre-
sents a source activity. As a result, such methods are based on an a 
priori hypothesis on the required number of sources. 

Scanning methods, such as the MUSIC approach [19], consist 
in estimating the probability of presence of a current dipole inside 
each voxel. Among them are the beamformer methods [20], which 
consist in applying a spatial filtering to estimate the source activity 
at each location. We can cite the linearly constrained minimum 
variance (LCMV) and the synthetic aperture magnetometry 
(SAM) [21] as examples of beamformer methods [22].
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The approaches relying on distributed source models consist in 
estimating the amplitudes of dipoles located on the cortical surface. 
The characteristics of the groups of dipoles are fixed or are esti-
mated via the individual MRI of the participant. The most famous 
methods relying on distributed sources models are the weighted 
minimum norm (wMNE) [23, 24] and LORETA [25]. 

Similar to the preprocessing step, there is no ideal choice of 
method for the inverse problem, as it depends on the question to be 
addressed. A general recommendation would be to consider the 
minimum norm method when expecting distributed sources and 
the dipole modeling for focal sources. 

5 Feature Extraction and Selection 

When considering M/EEG from the machine learning perspective, 
an important aspect is the extraction and the selection of the 
features. This section aims at presenting the main features that 
can be extracted from M/EEG. As previously mentioned, the 
selection of the features depends on the scientific question to be 
addressed but also on the neurophysiological phenomenon under-
lying the M/EEG experiment. In M/EEG, filtering both in the 
time domain and in the spatial domain to select the most relevant 
features is common. 

The two main types of features used in the literature rely on the 
information in the frequency domain and in the time domain. In an 
effort of completeness, we will see alternative features that reflect 
the interconnected nature of the brain. 

The event-related features consist of chunks of time series 
concatenated from all the channels, resulting from a low-pass or 
band-pass filtering and/or from a down-sampling step. This cate-
gory of features is relevant when considering evoked activity after 
the presentation of a given stimulus (e.g., visual, auditory, or sen-
sory). They are therefore of interest when one is expecting signifi-
cant changes in signal amplitudes occurring at a given moment. In 
the example presented in Subheading 2.2, a positive wave occurred 
300 ms after the visual stimulation. One could consider using 
chunks of time series centered at t=300 ms to detect automatically 
the P300 wave. 

The spectral features are used in the case of the detection of an 
oscillatory activity (see Subheading 2.2), when changes in M/EEG 
rhythms amplitudes are expected. The features are associated with 
the power spectra estimated in a given channel and in a given 
frequency band for a specific time window. Power spectra can be 
computed via a plethora of methods; we can notably cite the 
spectrogram, the Morlet wavelet scalogram, and the auto-
regressive models. For a thorough comparison of spectral feature 
extraction techniques on EEG signals, please refer to [26].
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Spatial filtering can be a valuable tool both for event-related 
and spectral features [27]. It relies on the combination of signals, 
recorded from different sensors, to obtain a new one, associated 
with an improved signal-to-noise ratio. We can divide the spatial-
filtering methods into three categories. The first one, not data-
driven, relies on physical considerations regarding the way the 
signals propagate through the different brain tissues. The most 
famous illustration of this category is the Laplacian filter. In its 
simplest version, the small Laplacian consists, for each electrode 
location, of a derivation of the EEG waveform via the average signal 
computed from the four nearest neighbors [28]. The second cate-
gory of spatial filtering is data-driven and unsupervised. It can rely, 
for example, on a principal component analysis (PCA) approach (see 
Chap. 2, Sect. 13.1). The third category is data-driven and super-
vised. The most famous examples in M/EEG are the common 
spatial patterns (CSP) for spectral features [29] and xDAWN for 
event-related features [30]. The CSP consists of a linear combina-
tion of EEG signals to maximize the difference between two classes 
in terms of variance. The xDAWN approach aims at improving the 
signal-to-noise ratio obtained with evoked potentials via a projec-
tion of the raw EEG signals onto an estimated evoked subspace. 
Recent efforts have been put together to combine approaches to 
provide ways to optimize simultaneously spectral and spatial filters, 
with, for example, the filter bank CSP (FBCSP) [31]. 

Even though spectral and event-related features are the most 
used in the M/EEG literature, alternative features have been con-
sidered in the past years. Firstly, features relying on covariance 
matrices have recently been extensively used, in particular for Rie-
mannian geometry-based classification [32]. Despite an unclear 
neurophysiological interpretation, they enabled to reach state-of-
the-art performance and to win a large number of competitions. 
Secondly, new features, which take into account the interconnected 
nature of brain functioning, have recently emerged [33]. There is a 
plethora of estimators to assess the intensity of the interactions 
between brain areas [34]. The most frequent estimators used as 
features in M/EEG are derived from the coherency, i.e., the nor-
malized cross-spectral density obtained from two signals (e.g., 
imaginary part of coherence), or rely on the assessment of the 
phase synchrony between two signals (e.g., phase-locking value 
(PLV), phase-lag index (PLI)). Here, two challenges need to be 
dealt with: the volume conduction that can lead to spurious con-
nectivity1 and the online implementation. In the first case, even 
though some estimators, such as the imaginary coherence, are less 
sensitive to the volume conduction, working in the source space is 
recommended. In the second case, a large majority of studies that

1 Originating from the mixture of signals engendered by different sources recorded at a given sensor.



consider estimators of functional interactions between two brain 
areas (i.e., functional connectivity estimators) as features are per-
formed offline. Estimating brain interactions in real time is not 
trivial: it consists in finding the compromise between ensuring the 
quasi-stationarity of the signals and the statistical reliability of the 
functional connectivity estimation [33]. Recent studies considered 
the use of brain network metrics as potential features. Again, there 
is a plethora of metrics that characterize brain networks [33]. Here, 
we will cite the most used metrics. At the local scale, the node 
degree counts the number of connections linking one node to the 
other. In weighted networks (i.e., without having filtered the con-
nectivity/adjacency matrix), it is referred to as node strength and 
consists in summing the weights of the connections of the consid-
ered node [35]. Another local-scale property of interest is the 
betweenness centrality defined as the extent to which a node lies 
“between” other pairs of nodes via the proportion of shortest paths 
in the network passing through it. This metric enables the identifi-
cation of the nodes that are crucial for the information transfer 
between distant regions. At the global scale, we can cite two 
metrics: the characteristic path length and the clustering coefficient. 
The characteristic path length indicates the global tendency of the 
nodes in the network to integrate and exchange information. The 
clustering coefficient measures the tendency of having nodes’ 
neighbors mutually interconnected. Lastly, it is worthwhile noting 
the use of heterogeneous features (e.g., relying on both functional 
estimators and power spectra) that improves the classification accu-
racy [27]. Such an approach leads to an increase of the dimension, 
requiring cautions to select the most relevant features, via dimen-
sional reduction methods.
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The feature selection is a crucial step as it prevents redundancy, 
ensures the reliability of the features, reduces the dimensionality 
tuned, and helps in providing interpretable results. In this section, 
we aim at presenting the most popular feature selection methods in 
the M/EEG domain. For a complete description of the feature 
selection methods, the reader can refer to [27]. They can be divided 
into three categories: embedded, filter, and wrapper methods. In 
filter methods, the feature selection is performed independently 
and before the evaluation. Different criteria can be chosen to select 
features. The most popular criterion is the R2 score, which assesses 
to which extent a given feature is influenced by a task performed by 
the subject. In wrapper methods, the feature selection utilizes the 
classification. In other words, in an iterative process, the relevance 
of each subset of features is assessed via the classification perfor-
mance until a given criterion is met. The embedded method con-
sists in integrating both the feature selection and the classification 
in the same process, via a decision tree, for example, or an ℓ1 
penalty term.
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Box 1: Tools for M/EEG analysis 

All these tools provide a wide range of tutorials, publicly 
available datasets, and codes. 

Python-based:

• MNE-Python [36]

• MOABB [37] 

MATLAB-based:

• EEGLAB [38]

• Fieldtrip [39]

• Brainstorm [40]

• SPM [41] 

6 M/EEG and Brain Disorders 

6.1 Clinical 

Applications of M/EEG 

The spatial and temporal resolutions of M/EEG enable the obser-
vation of a large number of processes. Notably, they can detect both 
evoked responses and oscillatory activity. As such, using these 
information could pave the way to biomarkers of brain disorders. 
To illustrate this point, we will focus our presentation on two 
specific clinical applications: epilepsy and Alzheimer disease. Never-
theless, M/EEG can be useful for a wider range of applications 
both in neurological and psychiatric disorders [42, 43]. 

6.1.1 Epilepsy Epilepsy is a neurological disorder that presents a high prevalence 
of 1% [44]. It is established that between 20 and 30% of the patients 
present a pharmacoresistant form of epilepsy [45]. Among this 
proportion of patients, only 30% can undergo a surgery [46]. Epi-
lepsy is a distributed disease that induces brain network reorganiza-
tion and brain rhythm alterations both during ictal and interictal 
periods [47, 48]. Due to its time resolution compatible with the 
capture of dynamical changes as well as its wide availability, EEG is a 
key modality for the evaluation of epilepsy [44]. In addition to scalp 
EEG, stereotactic-EEG (SEEG) can be used to further localize 
epileptogenic foci and proven to provide valuable information on 
epileptogenic networks [48]. MEG can also be used for pre-surgical 
evaluation and for functional mapping [49], but it is much more 
costly and less widely available. 

The use of network theory in epilepsy provides a useful frame-
work to characterize the seizure (onset and propagation),and its 
clinical expression (e.g., comorbidities) [47, 48]. At the local scale,



the node strength or degrees and the betweeness centrality have 
been used to characterize the epileptic network [48, 50]. At the 
global scale, two metrics have proven to be of interest in epilepsy 
[51]: the characteristic path length and the clustering coefficient. 
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6.1.2 Alzheimer Disease Alzheimer disease is the most common dementia with 60–80% of 
the cases. The first symptoms are a deficit in short-term memory 
and concentration, followed later by a decline of linguistic skills, 
visuospatial orientation, and abstract reasoning judgment. As the 
pathophysiological process of the disease starts many years before 
the occurrence of symptoms [52], it is crucial to elicit biomarkers to 
provide a diagnosis as soon as possible. Efforts have been put 
together to describe mild cognitive impairment (MCI) and Alzhei-
mer disease (AD) with M/EEG. These studies are essentially 
focused on oscillatory activity and on interactions between brain 
areas [53, 54]. In particular, patients present a reduced synchrony 
[55], and a decrease of the alpha power (i.e., between 8 and 12 Hz) 
correlates with lower cognitive status and hippocampal atrophy. 
Studies performed with MEG in preclinical and prodromal stages 
of AD showed that the effects of amyloid-beta deposition were 
associated with an increment of the prefrontal alpha power and 
that altered connectivity in the default mode network was present 
in normal individuals at risk for AD [56, 57]. 

A recent EEG work showed that effects of neurodegeneration 
were focused in frontocentral regions with an increase in high-
frequency bands (beta and gamma) and a decrease in lower-
frequency bands (delta) [58]. In particular, EEG patterns differ 
depending on the degree of amyloid burden, suggesting a compen-
satory mechanism: following a U-shape curve in delta power and an 
inverted U-shape curve for other tested metrics. 

6.2 Advanced Uses: 

The Example of BCI as 

a Rehabilitation Tool 

Brain-computer interfaces (BCIs) consist of acquiring, analyzing, 
and translating brain signals into commands in real time for control 
or communication. These systems present a large number of clinical 
applications and assistive technologies including control of wheel-
chairs and brain-based communication. BCI devices can be a valu-
able tool in the treatment of neurological disorders such as stroke 
[59] and to provide assistive solutions for patients with spinal cord 
injury [60] or the amyotrophic lateral sclerosis [59]. With regard to 
the communication, devices such as the P300 Speller, which rely on 
the evoked response occurring 300 ms after the visual stimulation, 
allow the users to communicate by selecting letters to form words 
and even sentences. For an overview of the main steps to be 
considered when performing a BCI experiment, please refer to 
Fig. 7. 

6.2.1 Presentation of the 

BCI
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Fig. 7 BCI experiment workflow 

6.2.2 BCI as a 

Rehabilitation Tool 

Stroke is one of the most common neurological conditions. In 
2010, stroke was the second leading cause of death worldwide 
[61]. After a stroke, most patients require rehabilitation and assis-
tance for daily tasks. Motor deficit of the upper limbs affects 70% of 
the survivors [62], and 85% of those presenting paralysis will have 
persistent damage [63]. Rapid recovery is observed during the first 
3 months (acute phase) but can continue for several months after 
the accident (chronic phase) [64]. Motor imagery (MI)-based BCI 
can constitute a motor substitution in the case of stroke by building 
alternative pathways from the stimulation to the brain [65]. In this 
particular case, the system relies on the desynchronization effect 
associated with a decrease of the power spectra computed within 
the contralateral sensorimotor area [66]. In a recent meta-analysis 
[67], the authors observed that rehabilitation to restore upper limb 
motor function based on BCIs could improve the motricity, 
assessed via the Fugl-Meyer scale, more than other therapies. A 
part of the screened studies showed that BCI could induce 
neuroplasticity. 

Brain network changes in stroke patients represent a very 
promising clinical application of closed-loop systems in rehabilita-
tion strategies. Motor imagery has been proven to be a valuable 
tool in the study of upper limb recovery after stroke [68]. It 
enabled observations of changes in ipsilesional intrahemispheric 
connectivity [69] but also modifications in connectivity in prefron-
tal areas and correlations between node strengths and motor out-
come [70]. Based on previous observations in resting state [71], a 
recent double-blind study involving ten stroke patients at the 
chronic stage revealed that node strength, computed from the



ipsilesional primary motor cortex in the alpha band, could be a 
target for a motor imagery-based neurofeedback and lead to signif-
icant improvement on motor performance [72]. 
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6.2.3 Current Challenges 

and Perspectives 

Despite being beneficial for patients, controlling a BCI system is a 
learned skill that 15–30% of the users cannot develop even after 
several training sessions. This phenomenon, called “BCI ineffi-
ciency” [73], has been presented as one of the main limitations to 
a wider use of BCI. From the machine learning perspective, the 
main challenges to overcome in current BCI paradigms relying on 
EEG recordings are the low signal-to-noise ratio of signals, the 
non-stationarity over time mainly resulting from the difference 
between calibration and feedback sessions, the reduced amount of 
available data to train the classifier explained by the number of 
classes to be discriminated and/or the need to avoid the subject’s 
tiredness, and the lack of robustness and reliability of the BCI 
systems, in particular when decoding the users’ mental command. 

To tackle these challenges, efforts have been put to improve the 
classification algorithms. They can be divided into three main 
groups: the adaptive classifiers, the transfer learning techniques, 
and the matrix- or tensor-based algorithms. The adaptive classifiers 
aim at dealing with EEG non-stationarity by taking into account 
changes in signal properties, and feature distribution, over time. 
Their parameters are updated when new EEG signals are available 
[74]. Even though most of the adaptive classifiers can rely on a 
supervised approach, the unsupervised one has proven to outper-
form the classifiers that cannot catch temporal dynamics 
[75]. Besides, it can be a valuable tool to reduce the training 
duration and potentially to remove the calibration part. Neverthe-
less, the adaptive classifiers present one main pitfall: their lack of 
online validation with a user in most of the current literature. This 
leads to two potential issues: the difficulty to find a trade-off 
between fully retraining the classifier and updating some key para-
meters and the adaptation that may not follow the actual user’s 
intent by being too fast or too slow [76]. 

Transfer learning consists here in exploiting changes in EEG 
signal properties over time and subjects to extract knowledge. 
More specifically, it relies on learned classifiers that are trained on 
one task (called domain here) and are adapted to another task with 
little or no new training data [77]. For example, it can be applied to 
a dataset formed by two motor imagery tasks performed by two 
different subjects. There is plethora of methods to solve the transfer 
learning problem [78]. The most common in the EEG-based BCI 
domain consists in learning the transformation to correct the mis-
match between the domains, occurring when one domain corre-
sponds to a hand motor imagery and the other to a foot motor 
imagery, for instance, finding a common feature representation for 
the domains, or learning a transformation of the data to make their



(continued)

distribution match [27]. Despite its robustness and recent advances 
in proposing guidelines [79], there is a lack of online experiments 
relying on transfer learning to fully validate this approach and assess 
to which extent it can be beneficial to patients. 
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Among the classification methods relying on matrices and ten-
sors, the most well-known is the Riemannian geometry-based one. 
One of the main original characteristics of this approach is that it is 
able to manipulate and classify the data by representing them as 
symmetric positive definite matrices, such as covariance matrices, 
and by mapping them onto a dedicated geometrical space, involv-
ing less steps than the classic approaches. This approach relies on 
the assumption that the sources are specific of a given task encoded 
via the covariance matrix computed from EEG signals. Here, trials 
are classified via nearest neighbor methods relying on the Rieman-
nian distance and the geometric mean. With the method relying on 
the minimum distance to mean (MDM), each class is associated 
with a geometric mean computed from the training data. Then, the 
MDM will attribute an unlabeled trial to the class showing the 
closest mean [80]. The Riemannian approaches present many 
advantages: they can be applied to all BCI paradigms, no parameter 
tuning is required, they are robust to noise, and, combined to 
transfer learning methods, they can lead to calibration-free BCI 
sessions [81]. In particular, Riemannian geometry-based methods 
[80, 82] are now the state of the art in terms of performance [27] 
and have won several data competitions2 [83]. 

Box: 2 To go further 

Guidelines and books of reference

• Hari, M., and Puce, A. (2017). MEG-EEG Primer. In 
MEG-EEG Primer. Oxford University Press.

• M. Clerc, L. Bougrain, and F. Lotte. (2016) Brain-Computer 
Interfaces 1: Methods and Perspectives, Wiley.

• M. Clerc, L. Bougrain, and F. Lotte. (2016) Brain-Computer 
Interfaces 2: Technology and Applications, Wiley.

• Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hilleb-
rand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oosten-
veld, R., Parkkonen, L., Taylor, J. R., van Wassenhove, V., 
Wibral, M., and Schoffelen, J.-M. (2013). Good practice for 
conducting and reporting MEG research. Neuroimage, 
65, 349–363. 

2 See, for example, the 6 competitions won by A. Barachant: http://alexandre.barachant.org/challenges/.

http://alexandre.barachant.org/challenges/
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Box 2 (continued)

• Puce, A. and H€am€al€ainen, M. S. (2017). A Review of Issues 
Related to Data Acquisition and Analysis in EEG/MEG 
Studies. Brain Sci, 7(6). 

7 Conclusion 

EEG and MEG are key modalities for the study of brain disorders. 
In particular, EEG is relatively cheap and widely available and is 
thus a widely used tool in neurology. When dealing with EEG and 
MEG data, it is important to understand the origin of the signals as 
well as the different steps in their preprocessing and feature extrac-
tion. Machine learning is increasingly used on EEG and MEG data, 
in particular for BCI but also for computer-aided diagnosis and 
prognosis of brain disorders. 
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Chapter 10 

Working with Omics Data: An Interdisciplinary Challenge 
at the Crossroads of Biology and Computer Science 

Thibault Poinsignon, Pierre Poulain, Mélina Gallopin, and Gaëlle Lelandais 

Abstract 

Nowadays, generating omics data is a common activity for laboratories in biology. Experimental protocols 
to prepare biological samples are well described, and technical platforms to generate omics data from these 
samples are available in most research institutes. Furthermore, manufacturers constantly propose technical 
improvements, simultaneously decreasing the cost of experiments and increasing the amount of omics data 
obtained in a single experiment. In this context, biologists are facing the challenge of dealing with large 
omics datasets, also called “big data” or “data deluge.” Working with omics data raises issues usually 
handled by computer scientists, and thus cooperation between biologists and computer scientists has 
become essential to efficiently study cellular mechanisms in their entirety, as omics data promise. In this 
chapter, we define omics data, explain how they are produced, and, finally, present some of their applications 
in fundamental and medical research. 

Key words Genomics, Transcriptomics, Proteomics, Metabolomics, Big data, Computer science, 
Bioinformatics 

1 Introduction 

There are different types of omics data, each revealing an aspect of 
cell complexity. To illustrate this complexity, we propose in Fig. 1 
an analogy between the functions of a cell and that of a factory. The 
different omics data types are replaced there, in their specific con-
text. Cells are the building blocks of living organisms. They can be 
pictured as microscopic, automated factories, made up of 
thousands of biological molecules (or molecular components) 
that work together to perform specific functions. Basically, there 
are four main types of molecular components: DNA, RNA, pro-
teins, and metabolites. The whole population of one type of cellular 
component is named with the suffix -ome, i.e., genome (DNA), 
transcriptome (RNA), proteome (proteins), and metabolome (meta-
bolites) (see Fig. 1). The scientific fields, which aim at studying 
those respective populations, are named with the suffix -omics,
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Fig. 1 The four main -omes and an analogy of their functions. The genome designates all cell’s DNA 
molecules. The transcriptome, the proteome, and the metabolome refer, respectively, to the cell’s whole 
set of RNA, proteins, or metabolites at a given time



i.e., genomics, transcriptomics, proteomics, and metabolomics. The 
common point between the different types of omics data is that 
they all arise from high-throughput experimental strategies that 
allow the simultaneous observation of all individual components 
that constitute either the genome, the transcriptome, the prote-
ome, or the metabolome [1].

Omics Data 315

The genome is made of DNA molecules, which are the carrier 
of genetic information. It can be imagined as the blueprint library 
of the cell (see Fig. 1). From a chemical point of view, DNA 
molecules are polymers (or sequences) of simpler chemical units 
called nucleotides. There are four main types of nucleotides: ade-
nine (A), thymine (T), cytosine (C), and guanine (G). DNA mole-
cules are organized into chromosomes, which are compacted in the 
cell nucleus. The genome is directly connected to the transcriptome 
and the proteome (see next sections). The information to synthesize 
RNA molecules (transcriptome) and proteins (proteome) is 
encoded in specific regions of the DNA sequence called genes (see 
Fig. 1). Genes are made of successive nucleotides (clustered into 
codons), which correspond to amino acids, i.e., the molecules that 
constitute the proteins. The correspondence between nucleotides, 
codons, and amino acids is known as the genetic code. To summa-
rize, a genomics dataset thus contains the sequences of DNA 
molecules present in a cell (or a population of cells) and can be 
seen as a copy of the cell’s blueprint library (its genome) written as a 
long sequence of A, T, C, and G. 

The transcriptome is made of RNA molecules. Multiple types 
exist, and they can be roughly classified into messenger RNA 
(mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and 
non-coding RNA (ncRNA). Transcriptomics datasets mainly 
focus on mRNAs, which are the intermediate messengers between 
the genome and the proteome (see previous paragraph). The tran-
scriptome is thus intimately connected to the genome and the 
proteome (see Fig. 1). Notably, the RNA polymerase is required 
to generate mRNA, reading the genome during transcription. In 
eukaryotes, mRNAs exit the nucleus to be used as templates by 
ribosomes (a macromolecular complex made of rRNA and pro-
teins), to synthesize proteins by assembling amino acids (following 
the genetic code) during translation. Compared to the genome, the 
transcriptome is much more dynamic. The cell population of 
mRNA molecule varies according to cell requirement in proteins, 
and a transcriptomics dataset lists all sequences of mRNA present at 
a given time. They can be seen as snapshots of which parts of the 
genome are currently transcribed and in which proportion. Follow-
ing up on the genome analogy presented in Fig. 1, mRNAs can be 
seen as active copies of the cell’s blueprints that are more or less 
actively used.
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The proteome is made of proteins, i.e., macromolecules made 
with one or several polymers of amino acids. Proteins are extraor-
dinarily diverse in their three-dimensional (3D) conformations and 
associated functions. To illustrate this diversity, some proteins con-
stitute the backbone of the cell structure, others detect or transmit 
external or internal chemical signals, and a large portion of them 
(enzymes) catalyze chemical reactions of the metabolism (the 
whole set of chemical reactions sustaining the cell). Proteins are 
also responsible for the regulation and expression (transcription 
and translation) of the genetic information (see previous para-
graph). Protein functions are closely linked to their 3D spatial 
conformation, and all processes of the cells are based on protein 
activities (see Fig. 1). The proteome is as dynamic as the transcrip-
tome because the set of proteins present at a given time in a cell 
varies accordingly to the current state and function of this cell. 
Proteomics datasets give a snapshot of which proteins are present 
at a given moment in the life of the cell. Genomics, transcriptomics, 
and proteomics resume the classical central dogma of biology, as 
first stated by Francis Crick in 1957. Even if it has been further 
detailed since, with, for instance, a better understanding of epige-
nomics, it still effectively summarizes the principal flow of informa-
tion between the main molecular components of the cell: DNA is 
transcribed into RNA which is translated into proteins. 

To end this description of omics data types, we believe it is 
important to mention the metabolome (see Fig. 1). The metabo-
lome is made of metabolites, small molecules that are protein sub-
strates in chemical reactions. Nucleotides and amino acids, cited 
before, are metabolites, as well as other molecules like lipids (form-
ing bilayer membranes that compartmentalize the cell) or ATP 
(a molecule used as intracellular energy transfer). To extend, 
again, the analogy, metabolites can be seen as the raw materials 
used by the automated microscopic factory (see Fig. 1). Metabolo-
mics datasets peek into the population of metabolites in a cell at a 
given time. Again, it is important to specify that if each cited 
“omics” field gives an assessment of its associated “ome” popula-
tion, it is quite a “blurred” one. Everything is intertwined in a cell. 
Moreover, most omics studies give only an average observation on a 
population of cells. Multi-omics and single-cell techniques are 
trying to overcome these limitations. 

In this chapter, we detail the different types of files used for 
omics data and present examples of databases where they are stored. 
We introduce different methods for generating omics data and 
finally provide some applications of omics data in fundamental 
research, cancer research, and pandemic response.
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2 What Are Omics Data? 

2.1 Results from 

High-Throughput 

Studies Written in 

Multiple Binary and 

Text Files 

To describe the files used to store omics information, it is necessary 
to consider genomics and transcriptomics on one side and proteo-
mics and metabolomics on the other side. Indeed, these files are 
generated by different experimental techniques, which are, respec-
tively, sequencing (for genomics and transcriptomics) and mass 
spectrometry (for proteomics and metabolomics) (see Fig. 2). For 
each group, two types of files must be distinguished: the ones that 
are directly obtained after the applications of experimental proto-
cols, i.e., the raw omics data files, and the ones that are generated by 
downstream informatic analyses, i.e., the processed omics data files 
(see Fig. 2). Experimental protocols and the informatic treatments 
applied to raw data files will be detailed in the next section. 

Genomics and transcriptomics raw data files are essentially 
nucleotide sequence files. In that respect, the FASTA and the 
FASTQ text formats are commonly used. FASTA was created by 
Lipman and Pearson in 1985 as an input for their software [2] and 
became a de facto standard, without any clear statement acknowl-
edging it [3]. This probably explains the absence of a common file 
extension (e.g., .fasta, .fna, .faa) even if FASTA is a unified file type. 
FASTA files contain one or several sequences. A sequence begins 
with a description line starting with the character “>”. NCBI 
databases (see next sections) have unified rules to write this line.1

Fig. 2 Omics data are assessments of -ome populations. Raw omics data are generated through sequencing 
(for DNA and cDNA) or mass spectrometry (for proteins and metabolites) 

1 https://www.ncbi.nlm.nih.gov/genbank/fastaformat/

https://www.ncbi.nlm.nih.gov/genbank/fastaformat/


Subsequent lines contain the sequence itself split into multiple 
blocks of 60 to 80 characters (one per line). With nucleic acid 
sequences, the sequence lines are a series of A/T/C/G/U char-
acters, representing the nucleic acids: adenine, thymine, cytosine, 
guanine, and uracil (the latter replacing thymine in RNA). FASTQ 
is the file format for the raw data generated by the sequencer in 
genomics and transcriptomics (see Fig. 2). The first two lines are 
similar as with FASTA file: identification line starts with “@” instead 
of “>” and the second line contains the nucleic sequence, but a 
quality score is associated with each position of the sequence (i.e., 
each letter in the sequence line). This score is called “Phred score,” 
and it codes the probability of error in the identification of this 
nucleotide [3]. It goes from 0 to 62 and is coded in ASCII symbols. 
This allows to code any score using a single symbol, keeping the 
same length as the sequence line. FASTA and FASTQ files can be 
opened with any text editor software. FASTQ files are mainly lists of 
short sequences called “reads” (between 50 and 200 nucleic acids), 
which need to be processed (aligned or assembled) to be further 
analyzed. Alignment data files are one type of processed data. 
Indeed, reads in FASTQ files can be aligned to a reference genome 
sequence to allow further analyses (see below for pipeline descrip-
tion and example of applications). The text file format used in this 
case is the SAM2 (sequence alignment and mapping) format 
[4, 5]. It can be further compacted into its binary equivalent, 
which are BAM or CRAM formats [6].
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The file formats for proteomics and metabolomics data are not 
as homogeneous as for genomics and transcriptomics. At least 
17 types of formats exist for mass spectrometry files (see below) 
[7]. Each machine manufacturer created its own, adapted to pro-
prietary software to read and analyze it, thus multiplying formats. 
In an effort to facilitate data exchange and to avoid data loss (in case 
of no more readable old file formats), HUPO [8] and PSI3 created 
the open-source mzML4 format (XML text file with specific tag 
syntax) in 2011 [9]. In the main databases that host mass spec-
trometry result files, most of the files are in the RAW format, 
developed by Thermo Fisher Scientific. These binary files contain 
retention time, intensity, and mass-to-charge ratios (see later sec-
tions). Software like Peaks, Mascot, MaxQuant, or Progenesis 
[10, 11] use these files to identify proteins present in the sample 
and to quantify them. Results from these analyses are shared 
through two other text file formats: mzIdentML5 and mzTab.6 

2 Sequence Alignment/Map Format Specification 
3 HUPO Proteomics Standards Initiative 
4 mzML 1.1.0 Specification | HUPO Proteomics Standards Initiative|mzML 1.1.0 Specification | HUPO 
Proteomics Standards Initiative 
5 mzIdentML | HUPO Proteomics Standards Initiative|mzIdentML | HUPO Proteomics Standards Initiative 
6 mzTab Specifications | HUPO Proteomics Standards Initiative|mzTab Specifications | HUPO Proteomics 
Standards Initiative

https://samtools.github.io/hts-specs/SAMv1.pdf
https://www.psidev.info/
https://www.psidev.info/mzML
https://www.psidev.info/mzML
https://www.psidev.info/mzML
https://www.psidev.info/mzidentml
https://www.psidev.info/mzidentml
https://www.psidev.info/mztab
https://www.psidev.info/mztab
https://www.psidev.info/mztab
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Note that many other file formats exist. One of the most critical 
for omics data analyses concerns the annotations of features on a 
DNA, RNA, or protein sequence. They are shared through the 
General Feature Format (GFF7 ) that is a text file with nine tabu-
lated separated fields: sequence, source of the annotation, feature, 
start of the feature on the sequence, end of the feature, score, 
strand, phase, and attributes. 

2.2 Results from 

High-Throughput 

Studies Shared 

Through Multiple 

Public Databases 

The set of public biological databases hosting omics data is large 
and constantly evolving. Omics terminology started being regularly 
used in the 2000s. Between 1991 and 2016 (25 years), more than 
1500 “molecular biology” databases were presented in publica-
tions, with a proliferation rate of more than 100 new databases 
each year [12]. These numbers are only the visible part of existing 
databases. How many have been created without being published? 
Around 500 of those databases are roughly co-occurrent with the 
apparition of the World Wide Web, the very Internet application 
allowing the creation of online databases. The availability of molec-
ular biology databases decreased by only 3.8% per year from 2001 
to 2016 [12]. This shows a sustained motivation from the commu-
nity to create and maintain public platforms to share data. But it 
also highlights that this motivation comes more from a shared need 
for easy access to data rather than a supervised effort to coordinate 
approaches and unify sources. Such efforts indeed exist, for exam-
ple, the ELIXIR project started in 2013 as an effort to unify all 
European centers and core bioinformatics resources into a single, 
coordinated infrastructure [13]. This notably produces the ELIXIR 
Core Data Resources (created in 2017), a set of selected European 
databases, meeting defined requirements, and the website “bio. 
tools,” i.e., a comprehensive registry of available software programs 
and bioinformatics tools. The US National Center for Biotechnol-
ogy Information (NCBI8 ) databases are also main references. 

Given the “raw” nature of omics dataset, they are stored in 
archive data repositories: raw data from scientific articles, shared on 
databases easily accessible for reproducibility. Except for the 
Sequence Read Archive (SRA), the databases cited here are 
mixed ones: they host raw archive data and knowledge extracted 
from them. For genomics dataset, NCBI database Genome [14] 
and EMBL-EBI (member of ELIXIR) database Ensembl [15] are 
references. They organize genome sequences together with anno-
tations and include sequence comparison and visual exploration 
tools. Transcriptomics data can be deposited into several databases, 
like Gene Expression Omnibus (GEO) [16] initially dedicated to 
microarray datasets, which is structured into samples forming

7 GFF/GTF File Format 
8 NCBI

https://www.ncbi.nlm.nih.gov/


datasets. Tools are available to query and download gene expression 
profiles. The Sequence Read Archive (SRA) [17] accepts raw 
sequencing data. PRIDE [18] is a reference database for mass 
spectrometry-based proteomics data. Raw files containing spectra 
are available with associated identification and quantification infor-
mation. For metabolomics data, MetaboLights [19] is an archive 
data repository and a knowledge database. It lists metabolite struc-
tures, functions, and locations alongside reference raw spectra. 
Those databases are generalist references, and many more 
specialized databases exist: 89 new databases are reported in the 
2021 NAR database issue, and a dozen of them are omics specific 
[20]. For example, AtMAD is a repository for large-scale measure-
ments of associations between omics in Arabidopsis thaliana, and 
AgingAtlas gathers aging-relatedmulti-omics data [21, 22]. Finally, 
noteworthy is the existence of general-purpose open repositories 
like Zenodo,9 which allow researchers to deposit articles, research 
datasets, source codes, and any other research-related digital infor-
mation. Researchers thus receive credit by making their work more 
easily findable and reusable and hence support the application of 
the FAIR (findable, accessible, interoperable, reusable) data 
principles.10
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Consistent efforts are made to cross-reference biological com-
ponents (genes, proteins, metabolites) through the diversity of 
databases. Each database represents terabytes and petabytes of 
biological information (43,000 terabytes of sequence data just for 
SRA11 ), and the scale of the network they form through cross-
reference is hard to conceptualize. This is the “big data” in biology 
and even more are generated every day. 

3 How to Generate Omics Data? 

Genomics started in 1977 with the application of the gel-based 
sequencing method developed by Sanger, to sequence for the first 
time the whole genome of a virus: the phage phiX. Only 13 years 
later, in 1990, the Human Genome Project began, aiming at 
sequencing three billion bases of the human genome, using capil-
lary sequencing [23]. More than 10 years and almost three billion 
dollars later, this titanic task was accomplished [24]. When we think 
of omics analyses, microarray technology remains emblematic 
[25]. In the 2000s, the microarray represented the keystone of a 
discipline then called “post-genomics” [26]. Behind this terminol-
ogy, the idea was that once the genomes are entirely sequenced,

9 https://zenodo.org/ 
10 https://www.go-fair.org/fair-principles/ 
11 NCBI Insights: The wait is over. . .  NIH’s Public Sequence Read Archive is now open access on the cloud

https://zenodo.org/
https://www.go-fair.org/fair-principles/
https://ncbiinsights.ncbi.nlm.nih.gov/2021/05/27/nih-open-access-cloud-sra/
https://ncbiinsights.ncbi.nlm.nih.gov/2021/05/27/nih-open-access-cloud-sra/


new studies could be performed to understand their functioning. 
Microarrays thus emerged as a promising tool to monitor gene 
expression. They allow the quantification of the abundances of 
transcripts, which are associated with several thousands of different 
genes, simultaneously. Briefly, microarrays are slides, made of glass, 
on which probes have been attached. These probes are small DNA 
molecules, which have the particularity of being specific to one (and 
only one) gene. The experiment then consists of extracting mRNA 
molecules from a population of cells and transcribing them into 
complementary DNA (cDNA), labeled with a fluorescent mole-
cule. These cDNAs are then hybridized on the glass slide and end 
up attached to the probes which are specific to them. They create a 
local fluorescent signal there. The higher the amount of mRNA, 
the more fluorescent signal is measured at each probe location 
position. Microarrays have been used to successfully study many 
biological processes, some fundamental such as the cell cycle [27] 
and others directly related to health issues such as human cancer 
[28]. It thus paved the road to new applications for sequencing 
technologies (see below).
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3.1 High-Throughput 

Sequencing 

Technologies 

From 2007, new methods called next-generation sequencing 
(NGS) [29] helped to considerably reduce cost, technical difficul-
ties, and duration of the process. 

Illumina is the currently predominant NGS method (see Fig. 3). 
After extraction, the DNA molecules are sequenced by synthesis 
(SBS) on a flow cell. Thanks to sequence adaptors, each DNA 
molecule is amplified by bridge amplification as a cluster of copies 
on the flow cell. The reading of the flow cell is based on optical 
detection: each time a DNApol adds a new nucleotide, a flash of 
light is detected. NGS advantage, compared to older Sanger tech-
niques, is to allow massive parallel sequencing of large numbers of 
short sequences (between 50 and 250 nucleotides) called “reads.” 
The limit of this technique is the size of the fragments, but Illumina 
technology has very high fidelity (very low error rate). 

MinION of Oxford Nanopore is another well-established NGS 
technology [30]. It is based on electronic detection through a 
nanopore (see Fig. 3). When there is an electric potential around a 
membrane (measurable as a voltage between the two sides), the 
passage of a macromolecule through a nanopore (a modified 
biological protein canal) triggers small changes in this electric 
potential. The changes are distinctive in function of the current 
nucleotide in the nanopore. So, the succession of electronic poten-
tial variation can be associated as the nucleotide sequence. This is 
the fundamental concept behind MinION technology, and the 
main advantage is the length of the sequenced molecules. Without 
the technical necessity of flow cells, the sequence passing through 
the nanopore can be very long (order of magnitude of a thousand 
instead of a hundred base pairs) [31]. But given that the physical



signal detected is small variations of an electric potential, the 
sequencing is less reliable (higher error rate). Depending on the 
fidelity of the sequencing or the size of the sequence needed, SBS 
and nanopore-based techniques are complementary. 
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Fig. 3 Illumina and MinION sequencing technologies. Illumina is a sequencing by synthesis technology that 
allows massive parallel sequencing of small DNA molecules. MinION is a nanopore-based technology that 
allows the sequencing of longer DNA molecules 

The sequencing machine output is a group of FASTQ files (see 
previous section). For genomics data, fragments must be assembled 
to obtain a single sequence of the genome. For transcriptomics 
data, fragments can be aligned on a reference genome to observe 
which genes are transcribed at a given time (transcriptome de novo 
assembly is also possible but still very challenging). Therefore, to 
extract information from the FASTQ files produced by the 
sequencer, two main processing steps are needed. The numerous 
small sequences (reads) stored in the file must be aligned to a



reference genome (mapping), and then the count of reads aligned 
to a gene sequence gives an estimation of its level of transcription 
(quantification). Dozens of bioinformatics tools have been devel-
oped over the years for mapping (STAR [31], TopHat [32], 
HISAT2, Salmon [33]) and quantification (featureCounts [34], 
Cufflinks [35]). Benchmarking studies highlight similar perfor-
mance for most of them [36–38]. Interestingly, TopHat2 exhibits 
an alignment recall on simulated malaria data that varies from under 
3% using defaults to over 70% using optimized parameters 
[39]. This underlines the impact of parameter optimization on 
result quality. Quantification tools generate a text file summarizing 
the level of transcription of each gene in each condition into a 
matrix of counts. 
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3.2 Mass 

Spectrometry 

Technologies 

Since the first use of a mass spectrometer for protein sequencing in 
1966 by Biemann,12 the improvement of mass spectrometer is 
closely linked to proteomics and metabolomics development 
[40]. Metabolites and proteins cannot be read as templates like 
DNA or RNA, and so they neither can be amplified nor sequenced 
by synthesis. To access their sequence, the main tool is the mass 
spectrometer. In the classical bottom-up approach, proteins are 
digested into small peptides, which pass through a chromatography 
column. They are then sequentially sprayed as ions into the spec-
trometer. Migration through the spectrometer allows separation of 
the peptides according to their mass-to-charge ratio. For each 
fraction exiting the column, an abundance is calculated. In a data-
dependent acquisition (DDA), a few peptides with an intensity 
superior to a given threshold are isolated one at the time. They 
are fragmented, and additional spectra (mass-to-charge ratio and 
intensity) are generated for each fragmented ion. In a data-
independent acquisition (DIA), a spectrum is generated for all 
fractions coming out of the chromatography column. Obtained 
spectra are a combination of spectra corresponding to each peptide 
present in each original fraction. Comparison with a peptide spec-
trum library generated in silico is therefore required to allow the 
deconvolution of those complex spectra. All this information 
(abundances in fractions, mass-to-charge ratios, intensities) is 
stored into .raw files, which can only be read by dedicated software 
(see Subheading 2.1). 

3.3 Single-Cell 

Strategies 

Most omics experiments are bulked, and they are an average mea-
sure done on a population of cells, which is more or less homoge-
neous. Single-cell omics allow a more precise measurement, 
highlighting the plasticity of the cell system. Single-cell techniques 
started with manual separation of a single cell under a microscope in 
2009 [41] and quickly evolved toward techniques allowing the

12 HUPO—Proteomics Timeline

https://www.hupo.org/Proteomics-Timeline


parallel sequencing of thousands of cells [42]. Plate-based techni-
ques use flow cytometry to separate isolated cells into the different 
wells of a plate, allowing processing of hundreds of cells. The intro-
duction of nanometric droplets to separate isolated cells allowed the 
parallel processing of thousands of cells thanks to individual barcod-
ing [43, 44]. Cells isolated from tissues are mixed with microparticles 
in a buffer that forms droplets in oil. Most droplets are empty, but 
some contain both a microparticle and a cell. After cell lysis, oligo-
nucleotide primers on the microparticles allow the capture of the cell 
mRNA (by oligo-dT and polyA tail complementarity). Primers on 
the same microparticle are barcoded, thus creating a cell tag on each 
sequence. Amplification and sequencing can be bulked without 
losing the cell of origin for each transcript. Several bioinformatics 
tools are specialized for single-cell transcriptomics data [45]. For 
example, Cell Ranger and Loupe Browser are, respectively, four 
pipelines (mapping, quantification, and downstream analysis) and a 
visualization tool developed by 10× Genomics [44]. Single-cell tran-
scriptomics data are challenging for bioinformatics analysis because 
of their high level of technical noise and the multifactorial variability 
between cells [45]. Transcriptomics is the more advanced single-cell 
omics, but single-cell genomics is also used in SNP and copy number 
variation screening (see Subheading 4.2).
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Proteomics and metabolomics data are still challenging to 
obtain at a single cell level: one cell yields only 250–300 pg [46] 
of proteins when MS in-depth measurement still necessitates pop-
ulation scale yield. But thanks to innovations in sample preparation 
and experimental design, single-cell proteomics assessments scaled 
up from a few hundred to more than a thousand identified proteins 
in just 4 years [47]. 

4 Which Applications for Omics Data? 

4.1 In Fundamental 

Research 

Describing biological systems implies to identify, quantify, and 
functionally connect their individual molecular components. 
Given the diversity of cellular components and their multiple inter-
locking functions, the large scale of omics data empowers the 
characterization of biological systems. As stated before, each type 
of “omics” is an assessment of a specific subpopulation of molecular 
components. Mining omics data thus allows bulk identification of 
the nature (sequence and structure), location, function, and abun-
dance of molecular components in those subpopulations. 

Genomics data are making the genome sequences of thousands 
of species accessible. The first direct application of these resources is 
the annotation of genomic features onto those genomic 
sequences: protein-coding genes, tRNA and rRNA genes, pseudo-
genes, transposons, single-nucleotide polymorphisms, repeated 
regions, telomeres, centromeres. . .  Genomic features are numer-
ous, and DNA sequences alone can be enough to recognize



patterns specific to some of them. For example, specific tools exist 
to detect protein-coding genes, like Augustus13 [48]. The annota-
tion can be based only on sequence patterns or also on comparison 
with another sequence. Comparative genomics, i.e., the compari-
son of genome sequences, allows the transfer of knowledge for 
homolog genes (evolutionarily related genes) between species. 
Bioinformatics tools exist to infer evolutionary relationships 
between genes based on their sequence similarity [49]. Understand-
ing the evolution of the genome helps to understand the dynamics 
behind phenotypic convergence, population evolutions, speciation 
events, and natural selection processes. For example, the study of 
17 marine mammals’ genomes offered insight into the macroevo-
lutionary transition of marine mammal lineages from land to 
water [50]. 
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Transcriptomics data give insight on the levels of gene tran-
scription. The resulting count matrix (see previous section) is mainly 
used to carry out differential expression analysis (DEA) of genes 
between conditions. Conditions differ by the variation of a single 
factor: a mutation, a different medium, or a stimulus. Basic DEA is 
a multi-step workflow [51] that allows the detection of statistically 
significant variations in expression across conditions. The final goal 
is to deduce insight on the gene’s functions from the observed 
variations. Transcriptomics data are also used to increase the quality 
of genome annotation. The presence of hypothetical genes can be 
verified by their transcription, the exact structure of known genes 
can be refined (size of UTRs and exons; see Fig. 1), and previously 
undetected genes can be observed [52]. 

Proteomics data allows the identification and quantification of 
proteome. Proteome does not totally correlate with transcriptome. 
RNA can be spliced (assembly of the mRNA from exons, not always 
the same and in the same order), and proteins undergo several post-
translational modifications (minor changes in the chemical struc-
ture of the protein) and re-localization [53]. Cellular pathways and 
phenotypes thus cannot be fully understood only through tran-
scriptomics assessments. Proteomics completes the information 
given by genomics and transcriptomics. It describes the third
-ome of the central dogma of biology (see Fig. 1). 

Multi-omics analysis, taking advantage of several omics insights 
in the same experimental approach, comes with several challenges. 
Generating several types of omics data comes with a significant 
investment in time, skilled manpower, and money [1]. Even if 
generated in the same experimental approach, omics data are het-
erogeneous by nature, thus complexifying their integration. If 
challenging, multi-omics datasets are also a step toward the sys-
temic description of biological systems [54]. 

13 Augustus/ABOUT.md at master

https://github.com/Gaius-Augustus/Augustus/blob/master/docs/ABOUT.md


326 Thibault Poinsignon et al.

4.2 In Medical 

Research 

An early application of genomics in medical research is the genome-
wide association studies (GWAS). By comparing genome sequences 
from a large population of individuals (both healthy and sick), 
GWAS highlight SNPs (single-nucleotide polymorphisms) that 
are significantly more frequent in individuals with the disease. 
Correlation does not mean causality, but GWAS can give a first 
clue of the metabolic pathways or cellular components involved in 
the disease [55]. This strategy has proven to be efficient in the case 
of “common complex diseases.” Unlike Mendelian diseases (which 
are rarer), the heritability (genetic origin) of these diseases depends 
on hundreds of SNPs with small effect sizes, which GWAS studies 
help identify [56]. Alzheimer’s disease and cancers are examples of 
“common complex diseases” whose genetic underpinnings have 
been explored through GWAS [55, 57]. 

Most cancers emerge from the successive alteration of cell 
functioning (by accumulation of mutations), leading to abnormal 
growth causing tumors and metastasis. Multi-omics studies can 
highlight the underlying molecular mechanisms of cancer develop-
ment, better explain resistance to treatment, and help classify cancer 
types. Screening cohorts of patients helps assess alleles associated 
with the development of certain types of cancer. The different 
subtypes for breast cancer are a well-documented example [58]. 

Single-cell genomics is the only way of characterizing rare 
cellular types such as cancer stem cells [59]. Single-cell omics data 
are also used to follow the rapid evolution of cancer cell population 
inside tumors. Understanding and describing cancer cell popula-
tion dynamics is crucial: the characteristic accelerated rate of muta-
tion can be the cause of treatment resistance. Omics data specific to 
cancer cell lines are shared on specific databases driven and main-
tained by global consortium such as the Cancer Genome Atlas 
Program14 (over 2.5 petabytes of genomics, epigenomics, tran-
scriptomics, and proteomics data) or the International Cancer 
Genome Consortium [60]. 

Omics data proved to be a priceless resource in pandemic 
response. The virus severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) causing the COVID-19 disease quickly spread 
around the world, causing more than six million deaths (as of 
March 2022) and a global health crisis. Its RNA sequence was 
obtained in January 2020 and allowed the development of detec-
tion kits and later RNA-based vaccines. Since the beginning of the 
pandemic, the genomic evolution of the virus is followed almost in 
real time, as new variants (with mutations affecting mostly the spike 
protein of the virus envelope) are sequenced. Variant profiling 
allows the World Health Organization to closely monitor variants 
of concern. The precise characterization of the virus structure

14 https://www.cancer.gov/tcga

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga


opens the research of therapeutic targets. Multi-omics studies 
helped specify the COVID-19 biomarkers, pathophysiology, and 
risk factors [61].
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Getting omics data in brain tissue studies is promising but 
challenging because of brain specificity. Indeed, except in a few 
specific diseases where in vivo resections are performed (brain 
tumors, surgically treated epilepsy, etc.), human brain samples are 
collected postmortem, when the less stable molecule populations 
are already significantly altered. For example, studies of the brain 
transcriptome are deeply impacted. On the other hand, some omics 
studies target peripheral fluids (e.g., plasma, cerebrospinal fluid, 
etc.) with the aim to find biomarkers, but the relationships between 
observations in peripheral fluids and pathophysiological mechan-
isms in the brain are far from clear. Moreover, the brain is organized 
as a network of intricate substructures, constituted of several cell 
types (glial cells and different neuron types) with distinct function 
and thus different omics landscape [62]. Nonetheless, multi-omics 
exploratory studies are describing complex diseases in a systematic 
paradigm, highlighting diversity of cellular dysregulations linked to 
complex pathologies like Alzheimer’s disease [57]. 

5 Conclusion 

Genomics, transcriptomics, proteomics, and metabolomics are 
arguably the most developed and used omics, but they are not the 
only ones. Other omics describe other sides of the functioning of 
the cell, which require intricate relationships between omics levels. 
For example, epigenomics describes the transitory chemical mod-
ifications of DNA, and lipidomics looks at the lipidic subpopulation 
of metabolites (see Fig. 1). Omics diversity mirrors the complexity 
of cell systems. With the constant improvement of measurement 
techniques, possibilities to assess ever larger subsystems of the cells 
are increasing. Omics dataset generation is paired with the devel-
opment of software, essential tools to generate, read, and analyze 
them. By design, computer science is therefore omnipresent in 
modern “big data” biology. The need for more gold standard 
analysis pipelines and file formats grows with the scale and com-
plexity of produced datasets. 
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57. Hampel H, Nisticò R, Seyfried NT et al (2021) 
Omics sciences for systems biology in Alzhei-
mer’s disease: state-of-the-art of the evidence. 
Ageing Res Rev 69:101346 

58. Kohler BA, Sherman RL, Howlader N et al 
(2015) Annual report to the nation on the 
status of cancer, 1975–2011, featuring



60.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License ( ), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

330 Thibault Poinsignon et al.

incidence of breast cancer subtypes by race/ 
ethnicity, poverty, and state. JNCI J Natl Can-
cer Inst 107 

59. Liu J, Adhav R, Xu X (2017) Current pro-
gresses of single cell DNA sequencing in breast 
cancer research. Int J Biol Sci 13:949–960 
Zhang J, Bajari R, Andric D et al (2019) The 
international cancer genome consortium data 
portal. Nat Biotechnol 37:367–369 

61. Overmyer KA, Shishkova E, Miller IJ et al 
(2021) Large-scale multi-omic analysis of 
COVID-19 severity. Cell Syst 12:23–40.e7 

62. Naumova OY, Lee M, Rychkov SY et al (2013) 
Gene expression in the human brain: the cur-
rent state of the study of specificity and spatio-
temporal dynamics. Child Dev 84:76–88

http://creativecommons.org/licenses/by/4.0/


Chapter 11 

Electronic Health Records as Source of Research Data 

Wenjuan Wang, Davide Ferrari, Gabriel Haddon-Hill, and Vasa Curcin 

Abstract 

Electronic health records (EHRs) are the collection of all digitalized information regarding individual’s 
health. EHRs are not only the base for storing clinical information for archival purposes, but they are also 
the bedrock on which clinical research and data science thrive. In this chapter, we describe the main aspects 
of good quality EHR systems, and some of the standard practices in their implementation, to then conclude 
with details and reflections on their governance and private management. 

Key words Electronic health records, Data science, Machine learning, Data quality, Coding schemes, 
SNOMED-CT, ICD, UMLS, Data governance, GDPR 

1 Introduction 

Vast quantities of data are routinely recorded as part of the care 
process. While its primary aim is managing individual’s patient care, 
there are significant opportunities to use these data to address 
research questions of interest. In the United Kingdom, there has 
been almost 25 years of research using routine primary care data, 
anonymized at source, through the General Practice Research 
Database (now CPRD, Clinical Practice Research Datalink [1]), 
and other data sources, also pooling data from multiple practices 
and tied to specific electronic health record (EHR) systems (QRe-
search [2], ResearchOne [3]). As better described in Subheading 4, 
we define anonymized data as one for which all elements that can 
link back to its owner are irrecoverably deleted; alternately there are 
pseudo-anonymization options that allow the reidentification of 
the owner through a procedure mediated by those responsible for 
that data security and privacy protection. Health Data Research UK 
has created a nationwide registry of EHR-derived datasets available 
for research [4]. A similar development has taken place in the 
Netherlands, where, in the early 1990s, the Netherlands Institute 
for Health Services Research (NIVEL) developed its Netherlands 
Information Network of General Practice [5], now named NIVEL
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Primary Care Database (NIVEL-PCD) [6, 7]. Belgium also has its 
Intego Network [7, 8]. France has the Système National des Données 
de Santé [9, 10] and the data warehouse of Assistance Publique-
Hôpitaux de Paris (AP-HP) [11]. Sweden has numerous and 
extensive nationwide registries [12]. These databases provide valu-
able information about the use of health services and developments 
in population health. In the United States, there has not been a 
tradition of using routine anonymized data, largely because the 
Health Insurance Portability and Accountability Act (HIPAA) reg-
ulations place restrictions on the linkage of health data from differ-
ent sources without consent [13–15] and because small office 
practices have not been widely computerized. Instead, the focus 
has been mainly on secondary care (hospital) data, facilitated by the 
National Institutes of Health’s (NIH) Clinical Translational Sci-
ence Awards (CTSA) [16]. Use or reuse of administrative data for 
research purposes is becoming more restricted in Europe as well, 
partly as a consequence of the European General Data Protection 
Regulation (GDPR) that was established in 2016 [17, 18]. In addi-
tion, data owners increasingly want control over the use of their 
data, making it more difficult to construct large centralized 
databases.

332 Wenjuan Wang et al.

2 Data Quality in EHR 

An electronic health record (EHR) is a digital version of a patient’s 
medical history which may include all of the key administrative 
clinical data relevant to that person’s care, including demographics, 
vital signs, diagnoses, treatment plans, medications, past medical 
history, allergies, immunizations, radiology reports, and laboratory 
and test results. EHRs are real-time, patient-centered records that 
make information available instantly and securely to authorized 
users. EHRs have been adopted with the aim of improving quality 
of patient care quality, in particular by ensuring that all pertinent 
medical information is being shared as needed for different care 
providers. Meantime, the rapidly growing number of EHRs has led 
to increasing interest and opportunities for various research pur-
poses. To ensure the patients receive care as they need and to draw 
valid and reliable research findings, quality data are needed. 

Data quality is defined as “the totality of features and charac-
teristics of a data set that bear on its ability to satisfy the needs that 
result from the intended use of the data” [19]. Currently, there is 
no definitive agreement on the components of data quality in 
available research. Feder described in a study [20] frequently 
reported components of data quality including data accuracy 
(data must be correct and free of errors), completeness (data must 
be sufficient in breadth, depth, and scope for its desired use), 
consistency (data must be presented in a consistent format),



credibility (data must be regarded as true and credible), and timeli-
ness (data should be recorded as quickly as possible and used within 
a reasonable time period) [20–24]. Other aspects of data quality 
might include accessibility which means that data must be available 
for use or easily retrievable, appropriate amount of data which 
means the quantity of data must be appropriate, ease of understand-
ing which means data must be clear, interpretability which means 
data must be in appropriate language and units, etc. 
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Many concerns were raised on digital data quality within EHRs 
including incompleteness, duplication, inconsistent organization, 
fragmentation, and inadequate use of coded data within EHR 
workflows [25]. As the old programming maxim states: garbage 
in, garbage out. Poor data quality can impact the care patients 
receive which may in turn lead to long-term damage or even 
death. It will also impact public health decision-making whenever 
it is based on statistics drawn from inaccurate data. In the following 
section, we will investigate in more detail the challenges regarding 
data accuracy and data completeness. 

2.1 Data Accuracy Data accuracy can be conceptualized as how accurate or truthful the 
data captured through the EHR system is. In other words, it is the 
degree to which the value in the EHR is a true representation of the 
real-world value [20, 23, 24] (e.g., whether a medication list accu-
rately reflects the number, dose, and specific drugs a patient is 
currently taking [21]). A pilot study evaluated information accuracy 
in a primary care setting in Australia and confirmed that errors and 
inaccuracies exist in EHR [26]. This pilot study showed that high 
levels of accuracy were found in the area of demographic informa-
tion and moderately high levels of accuracy were reported for 
allergies and medications. A considerable percentage of 
non-recorded information was also present. The sources of data 
inaccuracy could be mistakes made by clinicians (e.g., clinicians 
improperly use the “cut and paste” function in electronic systems 
[27]), error, loss or destruction of data during a data transfer 
[27]. Ways to improve data accuracy at collection include avoiding 
EHR pitfalls (e.g., fine-tuning preference lists, being careful when 
copying data, modifying templates as needed, documenting what 
was done, etc.) and being proactive (e.g., conducting regular inter-
nal audits, training staff, maintaining a compliance folder, etc.). 

Data accuracy can be assessed via different approaches 
[20]. One can compare a given variable within the dataset to 
other variables which is referred to as internal validity, e.g., using 
medication to confirm the status of the disease. Internal validation 
can also be done by looking for unrealistic values (a blood pressure 
that is too high or low [28]) which could be checked by identifying 
outliers. One can also use different data sources or datasets to cross-
check the data accuracy which is referred to as external validity, e.g., 
a patient was registered in a stroke registry but recorded as not



having a stroke in the current dataset. Generally, it is hard to link 
multiple datasets due to data privacy policy. Simple statistical mea-
sures can help the researcher determine whether variable values 
follow logical restrictions and patterns in the data such as central 
tendency (e.g., mean, median, mode) and dispersion (range, stan-
dard deviation) for continuous variables and frequencies and pro-
portions for categorical variables and goodness-of-fit tests (e.g., 
Pearson chi-square) [20]. Researchers found that validation helps 
check the quality of the data and identify types of errors that are 
present in the data [28]. 
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2.2 Data 

Completeness 

Data completeness is referred to as the degree and nature of the 
absence of certain data fields for certain variables or participants. 
Generally, these absent values are called missing data. Missing data 
is very common in all kinds of studies, which can limit the outcomes 
to be studied, the number of explanatory factors considered, and 
even the size of the population included [28] and thus reduce the 
statistical power of a study and produce biased estimates, leading to 
invalid conclusions [29]. Data may be missing due to a variety of 
reasons. Some data might not be collected due to the design of the 
study. For example, in some questionnaires, certain questions are 
only for females to answer which leads to a blank for males for that 
question. Some data may be missing simply because of the break-
down of certain machines at a certain time. Data can also be missing 
because the participant did not want to answer. Some data might be 
missing due to mistakes during data collection or data entry. Thus, 
knowing how and why the data are missing is important for 
subsequent handling and for analyzing the mechanism underlying 
missing data. 

Depending on the underlying reason, missing data can be 
categorized into three types [30] (Fig. 1): missing completely at 
random (MCAR), missing at random (MAR), and missing not at 
random (MNAR). MCAR is defined as data to be missing not 
related to any other variables or the variable itself. Examples of 
MCAR are failures in recording observations due to random fail-
ures with experimental instruments. The reasons for its absence are 
normally external and not related to the observations themselves. 
For MCAR, it is typically safe to remove observations with missing 
values. The results will not be biased but the test might not be 
powerful as the number of cases is reduced. This assumption is 
unrealistic and hardly happens in practice. For missing data that 
are MAR, missingness is not random and can be related to the 
observed data but not to the value of this given variable [31]. For 
example, a male participant may be less likely to complete a survey 
about depression severity than a female participant [32]. The data is 
missing because of gender rather than because of the depression 
severity itself. In this case, the results will be biased if we remove 
patients with missing values as most completed observations are



females. Thus, other observed variables of the participants should 
be accounted for properly when imputing missing data that are 
MAR. But MAR is an assumption that is impossible to verify 
statistically [33] and substantial explorations and analysis are 
needed. MNAR refers to situations where missingness is related 
to the value that the missing data would have had. For example, the 
participant refuses to report their depression severity because they 
are seriously depressed. In this case, missingness is due to the value 
itself and no other data can predict this value. Missing data that are 
MNAR are more problematic as one may lack data from key sub-
groups which, in turn, may lead to samples that are not representa-
tive of the population of interest. The only way to obtain an 
unbiased estimate of the parameters in such a case is to model the 
missing data and then be incorporated into a more complex one for 
estimating the missing values [29]. 
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Fig. 1 Summary on missing mechanisms with definitions, examples, and acceptable approaches for handling 
the missing values 

Handling missing data is critical and should be done according 
to the assumption on the missingness mechanism, as the results 
might be biased if handled differently. Techniques for handling 
missing data include the following [29]: 

1. Complete case analysis (also known as listwise deletion) to 
simply omit those cases with the missing data. This approach 
is suitable for MCAR assumption or when the level of missing-
ness is low in a large dataset.
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2. Pairwise deletion allows researchers to use cases with missing 
values but the variable with missing values will not be included 
in the analysis. This method is known to be less biased for 
MCAR or MAR data [29]. The analysis will be deficient if 
there is a high level of missingness in the data [29]. 

3. Single imputation means that missing values are replaced by a 
value defined by a certain rule. Here is a list of possible impu-
tation rules. (1) A simple imputation rule is to substitute the 
missing value with the mean, median, or mode. (2) A more 
sophisticated approach uses regression (the missing values are 
predicted from the other variables using regression). (3) Last 
observation carried forward or next observation carried back-
ward is for longitudinal data (i.e., repeated measures). If a 
certain measure is missing, the previous observation or the 
next observation can be used to impute the current missing 
values. (4) Maximum likelihood method assumes that the 
observed data are a sample drawn from a multivariate normal 
distribution and the missing data are imputed with the maxi-
mum likelihood method [34]. (5) K-nearest neighbors method 
can be used to impute the missing values with the average from 
the k-nearest neighbors. Single imputation often results in an 
underestimation of the variability since the unobserved value is 
analyzed as the known, observed values [35] and some single 
imputation methods depend on specific rules (e.g., last obser-
vation carried forward) rather than missing mechanism 
assumption which are often unrealistic [36]. Single imputation 
is often a potentially biased method and should be used with 
great caution [35–38]. 

4. Multiple imputation consists in replacing missing values with a 
set of plausible values which contain the natural variability and 
uncertainty of the correct values [29]. The multiple imputed 
values are predicted using the existing data from other variables 
[39], and then multiple imputed datasets are generated using 
the set of values. Compared to single imputations, creating 
multiple imputations accounts for the statistical uncertainty in 
the imputations. A typical method for multiple imputation is 
the use of chained equations (MICE) [40]. Multiple imputa-
tion operates under the assumption that the missing data are 
MAR since we use other variables to predict the missing values. 
Implementing MICE when data are not MAR could result in 
biased estimates [40]. Multiple imputation has been shown to 
be a valid method for handling missing data and is considered a 
good approach for datasets with a large amount of missing 
data. This method is available for most types of data [31, 37, 
38]. Studies comparing software packages for multiple imputa-
tions are available [41].
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The acceptable handling methods for different missing data 
mechanisms [35] are summarized in Fig. 1. For MCAR, the meth-
ods for handling missing data which give unbiased effects and 
standard errors are complete case analysis, regression or 
likelihood-based single imputation methods, and multiple imputa-
tion. For MAR assumption, pairwise deletion, regression or 
likelihood-based single imputation methods, and multiple imputa-
tion provide unbiased effects. Under the MNAR assumption, the 
above methods are no longer suitable. In this case, the appropriate 
analysis requires the joint modeling of the outcome along with the 
missing data mechanism [35]. This could be done by asking related 
questions, e.g., (1) what’s the probability of having missing data 
given the outcome and (2) what’s the probability of an outcome in 
those with missing data? Selection [33] and pattern-mixture mod-
els [42] are two example approaches for modeling the above two 
questions, respectively. 

The recommended strategies to overcome barriers caused by 
missing data would be to first understand the data and the missing 
mechanism. If the data are simply unavailable, alternative datasets 
and similar information might be available [28]. Then the imputa-
tion method could be selected based on the understanding of the 
missing values. Since the correctness of the assumptions cannot be 
definitively validated, it is recommended to perform a sensitivity 
analysis to evaluate the robustness of the results to the deviations 
from the assumptions [28]. 

2.3 Other Challenges 

and General Practices 

Recommendations 

There are other challenges in EHR data. For example, some data 
may be recorded without specifying units of measurement which 
makes these data hard to interpret [28]. In this case, an understand-
ing of the data collection process and background knowledge can 
be helpful in interpreting the data. There might be inconsistencies 
in data collection and coding across institutions and over time 
[28]. Some inconsistencies can be easily identified from the data, 
e.g., a measure was started to be recorded only after a certain time. 
On the other hand, some inconsistencies may be hard to identify 
and require an understanding of how data are collected geographi-
cally and over time. Last but not least, unstructured text data 
residing in the EHR causes poor accessibility and other data quality 
issues such as a lack of objectivity, consistency, or completeness 
[28]. Data extraction techniques such as natural language proces-
sing (NLP) are being used to identify information directly from text 
notes. 

Quality data is the basis for a valid research outcome and 
whether the quality is enough depends on the purpose of the 
study. Currently, there are no certain criteria for deciding whether 
the quality of the data is sufficient, but careful analysis of the data 
quality should help the researchers decide if the data at hand is 
useful for the study [28]. Three general practices were



recommended by Feder [20]. The first recommendation is to get 
familiar with the EHR platform and EHR-based secondary data 
source. Knowledge of the types of data available, how the data were 
collected, and who collected it is very useful. It is recommended to 
have a dictionary that defines all data variables: it should contain the 
type of data, the range of expected values of each variable, general 
summary statistics, level of missingness, and subcomponents if 
available. The second recommendation is to develop a research 
plan that includes strategies for data quality appraisal and manage-
ment such as statistical procedures for handling missing data and 
potential actions if other data quality issues arise (e.g., removal of 
extreme values, diagnostic code validation). The last recommenda-
tion is to promote transparency in reporting data quality including 
the proportion and type of missing data, other quality limitations, 
and any subsequent changes made to data values (e.g., variables 
removed for analysis, imputation methods, variable transforma-
tions, creation of new variables). This should enable the reuse of 
quality data for clinical research. Communications and sharing of 
the importance of data quality with clinicians are encouraged [28]. 
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3 Clinical Coding Systems 

In this section, we discuss clinical coding systems, classifications, or 
terminologies. We first introduce clinical coding systems and 
explain the motivation behind their existence and usage. This is 
followed by a discussion of the common attributes that coding 
systems tend to have, and how this relates to their usage for data 
analysis. We provide summaries for some of the most commonly 
used systems in use at the time of writing. Finally, we discuss some 
of the potential challenges and limitations of clinical coding 
systems. 

3.1 Motivation Recording clinical data using free text and local terminology incurs 
major barriers to conducting effective data analysis for health 
research [43]. Clinical coding systems significantly alleviate this 
problem, and so are of great usefulness to researchers and analysts 
when carrying out such work. Medical concepts are naturally 
described by linguistic terminology and are often associated with 
a descriptive text. Linguistic data is however loosely structured, and 
the same underlying medical concept might be expressed differ-
ently by different healthcare professionals. Clinical concepts can 
usually be expressed in a multitude of ways, both due to synonyms 
in individual terms and simply through different ways of combining 
and arranging words into a description. Processing large amounts 
of such data in order to perform modern computer-assisted data 
analysis, such as training machine learning models, would therefore 
require the use of natural language processing (NLP) techniques



[44]. Furthermore, when considering medical data from many 
countries, one would need to consider all the possible languages 
that medical records might be written in. 
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Instead of mapping clinical concepts into the highly complex 
realm of natural language, clinical coding systems seek to provide 
an unambiguous mapping from a given clinical concept to a unique 
encoding in a principled fashion. This makes it significantly easier to 
employ modern large-scale data analysis techniques on clinical data. 
For example, if one were interested in studying the prevalence of 
chronic fatigue, instead of having to attempt to exhaustively match 
records containing every conceivable way to express this linguisti-
cally, one would only need to identify which clinical codes are 
associated with the relevant clinical concepts and select records 
containing those codes. 

3.2 Common 

Characteristics 

Clinical coding systems can vary significantly in their descriptive 
scope, depending on their intended usage. The DSM-5 [45], for 
instance, limits its scope entirely to psychiatric diagnoses, while 
SNOMED-CT [46, 47] seeks to be as comprehensive as possible, 
including concept codes relating to, for example, body structure, 
physical objects, and environment. Both of these coding schemes 
describe concepts relevant at the level of individual patients, though 
codes can exist for broader or more fine-grained scopes such as 
public health or microbiology. 

Typically, clinical coding schemes are arranged hierarchically, as 
this reflects the categorical relationship between clinical concepts 
well while also providing an intuitive means to find relevant con-
cepts. This hierarchical structuring can be reflected in the identifiers 
used to encode clinical concepts, further aiding in their compre-
hension. In the ICD scheme [48], for example, codes begin with a 
character that identifies the relevant chapter in the ICD manual, 
and subsequent characters provide identification of finer and finer 
degrees of specification. 

Another property of clinical coding systems that can be useful 
to classify is whether it is compositional or enumerative [49, 
Chapter 22]. In a compositional scheme, concepts can be encoded 
by combining more basic conceptual units together. This reduces 
the burden to specify large enough lists of distinct concepts to 
comprehensively cover all necessary clinical concepts required by 
scheme designers. This is in contrast to enumerative systems, which 
instead aim to achieve completeness by having a unique identifier 
for every concept within the scope of the scheme. 

Clinical coding schemes can encode many kinds of relationships 
between concepts that are more specific than the simple parent-
child relationship in basic hierarchies. These reflect the more 
nuanced kinds of relationships present in clinical concepts. Coiera 
[49, Chapter 22] outlines three main kinds of conceptual relation-
ships: Part-Whole, Is-A, and Causal. Part-Whole



relationships are useful when a concept contains constituent parts 
which are also concepts, e.g., the eyes are a part of the face which is 
a part of the head which is a part of the body. This relationship is 
generally most useful for describing physical assemblages. Is-A 
relationships are perhaps the most common and indicate basic 
categorical similarities, such as Arterial Blood Specimen Is-A 
Blood Specimen Is-A Specimen. Finally, Causal relationships are 
used to indicate events or effects that arise as the result of another, 
or that cause another. 
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Hierarchical schemes may also introduce multiple axes upon 
which to expand concepts (essentially multiple hierarchies). In this 
way, elements belonging to a particular place in the hierarchy of one 
axis may also appear in the hierarchy of a different axis. This often 
involves a concept having multiple relationships of different types 
to a number of different concepts, i.e., a concept may have an Is-A 
relationship and a Causal relationship with two different concepts. 

These are all useful features in the context of data science. 
Hierarchical structures allow for users of data to select as coarse 
or as fine-grained concepts as are relevant to their specific analyses. 
The defined relationships between concepts can be exploited in 
order to identify groups of relevant codes. Furthermore, some 
coding schemes, such as SNOMED-CT, may encode useful con-
cepts beyond clinical events or concepts, such as whether patients 
have consented for research data usage, which can be useful, for 
example, in screening population members who are unsuitable for 
research cohorts, etc. 

3.3 Notable Coding 

Systems 

Here we provide summaries of commonly used coding systems that 
are likely to be encountered when performing analysis on EHR 
data. However, this is by no-means an exhaustive list. Many more 
are in use, and some datasets or corpora might use their own coding 
systems. In these cases, the data provider will usually specify map-
pings to more common systems such as ICD or SNOMED-CT. For 
example, in the case of the Clinical Practice Research Datalink 
(CPRD) [50], unique codes are provided for medical terms with 
mappings to Read Codes (a now largely legacy coding system in the 
United Kingdom), and unique treatment codes with links to the 
NHS Dictionary of Medicines and Devices (dm+d) [51] and the 
British National Formulary (BNF) [52], which provide codes relat-
ing specifically to medical products and prescribing. 

3.3.1 SNOMED-CT SNOMED-CT (Systematized NOmenclature of MEDicine-
Clinical Terms) [46], maintained by SNOMED International, is a 
clinical coding scheme designed to be highly comprehensive and 
computer-processable. It is in wide usage around the world, in 
particular in the United Kingdom. SNOMED-CT supersedes the 
older SNOMED and SNOMED-RT systems. It is a hierarchical, 
compositional coding scheme, including specified relationships



between related concepts. It provides good linkage with ICD to 
allow for easy data sharing. There are 15 primary hierarchical 
categories in SNOMED-CT, to which all other concepts belong. 
A concept in SNOMED-CT is comprised of several elements. The 
primary identifying element is the Concept ID, which is a unique 
numerical identifier for the clinical concept. This is accompanied by 
a textual description of the concept. There are specified Relation-
ships to other related concepts, and Reference Sets which provide 
groupings of concepts. SNOMED-CT codes are hierarchical and 
linked via Is-A relationships. Table 1 presents the top-level con-
cepts of SNOMED-CT. 
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Table 1 
The top-level hierarchical categories in the SNOMED-CT system 

Hierarchy 

Body structure 

Clinical finding 

Event 

Observable entity 

Organism 

Pharmaceutical/biologic product 

Physical object 

Procedure 

Qualifier value 

Situation with explicit context 

Social context 

Substance 

3.3.2 ICD The ICD (International Classification of Diseases) [48] is a coding 
system created by the World Health Organization (WHO). While 
the ICD is currently in its 11th revision (ICD-11) [53], ICD-10 is 
still more commonly used at the time of writing, and the wide-
spread adoption of ICD-11 will likely take more time. The ICD 
system is a multi-axis hierarchical coding system, assigning an 
alphanumeric code to each concept. Each code is procedurally 
derived from its concept’s location in the hierarchy, aiding in com-
prehension. The first character letter in an ICD code associates it 
with a specific chapter in the ICD manual (see Table 2 for the 
different chapters of ICD-10). The following three characters 
locate the concept within the chapter and range from A00 to 
Z99. For more detail, each category can be further subdivided



with up to three additional numeric characters. Table 3 shows 
multiple sclerosis as it appears in ICD-11 as an example of this 
hierarchical coding structure. The ICD system is intended to be 
limited in scope to disease diagnosis-related concepts; however, the 
WHO maintains additional systems to cover concepts outside of 
this scope. The ICF (International Classification of Functioning, 
Disability and Health), for instance, focuses on a patient’s capacity 
to live and function and includes concepts relating to body func-
tions, bodily structures, activities, participation, and environmental 
factors. Furthermore, various modifications of the ICD system exist 
to expand upon its capabilities for use in clinical settings, such as the 
ICD-10-CM in the United States and the ICD-10-CA in Canada. 
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Table 2 
The chapters of ICD-10 

Number Chapter name 

I Certain infectious and parasitic diseases 

II Neoplasms 

III Diseases of the blood and blood-forming organs and certain disorders involving 
the immune mechanism 

IV Endocrine, nutritional, and metabolic diseases 

V Mental and behavioral disorders 

VI Diseases of the nervous system 

VII Diseases of the eye and adnexa 

VIII Diseases of the ear and mastoid process 

IX Diseases of the circulatory system 

X Diseases of the respiratory system 

XI Diseases of the digestive system 

XII Diseases of the skin and subcutaneous tissue 

XIII Diseases of the musculoskeletal system and connective tissue 

XIV Diseases of the genitourinary system 

XV Pregnancy, childbirth, and the puerperium 

XVI Certain conditions originating in the perinatal period 

XVII Congenital malformations, deformations, and chromosomal abnormalities 

XVIII Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified 

XIX Injury, poisoning, and certain other consequences of external causes 

XX External causes of morbidity and mortality 

XXI Factors influencing health status and contact with health services 

XXII Codes for special purposes
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Table 3 
The hierarchical structure of multiple sclerosis within the ICD-11 

1. ICD-11 for Mortality and Morbidity Statistics

• 08 - Diseases of the nervous system 

– Multiple sclerosis or other white matter disorders 

8A40 - Multiple sclerosis 

8A40.0 - Relapsing-remitting multiple sclerosis 

8A40.1 - Primary progressive multiple sclerosis 

8A40.2 - Secondary progressive multiple sclerosis 

8A40.Y - Other specified multiple sclerosis 

8A40.Z - Multiple sclerosis, unspecified 

3.3.3 UMLS “The Unified Medical Language System (UMLS) is something like the 
Rosetta Stone of international terminologies”—Coeira [49, Chapter 23] 

The UMLS [54] is intended to provide a means to relate coding 
systems to each other. It achieves this with three knowledge 
sources: the Metathesaurus, a semantic network, and the SPE-
CIALIST Lexicon. The Metathesaurus is a nonhierarchical con-
trolled vocabulary of terms organized by concept and provides 
the synonyms of concepts in different coding systems and is the 
primary way in which translation between systems is supported. 
Controlled vocabularies from hundreds of coding systems are 
represented in the Metathesaurus, and its entries are regularly 
updated. A complete list of all the supported controlled vocabul-
aries is available in the UMLS Metathesaurus Vocabulary Docu-
mentation on the official website.1 The Metathesaurus specifies 
defining attributes of concepts, and relationships between con-
cepts, including Is-A, Part-Whole, and Causal relationship 
types. The semantic network provides the semantic types and rela-
tionships that concepts are permitted to inherit from. The primary 
semantic relationship is the hierarchical Is-A relationship, 
although there are five primary nonhierarchical relationship types: 
“physically related to,” “spatially related to,” “temporally related 
to,” “functionally related to,” and “conceptually related to.” The 
SPECIALIST Lexicon is intended to assist computer applications in 
interpreting free-text fields. It encodes syntactic, morphological, 
and orthographic information, including common spelling var-
iants. In practice, most users of the UMLS do so indirectly through

1 https://www.nlm.nih.gov/research/umls/index.html.

https://www.nlm.nih.gov/research/umls/index.html


tools that rely on the UMLS, such as PubMed2 and other clinical 
software systems such as EHR software and analysis pipelines. The 
most common uses are for extracting clinical terminologies from 
text and translating between coding systems [55].
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3.3.4 Read Codes Read Codes [56, 57] were used exclusively by the United Kingdom 
until 2018, when they were replaced by SNOMED-CT. Read 
Codes are organized hierarchically; however, the identifiers them-
selves do not indicate where in a hierarchy the concept belongs as 
they do in ICD. Version 3 (CTV-3) is the most recent version of 
Read Codes, and introduced compositionality to the system, while 
becoming less strictly hierarchical. Read Codes were intended to 
provide digital operability in primary care settings, but are no 
longer used in primary care in England (though they are still in 
use in Scotland at the time of writing and may be used in secondary 
care in England). Read Codes map well to ICD concepts. The Read 
Codes Drug and Appliance Dictionary is an extension of the Read 
Codes system to include pharmacological products, foods, and 
medical appliances for use in EHR software and prescribing 
systems. 

3.4 Challenges and 

Limitations 

The usefulness of clinical coding schemes is dependent upon their 
usage by healthcare professionals being thorough and appropriate. 
Improper usage of coding systems can occur, contributing to data 
quality issues such as incompleteness, inconsistency, and inaccuracy 
[58]. Further challenges can arise for researchers where data may 
contain multiple coding systems; this can happen if the data is 
collected from multiple different sources where different coding 
systems are in use, or if the period of data collection covers a change 
in the preferred coding system, such as the change from CVT-3 to 
SNOMED-CT in the United Kingdom. In these cases, the 
researcher must ensure that they consider relevant concepts from 
each different scheme or implement a mapping from one scheme to 
another. Most coding schemes provide good mapping support to 
ICD codes, and the UMLS coding system is designed to provide a 
means of translating between different schemes. Additionally, some 
sources of data may provide their own coding schemes that are not 
in usage (and thus not documented) elsewhere. 

4 Protection and Governance of EHR Data 

In this section, we will explore the focal points of data protection 
and governance analyzing the most recent jurisdictional back-
ground and its implication in real-world healthcare applications. 
In Subheading 4.1, we introduce the main legislative body and its

2 https://pubmed.ncbi.nlm.nih.gov/.

https://pubmed.ncbi.nlm.nih.gov/


core definitions in data protection. Then, Subheading 4.2 describes 
in a more technical way how data analysis can be conducted in a 
privacy-preserving manner.
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4.1 Data Protection 

in a Nutshell 

The explosive evolution of digital technologies and our ability to 
collect, store, and elaborate data is dramatically changing how we 
should consider privacy and data protection; particularly, the 
advent of artificial intelligence (AI) and advanced mathematical 
modeling tools made it necessary to reform the national and inter-
national data protection and governance rules to better protect 
people who generated such data and give them more control on 
what can be done with it. Although it is worth mentioning valuable 
independent contributions to the healthcare data protection guide-
lines like the Goldacre Review [59, 60], we will focus mainly on the 
most recent and structured action published at international level in 
terms of data protection and governance, the European General 
Data Protection regulation, or GDPR [17]. 

The GDPR was published by the European Commission in 
2016 to set the guidelines that all member states must apply in 
their national legislation in terms of data protection. Although its 
legal validity is limited to the members of the European Economic 
Area (EEA), its effects expanded also to European Union 
(EU) candidate countries and the United Kingdom which 
embraced the new GDPR regulation through the UK GDPR 
[18] and maintained it part living of the legislation even after 
renouncing to the EU membership. It is worth mentioning that 
the effects of GDPR are not limited to the data management and 
governance executed within the countries that embrace the regula-
tion, but is strictly related to the persons to whom the data belong; 
this means that the GDPR guidelines must be followed by any 
entity worldwide when dealing with data belonging to individuals 
from countries where the GDPR applies. GDPR defines as personal 
data any single information that is relatable to a person; in Box 1 we 
enumerate the three main agents required in any endeavor involv-
ing personal data management. 

To contextualize these concepts in an healthcare scenario, if a 
non-European controller (e.g., an Australian hospital) aims at col-
lecting, storing, or elaborating healthcare data from an individual 
protected by the GDPR or equivalent legislation for an interna-
tional multicenter clinical trial, they still must respect all dictations 
of GDPR on that data specifically. 

The GDPR reads: personal data processing should be designed to 
serve mankind and the right to the protection of such data is not an 
absolute right, but must be considered in relation to its function in 
society. Let’s then consider this from the two angles of data gover-
nance and operation, and its purpose in the AI era.
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Box 1: Basic agents recognized by GDPR 
Data subject Individual(s) to whom the personal data 

belongs. 
Controller Individual(s) or institution(s) responsible for 

implementing appropriate technical and organi-
zational measures to ensure and to be able to 
demonstrate that processing is performed in 
accordance with the GDPR. 

Processor Individual(s) or institution(s) responsible for 
using, manipulating, and leveraging personal 
data for the goals defined by the controller and 
agreed upon by the data subject. 

4.1.1 Governance and 

Operation 

One of the main dictations of GDPR is that data should be as 
anonymized (or, de-identified) and minimal as possible for a 
given application. This means that the data controller shall 
specify in details which data will be needed and why and collect 
only this required data, possibly in an anonymous way. More-
over, the data should be stored as long as the application 
requires it but not longer unless authorized by the data subject. 
This process should minimize as much as possible the identifia-
bility of individuals, especially in those cases in which the con-
tent of data carries very sensitive information like health status, 
religious faith, political affiliation, and similar. Indeed, one of 
the main reasons why the use of free-text clinical notes in natural 
language processing (NLP) applications carries additional com-
plications is that information that could identify individuals are 
often expressed in a nonstructured way in text (e.g., a specific 
reference to a person’s habits, rare diseases, physical aspect, etc.) 
[61]. A similar issue arises with imaging applications, where the 
content of the imaging medical examination could contain per-
sonal information of its owner (e.g., the name written on an 
X-ray printing). 

With a closer focus to EHR in a common tabular structure, 
identification of individuals can go beyond their names and unique 
identifiers. If the combination of other information can lead to their 
identification (e.g., the address, the sex, physical characteristics, 
profession, etc.), then the EHR is not technically anonymized. A 
step forward is the pseudo-anonymization, a process where the 
identifiable information fields are replaced with artificially created 
alternatives that encode or encrypt these information without 
direct disclosure. It is important to note that albeit this approach 
is valid in healthcare applications, it still allows a post hoc recon-
struction of the identifiable data and should be implemented



carefully. Note that, in the specific case of brain images, the medical 
image may in principle allow reidentification of the patient (for 
instance, mainly through recognition of facial features such as 
the nose). For this reason, “defacing” (a procedure that modifies 
the image to remove facial features while preserving the content of 
the brain) is increasingly used. According to the Health Insurance 
Portability and Accountability Act of 1996 (HIPAA)3 issued by 
the US Department of Health and Human Services, 18 elements 
have to be deleted for an electronic health record to be considered 
de-identified; these include names, geographic subdivision smaller 
than a State, all elements of dates (except year) for dates directly 
related to an individual, telephone numbers, social security num-
bers, and license numbers. This practice can be exported interna-
tionally and used as a rule of thumb to ensure appropriate 
anonymization in all healthcare-related applications. 
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With respect to the many stages that comprise the analysis and 
elaboration of healthcare data, data protection can be handled in 
different and more flexible ways. Assuming a high level of inter-
nal protection of healthcare institutions (e.g., firewalls and 
encrypted servers), as long as the data remains within the insti-
tution secured information system, the majority of threats can be 
blocked and mitigated at an institutional level. Examples of 
threats are malicious access to and modification of data with 
the objective of compromising individual’s health or disrupting 
the operation of the hospital itself. The main exposure happens 
in case the data need to be transferred to another institution to 
carry out the required analyses. In this rather common case, the 
anonymization (or pseudo-anonymization) process should be 
carefully applied and data should never reside in a non-secured 
storage device or communication channel. To prevent this expo-
sure to happen but at the same time to leave the possibility of 
leveraging the collected data for the purpose of AI applications 
and statistical studies, the federated learning methodology has 
been developed in recent years. This will be described further in 
Subheading 4.2. 

The data subject has the right to get its own data deleted from 
the controller when, for example, the accuracy of the data is con-
tested by the data subject, or when the controller no longer needs 
the data for its purposes. Similarly, the data subject has also the 
right to receive their personal data from the controller in a com-
monly used and machine-readable format and have then the right 
to transfer such data to another controller, when technically feasi-
ble, in a direct way. These aspects introduce operational constraints 
in EHR management as they require to be stored in an identifiable 
way (so as to allow its post hoc management, deletion, or

3 https://www.hhs.gov/hipaa/index.html.

https://www.hhs.gov/hipaa/index.html


modification) but to be elaborated in an non-identifiable manner 
to ensure that at any point of the data elaboration, the identifica-
tion of the patients is impossible or as minimal as required for the 
elaboration itself. A corner case would be when a patient revokes 
the right of the controller to handle their data and its anonymized 
version is in use; from an operational point of view, this could 
cause the need for re-execution of the data extraction and 
elaboration.
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4.1.2 The Purpose of EHR 

in the Era of AI 

The main conundrum here is whether a specific use of healthcare 
data is functional to a societal benefit, which is a very difficult 
problem given its highly subjective interpretation. Indeed, as we 
continue producing beneficial applications, the opportunities to 
develop malevolent ones increase. Hostile actors may use private 
healthcare data and AI for personal profits, policy control, and 
other malicious cases. The availability of new tools suddenly sheds 
light on problems we didn’t know we had and this is happening 
with AI and its application to healthcare. Machine learning and 
deep learning are by far the most successful technologies that are 
changing how we conceive data value and the importance of its 
quality [62], and when it comes to these computing tools, the more 
data, the better, but not only that; for each application, the data 
collected and elaborated should be as representative as possible of 
the learning task, which is a rather challenging issue considering the 
amount of human intervention in clinical data collection (especially 
in free-text annotations) and inherent biases in the data distribution 
over the available population. Current regulations are imposed to 
the data controllers to clearly communicate and have the explicit 
agreement of the data subject for any use they may do with it, and 
this is a fundamental protection of each individual’s right to choose 
when and where their data can be used. This becomes particularly 
stressed in healthcare scenarios where misuse and abuses of 
patients’ data can result in unethical advantage and/or enrichment 
of the institutions or individuals capable of making the most out of 
such abundant data. 

Ethical approvals for the use of clinical datasets are usually 
granted by the hospitals’ ethic committee, through detailed pro-
cesses that every study has to undertake in its design phase. How-
ever, with increased focus on the use of AI technologies in 
medicine, the challenge becomes to contextualise within these 
ethics frameworks new technologies, the potential they carry, and 
the risks they may represent. Therefore, an integrated approach is 
needed between clinical experts, and AI/ML specialists to give 
more transparency, cohesion, and consistency to the use of data in 
health research.
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4.2 Privacy-

Preserving EHR Data 

Analysis 

The training of any kind of AI-based predictive model requires as 
much data as possible, and given the nature of clinical data (costly 
and with high human intervention), it is often the case that a single 
healthcare institution is not enough to produce the data needed for 
the creation of a predictive model. This is particularly true in those 
cases in which the distribution of the population of patients within 
the hospital is not representative of the general population or at 
least of the possible population of patients for which those predic-
tive models will be used. 

The most straightforward practice to overcome this limitation 
consists in gathering data from multiple institutions in one single 
center and pre-process the data so as to integrate everything in one 
single training dataset. This allows the unification of the contribu-
tion of all healthcare institutions and therefore a more comprehen-
sive, heterogeneous, and representative training dataset. 
Transferring clinical data from one hospital to another is a proce-
dure that brings many privacy- and security-related problems, 
including the proper anonymization, or pseudo-anonymization, 
of clinical records and the encryption of the data en route to 
another institution. 

The technical difficulties here dominate over the potential of a 
scalable, efficient, and secure data science pipeline that properly 
uses EHR to extract new knowledge and train predictive models. 

One of the most brilliant solutions to solve these problems was 
initially proposed by Google with the federated learning method-
ology [63]. According to this approach designed primarily for deep 
neural networks, instead of transferring the data between institu-
tions and collect everything in one unique dataset, a more efficient 
choice is to send the models to be trained to every institution that 
participates in the federation and, once one or more training steps 
are executed, gather the trained models in one central computing 
node (which can be one of the institutions) and compile the trained 
models in one comprehensive unique solution that represents the 
common knowledge produced. 

Federated learning was designed for a task very different from 
clinical applications, i.e., the automatic completion of smartphones’ 
keyboard, but its principles can be translated to the healthcare 
environment very effectively. The main benefits are that clinical 
data will never leave the owner’s secured information system and 
anonymization and encryption of the data itself are not major 
problems. Moreover, the ability to involve the contribution of 
multiple centers for one training process requires a software infra-
structure that can be utilized many more times for learning tasks. 

4.3 Challenges 

Ahead 

In the context of federated learning for EHR analysis, we find many 
challenges to be addressed in terms of both data quality and gover-
nance and learning methodologies. Here are listed some of the 
most relevant:
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1. Not having direct access to other institutions’ data makes it 
harder to assess the quality, consistency, and completeness of 
the datasets. This mandates additional care to the learning 
strategies as the representativeness of data must be preserved 
and phenomena like the catastrophic forgetting [64] produced 
by a large amount of data should be prevented. 

2. Even assuming a good enough data quality in terms of com-
pleteness, correctness, and standards used, the distribution of 
data in independent datasets can be very different, posing 
additional learning challenges in the creation of a reliable and 
fair predictive model. This phenomenon is also known as the 
non-IID, or  non-independent and identically distributed, data, 
and it is a very active research field [65]. 

3. Regardless of the immobility of data in healthcare information 
systems, the predictive models still have to travel between 
institutions, and this allows the possibility of data reconstruc-
tion through inverse gradient strategies [66], and the predic-
tive model alteration (or poisoning) [67, 68] to induce it to 
behave in a malicious way; this transfers the security problems 
from the data to the machine learning models themselves and 
must be properly dealt both at a network level (with encrypted 
connections) and at a model level to mitigate communication 
bottlenecks, poisoning, backdoor, and inference-based 
attacks [69]. 

5 Conclusion 

Increasing interest and opportunities for various research purposes 
were attracted by the rapidly growing number of EHRs. To draw 
valid and reliable research findings, data quality is paramount. In 
this chapter, we first introduced the definition of data quality, the 
reported components, and the concerns raised with poor data 
quality. Various aspects of data quality components and challenges 
were explored, such as data accuracy and data completeness. Gen-
eral practices for data quality analysis were recommended at the end 
of the data quality section. 

We then introduced the concepts of a clinical coding system 
and discuss their potential challenges and limitations. We described 
the common characteristics of coding systems and then presented 
some of the most common ones: SNOMED-CT, ICD, UMLS, and 
Read Codes. 

Finally, we navigated the main concepts of data governance and 
protection in healthcare settings. National and international regu-
lations are put in place to define baseline principles to ensure the 
most appropriate treatment, storage, and final utilization of per-
sonal data, including healthcare information. From an operational 
perspective, there are numerous challenges to face, e.g., the



anonymization, or pseudo-anonymization, of patients’ data and its 
proper privacy-preserving analysis for business and clinical pur-
poses. This is particularly important in machine learning applica-
tions where a large amount of data is required and data sharing 
between hospitals is not a viable and secure solution. To produce a 
truly privacy-preserving approach for machine learning applica-
tions, federated learning is today the most effective and promising 
deployable methodology. 
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Chapter 12 

Mobile Devices, Connected Objects, and Sensors 

Sirenia Lizbeth Mondragón-González, Eric Burguière, and Karim N’diaye 

Abstract 

Brain disorders are a leading cause of global disability. With the increasing global proliferation of smart 
devices and connected objects, the use of these technologies applied to research and clinical trials for brain 
disorders has the potential to improve their understanding and create applications aimed at preventing, 
early diagnosing, monitoring, and creating tailored help for patients. This chapter provides an overview of 
the data these technologies offer, examples of how the same sensors are applied in different applications 
across different brain disorders, and the limitations and considerations that should be taken into account 
when designing a solution using smart devices, connected objects, and sensors. 

Key words Smartphone, Mobile devices, Wearables, Connected objects, Brain disorders, Digital 
psychiatry, Digital neurology, Digital phenotyping, Machine learning, Human activity recognition 

1 Introduction 

Sensors are devices that detect events or significant changes in their 
environment and send the information to other electronic devices 
for signal processing. Since they surround us continuously, we have 
integrated them so naturally into our lives that we are mostly 
unaware of their continuous functioning. They exist in everyday 
objects, from the motion unit installed in your mobile phone that 
allows you to switch from landscape to portrait view by simply 
rotating it to the presence detector sensor in your building that 
switches the light on and off. Indeed, there is a good chance that 
you are using one or multiple sensors right now without noticing. 
They provide various means to measure characteristics related to a 
person’s physiology or behavior either in a laboratory/healthcare 
unit or in their daily life. They have thus raised a major interest in 
medicine in the past years. They are particularly interesting in the 
context of brain disorders because they allow monitoring of clini-
cally relevant characteristics such as movement, behavior, cogni-
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tions, etc. This chapter provides an introduction to the use of 
sensors in the context of brain disorders. The remainder of this 
chapter is organized as follows.
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Subheading 2 presents an overview of the various data types 
collected using mobile devices, connected objects, and sensors that 
are relevant to brain disorder research and related clinical applica-
tions, in particular for machine learning (ML) processing. The 
relevance of these ubiquitous sensors comes from the possibility 
of collecting large amounts of data, allowing the continuous docu-
mentation of the user’s daily life, an often critical issue with ML 
applications. Subheading 3 describes how these technologies might 
serve such applications in brain disorder research and clinics. 
Because of the strategic importance of ML in the on-device experi-
ence, mobile manufacturers have recently started to design and 
include specially designed microprocessors for ML calculations in 
smartphones and tablets, benefiting the third-party app develop-
ment community. A different approach consists of cloud offload 
processing allowing lighter wearables and handheld devices. The 
main public interest in current applications of ML is to help guess 
what is expected by the user, eliminating the number of actions and 
decisions we make each day (facial recognition for security instead 
of remembering a password, classification in your picture gallery 
according to names or faces, recommending songs to listen based 
on your history and ratings, etc.). Although decision support might 
not necessarily be its first goal, the scholar community interested in 
brain disorders must be familiarized with this ongoing ML revolu-
tion since the technology is already there, opening the way to 
unprecedented opportunities in research and clinics. Subheading 
4 describes limitations, caveats, and challenges that researchers 
willing to use such technologies and data need to be aware of. 

2 Data Available from Mobile Device, Sensors, and Connected Objects for Brain 
Disorders 

Far from presenting an extensive list of available sensors and 
devices, we aim to introduce the type of data one can exploit and 
sketch possible applications relevant to brain disorder research. The 
kind of data that we present here comes from sensors that are 
typically used for human activity recognition (HAR) or that we 
deemed relevant for the scope of this book. In particular, we have 
purposely omitted connected technologies that are used by health 
practitioners or in healthcare units and that require medical or 
specific training for their use and interpretation and that are there-
fore not commonly available to the public, such as wireless electro-
encephalographer (EEG—but see Chapter 9 for in-depth coverage 
of ML applied to EEG). We also set aside mobile technologies that



are not directly aimed at probing brain and behavioral functions, 
such as blood pressure monitor devices, glucometers, etc. (see [1] 
for a review). 
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We present these data types in two groups according to the role 
that the user (e.g., the patient) takes in acquiring the data: 
active vs. passive. In this context, we mainly describe typical appli-
cations, but we also point the readers to specific applications for 
which active or passive data can be used. For instance, vocal record-
ings can be actively collected by instructing the user to self-record 
(e.g., when completing a survey), but a microphone may also 
passively and continuously record the sound environment without 
the user triggering it (e.g., automatic handwashing recognition 
using the microphone of the Apple watch to detect water sound 
[2]). To explore the possibilities in data collection, we distinguish 
three interconnected elements: the person of interest, the device 
(including its potential interface), and the environment. According 
to the dimension of interest, we can focus on the data obtained 
from the interaction between these three elements (see Fig. 1). 

Fig. 1 Active and passive sensing. Mobile devices and wearable sensors provide 
metrics on various aspects of the mental and behavioral states through active 
(requiring an action from the user, often following a prompt) or passive (auto-
matically without intentional action from the user) data collection. This is 
possible through (a) direct interaction with the device, (b) active use of a device 
for assessment of internal insight, (c) passive use of inertial and positioning 
systems, (d) passive interaction with sensors embedded in the environment, and 
(e) passive or active interaction between users through devices
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2.1 Active Data 

Probing 

In active data probing, the person of interest must execute a specific 
action to supply the data, meaning that the quantity and the quality 
of acquired data directly depend on the user’s compliance. These 
actions usually involve direct interaction with the device. To maxi-
mize compliance, the subject needs to spend time and energy 
collecting the data; therefore, the number of action steps necessary 
to enter the data must be optimized to avoid user fatigue. It is also 
essential to care for feature overload by focusing on usability instead 
of utility and thoughtfully circumscribing the scope of questions or 
inputs. The amount of information requested and the response 
frequency are essential aspects to think ahead to maximize the 
continuous use of the device. If there is an intermediate user 
interface, following standard UX/UI (user experience/user inter-
face) guidelines is a good starting point for optimization but might 
not be sufficient according to the target population group. It is 
crucial to design without making assumptions but by getting 
patients’ early feedback through co-construction or participatory 
design [3–5]. In summary, there are several considerations that one 
needs to plan before deploying a solution-using active probing that 
involves the device itself but also how the user interacts with it. 

2.1.1 Interaction with the 

User 

Recording the subject’s response can provide unique information 
about the occurrence of experiences and the cognitive processes 
that unfold over time. We can record the user’s feedback at specific 
points in time or continuously by taking advantage of the interac-
tion between the user and a device (see Fig. 1a). 

Manual devices: response buttons, switches, and touchscreens. 
These devices capture conventional key or screen presses via 
switches or touchscreens, usually operated by hand. A switch con-
nects or disconnects the conducting path in an electrical circuit, 
allowing the current to pass through contacts. They allow a subject 
to send a control or log signal to a system. They have been largely 
used, for several decades, in computer-based experiments for psy-
chology, psychophysiology, behavioral, and functional magnetic 
resonance imaging (fMRI) research. The commonly obtained 
metrics are specific discrete on/off responses (pressed or not) and 
reaction time [6]. It is usually necessary to measure a person’s 
reaction time to the nearest millisecond which requires dedicated 
response pads. Indeed, general-purpose commercial keyboards and 
mice have variable response delays ranging from 20 to 70 ms, a 
range comparable to or lower than human reaction time in a simple 
detection task [7]. On the other hand, dedicated computerized 
testing devices seek to have less variable and smaller response 
delay. They introduce less variation and biases in timing measure-
ments [7] by addressing problems such as mechanical lags, deboun-
cing, scanning, polling, and event handling. Commercially available 
response-button boxes (e.g., Psychology Software Tools, Inc., 
Sharpsburg, PA, USA; Cedrus Corporation, San Pedro, CA, 
USA; Empirisoft Corporation, New York, NY, USA; Engineering



Solutions, Inc., Hanover, MD, USA; PsyScope Button Box by New 
Micros in Dallas, TX, USA) have few options and specific layouts to 
collect responses according to standard gamepad layouts while still 
being usually customizable for more specific applications. 
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Alternatively, touchscreens can be used to detect discrete 
responses with screen coordinates of the touch or pressing. They 
come in many forms, and the most popular type works with capaci-
tive or resistive sensors. Resistive touchscreens are pressure-
sensitive, and capacitive screens are touch-sensitive. Nowadays, 
capacitive screens are more used because of their multi-touch cap-
abilities, short response time, and better light transmission. How-
ever, if an application needs the exact coordinates of the contact, 
the inductive touchscreens are more suited. This technology is 
usually featured in the highest priced tablets along with a special 
pen that induces a signature electromagnetic perturbation that 
improves its precision compared to finger pointing. The disadvan-
tage of touchscreens is that they lack tactile feedback and have high 
energy consumption. For collecting continuous responses, a joy-
stick, computer mouse, or touchscreen may be used to track move-
ment trajectories supposedly reflecting the dynamics of mental 
processes [8]. 

Connected devices have been introduced in many domains of 
everyday life and, more recently, in health and research settings, 
sometimes with medical-grade applications [9]. Such devices may 
include sensors of health-relevant physiological parameters (e.g., 
weight, heart rate, and blood pressure) or health-related behaviors 
(e.g., treatment compliance). These connected systems make data 
collection more systematic and readily available to the clinical prac-
titioner. They are automatically integrated into data management 
systems. For example, on a pre-specified schedule, the patient will 
measure his/her blood pressure with a so-called smart blood pres-
sure monitor, which may provide reminders and record and trans-
mit these measurements to his/her doctor. Active connected 
devices (which require the patient to participate in the data collec-
tion process) may also track behavior: a connected pillbox would 
allow monitoring that the patient takes the medication according to 
the prescribed schedule [10]. In a subsequent part of this chapter, 
we will refer to passive connected medical devices (which perform 
measurements without the intervention of the user/patient), such 
as fall detection systems. 

2.1.2 Subjective 

Assessments 

With current knowledge and technologies, data that reflect psycho-
logical states such as emotions and thoughts can only be obtained 
by active data probing of the patient or an informer, usually a 
partner, family member, or caregiver (see Fig. 1b). The long history 
of psychological assessment provides rich conceptual and method-
ological frameworks for collecting valid measures of subjective



states when collected with a traditional semi-directed interview or 
paper-and-pencil questionnaires. Nevertheless, the novel possibili-
ties allowed by mobile technologies challenge those traditional 
well-validated assessment tools by renewing the format and the 
content of questions addressed to the user. In medical care and 
research, patient-reported outcomes are at the heart of a paradig-
matic change in medicine and clinical research, where patient-
centric measures tend to be favored over pure biomedical targets. 
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Subjective assessments may sometime take the form of utter-
ances or text. For machine learning applications, those have to be 
converted into data usable for feeding mathematical models. Natu-
ral language processing (NLP) tools have recently made substantial 
progress thanks to deep learning techniques, making even complex 
spontaneous oral or written language amenable to machine 
processing [11]. 

2.2 Passive Data 

Probing 

In passive data probing, the data is collected without explicitly 
asking the subject to provide the data. It provides an objective 
representation of the subject’s state in time. In scenarios where 
the data needs to be acquired multiple times a day, passively collect-
ing the data is a more valuable and ecological way to proceed. It 
allows objectively measuring the duration and frequency of specific 
events and their evolution in time. In contrast with active data, 
probing can provide more samples over a period. Since meaningful 
events might be embedded in the collected data, this probing type 
requires reviewing historical loggings or computer applications to 
extract the information of interest. 

2.2.1 Inertial and 

Positioning Systems 

Detection of whole-body activities (such as walking, running, and 
bicycling), as well as fine-grained hand activity (such as smartphone 
scrolling, typing, and handwashing), can allow the arduous task of 
studying and monitoring human behavior, which is of great value 
to understand, prevent, and diagnose brain diseases as well as to 
provide care and support to the patient. The change in physical 
activity and its intensity, the detection of sleep disorders, fall detec-
tion, and the evolution or detection of a particular behavior are 
some possibilities that can be assessed with inertial sensors. 

Identifying specific activities of a person based on sensor data is 
the main focus of the broad field of study called human activity 
recognition (HAR). A widely adapted vehicle for achieving HAR’s 
goal is passive sensor-based systems that use inertial sensors (see 
Fig. 1c), which transduce inertial force into electrical signals to 
measure the acceleration, inclination, and vibration of a subject or 
object (see Fig. 2a). These systems are commonly included in 
today’s portable electronic devices such as mobile phones, smart-
watches, videogame controllers, clothes, cameras, and 
non-portable objects like cars and furniture. Besides offering the 
advantage, due to their reduced size, of being embeddable in



almost any possible device, they are perceived as less intrusive of
personal space than other HAR systems, such as camera and
microphone-based systems [ ], allowing to sense more naturalis-
tic motion information uninterruptedly. Most prior work on activ-
ity detection has focused on detecting whole-body activities that
reflect ambulatory states and their degree of locomotion or lack of
it, such as running, walking, cycling, lying, climbing stairs, falling,
sitting, standing, and monitoring the sleep–wake cycle. Whole-
body activities differ from fine-grained human actions, usually
undertaken by the hands (see Fig. ). These hand activities are
often independent of whole-body activity, for instance, sending a
text from your smartphone while walking. A sustained sequence of
related hand gestures composes a hand activity. Hand gestures like
waves, flicks, and snaps tend to have exaggerated motions (used for
communications), and hand activities are more subtle, discontinu-
ous, and of varying durations [ ]. Examples of complex hand12

2b

12
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Fig. 2 Inertial sensors.  (a) Representation of an inertial measurement unit (IMU) depicting the sensing axes and 
the corresponding yaw, pitch, and roll rotations. (b) Exemplar accelerometer profiles of two hand gestures 
(hand rubbing and key locking) for three subjects showing the similar periodic nature of the hand movements. 
(c) Operating principle of an MEM accelerometer. When a force is detected due to a compressive or extensive 
movement, it is possible to determine the displacement x and acceleration since the mass and spring 
constants are known. (d) Representation of a simple gyroscope model. (e) The magnetic field generated by 
electric currents, magnetic materials, and the Earth’s magnetic force exerts a magnetic force detectable by a 
magnetometer sensor

https://www.zotero.org/google-docs/?Tzzf7g


gestures are writing, typing, painting, searching the Internet, smok-
ing, eating, and drinking. The way one approaches whole-body 
activity detection differs from fine-grained activity recognition in 
terms of the analysis approach (e.g., selected features), sensor con-
figuration (e.g., higher sampling frequency for fine-grained activ-
ities than for whole-body activities), and location on the body (e.g., 
wrist vs. hip). In both detection problems, the most common 
sensors used for HAR applications are accelerometers, gyroscopes, 
and magnetic sensitive sensors (see Fig. 2c–e).
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Accelerometers Accelerometers are sensors used to measure linear acceleration, viz., 
change in velocity or speed per time interval of the object being 
measured along reference axes. Furthermore, one can obtain veloc-
ity information by integrating accelerometry data with respect to 
time. The measuring acceleration unit in the International System 
of Units (SI) is a meter per second squared (m/s2 ). Since we can 
distinguish a static component in the accelerometer signal as the 
gravitational acceleration, it is also common to use the unit G-force 
(g) to distinguish the relative free-fall gravitational acceleration 
with a conventional standard value of 1 g = 9.81 m/s2 . A simplistic 
representation of the accelerometer’s operation principle is based 
on a suspended mass attached to a mechanical suspension system 
with respect to a reference inside a box, as shown in Fig. 2c. The 
inertial force due to gravity or acceleration will cause the suspended 
mass to deflect according to Hooke’s law (F = mk) and Newton’s 
second law (F = ma), where F denotes the force (N), m is the mass 
of the system (kg), k is the spring constant, x is the displacement 
(m), and a is the acceleration (m/s2 ). This acceleration force can 
then be measured electrically with the changes in mass displace-
ment with respect to the reference. To better understand this 
working principle, you can think of your experience as a passenger 
in a car rapidly moving back and forth and how the forces acting on 
you make you incline backward and forward on your seat. In 
nowadays-electronic devices, we find mostly miniaturized semicon-
ductor accelerometers (microelectromechanical systems or 
MEMs), which are small mechanical and electrical devices mounted 
on a silicon chip. The most common types are piezoresistive, pie-
zoelectric, and differential capacitive accelerometers [13]. Since the 
accelerometer is usually a built-in component embedded in a 
mobile device, the data we can obtain is provided in the XYZ 
coordinate system of the accelerometer component. The XYZ ori-
entation is specific to each device, and its coordinate system is 
found in the datasheets of the components. 

When processing the accelerometer signals, separating the 
acceleration due to movement from gravitational acceleration and 
noise sources (e.g., electronic device and measurement conditions) 
is necessary. A low-pass filter with a cutoff frequency of 0.25–3  Hz  
is usually applied to raw data to remove noise [14]. Alternatively,



transforming the raw accelerometer data to the vector magnitude 
(Eq. 1), which measures the instantaneous intensity of the subject’s 
movement at time t can be done before filtering to remove noise 
and/or gravity from body acceleration. The following processing 
steps usually include normalization (min–max, division by maxi-
mum absolute value, or division by the mean). 
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vm tð Þ= Ax tð Þ2 þ Ay tð Þ2 þ Az tð Þ2 ð1Þ 
A time-window segmentation is often necessary to retrieve 

information from the accelerometer time series. The epochs are 
usually consecutive sliding windows with an overlapping percent-
age (usually 50% overlap). Different window sizes can be compared 
to identify the optimal size for HAR analysis. 

Gyroscope A gyroscope is an inertial sensor that measures the rate of change of 
the angular position over time with respect to an inertial reference 
frame, also known as angular velocity or angular rate. The principle 
of function of MEM’s gyroscopes is based on the Coriolis effect, 
which acts on moving objects within a frame of reference that 
rotates with respect to an inertial frame. Figure 2d represents a 
simple gyroscope model where a mass suspended on springs has a 
driving force on the x-axis and angular velocity ω applied about the 
z-axis, causing the mass to experience a force in the y-axis as a result 
of the Coriolis force. In an MEM’s gyroscope, the resulting dis-
placement is measured by a capacitive sensing structure. The angu-
lar velocity unit is deg./s, but expressing it in radians per second 
(rad/s) is also common. A gyroscope can provide information 
about activities that involve rotation around a particular axis. A 
triaxial gyroscope can provide information from three different 
angles, pitch (x-axis), roll (y-axis), and yaw (z-axis), to help estimate 
the movement signature’s orientation and rotation. 

In human activity recognition, the gyroscope activity helps 
provide information about activities involving rotation around a 
particular axis. While a gyroscope has no initial frame of reference 
like gravity, it can be combined with accelerometer data to measure 
angular position and help determine an object’s orientation within 
3D space. To obtain the angular position, we can integrate the 
angular velocity with Eq. 2, where p = yaw, pitch, and roll and θp0 
is the initial angle compared to the Earth’s axis coordinates. 

θ tð  Þ= 
t 

0 

_θp tð Þdt þ θp0 ð2Þ 

When the changes in angular velocity are faster than the sam-
pling frequency, one will not be able to detect them, and the error 
will continue to increase with time. This error is called drift. There-
fore, the sampling rate value should be carefully chosen since gyro-
scopes are vulnerable to drifting over the long term.
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Magnetic Sensitive 

Sensors (e.g., Hall Sensor) 

Magnetic sensors measure the strength and direction of the Earth’s 
magnetic field and are affected by electric currents and magnetic 
materials (see Fig. 2e). Most MEM’s magnetic sensors are based on 
magnetoresistance to measure the surrounding magnetic field, 
meaning that the resistance changes due to changes in the Earth’s 
and nearby magnetic fields. They can detect the vector character-
ized by strength and direction toward the Earth’s magnetic north, 
and with it, one can estimate one’s heading. This vector is vertical at 
the Earth’s magnetic pole and has an inclination angle of 0°. When 
used with accelerometers and gyroscopes, it can help to determine 
the absolute heading. 

IMU Technology The combination of accelerometers, gyroscopes, and sometimes 
magnetometers in a single electronic device is referred to as an 
inertial measuring unit (IMU). Here are some considerations 
when choosing an IMU system or a device that contains an acceler-
ometer, gyroscope, or magnetic sensor for HAR applications: 

1. Dynamic range. Dynamic range refers to the range of maxi-
mum amplitude that the sensor can measure before distortion. 
In the case of accelerometers, where the amplitude in locomo-
tion increases in magnitude from cranial toward caudal body 
parts, they are typically measured in powers of two (±2G, ±4G, 
±8G, and so on), with an amplitude range of ±12G for whole-
body activities [15]. Gyroscopes are grouped by the angular 
rotation rate they can quantify (in thousands of degrees/sec-
ond). The measuring range of magnetometers is in 
milliTesla (mT). 

2. The number of sensitive axes. Inertial units that can sense in 
three orthogonal planes (triaxial) are suitable for most applica-
tions since different directions contribute to the total complex 
movement patterns. 

3. Bandwidth. The sampling rate determines the frequency range 
that can be represented in a waveform. Its unit is samples per 
second or Hertz. For HAR applications, the bandwidth of 
human accelerations of interest must be covered by the sensor’s 
sampling rate. The sampling rate selection depends on the 
activity of interest, the measured axes, and the body part to 
which the sensor is attached. For instance, walking at natural 
velocity ranges from 0.8 to 5 Hz when measured in the upper 
body, whereas abrupt accelerations up to 60 Hz have been 
measured at the foot level [15]. For typical whole-body activ-
ities (like lying, sitting, standing, and walking), sampling rates 
are usually between 50 and 200 Hz. Still, some studies use low 
ranges 20–40 Hz or as high as 4 kHz [12, 16] with analysis 
window lengths from 2 to 15 s [14]. A study has reported that 
frequencies from 0 to 128 Hz best characterize most human 
activities via hand monitoring [12].
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4. Interface and openness. In HAR applications, IMUs interface 
with other systems for signal processing. It is essential to know 
the communication protocol for data transfer and the degree of 
openness of the chosen system to allow configuration and 
extraction of raw signals since not all commercial systems 
allow raw signal extraction or changes in some parameters, 
like the sampling frequency. 

5. Sensor biases. Sensor bias refers to the initial offset in the signal 
output when there is no movement. In the case of MEM’s 
inertial sensors, it is often indicated as a zero-g offset for accel-
erometers and a zero-rate offset for gyroscopes. It has been 
shown that there is a large range of bias variability among 
different commercial devices and between devices of the same 
model [17]. Large uncompensated bias in HAR applications 
can lead to difficulties in detecting states when using different 
devices. In these cases, oriented data fusion techniques can be 
used to compensate the biases’ effect on the data. 

Raw signal periods are further decomposed into a few numbers 
(in the tens) of features. These are reduced variables of original raw 
data that represent the main characteristics of the signal. Inertial 
features are usually a mixture of frequency-domain features and 
time-domain features, although there are some rare cases of meth-
ods that process raw accelerometer data [12]. Table 1 summarizes 
the most common features applied to human activity recognition 
using machine learning and groups them into four domain cate-
gories: statistical, frequency, time, and time–frequency. Statistical 
features are descriptive features that summarize and give the varia-
bility of the time series. Time-domain features give information on 
how inertial signals change with time. For instance, zero-crossing is 
the number of times the signals change from positive to negative 
values in a window length. Together with frequency-domain fea-
tures capturing how the signal’s energy is distributed over a range 
of frequencies, they are useful to capture the repetitive nature of a 
signal that often correlates to the periodic nature of the human

Table 1 
Accelerometer features for machine learning applied to human activity recognition 

Features Statistical features Kurtosis, skewness, mean, standard deviation, interquartile range, 
histogram, root mean square, and median absolute deviation 

Time-domain 
features 

Magnitude area, zero-crossing rate, pairwise correlation, and 
autocorrelation 

Frequency-domain 
features 

Energy, entropy, dominant frequency (maximum and median frequency) 
and power of dominant frequency, cepstral coefficients, power 
bandwidth, power spectral density, and fundamental frequency 

Time-frequency 
features 

Spectrogram [12], wavelets, spectral entropy [18]



activity. Their advantage is that they are usually less susceptible to 
signal quality variations. Time–frequency features such as spectro-
grams give information about the temporal evolution of the spec-
tral content of the signals. They can represent context information 
in signal patterns, but they have higher computational costs than 
other features. Indeed, the low computational cost is a desired 
characteristic of HAR for their applications, and it is no surprise 
that most applications with smartphones that use inertial sensors 
use time-domain features [19].
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Data Fusion Data fusion is the concept of combining data from multiple sources 
to create a result with an accuracy that is higher than that obtained 
from a single source. IMUs can be used to simultaneously provide 
linear acceleration and angular velocity of the same event, as well as 
the device’s heading. Data fusion techniques provide complemen-
tary information to improve human activity recognition. Impor-
tantly, they can also be used to correct each other since each IMU 
sensor has different strengths and weaknesses that can be combined 
for a better solution. Accelerometers can measure gravity for long 
terms but are more sensitive to certain scenarios, such as spikes. 
Gyroscopes can be trusted for a few seconds of relative orientation 
changes, but the output will drift over longer time intervals, and 
magnetometers are less stable in environments with magnetic 
interferences. 

Data fusion techniques can be divided into three levels of 
applications: sensor-level fusion, feature-level fusion, and 
decision-level fusion [20]. In sensor-level fusion, the raw signals 
from multiple sensors are combined before feature extraction. For 
instance, accelerometers are sensitive to sharp jerks, while gyro-
scopes tend to drift over the long term; thus, sensor-level fusion 
helps with these problems. This is achieved via signal processing 
algorithms, where the most popular algorithms are the Kalman 
filter [21] and the complementary filter [22]. The first, an iterative 
filter that correlates between current and previous states, consists of 
low- and high-pass filtering to remove gyroscope drift and acceler-
ometer spikes. Feature fusion refers to the combination of multiple 
features from different sensors before entering them into a machine 
learning algorithm through feature selection and reduction meth-
ods such as the principal component analysis (PCA) and singular 
value decomposition (SVD). Feature fusion helps in identifying the 
correlation between features and working with a smaller set of 
variables. The models’ results (e.g., multiple classifiers) are com-
bined in decision fusion to have a more accurate single decision. 
The aim is to implement fusion rules to get a consensus that would 
help in improving the algorithm’s accuracy and have a better gen-
eralization. These rules include majority voting, boosting, and 
stacking [23].
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Benchmark Databases In the context of HAR, there are several advantages to having access 
to inertial databases. The most obvious one is that it allows for 
comparing several solutions. Inertial databases can be used to rap-
idly focus on the development of signal processing and machine 
learning solutions before spending time on the development and 
deployment of hardware sensing solutions. In the past years, several 
public databases have appeared in the literature for smartphone and 
wearables studies. The list of the main databases of inertial sensors 
used in research work is gathered in Lima and colleague’s review 
[19] and in Sprager and Juric’s review [24]. 

Global Positioning System: 

Geospatial Activity 

The Global Positioning System (GPS) is a global navigation system 
based on a network of GPS satellites, ground control stations, and 
receivers that work together to determine an accurate geographic 
position at any point on the Earth’s surface. The widespread inte-
gration of GPS into everyday objects such as smartphones, naviga-
tion systems, and wearables (GPS watches) has enabled the 
objective measurement of a person’s location and mobility with 
minimal retrieval burden and recall bias [25]. At a basic level, raw 
data from GPS provide latitude, longitude, and time [26]. These 
data can be further processed to provide objective measurements of 
location and time, such as measurements of trajectories and loca-
tions in specific environments. Newer GPS can provide variables 
such as elevation, indoor/outdoor states, and speed. GPS devices 
have proven to be useful tools for studying and monitoring physical 
activity [27]. When combined with inertial sensors, it is possible to 
identify activity patterns and their spatial context [28]. The spatial 
analysis can then be contextualized with environmental attributes 
(presence of green space, street connectivity, cycling infrastructure, 
etc.). The data is often analyzed using commercial or open-source 
geographic information systems (GIS), software for data manage-
ment, spatial analysis, and cartographic design. According to Krenn 
and colleagues [28], the main limitation of using GPS in health 
research is the loss of data quality. Indeed, urban architecture and 
dense vegetation can lead to signal dropouts. 

2.2.2 Interaction with the 

Environment 

When a residence uses a controller to integrate various connected 
objects or home automation systems, we refer to the home as a 
smart home. In a smart home, the role of the home controller is to 
integrate the home automation systems and enable them to com-
municate with each other. In this approach, the subject does not 
need to carry a device; instead, the environment is equipped with 
devices that can collect the required data (see Fig. 1d). In smart 
homes, we can find diverse appliances with some degree of automa-
tion. Perhaps the most popular commercial device is the smart 
speaker, equipped with a virtual assistant that responds to voice 
commands. More and more common virtual assistant technologies 
have expanded the use of speech processing, and the so-called vocal



biomarkers are being considered into precision medicine 
[29]. These technologies can be embedded in what is known as 
affective signal processing, for example, to monitor the mood states 
of home residents [30]. 
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Smart plugs are another type of smart device that fits into 
existing wall outlets. They connect to the Wi-Fi or Bluetooth 
network and enable the control of various appliances by turning 
them on and off on pre-programmed schedules. Although they are 
not sensing devices that collect data per se, by activating the appli-
ances, they allow the interaction between the user and the environ-
ment, and they can be used to activate sensing devices. Other smart 
devices that typically do not collect data from the user but enable 
interaction with the environment include smart light bulbs that can 
be turned on at specific times and allow to be controlled to create a 
colorful ambiance, smart thermostats to control room temperature, 
and smart showers. Other smart systems that allow data collection 
and interaction with the user and the environment include smart 
refrigerators that register the door’s opening and the amount of 
food inside. They also offer the ability to view recipes and videos 
and adjust the water temperature through a touchscreen. Smart 
devices that help with sleep are smart mattresses, sleep trackers, and 
sleep noise machines. 

Finally, when installed in strategic places, presence detectors or 
switches that detect the opening and closing of doors and windows 
can work together to create a map of presence and displacement 
activity inside the smart home. 

The advent of smart home technology has fostered its develop-
ment in medicine and human research. One such example is the use 
of surveillance cameras, which were initially deployed for security 
monitoring of goods and may now be used to detect falls by elderly 
persons in everyday life, thanks to advanced image processing 
techniques [31]. Home automation systems built around dedicated 
single-board computers (e.g., Raspberry Pi) expand behavioral 
tracking capabilities to more complex behaviors using off-the-
shelf components [32]. 

2.2.3 Interaction 

Between Users 

The massive adoption of Internet of Things (IoT) devices has made 
it possible to have a network of interconnected devices that interact 
to collect and analyze data using an Internet connection for remote 
computing (see Fig. 1e). Interaction between devices may be used as 
a proxy to inform about the collective and individual behavior of 
the user(s) carrying them. This interaction is possible due to 
numerous wireless technologies that enable communication 
among devices, such as Wi-Fi and Bluetooth. Moreover, a richer 
picture of the social world may be obtained from the traces of 
interactions in cyberspace, such as the analysis of individual devices’ 
communication. Research using the phone call detail records of a 
sample of elderly participants in France demonstrated that such



passive data could represent a low-cost and noninvasive way to 
monitor the fluctuations of mood [33], working as a “social sensor 
containing relevant health-related insights.” 

Mobile Devices, Connected Objects, and Sensors 369

Within the wireless technologies available, Bluetooth is widely 
present in everyday technological devices, and it can be used as a 
mean to measure the interaction between users. It is based on a 
radio frequency that allows nearby devices to exchange data wire-
lessly. Bluetooth devices are paired (established logical link) before 
transmitting the information for security reasons. Each Bluetooth 
device is addressable by a unique Bluetooth device address assigned 
during manufacturing in addition to a textual modifiable identifier 
[34]. Once the devices are Bluetooth-enabled, they act as passive 
tools that can be used in the context of interaction monitoring 
between individuals. The reason why Bluetooth is better fitted to 
this purpose than Wi-Fi is that the former is mainly used for linking 
electronic devices for only short communication bouts using rela-
tively small amounts of data and requires less power compared to 
Wi-Fi, which is designed to shuttle larger amounts of data between 
computers and the Internet. Another reason is that Bluetooth 
technology is rapidly evolving, offering simpler connectivity proto-
cols between devices and better security, together with faster com-
munication (Bluetooth V3) and lower energy consumption 
(Bluetooth Low Energy) with the latest version (Bluetooth 5) 
offering a more extensive range, speed, and bandwidth. 

Implicit Bluetooth encounters can be used to passively detect 
implicit connections between persons, model and predict social 
interactions, recognize social patterns, and create networking struc-
tures without monitoring physical areas and letting people feel 
observed. With the COVID-19 pandemic, massive efforts to 
deploy contact tracing systems to notify for risk of infection used 
a Bluetooth protocol in smartphones as a way to identify the risk of 
close contact with infected individuals. In this context, Bluetooth 
exchanges were considered encounters [35]. This is one remarkable 
example of Bluetooth technology showing how it can be applied to 
exploit users’ interactions in real time to help manage an important 
health issue in modern society. 

3 Applications to Brain Disorders 

A growing number of applications have been developed to collect 
and exploit sensor data for basic science and clinical applications 
related to the disorders of the nervous system—as well as in human 
behavior in general; see [36]. This section presents a selection of 
original and representative application examples where the previ-
ously presented sensors have been put into practice to prevent, early 
diagnose, monitor, and create tailored help for patients, with what



is referred to as digital phenotyping. The objective of this section, 
far from being an extensive review of the sensor-based applications, 
is to give an idea to the reader of how the same sensors can be used 
with different objectives across a broad range of brain disorders. 
The brain disorders mentioned here are Alzheimer’s disease 
(AD) (see also [37]), Parkinson’s disease (PD) [38], epilepsy [39], 
multiple sclerosis [40], and some developmental disorders and 
psychiatric disorders [41]. 
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3.1 Prevention The blooming market of mobile technologies in the field of well-
being and self-quantization, from basic logging to deep personal 
analytics, represents an opportunity to promote and assist health-
enhancing behaviors. For instance, as much as 85% of US adults 
own a smartphone [42] and 21% an activity tracker [42]. Digital 
prevention uses these mobile technologies to advise and anticipate a 
decline in health, the goal being to prevent health threats and 
predict event aggravation by monitoring continuous patient status 
and warning indications. 

An example of digital prevention in the psychiatric domain 
includes specific tools to prevent burnout, depression, and suicide 
rates. Web-based and mobile applications have been shown to be 
interesting tools for mitigating these severe psychiatric issues. For 
instance, a recent study [43] showed how the combination of a 
smartphone app with a wearable activity tracker was put into use to 
prevent the recurrence of mood disorders. With passive monitoring 
of the patient’s circadian rhythm behaviors, their ML algorithm was 
able to detect irregular life patterns and alert the patients, reducing 
by more than 95% the amount and duration of depressive episodes, 
maniac or hypomanic episodes, and mood episodes. 

In specific contexts known for being risk-prone with respect to 
mental health, e.g., high psychological demand jobs, as well as in 
more general professional settings, organizations have been start-
ing to deploy workplace prevention campaigns using digital tech-
nologies [44]. In a study by Deady and colleagues [45], the authors 
developed a smartphone app designed to reduce and prevent 
depressive symptoms among a group of workers. The control 
group had a version of the app with a monitoring component, 
and the intervention group had the app version that included a 
behavioral activation and mindfulness intervention besides the 
monitoring component. Their study showed how the smartphone 
app helped prevent incident depression in the intervention group 
by showing fewer depression symptoms and less prevalence of 
depression over 12 months compared to the control group. Both 
these examples show how using smartphones and wearable devices 
can reduce symptoms and potentially prevent mental health 
decline.
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3.2 Early Diagnosis Although, in the brain care literature, most applications for diag-
nosis with ML use anatomical, morphological, or connectivity data 
derived from neuroimaging [46], there is a growing body of evi-
dence indicating that common sensors could be used in some cases 
to detect behavioral and/or motor changes preceding clinical man-
ifestations of diverse brain diseases by several years. In contrast, in 
neurodegenerative diseases like AD [47], PD [48], and motor 
neuron disease (MND) [49], the symptoms manifest when a sub-
stantial loss of neurons has already occurred, making early diagnosis 
challenging. Because of this, with the increasing adoption of ML in 
research and clinical trials, directed efforts have been made to 
diagnose neurodegenerative diseases early. As an example, in PD, 
a study used IMU in smartphones to characterize gait in the senior 
population, detecting gait disturbances, an early sign of PD, and 
showing the feasibility of the approach with a patient who showed 
step length and frequency disturbances and who was later formally 
diagnosed with PD [50]. Apathy, conventionally defined as an 
“absence or lack of feeling, emotion, interest or concern” [51], is 
one of the most frequent behavioral symptoms in neurological and 
psychiatric diseases. In the daily life of patients, apathy results in 
reduced daily activities and social interactions. These behavioral 
alterations may be detected as a reduction in the second-order 
moment (variance) of location data (as tracked with GPS measure-
ments [52]) and in the first-order moment (average quantity) of 
accelerometer measures (e.g., [53] in the context of schizophrenia 
patients). 

Sensors can also be used to differentiate between disorders that 
have shared symptoms, accelerating diagnosis and treatments. For 
instance, a study [54] that used wrist-worn devices containing 
accelerometers analyzed measures of sleep, circadian rhythmicity, 
and amplitude fluctuations to distinguish with 83% accuracy pedi-
atric bipolar disorder (BD) and attention-deficit hyperactivity dis-
order (ADHD), two common psychiatric disorders that share 
clinical features such as hyperactivity. 

3.3 Symptom and 

Treatment Monitoring 

Monitoring day-to-day activities and the evolution of symptoms is 
impossible for health providers outside the clinic without auto-
mated detection of events of interest and deployment of mobile 
interventions. Much like apathy, described above, many other psy-
chological constructs may be sensed from continuous monitoring 
of behavioral parameters, such as agitation or aberrant mobile 
behavior [55, 56]. 

Sleeping is one activity that cannot be monitored in any other 
way than with passive data probing in an ecological manner. Moni-
toring sleep is relevant when studying sleep disturbance, a core 
diagnostic feature of depressive disorder, anxiety disorders, bipolar 
disorder, and schizophrenia spectrum disorder. In this sense, sleep 
patterns have been scored using light sensors in mobile devices and



usage data, allowing digital phenotyping of the users that, com-
pared to the average, go to bed and wake up later and more often. 
Disrupted sleep patterns have also been assessed with wrist-worn 
accelerometers to monitor sleep changes in various psychiatric dis-
orders [57], as well as considered a potential psychiatric diagnostic 
tool in bipolar disorder, where sleep changes are a warning sign of 
an affective episode [58]. 
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Given the progressive nature of some diseases, such as Alzhei-
mer’s and Parkinson’s diseases, the individuals suffering from them 
must be monitored often or even continuously. In both cases, the 
patients suffer from functional and cognitive decline, where con-
tinuous objective monitoring could help detect the decline in daily 
capabilities providing opportunities for assistance. In the literature 
interested in monitoring Alzheimer’s disease, the studies mainly 
focus on the detection of abnormal behavior, the detection of 
autonomy in activity performance, the provision of assistance with 
cognitive or memory problems, and the monitoring of functional 
and cognitive decline [59]. To objectively assess autonomy at 
home, video cameras and tags on house objects along with a mobile 
phone application were used in a study [60] with mild cognitively 
impaired patients, Alzheimer patients, and healthy controls. The 
activities examined included online payment, preparing a drink, 
medicine box preparation, and talking on the phone. To monitor 
cognitive decline, Lyon and colleagues from the Oregon Center for 
Aging and Technology (ORCATECH) [61] placed a smart sensor 
platform in 480 homes of an elderly population in an 8-year longi-
tudinal study. The sensors included wireless passive infrared motion 
sensors, wireless magnetic contact sensors placed outside the door 
and in the refrigerator, a personal computer that recorded time 
spent in the computer and the mouse movements, worn actigraphs 
to measure mobility patterns, and, in some cases, connected objects 
such as medication trackers, phone monitors, and wireless scales. 
Using these multimodal data and applying sensor fusion techni-
ques, they could identify decline in cognition, loneliness, and mood 
anomaly. Finally, as nighttime wanderings and memory loss are 
common characteristics of Alzheimer’s patients, GPS solutions are 
increasingly used by caregivers to locate missing patients but are 
also recently being used in various studies [62] as effective nonin-
vasive means of monitoring mobility in these patients. GPS solu-
tions have also been exploited in other areas, such as in monitoring 
anxiety disorders. For instance, GPS data has helped predict social 
anxiety scores among college students by analyzing mobility fea-
tures and detecting that socially anxious students avoid public areas 
and engage less in leisure activities to spend more time at home 
after school [63]. 

An interesting advantage of in-home monitoring of symptoms 
is collecting ecological data allowing clinicians to contextualize 
sensor data to guide potential medication changes. For instance,



Chen and colleagues [64] introduced a web-based platform that 
integrates data from wearable accelerometers and online surveys to 
estimate clinical scores of tremors, bradykinesia, and dyskinesia. 
The objective was to facilitate clinicians’ decision-making regarding 
titration and timing of medications in PD patients with later-stage 
disease. Along the same line, in the aforementioned ORCATECH 
study [61], specific medication trackers (electronic pillbox) were 
also used to complement behavioral assessment derived from sen-
sors: they demonstrated a significant impact of early cognitive 
deficits on medication adherence in everyday life. 
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Active probing of subjective assessment through the everyday 
life course of patients (commonly performed by smartphones and 
now smartwatches) is known as ecological momentary assessment 
(EMA) [61]. EMA aims at reducing memory bias and increasing 
the density of longitudinal data available in a single patient while 
exploring the possible influence of real-life contexts on cognitions 
and behaviors. EMA may thus capture the dynamic changes seen in 
psychiatric [65, 66] or neurological [67] conditions across hours, 
days, or longer periods, delivered according to either a predeter-
mined schedule or in response to some event of interest, as detected 
by the system. EMA may also be used in combination with other 
passive measures and can be particularly useful to provide a ground 
truth concerning subjective states (e.g., mood or apathy [53]). 

3.4 Tailored Help for 

Patients and 

Augmented Therapies 

Personalized or precision medicine consists in using collected data 
to refine the diagnosis and treatment of individual patients. In this 
sense, connected devices and mobile technologies could contribute 
to tailoring patients’ care. Moreover, personalized or augmented 
therapies can benefit from using smart devices and connected 
objects to add additional assistance to classic therapeutic 
approaches. 

An example of this is epilepsy, a central system disorder that 
causes seizures. Not only the unpredictability of seizure occurrence 
is distressing for patients and contributes to social isolation, but for 
unattended patients with recurrent generalized tonic–clonic sei-
zures (GTCS), this may lead to severe injuries and constitute the 
main risk factor of sudden unexpected death. This is why, in the 
epilepsy research field, much effort has been put into developing 
ambulatory monitoring with alarms for automated seizure detec-
tion, with most real-time application studies using wrist acceler-
ometers, video monitoring, surface electromyography (sEMG), or 
under-mattress movement monitors based on electromechanical 
films [68]. The general purpose of using these sensors is to detect 
unpredictable changes in motor activity or changes in autonomic 
parameters characteristic of seizures. 

Another illustrative case of the interest in mobile technology 
for helping patients in their everyday life concerns fall detection in 
older and /or gait-disabled persons: wireless versions of inertial and



pressure sensors have been used to monitor balance impairments in 
patients and to trigger an alert system when a fall is detected 
[69]. Data issued from mobile, wearables, and connected devices 
may also contribute to adjusting the therapeutic strategy followed 
by the healthcare provider. Omberg and colleagues [70] demon-
strated that in Parkinson’s disease patients, remote assessment 
through smartphones correlated with in-clinic evaluation of disease 
severity. In the context of rehabilitation following cerebrovascular 
lesions or neurocognitive training in neuropsychiatric disorders, 
connected devices may also contribute to making the rehabilita-
tion/training program more engaging for patients and improving 
its real-life efficacy [71]. 
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Finally, in the context of psychiatric disorders, mobile technol-
ogies may also support ecological momentary or just-in-time inter-
ventions (EMI), a promising venue for augmenting mental 
healthcare and psychotherapy through digital technologies 
[72, 73]. 

4 Considerations and Challenges 

When conceptualizing and developing a project involving human 
behavior recognition, it is essential to anticipate the known chal-
lenges and difficulties that can be encountered. We present the 
general known common challenges for connected devices under 
three groups: (1) those that are related to sensor function per se, 
(2) the challenges related to the signal processing and machine 
learning methods used to exploit the data and that are partly shared 
with other pattern recognition fields, and (3) the challenges raised 
by deploying real-life applications. 

4.1 Related to Sensor 

Function 

We refer to sample rate stability as the homogenous regularity time 
spans between consecutive samples. In a reliable device, the differ-
ence between different time spans between successive measure-
ments is close to zero. When this is not the case, the true measure 
by the sensor and the timestamp registered by the application 
differs. Common sources of sample rate instability are the inherent 
jitter by non-real-time operating systems that cannot guarantee 
critical execution time or access to resources and the additional 
communication delay between the devices and applications. 

4.1.1 Sample Rate 

Stability 

4.1.2 The Choice of 

Technology 

Sensors are usually input devices that take part in a bigger system, 
sending information to a processing unit so that the signals can be 
analyzed. When choosing a technology to work with, a careful 
choice of all of the parts must be pre-studied to avoid issues in 
usability and signal quality since these will have an impact on the 
difficulty of development and deployment, as well as on the long-
term use of the technology. For instance, if we need to record



inertial measurements and the body location is not a major issue, 
deciding between a dedicated IMU device, a smartwatch, or a 
smartphone would be necessary. Smartwatches, having fewer 
resources than smartphones, show larger sampling instabilities, 
especially under high CPU load [17], and then the question 
would be if a smartwatch would then be appropriate for the appli-
cation, and so, what model would provide the best sampling stabil-
ity over long recordings? Hardware memory usage limitations and 
power consumption are critical criteria to consider, especially for 
the long-term use of connected devices. Another issue is the open 
access to commercial devices. Most commercial devices (smart-
phones, smartwatches, and connected devices) offer the developers 
the opportunity to use their integrated sensors to develop applica-
tions using their platforms (i.e., Android, iOS, Tizen, etc.). Usually, 
the development of these commercial devices comes with certain 
restrictions. For instance, the developers do not have complete 
access to the device, and to modifications of the operating system, 
the programming language is usually restricted, and some 
pre-programmed tasks are usually impossible to modify. 
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4.1.3 Power 

Consumption 

One of the main problems preventing the massive expansion and 
adoption of HAR applications is excessive battery power consump-
tion [75]. Indeed, the major problems that lead to data loss are 
empty batteries, where the main sources of high power consump-
tion are the high data processing load and the continuous use of 
sensors. Some strategies can be adopted to minimize energy con-
sumption, although these imply a tradeoff between energy con-
sumption, signal richness, and the accuracy of classification models. 
The first strategy consists of on-demand activation of sensors only 
when necessary, in contrast to continuous sampling; this requires a 
continuous supplementary routine that automatically determines 
when the timing is appropriate to interrogate the sensor(s). Tech 
companies have dealt with this problem by integrating “sensor 
hubs,” i.e., low-power coprocessors that are dedicated to reading, 
buffering, and processing continuous sensor data for specific func-
tions such as step counting and spoken word detection (for 
instance, the specific function of detecting the famous popular 
voice commands “hello google” or “Alexa” for Google’s and Ama-
zon’s vocal assistants). The second strategy consists of choosing the 
sampling frequency of data collection. The higher the frequency in 
sampling data, the more energy the sensors, the processor, and the 
memory unit use. Previous knowledge of the signals and the fre-
quency necessary to capture events is needed to select a sampling 
frequency which is a good tradeoff between capturing relevant 
signal information and avoiding an unnecessary battery drop. The 
third strategy focuses on the applications where the data is pro-
cessed on the device by strategically selecting lightweight features

https://www.zotero.org/google-docs/?EOKWBg


to reduce the data processing load. For instance, in inertial data 
processing, time-domain features have lower computational costs 
than frequency- and time–frequency-domain features. Considering 
how sensors’ power consumption and applications affect battery 
life in worn systems with small batteries is essential. Since total 
power load is hard to estimate, it depends on many external factors 
such as the main application processor, access to memory by other 
applications, etc. A good practice is to record battery statistics for 
several days across different participants to estimate real-life use and 
average battery life. 
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4.2 Related to the 

Data 

Data collection consists of data acquisition, data labeling, and 
existing database improvement. It is one critical challenge in 
machine learning and often the most time-consuming step in an 
end-to-end machine learning application due to the time spent 
collecting the data, cleaning, labeling (for supervised learning), 
and visualizing it. The data required by the machine learning mod-
els can be experimental, retrospective, observational, and, in some 
cases, synthetic data. While retrospective data collection methods 
such as surveys and interviews are easy to deploy, they are subject to 
recall and to self-selection bias, and they might add tedious collec-
tion logistical issues if tools and programs in mobile devices are not 
deployed. Retrospective data collection is sometimes the only 
means to capture subjective experiences in daily life. Observation 
methods such as video-camera surveillance can be impractical for 
large-scale deployment and are often primarily used in small sample 
applications. Generation of synthetic data is sometimes necessary to 
overcome the lack of data in some domains, notably annotated 
medical data. This kind of data is created to improve AI models 
through data augmentation from models that simulate outcomes 
given specific inputs such as bio-inspired data [74], physical simula-
tions, or AI-driven generative models [75]. The issue with this is 
that there is a lack of regulatory frameworks involving synthetic 
data and their monitoring. Their evaluation could be done with a 
Turing test, yet this may be prone to inter- and intra-observer 
variabilities. Plus, data curation protocols can be as tedious and 
laborious as collecting and labeling real data. 

4.2.1 Data Collection 

The availability of large-scale, curated scientific datasets is cru-
cial for developing helpful machine learning benchmarks for scien-
tific problems [76], especially for supervised learning solutions 
where data volume and modality are relevant [77]. Even though 
machine learning has been used in many domains, there is still a 
broad panel of applications and fields, such as neuroscience and 
psychiatry, with few or even inexistent training databases. This is 
the case for connected devices’ and sensors’ derived datasets for 
brain disorder research. In contrast, there are nowadays larger 
neuroimaging and biological databases available, e.g., the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) and the Allen Brain



Atlas. Fortunately, following the moderate adoption of machine 
learning in the brain research field, a trend toward increasing shar-
ing of resources has emerged, but for now, it is mainly in the 
neuroimaging field. Each year, more scientific open data becomes 
available, although their curation, maintenance, and distribution 
for public consumption are challenging, especially for large-scale 
datasets. Another increasing trend in data collection or human 
annotation of data is through crowdsourcing marketplaces, having 
the advantage of giving access to diverse profiles from a large 
population sample, enabling to find more representative examples 
to train the models. 
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4.2.2 Database 

Validation and Signal 

Richness 

For applications in medicine and healthcare, the datasets used to 
train the ML models should undergo detailed examination because 
they are central to understanding the model’s biases and pitfalls. 
Before adopting an openly available dataset or creating one, there 
are some considerations that we have to keep in mind. Firstly, 
ensure a minimal chance of sample selection biases in the database 
(for instance, data acquired with particular equipment or with a 
particular setting). Errors from sample selection biases become 
evident when the model is deployed in settings different from 
those used for training. Secondly, we must be aware of the class 
imbalance problem that often occurs in cases where the data is rare 
(for instance, in low samples associated with rare diseases), which 
could negatively affect models designed for prognosis and early 
diagnosis. A few techniques can be adopted to help with class 
imbalance, such as resampling, adding synthetic data, or working 
directly with the model, such as weighting the cost function of 
neural networks. 

The data, often obtained from scientific experiments, should be 
rich enough to allow different analysis and exploration methods 
and carefully labeled when required. For instance, a semantic dis-
crepancy in the labels can dilute the training pool and confuse the 
classifier [78, 79]. In contrast with free-form text or audio to mark 
the activities, imperfect labeling by the users can occur when scor-
ing the samples with fixed labels. For instance, labeling similar 
activities from IMU systems, such as running and jogging under 
the fixed label-running, can induce errors in feature extraction 
because of their interactivity similarity. 

It is also important for signal richness to consider subject 
variability and consider differences between gender, age, and any 
other characteristic that could lead to improper data representation. 
Naı̈ve assumptions can cause actual harm by stigmatizing a popula-
tion subgroup when there is an implicit bias in data collection, 
selection, and processing [80]. These can be addressed by expand-
ing the solutions to inclusion at all levels and carefully auditing all 
stages of the development pipeline.
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4.3 Deployment for 

Real-Life Applications 

Real-work applicability requires that the accuracy be tested off 
laboratory settings, considering real-life factors besides technology 
function and data collection. Before deploying a solution using 
connected objects and sensors, these real-life use considerations 
should be addressed without deprecation. Indeed, factors such as 
user acceptance and behavior around the devices might even be 
more important than having a high positive prospect of technology. 
Here we briefly present three factors to keep in mind. These include 
thinking ahead of privacy issues and how to handle them, the 
potential degree of adoption, and wearability and instrumentation 
unobtrusiveness. 

4.3.1 Health Privacy Using mobile devices, connected objects, and sensors to collect 
data for machine learning for health applications is a process that 
generates data from human lives. In this sense, privacy is a common 
concern with health data. The concept of privacy in health refers to 
the contextual rules around generated data or information: how it 
flows depending on the actors involved, what is the process by 
which it is accessed, the frequency of the access, and the purpose 
of the access [81]. 

The machine learning community has generally valued and 
embraced the concept of openness. It is common for code and 
datasets to be publicly released and paper preprints to be available 
on dedicated archival services before an article is published (despite 
rejection). Therefore, regulatory bodies should encourage and 
enforce data holders to collect and provide data under clear legal 
protection. To ensure data security, these regulations might suggest 
adopting different solutions: not transmitting raw data, having an 
isolated sensor network, transmitting encrypted data, and 
controlling data access authorizations [82]. While individual 
countries decide where to draw the line regarding regulations, 
sometimes, depending on the data type, this is more or less difficult 
to define. For instance, there might be clearer limits on the exploi-
tation and use of patient video recordings because there is explicit 
reasoning that the patient’s identity is easily accessible with image 
processing. In contrast, this reasoning is less straightforward with 
other types of data. For instance, even though inertial sensor data 
might be sufficient to obtain information about a person based on 
their biometric movement patterns, these sensors are currently not 
perceived as particularly sensitive by the public. Part of this is 
because their privacy implications are less well-understood 
[83]. Thus, they tend to be much less protected (e.g., in wearable 
devices and mobile apps) compared to other sensors such as GPS, 
cameras, and microphones. Therefore, requiring proper permis-
sion, conscious advertised participation, and explicit consent from 
the user is essential, no matter the nature of the data collected.
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4.3.2 Perception and 

Adoption 

The perception and adoption of mobile devices, connected objects, 
and sensors refer to the negative or positive way the deployed 
solutions are regarded, understood, and interpreted by the users. 
This degree of perception directly affects the adherence to a proto-
col and the solution’s use or adoption over the long term. It is one 
of the most important factors to evaluate ahead of deployment in 
real-life scenarios. It implies a conscious effort to understand the 
patient’s situation and point of view. It can be overseen by devel-
opers and researchers who could focus more on the technical or 
scientific challenges to overcome or who, because of naivety or 
distance to the patient’s reality, might unwarily not include these 
considerations in their designs. 

The Technology Acceptance Model (TAM) [84], which can be 
applied to mobile devices, connected objects, and sensors, postu-
lates that two factors predict technology acceptance. The first one is 
the perceived usefulness or the degree to which a person believes a 
particular solution will enhance or improve the performance of a 
specific task. The second factor is perceived ease of use or the 
degree to which a person believes the solution proposed will be 
free of effort. The perceived ease of use and usefulness might vary 
according to the population target and should be studied carefully 
before deployment. For instance, the perceived ease of use is essen-
tial for the elderly [85], who are not core consumers of mobile 
wireless healthcare technology. There are, of course, other models 
and theories [86, 87] that have been published since the TAM was 
proposed, and they include other essential factors to take into 
account, such as social influence, performance and effort expec-
tancy, and facilitating conditions, or the perceptions of the 
resources and support available. Although these models have sev-
eral limitations [88], the identified factors are a good starting point 
to consider when designing a solution involving wearable, mobile 
devices, and connected objects. In addition to those factors, clear 
limits in the cost and benefit ratio of the technology must be 
communicated since it is one of the main barriers to their accep-
tance. In that sense, the scientific and healthcare community is 
responsible for efficiently approaching the patients and clearly 
explaining the expected positive outcomes and the advantages and 
disadvantages of the device’s ecosystems. 

4.3.3 Wearability and 

Instrumentation 

Unobtrusiveness 

Wearability refers to the locations where the sensors are placed and 
how they are attached to those locations. Wearable devices are 
typically attached to the body or embedded in clothes and acces-
sories. They are smartwatches and bracelets for activity trackers, 
smart jewelry, smart clothing, head-mounted devices, and ear 
devices [89]. Wearability is an aspect to consider because of its 
direct impact on data collection, signal richness, and quality. The 
goal is to ensure the device’s prolonged and correct use.
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In the 1990s, Gemperle and colleagues [90] proposed the first 
ergonomic guidelines on wearability. Since then, different “wear-
ability maps” have been proposed to approximate the best unob-
trusive locations for sensor placement in the human body. A source 
of the problem in wearability is that the sensors should be securely 
attached to the human body to prevent relative motion, signal 
artifacts, and degraded sensing accuracy. Smartwatches are desired 
to be worn on the dominant arm to capture most of the hand 
movement, but it is more comfortable for people to wear them 
on the passive arm. 

Similar to wearable devices, one desired characteristic of 
deployed sensors and tags in the environment is to ensure unob-
trusiveness. Unobtrusive sensing allows continuous recording of 
the patient’s activities, behaviors, and physiological parameters 
without inconveniences to everyday life [82]. This can be achieved 
by embedding small objects interacting with the subject into the 
ambient environment, for which the design and usability [91], 
especially for long-term monitoring, have been considered. There 
are some devices that are perceived as more invasive than others. 
For instance, special measures are taken when using cameras 
regarding sensor selection and sensor placement [82]. 

4.4 Incorporation 

into Clinical Care 

Although there is great potential for connected devices and sensors 
to prevent, early diagnose, monitor, and create tailored help for 
patients suffering from brain diseases, there is still a gap to fill to 
drive transformational changes in health. Besides the challenges 
mentioned in this section, significant barriers to clinical adoption 
include the lack of evidence in support of clinical use, the rapid 
technological development and obsolescence, and the lack of reim-
bursement models. These problems are often highlighted in pre-
liminary reports of government proposals [92–94] and 
publications related to mobile health challenges [95, 96]. 

There is a need for an extensive collection of real-world patient-
generated data to reinforce clinical evidence that will change health-
care delivery. To date, there is a limitation due to an underpowered 
number of available pilot datasets that make the comparability of 
studies difficult and therefore the adoption of these new technolo-
gies into the clinical field. Indeed, sensor datasets come mainly from 
actigraphy and are not as numerous as available neuroimaging, 
MEG, or EEG datasets. 

Opposite to the few large patient-generated evidence, the num-
ber of solutions for connected devices and sensors with added 
features continues to grow every year. This rapid development of 
technologies represents a challenge to clinicians who might per-
ceive difficulty in the feasibility and scalability of real-word imple-
mentations within the clinical workflow, especially since it is 
noticeable that devices become obsolete, outdated, or no longer 
useful very quickly. Another negative impact of the higher number



of alternatives in the market is that too much choice can be over-
whelming. In clinical trials and research, it can be challenging to 
choose a technical solution when there is little or no clinical evi-
dence and when the features proposed differ significantly between 
solutions. Even with well-established companies, for the consu-
mers, there is no guarantee that a product or its support will not 
be discontinued in the short term or that the product will not be 
rapidly replaced with a newer model. At the same time, ensuring 
that the chosen product will be well integrated with other products 
(e.g., compatible bricks between other sensors, software, operating 
systems, and processing units) is challenging. These factors add up 
to the paradox of choice [97], and it is a known consequence of 
choice overload. 
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With newer connected objects and sensors that appear in the 
market every month, there is also a rise in their associated mobile 
applications available. Among these mobile applications, the most 
popular categories are sports and fitness activity trackers, diet and 
nutrition, weight loss coaching, stress reduction and relaxation, 
menstrual period and pregnancy tracking, hospital or medical 
appointment tracking, patient community, and telemedicine 
[98]. Most of these applications are not regulated medical health 
solutions that work with certified medical devices. They are dedi-
cated to consumers only (not intended for collaboration between 
patients and healthcare professionals) and are usually considered or 
displayed as well-being apps. In this sense, while various govern-
ments worldwide have opted for different lines of action regarding 
the consideration of connected objects and sensors in their health 
programs, the appropriate reimbursement models in place are far 
from being well integrated into regulatory norms. Take the exam-
ple of France, where connected objects are rarely reimbursed by 
social security. For a product to be prescribed by a physician, it must 
be considered a regulatorily approved medical device, i.e., be 
registered in an official list of medical services and products. This 
list also establishes the proper use of the device, the support cost, 
the characteristics of the product, and the number of possible 
prescription renewals. The heavy administrative burden required 
to get registered discourages potential players from requesting 
medical approval. In particular, the product has to meet several 
compliance rules of the High Authority of Health (HAS), including 
the proven good performance of the connected object, the reliabil-
ity of the medical data transmitted, and the respect and protection 
of personal and confidential data. 

Even though many available connected objects and their 
mobile applications are not regulated medical health solutions, 
their rapid spread and adoption among the public are starting to 
pave the way for motivating future democratization and integration 
of these devices in public health policies.
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5 Discussion 

With the amount of innovation and development of smart devices 
and connected objects, together with the widespread of ML algo-
rithms implemented in faster processing units, we are now many 
steps closer to having a better understanding of the underlying 
neural mechanisms of brain disorders with the hope to better 
intervene at different stages: by preventing health decline, by early 
and more accurately diagnosing, and by helping to better treat and 
monitor patients. 

In this chapter, we presented the different types of data that one 
can gather with these devices according to the passive or active role 
that the user takes in their collection. Many of them are now widely 
adopted by modern society and used for self-monitoring (e.g., 
fitness trackers containing IMUs) or in smart home settings (e.g., 
virtual assistants and presence detectors). When these devices are 
used together, they represent an opportunity for data fusion allow-
ing the joint analysis of multiple datasets that provide an enhanced 
complementary view of the phenomenon of interest (e.g., detect-
ing a compulsive behavior like handwashing by combining inertial 
and acoustic data from a smartwatch). Without a doubt, some brain 
disorders are better suited for sensor-based assessments, like PD, 
because of their prominent motor symptoms, unlike other brain 
disorders whose symptom assessment requires the combination of 
close behavior observation and access to mental insight (e.g., mood 
disorders). In the second case, combining sensor data would reduce 
uncertainty in monitoring and diagnosing, especially when the 
samples are taken continuously in an ecological manner. 

Despite the promising results obtained with these intelligent 
systems, several conditions need to be addressed before a lab-made 
application becomes integrated into the clinical routine and in an 
unsupervised domestic environment. Indeed, most publications do 
not reach the final phase to be considered as medical devices. 
Concerning the use of sensors and devices for data collection, a 
series of considerations to be regarded was presented in Subheading 
4. Even though this list could be extended, overall, the main goal 
remains to assure reproducibility and unbiased collection of high-
quality data since ML models can only go so far as the data they 
rely on. 

An exciting, promising extension of the capabilities of smart 
devices and connected objects is their integration in a closed-loop 
setting, where the devices serve as real-time continuous monitoring 
tools that respond to events of interest to treat or intervene on 
demand and in real time. Indeed, this is a promising approach 
because of the advantage of early intervention.
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Furthermore, we are currently experiencing a new medical 
revolution with new sensors. Besides what has been presented 
here, much effort has been put into developing wearable biosen-
sors. These are sensing devices that recognize biological elements 
(e.g., enzymes, antibodies, and cell receptors), the most known 
example being glucose monitoring devices. These bioreceptor 
units are still in their infancy in terms of use and acceptance by 
the neuroscientific field and medical community in general, but we 
anticipate that their use and development will continue to grow in 
the brain disorder research field as smart devices and connected 
objects have. 

Finally, as data and better processing techniques keep increas-
ing, more collaborations between engineers, researchers, and clin-
icians are formed to contribute to the field of brain disorders 
positively. We believe that, in the foreseeable future, the rapid 
evolution of the presented technologies, their use, and their adop-
tion will be key to revolutionizing and addressing the challenges of 
the traditional medical approach regarding brain disorders. 
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44. Brassey J, Güntner A, Isaak K, Silberzahn T 
(2021) Using digital tech to support employ-
ees’ mental health and resilience. McKinsey & 
Company 

45. Deady M et al (2022) Preventing depression 
using a smartphone app: a randomized con-
trolled trial. Psychol Med 52(3):457–466. 
h t t p s : //  d o i . o r g / 1 0 . 1 0 1 7 /  
S0033291720002081 

46. Vogels EA (2020) About one-in-five Ameri-
cans use a smart watch or fitness tracker. Pew 
Research Center. 09 Jan 2020. https://www. 
pewresearch.org/fact-tank/2020/01/09/ 
about-one-in-five-americans-use-a-smart-
watch-or-fitness-tracker/ (accessed 06 Oct 
2022). 

47. Donev R, Kolev M, Millet B, Thome J (2009) 
Neuronal death in Alzheimer’s disease and 
therapeutic opportunities. J Cell Mol Med 
13(11–12):4329–4348. https://doi.org/10. 
1111/j.1582-4934.2009.00889.x 

48. Michel PP, Hirsch EC, Hunot S (2016) 
Understanding dopaminergic cell death path-
ways in Parkinson disease. Neuron 90(4): 
675–691. https://doi.org/10.1016/j.neu 
ron.2016.03.038 

49. Boillée S, Vande Velde C, Cleveland DW 
(2006) ALS: a disease of motor neurons and 
their nonneuronal neighbors. Neuron 52(1): 
39–59. https://doi.org/10.1016/j.neuron. 
2006.09.018 

50. Lan K-C, Shih W-Y (2014) Early diagnosis of 
Parkinson’s disease using a smartphone. Proce-
dia Comput Sci 34:305–312. https://doi.org/ 
10.1016/j.procs.2014.07.028

https://doi.org/10.1109/PERCOMW.2019.8730876
https://doi.org/10.1109/PERCOMW.2019.8730876
https://doi.org/10.3390/s17122864
https://doi.org/10.1109/BIBE.2019.00173
https://doi.org/10.1109/BIBE.2019.00173
https://doi.org/10.1038/s41598-019-49723-8
https://doi.org/10.1038/s41598-019-49723-8
https://doi.org/10.1145/1555816.1555832
https://doi.org/10.1145/1555816.1555832
https://doi.org/10.1038/s41598-022-09440-1
https://doi.org/10.1038/s41598-022-09440-1
https://doi.org/10.1038/s41562-021-01275-6
https://doi.org/10.1038/s41562-021-01275-6
https://doi.org/10.1038/s41746-019-0084-2
https://doi.org/10.1038/s41746-019-0084-2
https://doi.org/10.3390/s20092713
https://doi.org/10.1111/ane.13492
https://doi.org/10.1111/ane.13492
https://doi.org/10.2196/rehab.7805
https://doi.org/10.2196/rehab.7805
https://doi.org/10.1038/tp.2017.25
https://doi.org/10.1038/tp.2017.25
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://doi.org/10.2196/21283
https://doi.org/10.2196/21283
https://doi.org/10.1017/S0033291720002081
https://doi.org/10.1017/S0033291720002081
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://doi.org/10.1111/j.1582-4934.2009.00889.x
https://doi.org/10.1111/j.1582-4934.2009.00889.x
https://doi.org/10.1016/j.neuron.2016.03.038
https://doi.org/10.1016/j.neuron.2016.03.038
https://doi.org/10.1016/j.neuron.2006.09.018
https://doi.org/10.1016/j.neuron.2006.09.018
https://doi.org/10.1016/j.procs.2014.07.028
https://doi.org/10.1016/j.procs.2014.07.028


386 Sirenia Lizbeth Mondragón-González et al.
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Chapter 13 

Medical Image Segmentation Using Deep Learning 

Han Liu, Dewei Hu, Hao Li, and Ipek Oguz 

Abstract 

Image segmentation plays an essential role in medical image analysis as it provides automated delineation of 
specific anatomical structures of interest and further enables many downstream tasks such as shape analysis 
and volume measurement. In particular, the rapid development of deep learning techniques in recent years 
has had a substantial impact in boosting the performance of segmentation algorithms by efficiently 
leveraging large amounts of labeled data to optimize complex models (supervised learning). However, 
the difficulty of obtaining manual labels for training can be a major obstacle for the implementation of 
learning-based methods for medical images. To address this problem, researchers have investigated many 
semi-supervised and unsupervised learning techniques to relax the labeling requirements. In this chapter, 
we present the basic ideas for deep learning-based segmentation as well as some current state-of-the-art 
approaches, organized by supervision type. Our goal is to provide the reader with some possible solutions 
for model selection, training strategies, and data manipulation given a specific segmentation task and 
dataset. 

Key words Image segmentation, Deep learning, Semi-supervised method, Unsupervised method, 
Medical image analysis 

1 Introduction 

Image segmentation is an essential and challenging task in medical 
image analysis. Its goal is to delineate the object boundaries by 
assigning each pixel/voxel a label, where pixels/voxels with the 
same labels share similar properties or belong to the same class. In 
the context of neuroimaging, robust and accurate image segmenta-
tion can effectively help neurosurgeons and doctors, e.g., measure 
the size of brain lesions or quantitatively evaluate the volume 
changes of brain tissue throughout treatment or surgery. For 
instance, quantitative measurements of subcortical and cortical 
structures are critical for studies of several neurodegenerative dis-
eases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
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Automatic segmentation of multiple sclerosis (MS) lesions is essen-
tial for the quantitative analysis of disease progression. The delinea-
tion of acute ischemic stroke lesions is crucial for increasing the 
likelihood of good clinical outcomes for the patient. While manual 
delineation of object boundaries is a tedious and time-consuming 
task, automatic segmentation algorithms can significantly reduce 
the workload of clinicians and increase the objectivity and repro-
ducibility of measurements. To be specific, the segmentation task in 
medical images usually refers to semantic segmentation. For exam-
ple, for paired brain structures (e.g., left and right pairs of subcor-
tical structures), the instances of the same category will not be 
specified in the segmentation, in contrast to instance and panoptic 
segmentation.
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There are many neuroimaging modalities such as magnetic 
resonance imaging, computed tomography, transcranial Doppler, 
and positron emission tomography. Moreover, neuroimaging stud-
ies often contain multimodal and/or longitudinal data, which can 
help improve our understanding of the anatomical and functional 
properties of the brain by utilizing complementary physical and 
physiological sensitivities. In this chapter, we first present some 
background information to help readers get familiar with the fun-
damental elements used in deep learning-based segmentation fra-
meworks. Next, we discuss the learning-based segmentation 
approaches in the context of different supervision settings, along 
with some real-world applications. 

2 Methods 

2.1 Fundamentals Convolutional neural networks (CNNs) dominated the medical 
image segmentation field in recent years. CNNs leverage informa-
tion from images to predict segmentations by hierarchically 
learning parameters with linear and nonlinear layers. We begin by 
discussing some popular models and their architectures: (1) U-Net 
[1], (2) V-Net [2], (3) attention U-Net [3, 4], and (4) nnU-Net 
[5, 6]. 

2.1.1 Common Network 

Architectures for 

Segmentation Tasks 

U-Net is the most popular model for medical image segmen-
tation, and its architecture is shown in Fig. 1. The network has two 
main parts: the encoder and the decoder, with skip connections in 
between. The encoder consists of two repeated 3 ×3 convolutions 
(conv) without zero-padding, a rectified linear unit (ReLU) activa-
tion function. A max-pooling operation with stride 2 is used for 
connecting different levels or downsampling. We note that the 
channel number of feature maps is doubled at each subsequent 
level. In the symmetric decoder counterpart, a 2 ×2 
up-convolution (up-conv) is used not only for upsampling but 
also for reducing the number of channels by half. The center-
cropped feature map from the encoder is delivered to the decoder



via skip connections at each level to preserve the low-level informa-
tion. The cropping is needed to maintain the same size between 
feature maps for concatenation. Next, two repeated 3×3 conv and 
ReLU are applied. Lastly, a 1 ×1 conv is employed for converting 
the channel number to the desired number of classes C. In this 
configuration, the network takes a 2D image as input and produces 
a segmentation map with C classes. Later, a 3D U-Net [7] was 
introduced for volumetric segmentation that learns from volumet-
ric images. 
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Fig. 1 U-Net architecture. Blue boxes are the feature maps. Channel numbers are denoted above each box, 
while the tensor sizes are denoted on the lower left. White boxes show the concatenations and arrows indicate 
various operations. ©2015 Springer Nature. Reprinted, with permission, from [1] 

V-Net is another popular model for volumetric medical image 
segmentation. Based upon the overall structure of the U-Net, the 
V-Net [2] leverages the residual block [8] to replace the regular 
conv, and the convolution kernel size is enlarged to 5 ×5 ×5. The 
residual blocks can be formulated as follows: (1) the input of a 
residual block is processed by conv layers and nonlinearities, and 
(2) the input is added to the output from the last conv layer or 
nonlinearity of the residual block. It consists of a fully convolutional 
neural network trained end-to-end. 

Attention U-Net is a model based on U-Net with attention 
gates (AG) in the skip connections (Fig. 2). The attention gates can 
learn to focus on the segmentation target. The salient features are



2.1.2 Attention Modules

emphasized with larger weights from the CNN during the training. 
This leads the model to achieve higher accuracy on target structures 
with various shapes and sizes. In addition, AGs are easy to integrate 
into the existing popular CNN architectures. The details of the 
attention mechanism and attention gates are discussed in Subhead-
ing 2.1.2. More details on attention can also be found in Chap. 6. 
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Fig. 2 Attention U-Net architecture. Hi, Wi, and Di represent the height, width, and depth of the feature map at 
the ith layer of the U-Net structure. Fi indicates the number of feature map channels. Replicated from [4] 
(CC BY 4.0) 

nnU-Net is a medical image segmentation pipeline that can 
achieve a self-configuring network architecture based on the differ-
ent datasets and tasks it is given, without any manual intervention. 
According to the dataset and task, nnU-Net will generate one of 
(1) 2D U-Net, (2) 3D U-Net, and (3) cascaded 3D U-Net for the 
segmentation network. For cascaded 3D U-Net, the first network 
takes downsampled images as inputs, and the second network uses 
the image at full resolution as input to refine the segmentation 
accuracy. The nnU-Net is often used as a baseline method in 
many medical image segmentation challenges, because of its robust 
performance across various target structures and image properties. 
The details of nnU-Net can be found in [6]. 

Although the U-Net architecture described in Subheading 2.1.1 
has achieved remarkable success in medical image segmentation, 
the downsampling steps included in the encoder path can induce 
poor segmentation accuracy for small-scale anatomical structures 
(e.g., tumors and lesions). To tackle this issue, the attention mod-
ules are often applied so that the salient features are enhanced by 
higher weights, while the less important features are ignored. This 
subsection will introduce two types of attention mechanisms: addi-
tive attention and multiplicative attention.
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Additive Attention As discussed in the previous section, U-Net is 
the most popular backbone for medical image analysis tasks. The 
downsampling enables it to work on features of different scales. 
Suppose we are working on a 3D segmentation problem. The 
output of the U-Net encoder at the lth level is then a tensor Xl of 
size [Fl, Hl, Wl, Dl], where Hl, Wl, Dl denote the height, width, and 
depth of the feature map, respectively, and Fl represents the length 
of the feature vectors. We regard the tensor as a set of feature 
vectors x l 

i: 

X l = fx l 
ig

n 

i =1, x l 
i∈F l ð1Þ 

where n=Hl ×Wl ×Dl. The attention gate assigns a weight αi to 
each vector xi so that the model can concentrate on salient features. 
Ideally, important features are assigned higher weight that will not 
vanish when downsampling. The output of the attention gate will 
be a collection of weighted feature vectors: 

X̂ 
l = αl i � x l 

i 
n 

i =1 
, αl i∈ ð2Þ 

These weights αi, also known as gating coefficients, are deter-
mined by an attention mechanism that delineates the correlation 
between the feature vector x and a gating signal g. As shown in 
Fig. 3, for all x l 

i∈X l , we compute an additive attention with regard 
to a corresponding gi by 

s l att =ψ⊤ σ1 W
⊤ 
x x

l 
i þ W ⊤ 

g g i þ bg þ bψ ð3Þ 

where bg and bψ represent the bias and Wx, Wg, ψ are linear 
transformations. The output dimension of the linear transforma-
tion is F int where Fint is a self-defined integer. Denote these

Fig. 3 The structure of the additive attention gate. x l i is the ith feature vector at the lth level of the U-Net 
structure and gi is the corresponding gating signal. Wx and Wg are the linear transformation matrices applied 
to x l i and gi, respectively. The sum of the resultant vectors will be activated by ReLU and then its dot product 
with a vector ψ is computed. The sigmoid function is used to normalize the resulting scalar to [0, 1] range, 
which is the gating coefficient αi. The weighted feature vector is denoted by x l i . Adapted from [4] (CC BY 4.0)



learnable parameters by a set Θatt. The coefficients s
l 
att are normal-

ized to [0, 1] by a sigmoid function σ2:
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αl i = σ2 s l att ðx l 
i, g i;Θatt Þ ð4Þ 

Basically, the attention gate is thus a linear combination of the 
feature vector and the gating signal. In practical applications 
[3, 4, 9], the gating signal is chosen to be the coarser feature 
space as indicated in Fig. 2. In other words, for input feature x l 

i, 
the corresponding gating signal is defined by 

g i = x lþ1 
i ð5Þ 

Note that an extra downsampling step should be applied on Xl so 
that it has the same shape as Xl+1 . In experiments to segment brain 
tumor on MRI datasets [9] and the pancreas on CT abdominal 
datasets [4], AG was shown to improve the segmentation perfor-
mance for diverse types of model backbones including U-Net and 
Residual U-Net. 

Multiplicative Attention Similar to additive attention, the multi-
plicative mechanism can also be leveraged to compute the impor-
tance of feature vectors. The basic idea of multiplicative attention 
was first introduced in machine translation [11]. Evolving from 
that, Vaswani et al. proposed a groundbreaking transformer archi-
tecture [10] which has been widely implemented in image proces-
sing [12, 13]. In recent research, transformers have been 
incorporated with the U-Net structure [14, 15] to improve medical 
image segmentation performance. 

The attention function is described by matching a query vector 
q with a set of key vectors {k1, k2, ..., kn} to obtain the weights of the 
corresponding values {v1, v2, ..., vn}. Figure 4a shows an example 
for n=4. Suppose the vectors q, ki, and vi have the same dimension 

d . Then, the attention function is 

s i = 
q⊤ki 

d
p ð6Þ 

We note that the dot product can have large magnitude when d is 
large, which can cause gradient vanishing problem in the softmax 
function; si is normalized by the size of the vector to alleviate this. 
Equation 13.6 is a commonly used attention function in transfor-
mers. There are some other options including si= q⊤ ki and si= 
q⊤ Wki where W is a learnable parameter. Generally, the attention 
value si is determined by the similarity between the query and the 
key. Similar to the additive attention gate, these attention values are 
normalized to [0, 1] by a softmax function σ3: 

αi = σ3ðs1, :::, snÞ= 
esi 
n 
j =1e

sj ð7Þ



2.1.3 Loss Functions for

Segmentation Tasks
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Fig. 4 (a) The dot-product attention gate. ki are the keys and q is the query vector. si are the outputs of the 
attention function. By using the softmax σ3, the attention coefficients αi are normalized to [0, 1] range. The 
output will be the weighted sum of values vi. (b) The multi-head attention is implemented in transformers. The 
input values, keys, and query are linearly projected to different spaces. Then the dot-product attention is 
applied on each space. The resultant vectors are concatenated by channel and passed through another linear 
transformation. Image (b) is adapted from [10]. Permission to reuse was kindly granted by the authors 

The output of the attention gate will be v̂= n 
i =1αivi. In the 

transformer application, the values, keys, and queries are usually 
linearly projected into several different spaces, and then the atten-
tion gate is applied in each space as illustrated in Fig. 4b. This 
approach is called multi-head attention; it enables the model to 
jointly attend to information from different subspaces. 

In practice, the value vi is often defined by the same feature 
vector as the key ki. This is why the module is also called multi-head 
self-attention (MSA). Chen et al. proposed the TransUNet [15], 
which leverages this module in the bottleneck of a U-Net as shown 
in Fig. 5. They argue that such a combination of a U-Net and the 
transformer achieves superior performance in multi-organ segmen-
tation tasks. 

This section summarizes some of the most widely used loss func-
tions for medical image segmentation (Fig. 6) and describes their 
usage in different scenarios. A complementary reading material for 
an extensive list of loss functions can be found in [16, 17]. In the 
following, the predicted probability by the segmentation model 
and the ground truth at the ith pixel/voxel are denoted as pi and 
gi, respectively. N is the number of voxels in the image.
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Fig. 5 The architecture of TransUNet. The transformer layer represented by the yellow box shows the 
application of multi-head attention (MSA). MLP represents the multilayer perceptron. In general, the feature 
vectors in the bottleneck of the U-Net are set as the input to the stack of n transformer layers. As these layers 
will not change the dimension of the features, they are easy to be implemented and will not affect other parts 
of the U-Net model. Replicated from [15] (CC BY 4.0) 

Fig. 6 Loss functions for medical image segmentation. WCE: weighted cross-entropy loss. DPCE: distance 
map penalized cross-entropy loss. ELL: exponential logarithmic loss. SS: sensitivity-specificity loss. GD: 
generalized Dice loss. pGD: penalty loss. Asym: asymmetric similarity loss. IoU: intersection over union 
loss. HD: Hausdorff distance loss. ©2021 Elsevier. Reprinted, with permission, from [16]
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Cross-Entropy Loss Cross-entropy (CE) is defined as a measure 
of the difference between two probability distributions for a given 
random variable or set of events. This loss function is used for pixel-
wise classification in segmentation tasks: 

ℓCE = -
N 

i 

K 

k 

yk i logðpk i Þ ð8Þ 

where N is the number of voxels, K is the number of classes, yk i is a 
binary indicator that shows whether k is the correct class, and pk i is 
the predicted probability for voxel i to be in kth class. 

Weighted Cross-Entropy Loss Weighted cross-entropy (WCE) 
loss is a variant of the cross-entropy loss to address the class imbal-
ance issue. Specifically, class-specific coefficients are used to weigh 
each class differently, as follows: 

ℓWCE  = -
N 

i 

K 

k 

wyk y
k 
i logðpk i Þ ð9Þ 

Here, wyk is the coefficient for the kth class. Suppose there are 
5 positive samples and 12 negative samples in a binary classification 
training set. By setting w0=1 and w1=2, the loss would be as if 
there were ten positive samples. 

Focal Loss Focal loss was proposed to apply a modulating term to 
the CE loss to focus on hard negative samples. It is a dynamically 
scaled CE loss, where the scaling factor decays to zero as confidence 
in the correct class increases. Intuitively, this scaling factor can 
automatically down-weight the contribution of easy examples dur-
ing training and rapidly focus the model on hard examples: 

ℓFocal  = -
N 

i 

αið1- piÞγ logðpiÞ ð10Þ 

Here, αi is the weighing factor to address the class imbalance and γ 
is a tunable focusing parameter (γ >0). 

Dice Loss The Dice coefficient is a widely used metric in the 
computer vision community to calculate the similarity between 
two binary segmentations. In 2016, this metric was adapted as a 
loss function for 3D medical image segmentation [2]: 

ℓDice =1-
2 N 

i pigi þ 1 
N 
i ðpi þ giÞ þ  1 ð11Þ 

Generalized Dice Loss Generalized Dice loss (GDL) [18] was 
proposed to reduce the well-known correlation between region 
size and Dice score:
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LGDL =1-2 
2 
l =1wl 

N 
i pigi 

2 
l =1wl 

N 
i pi þ gi 

ð12Þ 

Here wl = 1 

ð N 

i 
g liÞ 

2 is used to provide invariance to different region 

sizes, i.e., the contribution of each region is corrected by the inverse 
of its volume. 

Tversky Loss The Tversky loss [19] is a generalization of the Dice 
loss by adding two weighting factors α and β to the FP (false 
positive) and FN (false negative) terms. The Tversky loss is defined 
as 

LTversky  =1-
N 
i pigi 

N 
i pigi þ αð1- giÞpi þ βð1- piÞgi 

ð13Þ 

Recently, a comprehensive study [16] of loss functions on 
medical image segmentation tasks shows that using Dice-related 
compound loss functions, e.g., Dice loss + CE loss, is a better 
choice for new segmentation tasks, though none of losses can 
consistently achieve the best performance on multiple segmenta-
tion tasks. Therefore, for a new segmentation task, we recommend 
the readers to start with Dice + CE loss, which is also the default 
loss function in one of the most popular medical image segmenta-
tion frameworks, nnU-Net [6]. 

Finally, note that other loss functions have also been proposed 
to introduce prior knowledge about size, topology, or shape, for 
instance [20]. 

2.1.4 Early Stopping Given a loss function, a simple strategy for training is to stop the 
training process once a predetermined maximum number of itera-
tions are reached. However, too few iterations would lead to an 
under-fitting problem, while over-fitting may occur with too many 
iterations. “Early stopping” is a potential method to avoid such 
issues. The training set is split into training and validation sets when 
using the early stopping condition. The early stopping condition is 
based on the performance on the validation set. For example, if the 
validation performance (e.g., average Dice score) does not increase 
for a number of iterations, the early stopping condition is triggered. 
In this situation, the best model with the highest performance on 
the validation set is saved and used for inference. Of course, one 
should not report the validation performance for the validation of 
the model. Instead, one should use a separate test set which is kept 
unseen during training for an unbiased evaluation.
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2.1.5 Evaluation Metrics 

for Segmentation Tasks 

Various metrics can quantitatively evaluate different aspects of a 
segmentation algorithm. In a binary segmentation task, a true 
positive (TP) indicates that a pixel in the target object is correctly 
predicted as target. Similarly, a true negative (TN) represents a 
background pixel that is correctly identified as background. On 
the other hand, a false positive (FP) and a false negative 
(FN) refer to a wrong prediction for pixels in the target and 
background, respectively. Most of the evaluation metrics are based 
upon the number of pixels in these four categories. 

Sensitivity measures the completeness of positive predictions 
with regard to the positive ground truth (TP + FN). It thus shows 
the model’s ability to identify target pixels. It is also referred to as 
recall or true-positive rate (TPR). It is defined as 

Sensitivity= 
TP 

TPþ FN ð14Þ 

As the negative counterpart of sensitivity, specificity describes 
the proportion of negative pixels that are correctly predicted. It is 
also referred to as true-negative rate (TNR). It is defined as 

Specificity= 
TN 

TNþ FP ð15Þ 

Specificity can be difficult to interpret because TN is usually very 
large. It can even be misleading as TN can be made arbitrarily large 
by changing the field of view. This is due to the fact that the metric 
is computed over pixels and not over patients/controls like in 
classification tasks (the number of controls is fixed). In order to 
provide meaningful measures of specificity, it is preferable to define 
a background region that has an anatomical definition (for instance, 
the brain mask from which the target is subtracted) and does not 
include the full field of view of the image. 

Positive predictive value (PPV), also known as precision, mea-
sures the correct rate among pixels that are predicted as positives: 

PPV = 
TP 

TPþ FP ð16Þ 

For clinical interpretation of segmentation, it is often useful to have 
a more direct estimation of false negatives. To that purpose, one can 
report the false discovery rate: 

FDR =1-PPV = 
FP 

TPþ FP ð17Þ 

which is redundant with PPV but may be more intuitive for clin-
icians in the context of segmentation. 

Dice similarity coefficient (DSC) measures the proportion of 
spatial overlap between the ground truth (TP+FN) and the pre-
dicted positives (TP+FP). Dice similarity is the same as the F1 score, 
which computes the harmonic mean of sensitivity and PPV:
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DSC= 
2TP 

2TPþ FNþ FP ð18Þ 

Accuracy is the ratio of correct predictions: 

Accuracy= 
TPþ TN 

TPþ TNþ FPþ FN ð19Þ 

As was the case in specificity, we note that there are many segmen-
tation tasks where the target anatomical structure is very small (e.g., 
subcortical structures); hence, the foreground and background 
have unbalanced number of pixels. In this case, accuracy can be 
misleading and display high values for poor segmentations. More-
over, as for the case of specificity, one needs to define a background 
region in order for TN, and thus accuracy, not to vary arbitrarily 
with the field of view. 

The Jaccard index (JI), also known as the intersection over 
union (IoU), measures the percentage of overlap between the 
ground truth and positive prediction relative to the union of 
the two: 

JI= 
TP 

TPþ FPþ FN ð20Þ 

JI is closely related to the DSC. However, it is always lower than the 
DSC and tends to penalize more severely poor segmentations. 

There are also distance measures of segmentation accuracy 
which are especially relevant when the accuracy of the boundary is 
critical. These include the average symmetric surface distance 
(ASSD) and the Hausdorff distance (HD). Suppose the surface of 
the ground truth and the predicted segmentation are S and S ′ , 
respectively. For any point p∈S, the distance from p to surface S ′ is 
defined by the minimum Euclidean distance: 

dðp, S ′ Þ= min 
p ′∈S ′ 

kp- p ′ k2 ð21Þ 
Then the average distance between S and S ′ is given by averaging 
over S: 

dðS, S ′ Þ= 
1 
NS 

N S 

i =1 

dðpi, S ′ Þ ð22Þ 

Note that dðS, S ′ Þ≠ dðS ′ , SÞ. Therefore, both directions are 
included in ASSD so that the mean of the surface distance is 
symmetric: 

ASSD= 
1 

NS þ NS ′ 

NS 

i =1 

dðpi, S ′ Þ þ  
NS ′ 

j =1 

dðp0 j , SÞ ð23Þ 

The ASSD tends to obscure localized errors when the segmen-
tation is decent at most of the points on the boundary. The Haus-
dorff distance (HD) can better represent the error, by, instead of
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computing the average distance to a surface, computing the maxi-
mum distance. To that purpose, one defines 
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hðS, S ′ Þ= max 
p∈S 

dðp, S ′ Þ ð24Þ 
Note that, again, hðS, S ′ Þ≠ hðS ′ , SÞ. Therefore, both direc-

tions are included in HD so that the distance is symmetric: 

HD= max ðhðS, S ′ Þ, hðS ′ , SÞÞ ð25Þ 
HD is more sensitive than ASSD to localized errors. However, it 
can be too sensitive to outliers. Hence, using the 95th percentile 
rather than the maximum value for computing hðS, S ′ Þ is a good 
option to alleviate the problem. 

Moreover, there are some volume-based measurements that 
focus on correctly estimating the volume of the target structure, 
which is essential for clinicians since the size of the tissue is an 
important marker in many diseases. Denote the ground truth vol-
ume as V while the prediction volume as V′ . There are a few 
expressions for the volume difference. (1) The unsigned volume 
difference: |V′-V |. (2) The normalized unsigned difference: 
jV ′ -V j 

V . (3) The normalized signed difference: V ′ -V 
V . (4) Pearson’s 

correlation coefficient between the ground truth volumes and the 

predicted volumes: 
CovðV ,V ′ Þ 

VarðV Þ 
p

VarðV ′ Þ 
p . Nevertheless, note that, while 

they are useful, these volume-based metrics can also be misleading 
(a segmentation could be wrongly placed while providing a reason-
able volume estimate) when used in isolation. They thus need to be 
combined with overlap metrics such as Dice. 

Finally, some recent guidelines on validation of different image 
analysis tasks, including segmentation, were published in [21]. 

Image pre-processing is a set of sequential steps taken to improve 
the data and prepare it for subsequent analysis. Appropriate image 
pre-processing steps often significantly improve the quality of fea-
ture extraction and the downstream image analysis. For deep 
learning methods, they can also help the training process converge 
faster and achieve better model performance. The following sec-
tions will discuss some of the most widely used image 
pre-processing techniques. 

Skull Stripping Many neuroimaging applications often require 
preliminary processing to isolate the brain from extracranial or 
non-brain tissues from MRI scans, commonly referred to as skull 
stripping. Skull stripping helps reduce the variability in datasets and 
is a critical step prior to many other image processing algorithms 
such as registration, segmentation, or cortical surface reconstruc-
tion. In literature, skull stripping methods are broadly classified 
into five categories: mathematical morphology-based methods



[22], intensity-based methods [23], deformable surface-based 
methods [24], atlas-based methods [25], and hybrid methods 
[26]. Recently, deep learning-based skull stripping methods have 
been proposed [27–32] to improve the accuracy and efficiency. A 
detailed discussion of the merits and limitations of various skull 
stripping techniques can be found in [33]. 
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Bias Field Correction The bias field refers to a low-frequency and 
very smooth signal that corrupts MR images [34]. These artifacts, 
often described as shading or bias, can be generated by imperfec-
tions in the field coils or by magnetic susceptibility changes at the 
boundaries between anatomical tissue and air. This bias field can 
significantly degrade the performance of image processing algo-
rithms that use the image intensity values. Therefore, a 
pre-processing step is usually required to remove the bias field. 
The N4 bias field correction algorithm [35] is one of the most 
widely used methods for this purpose, as it assumes a simple para-
metric model and does not require tissue classification. 

Data Harmonization Another challenge of MRI data is that it 
suffers from significant intensity variability due to several factors 
such as variations in hardware, reconstruction algorithms, and 
acquisition settings. This is also due to the fact that most MR 
imaging sequences (e.g., T1-weighted, T2-weighted) are not quan-
titative (the voxel values can only be interpreted relative to each 
other). Such differences can often be pronounced in multisite 
studies, among others. This variability can be problematic because 
intensity-based models may not generalize well to such heteroge-
neous datasets. Any resulting data can suffer from significant biases 
caused by acquisition details rather than anatomical differences. It is 
thus desirable to have robust data harmonization methods to 
reduce unwanted variability across sites, scanners, and acquisition 
protocols. One of the popular MRI harmonization methods is a 
statistical approach named the combined association test (comBat). 
This method was shown to exhibit a good capacity to remove 
unwanted site biases while preserving the desired biological infor-
mation [36]. Another popular method is a deep learning-based 
image-to-image translation model, CycleGAN [37]. The Cycle-
GAN and its variants do not require paired data, and thus the 
training process is unsupervised in the context of data 
harmonization. 

Intensity Normalization Intensity normalization is another 
important step to ensure comparability across images. In this sec-
tion, we discuss common intensity normalization techniques. 
Readers can refer to the work [38] in which the author explores 
the impact of different intensity normalization techniques on MR 
image synthesis.
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Z-Score Normalization The basic Z-score normalization on the 
entire image is also called the whole-brain normalization. Given the 
mean μ and standard deviation σ from all voxels in a brain mask B, 
Z-score normalization can be performed for all voxels in image I as 
follows: 

I z- scoreðxÞ= 
I ðxÞ- μ 

σ
ð26Þ 

While straightforward to implement, whole-brain normalization is 
known to be sensitive to outliers. 

White Stripe Normalization White stripe normalization [39] is  
based on the parameters obtained from a sample of normal-
appearing white matter (NAWM) and is thus robust to local inten-
sity outliers such as lesions. The NAWM is obtained by smoothing 
the histogram of the image I and selecting the mode of the distri-
bution. For T1-weighted MRI, the “white stripe” is defined as the 
10% of intensity values around the mean of NAWM μ. Let F(x) be  
the CDF of the specific MR image I(x) inside the brain mask B, and 
τ=5%. The white stripe Ωτ is defined as 

Ωτ = fI ðxÞjF -1ðF ðxÞ- τÞ< I ðxÞ<F -1ðF ðxÞ þ  τÞg ð27Þ 
Then let στ be the sample standard deviation associated withΩτ. 

The white stripe normalized image is 

I wsðxÞ= 
I ðxÞ- μ 

στ 
ð28Þ 

Compared to the whole-brain normalization, the white stripe 
normalization may work better and have better interpretation, 
especially for applications where intensity outliers such as lesions 
are expected. 

Segmentation-Based Normalization Segmentation-based nor-
malization uses a segmentation of a specified tissue, such as the 
cerebrospinal fluid (CSF), gray matter (GM), or white matter 
(WM), to normalize the entire image to the mean of the tissue. 
Let T⊂B be the tissue mask for image I. The tissue mean can be 
calculated as μ= 1 

jT j t∈T I ðtÞ and the segmentation-based normal-
ized image is expressed as 

I segðxÞ= 
cI ðxÞ 
μ

ð29Þ 

where c∈þ is a constant. 

Kernel Density Estimate Normalization Kernel density estimate 
(KDE) normalization estimates the empirical probability density 
function of the intensities of the entire image I over the brain



mask B via kernel density estimation. The KDE of the probability 
density function for the image intensities can be expressed as 
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p̂ðxÞ= 
1 

HWD× δ 

HWD 

i =1 

K 
x - xi 

δ
ð30Þ 

where H, W, D are the image sizes of I, x is an intensity value, K is 
the kernel, and δ is the bandwidth parameter which scales the 
kernel. With KDE normalization, the mode of WM can be selected 
more robustly via a smooth version of the histogram and thus is 
more suitable to be used in a segmentation-based normalization 
method. 

Spatial Normalization Spatial normalization aims to register a 
subject’s brain image to a common space (reference space) to 
allow comparisons across subjects. When the reference space is a 
standard space, such as the Montreal Neurological Institute (MNI) 
space [40] or the Talairach and Tournoux atlas (Talairach space), 
the registration also facilitates the sharing and interpretation of data 
across studies. It is also common practice to define a customized 
space from a dataset rather than using a standard space. For deep 
learning methods, it has been shown that training data with appro-
priate spatial normalization tend to yield better performances [41– 
43]. Rigid, affine, or deformable registration may be desirable for 
spatial normalization, depending on the application. Many regis-
tration methods are publicly available through software packages 
such as 3D Slicer, FreeSurfer [https://surfer.nmr.mgh.harvard. 
edu/], FMRIB Software Library (FSL) [https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki], and Advanced Normalization Tools (ANTs) 
[https://picsl.upenn.edu/software/ants/]. 

2.2 Supervision 

Settings 

In the following three sections, we categorize the learning-based 
segmentation algorithms by their supervision setting. In the reverse 
order of the amount of annotation required, these include super-
vised, semi-supervised, and unsupervised methods (Fig. 7). For 
supervised methods, we mainly present some training strategies 
and model architectures that will help improve the segmentation 
performance. For the other two types of approaches, we classify the 
mainstream ideas and then provide application examples proposed 
in recent research. 

2.3 Supervised 

Methods 

In supervised learning, a model is presented with the given dataset 

D = fðxðiÞ, yðiÞÞgn i =1 of inputs x and associated labels y. This y can 
take several forms, depending on the learning task. In particular, for 
fully convolutional neural network-based segmentation applica-
tions, y is a segmentation map. In supervised learning, the model 
can learn from labeled training data by minimizing the loss function

2.3.1 Background

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://picsl.upenn.edu/software/ants/
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2.3.2 Data

Representation

and apply what it has learned to make a prediction/segmentation in 
testing data. Supervised training thus aims to find model para-
meters θ that best predict the data based on a loss function 
Lðy, ŷÞ. Here, ŷ denotes the output of the model obtained by 
feeding a data point x to the function f(x;θ) that represents the 
model. Given sufficient training data, supervised methods can gen-
erally perform better than semi-supervised or unsupervised seg-
mentation methods.
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Data is an important part of supervised segmentation models, and 
the model performance relies on data representation. In addition to 
image pre-processing (Subheading 2.1.6), there are a few key steps 
for data preparation before being fed into the segmentation 
network. 

Patch Formulation The inputs of CNN can be represented as 
image patches when the whole image is too large and would require 
too much GPU memory. The image patches could be 2D slices, 3D 
patches, and any format in between. The choice of patches would 
affect the performance of networks for a given dataset and task 
[44]. Compared to 3D patches, 2D slices have the advantage of 
lighter computational load during training. However, contextual 
information along the third axis is missing. In contrast, 3D patches 
leverage data from all three axes, but they require more computa-
tional resources. As a compromise between 2D and 3D patches, 
“2.5D” approaches have been proposed, by taking 2D slices in all 
three orthogonal views through the same voxel [45]. Those 2D 
slices could be trained in a single CNN or a separate CNN for each 
view. Furthermore, Zhang et al. [46] proposed 2.5D stacked slices 
to leverage the information from adjacent slices in each view. 

Patch Extraction Due to the imbalance between foreground and 
background, various patch extraction strategies have been designed 
to obtain robust segmentation. Kamnitsas et al. [47], Dolz et al. 
[48], and Li et al. [49] pick a voxel within the foreground or 
background with 50% probability at every iteration during training 
and select the patch centered at that voxel. In [46], Zhang et al. 
extract 2.5D stacked patches if the central slice contains the fore-
ground, even with only one voxel. In some models [50, 51], 3D 
patches with target structure are used as input instead of the whole 
image, which could reduce the effect of the background for seg-
menting target structures with smaller volume. 

Data Augmentation To avoid the over-fitting problem and 
increase the generalizability of the model, data augmentation 
(DA) is widely used in medical image segmentation [52]. The 
common DA strategies could be classified into three categories:



2.3.3 Network

Architecture

(1) spatial augmentation, (2) image appearance augmentation, and 
(3) image quality augmentation. For spatial augmentation, random 
image flip, rotation, scale, and deformation are often used [4, 45, 
53–55]. Random gamma correction, intensity scale, and intensity 
shift are the common forms for image appearance augmentation 
[51, 54, 56, 57]. Image quality augmentation includes random 
Gaussian blur, random noise addition, and image sharpening 
[51, 56]. Note that while we only list a few commonly used 
methods here, many others have been explored. TorchIO [58] is  
a widely used software package for data augmentation. 
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Here, we classify the popular supervised segmentation networks 
into single/multipath networks and encoder-decoder networks. 

Single/Multipath Networks As discussed above, patches are 
often used as input instead of the entire image, resulting in a lack 
of global context. This could produce noisy segmentations, such as 
undesired islands of false-positive voxels that need to be removed in 
post-processing [48]. To compensate for the missing global con-
text, Li et al. [49] used spatial coordinates as additional channels of 
input patches. A multipath network is another feasible solution 
(Fig. 8). Multipath networks usually contain global and local 
paths [47, 59, 60] that extract different features at different scales. 
The global path uses convolutions with larger kernel size [60] or  a  
larger receptive field [47] to learn global information [47]. In

Fig. 8 Examples of single-path (top) and multipath (bottom) networks. In the multipath network, the inputs for 
the two pathways are centered at the same location. The top pathway is equivalent to the single-path network 
and takes the normal resolution image as input, while the bottom pathway takes a downsampled image with 
larger field of view as input. Replicated from [47] (CC BY 4.0)



contrast, local features are extracted in the local path. The global 
path thus extracts global features and tends to locate the position of 
the target structure. In contrast, the shape, size, texture, boundary, 
and other details of the target structure are identified by the local 
path. However, the performance of this type of network is easily 
affected by the size and design of input patches: for example, too 
small patches would not provide enough information, while too 
large patches would be computationally prohibitive.
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U-Net and Its Variants To tackle the limitations of the single/ 
multipath networks, many models use U-net variants with encoder-
decoder paths [1, 61], which establishes end-to-end training from 
image to segmentation map. The encoder is similar to the single/ 
multipath networks but with downsampling operations between 
the different scales of feature maps. The decoder leverages the 
extracted features from the encoder and produces a segmentation 
of the same size as the original image. Skip connections that pass 
the feature maps from the encoder directly to the decoder contrib-
ute to the performance of the U-net. The passed information could 
help to recover the details of segmentation. 

The most common modification of the U-Net is the introduc-
tion of other convolutional modules, such as residual blocks [62], 
dense blocks [63], attention modules [3, 4], etc. These convolutional 
modules could replace regular convolution operations or be used in 
the skip connections of the U-Net. Residual blocks could mitigate 
the gradient vanishing problem during training by adding the input 
of the module to its output, which also contributes to the speed of 
convergence [62]. In this configuration, the network can be built 
deeper. The work of [53, 59, 64–66] used residual connections or 
residual blocks instead of regular convolutions in their network 
architecture for robust segmentation of various brain structures. 
Dense blocks could strengthen feature propagation and encourage 
feature reuse to improve segmentation accuracy. However, they 
require more computational resources during training. Zhang 
et al. [46, 56] employed the Tiramisu network [67], a densely 
U-shaped network, to produce superior multiple sclerosis 
(MS) lesion segmentation. 

The attention module is another commonly used tool in seg-
mentation to focus on salient features [4]. It can be categorized 
into spatial attention and channel attention modules. Li et al. [53] 
use spatial attention modules in the skip connections for extracting 
smaller subcortical structures. Similarly, attention modules are used 
between skip connections and in the decoder part in the work of 
[51, 68] for segmenting vestibular schwannoma and cochlea. In 
addition, Zhang et al. [69] proposed to use slice-wise attention 
networks in 3D CNNs for MS segmentation. Applying the slice-



2.3.4 Framework

Configuration

wise attention in three different orientations improves the compu-
tational efficiency compared to the regular attention module. Hou 
et al. [70] proposed the cross-attention block, which combines 
channel attention and spatial attention. Moreover, in [71], a skip 
attention unit is used for brain tumor segmentation. Zhou et al. 
[72] build fusion blocks based on the attention module. Attention 
modules have also been used for brain tumor segmentation [73]. 
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Transformers As discussed in Subheading 2.1.2, transformers 
have become popular in medical image segmentation [74– 
76]. Transformers leverage the long-range dependencies and can 
better capture low-level details. In practice, they can replace CNNs 
[77], be combined with CNNs [78, 79], or integrated into CNNs 
[80]. Some recent works [14, 15, 77] have shown that the imple-
mentation of transformer on U-Net architecture can achieve supe-
rior performance in medical image segmentation compared to their 
CNN counterparts. 

The single network mainly focuses on a single task during training 
and may ignore other potentially useful information. To improve 
the segmentation accuracy, frameworks with multiple encoders and 
decoders have been proposed [53, 81, 82]. 

Multi-task Networks As the name suggests, multi-task networks 
attempt to simultaneously tackle a main task as well as auxiliary 
tasks, rather than focusing on a single segmentation task. These 
networks usually contain a shared encoder and multiple decoders 
for multiple tasks, which could help deal with class imbalance 
(Fig. 9). Compared to a single-task network, the learning ability 
of the encoder is increased from same domain tasks (e.g., multiple 
tasks of multiple decoders), which could improve segmentation 
performance. Simultaneously learning multiple tasks could also 
improve model generalizability. McKinley et al. [81] leverage the 
information of additional tissue types to increase the accuracy of 
MS lesion segmentation. Another common multi-task setting is to 
introduce an auxiliary reconstruction task [57]. 

Cascaded Networks A cascaded network is a series of connected 
networks such that the input of each downstream network is the 
output from an upstream network (Fig. 10). For example, a coarse-
to-fine segmentation strategy can be used to reduce the high 
computational cost of training for 3D images [50, 53]. In this 
scenario, an upstream network could take downsampled images as 
input to roughly locate the target structures, allowing the images to 
be cropped to the region of interest for the downstream network. 
The downstream network could then produce high-quality seg-
mentation in full resolution. Another advantage of this approach



2.3.5 Multiple Modalities

and Timepoints

is to reduce the impact of volume imbalance between foreground 
and background classes. However, the upstream network would 
determine the performance of the whole framework, and some 
global information is missing in the downstream networks. 
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Fig. 9 Example of multi-task framework. The model takes four 3D MRI sequences (T1w, T1c, T2w, and FLAIR) 
as input. The U-Net structure (the top pathway with skip connection) serves as the segmentation network, and 
the output contains the segmentation maps of the three subregions (whole tumor (WT), tumor core (TC), and 
enhancing tumor (ET)). An auxiliary VAE branch (the bottom decoder) that reconstructs the input images is 
applied in the training stage to regularize the shared encoder. ©2019 Springer Nature. Reprinted, with 
permission, from [57] 

Ensemble Networks To obtain a robust segmentation, a popular 
approach is to aggregate the output from multiple independent 
networks (i.e., no weights/parameters shared). Kanitsas et al. pro-
posed the ensemble of multiple models and architectures (EMMA) 
[83] for brain tumor segmentation. Kao et al. [84] produce seg-
mentation using 26 ensemble neural networks. Zhao et al. [85] 
proposed a framework for 3D segmentation with multiple 2D net-
works that take input from different views. Huo et al. [82] pro-
posed the spatially localized atlas network tiles (SLANT) method to 
distribute multiple networks for 3D high-resolution whole-brain 
segmentation. Among their variants, SLANT-27 (Fig. 11), which 
ensembles 27 networks, produces the best result. Last but not least, 
many medical image segmentation challenge participants use 
model ensembling to achieve high performance. 

Many neuroimaging studies contain multiple modalities or multi-
ple timepoints per subject. This additional information is clearly 
valuable and can be leveraged to improve segmentation 
performance.
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Fig. 10 Example of cascaded networks. WNet segments the whole tumor from the input multimodal 3D MRI. 
Then based upon the segmentation, a bounding box (yellow dash line) can be obtained and used to crop the 
input. The TNet takes the cropped image to segment the tumor core. Similarly, the ENet segments the 
enhancing tumor core by taking the cropped images determined by the segmentation from the previous stage. 
©2018 Springer Nature. Reprinted, with permission, from [50] 

Multiple Modalities Different imaging modalities offer different 
visualizations of various tissue types. Multi-modality datasets can be 
thus leveraged to improve segmentation accuracy. For example, 
Zhang et al. [86] proposed a framework with two independent 
networks that take two different modalities as inputs. Instead of 
combining single modality networks, Zhang et al. [46] concatenate 
multi-modality data as different channels of inputs. However, not 
all modalities are available in clinical practice: (1) the MRI 
sequences can vary between different imaging sites and (2) some 
modalities may be unusable due to poor image quality. This is 
known as the missing modality problem. To tackle this problem, 
Havaei et al. [87] proposed a deep learning method that is robust 
to missing modalities for brain tumor and MS segmentation, which 
contains an abstraction layer that transforms feature maps into 
statistics to help learning during training. In [88], the authors 
further improved modality dropout by introducing dynamic filters



and co-training strategy for MS lesion segmentation. In [89, 90], 
the authors used knowledge distillation scheme to transfer the 
knowledge from full-modality data to each missing condition with 
individual models. 
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Fig. 11 SLANT-27: An example of ensemble networks. The whole brain is split into 27 overlapping subspaces 
with regard to their spatial locations (yellow cube). For each location, there is an independent 3D fully 
convolutional network (FCN) for segmentation (blue cube). The ensemble is achieved by label fusion on 
overlapping locations. ©2019 Elsevier. Reprinted, with permission, from [82] 

Multiple Timepoints Data from multiple timepoints are impor-
tant for tracking the longitudinal changes in a single subject. The 
additional timepoints can also be used as temporal context to 
improve the segmentation for each timepoint. In [45], longitudinal 
data are concatenated as a multichannel input to improve segmen-
tation. In the work of [91], the stacked convolutional long short-
term memory modules (C-LSTMs) are integrated into CNN for 
4D medical image segmentation, which allows the model to learn 
the correlation and overall trends from longitudinal data. Li et al. 
[92] also proposed a framework with C-LSTM modules for seg-
menting longitudinal data jointly.
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2.4 Semi-supervised 

Methods 

Given a considerable amount of labeled data, deep learning-based 
methods have achieved state-of-the-art performances in various 
medical image analysis applications. However, it is a laborious and 
time-consuming process to obtain dense pixel/voxel-level annota-
tions for segmentation tasks. Since accurate annotations require 
expertise in medical domain, they are also expensive to collect. It 
is therefore desirable to leverage unlabeled data alongside the 
labeled data to improve model performance, an approach typically 
known as semi-supervised learning (SSL). Intuitively, these unla-
beled data can provide critical information on the data distribution 
and thus can be used to improve model robustness by exploring this 
distribution. 

2.4.1 Background 

Conceptually, SSL falls in between supervised learning (fully 
labeled data) and unsupervised learning (no labeled data). In SSL, 
we have access to both a labeled dataset 

DL = fðxðiÞ l , y
ðiÞ 
l Þji =1, 2, � � � ,nlg, where yðiÞ l is the ith manually 

annotated ground truth mask in the context of segmentation task, 
and an unlabeled dataset DU = fðxðiÞ u ji =1, 2, � � � ,nug. Typically, 
nu≫nl. The main objective of SSL is to train a segmentation 
network X by leveraging both DL and DU to surpass the perfor-
mances achieved by solely supervised learning with DL or unsuper-
vised learning with DU . 

According to [93], there are mainly three underlying assump-
tions held by SSL: (1) smoothness assumption, (2) low-density 
assumption, and (3) cluster assumption. The smoothness assump-
tion states that the data points that are close by in the input or latent 
space should have similar or identical labels. With this assumption, 
we can expect the labels of unlabeled data to be similar to those of 
labeled data when these samples are similar in input or latent space, 
i.e., the labels from the labeled dataset can be transferred to the 
unlabeled dataset. In the low-density assumption, we assume that 
the decision boundary of a classifier should ideally not pass through 
the high density of the marginal data distribution. Placing the 
decision boundary in a high-density region would violate the 
smoothness assumption because the labels would be more likely 
to be dissimilar for similar data points. Lastly, the cluster assump-
tion states that each cluster of data points should belong to the 
same class. This assumption is necessary because if the data points 
from the unlabeled and labeled datasets cannot be meaningfully 
clustered, the unlabeled data cannot be used to improve the model 
performance trained from only the labeled data. 

2.4.2 Overview of Semi-

supervised Techniques 

In the semi-supervised learning literature, most of the techniques 
are originally designed and validated in the context of classification 
tasks. However, these methods can be readily adapted to segmen-
tation tasks since a segmentation task can be viewed as pixel-wise 
classification. In this chapter, we mainly categorize the SSL 
approaches into three techniques, namely, (1) consistency



2.4.3 Consistency

Regularization

regularization, (2) entropy minimization, and (3) self-training. 
However, most existing SSL approaches often employ a combina-
tion of these techniques rather than a single one, as summarized in 
Table 1. In the following sections, we will discuss each approach in 
detail and introduce some of the most important SSL techniques 
alongside. 
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Table 1 
Summary of classic semi-supervised learning methods 

Consistency Entropy 

Method regularization minimization Self-training 

Pseudo-label [94] No Yes Yes 

Π model [95] Yes No Yes 

Temporal ensembling [95] Yes No Yes 

Mean teacher [96] Yes No No 

UDA [97] Yes Yes No 

MixMatch [98] Yes Yes No 

FixMatch [99] Yes Yes No 

In semi-supervised learning, consistency regularization has been 
widely used as a technique to make use of unlabeled data. The 
idea of consistency regularization is based on the smoothness 
assumption that the network outputs should remain the same 
even if the input data is perturbed slightly (i.e., do not vary dramat-
ically in the input space). The consistency between the predictions 
of an unlabeled sample and its perturbed counterpart can be used as 
a supervision mechanism for training to leverage the unlabeled 
data. In such scenarios, we can formulate the semi-supervised 
training objective as follows: 

ℓSSL = 
xl , yl∈DL 

LSðxl , ylÞ þ  α 
xu∈DU 

LCðxu, ~xuÞ ð31Þ 

where LS is the supervised loss for labeled data. For segmentation 
tasks, LS can be one of the segmentation losses we presented in 
Subheading 2.1.3. xu and ~xu are the unlabeled data and its per-
turbed version, respectively. LC is the consistency loss function. 
Mean squared error loss and KL divergence loss have been widely 
used as LC in the SSL literature. α is a balancing term to weigh the 
impact of consistency loss from unlabeled data. 

It is worth noting that the random permutations involved in 
consistency regularization can be implemented in different ways. 
For instance, the Π model [95] encourages consistent network 
outputs between two versions of the same input data, i.e., with 
different data augmentation and different network dropout



conditions. In this way, training can leverage the labeled data by 
optimizing the supervised segmentation loss and the unlabeled data 
by using this unsupervised consistency loss. In mean teacher [96], 
the authors propose to compute the consistency between the out-
puts of the student network and the teacher network (which uses 
the exponential moving average of the student network weights) 
from the same input data. In unsupervised data augmentation 
(UDA) [97], unlabeled data are augmented via different augmen-
tation strategies such as RandAugment [100] and are fed to the 
same network to obtain two model predictions, which are used to 
compute the consistency loss. Similarly, in MixMatch [98], another 
very popular SSL method, an unlabeled image is augmented K 
times and the average of their outputs is sharpened, which is then 
used as the supervision signal to compute the consistency loss. 
Moreover, in FixMatch [99], the consistency loss is computed on 
the weakly and strongly augmented versions of the same input. In 
summary, consistency regularization has been widely used in vari-
ous SSL techniques to leverage the unlabeled data. 
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Application: MTANS MTANS [101] is an SSL framework for 
brain lesion segmentation. As shown in Fig. 12, the MTANS 
framework is built upon the mean teacher model [96] where both 
the teacher and the student models are used to segment the brain 
lesions as well as the signed distance maps of the object surfaces. As 
a variant of the mean teacher model, MTANS incorporates consis-
tency regularization in the training strategy. Specifically, the 
authors propose to compute the multi-scale feature consistency as 
consistency regularization, while the traditional mean teacher 
model only computes the consistency at the output level. Besides, 
a discriminator network is used to extract hierarchical features and 
differentiate the signed distance maps obtained by labeled and 
unlabeled data. In experiments, MTANS is evaluated on three 
public brain lesion datasets including ISBI 2015 (multiple sclerosis) 
[102], ISLES 2015 (ischemic stroke) [103], and BRATS 2018 
(brain tumor) [104]. Experimental results show that MTANS can 
outperform the supervised baseline and other competing SSL 
methods when trained with the same amount of labeled data. 

2.4.4 Entropy 

Minimization 

Entropy minimization is another important SSL technique and is 
often used together with consistency training. Generally, entropy is 
the measure of the disorder or the uncertainty of a system. In the 
context of SSL, this term often refers to the uncertainty in the 
pseudo-label obtained by the unlabeled data. Entropy minimiza-
tion, also known as minimum entropy regularization, aims to 
encourage the model to produce high-confidence predictions. 
The idea of entropy minimization is built upon the low-density 
assumption as it requires the network to output low-entropy



predictions on unlabeled data. The high-confidence pseudo-labels 
have been found very effective when used as the supervision for 
unlabeled data. For example, in MixMatch, the pseudo-label of the 
unlabeled data, i.e., the average predictions of K augmented sam-
ples, is “sharpened” by adjusting the prediction distribution. This 
sharpening process is an implicit way to minimize the entropy on 
the unlabeled data distribution. In pseudo-label [94], the authors 
propose to construct the hard (one-hot) pseudo-labels from the 
high-confidence predictions of the unlabeled data, which is another 
form of entropy minimization. In addition, the UDA method 
proposes to compute the consistency loss only when the highest 
probability in the predicted class is above a pre-defined threshold. 
Similarly, in FixMatch, the predictions of the weakly augmented 
unlabeled data are first filtered by a pre-defined threshold and later 
converted to a one-hot pseudo-label. 
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Fig. 12 An illustration of the MTANS framework. The blue solid lines indicate the path of unlabeled data, while 
the labeled data follows the black lines. The two segmentation models provide the segmentation map and the 
signed distance map (SDM). The discriminator is applied to check the consistency of the outputs from the 
teacher and student models. The parameters of the teacher model are updated according to the student model 
using the exponential moving average (EMA). ©2021 Elsevier. Reprinted, with permission, from [101]



2.4.5 Self-training
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Self-training is an iterative training process where the network uses 
the high-confidence pseudo-labels of the unlabeled data from pre-
vious training steps. Interestingly, it has been shown that self-
training is equivalent to a version of the classification EM algorithm 
[105]. The ideas of self-training and consistency regularization are 
very similar. Here, we differentiate these two concepts as follows: 
for consistency regularization, the supervision signals of the unla-
beled data are generated online, i.e., from the current training 
epoch; in contrast, for self-training, the pseudo-labels of unlabeled 
data are generated offline, i.e., generated from the previous training 
epoch/epochs. Typically, in self-training, the pseudo-labels pro-
duced from previous epochs need to be carefully processed before 
being used as the supervision, as they are crucial to the effectiveness 
of the self-training methods. In the SSL literature, pseudo-label 
[94] is a representative method that uses self-training. In pseudo-
label, the network is first trained on the labeled data only. Then the 
pseudo-labels of the unlabeled data are obtained by feeding them to 
the trained model. Next, the top K predictions on the unlabeled 
data are used as the pseudo-labels for the next epoch. The training 
objective function of pseudo-label is as follows: 

LPL = 
xl , yl∈DL 

LSðxl , ylÞ þ  αðtÞ 
xu∈DU 

LSðxu,~yuÞ ð32Þ 

where ~y is the pseudo-label and α(t) is a balancing term to weigh the 
importance of pseudo-label training. Particularly, α(t) is designed 
to slowly increase to help the optimization process to avoid poor 
local minima [94]. Note that both labeled and unlabeled data are 
trained in a supervised manner with ground truth labels yl and 
pseudo labels ~yu. 

Application: 4S In this study, the authors propose a sequential 
semi-supervised segmentation (4S) framework [106] for serial elec-
tron microscopy image segmentation. As shown in Fig. 13, 4S relies 
on the self-training strategy as it applies pseudo-labeling to all 
slices in the target continuous images, with only a small number 
of consecutive input slices. Specifically, a few labeled samples are 
used for the first round of training. The trained model is then used 
to generate pseudo-labels for the next sample. Afterward, the seg-
mentation model is retrained using the pseudo-labels and produces 
new pseudo-labels for the next slices. This method was evaluated 
on the ISBI 2012 dataset (neural cell membranes) [107] and 
Japanese carpenter ant dataset (nestmate discriminant sensory ele-
ments) [108]. Results show that 4S has achieved better perfor-
mance than the supervised learning-based method.
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Fig. 13 The workflow of the 4S framework. Based on the assumption that consecutive images are strongly 
correlated, the manual annotations (true labels) are provided for the first few slices. These labeled data are 
used for the initial training. Then the model can provide the pseudo-labels for the next few slices which can be 
applied for retraining. Adapted from [106] (CC BY 4.0) 

2.5 Unsupervised 

Methods 

As suggested in Subheadings 2.3 and 2.4, most deep segmentation 
models learn to map the input image x to the manually annotated 
ground truth y. Although semi-supervised approaches can drasti-
cally reduce the need for labels, low availability of ground truth is 
still a primary concern for the development of learning-based mod-
els. Another disadvantage of supervised learning approaches 
becomes evident when considering the anomaly detection/ 
segmentation task: a model can only recognize anomalies that are 
similar to those in the training dataset and will likely fail with rare 
findings that may not appear in the training data [109]. 

2.5.1 Background 

Unsupervised anomaly detection (UAD) methods have been 
developed in recent years to tackle these problems. Since no ground 
truth labels are provided, the models are designed to capture the 
inherent discrepancy between healthy and pathological data distri-
butions. The general idea is to represent the distribution of normal 
brain anatomy by a deep model that is trained exclusively on healthy 
subjects [109]. Consequently, the pathological subjects are out of



2.5.2 Auto-encoders

the distribution modeled by the network. Usually, this neural net-
work has an encoder-decoder architecture such that the output will 
be a reconstruction of the input image. Since not well represented 
by the training data, the abnormal region cannot be fully recon-
structed. Hence, the pixel-wise reconstruction error can be used as 
an estimate of the anomalous region. Figure 14 illustrates this 
process. 
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Fig. 14 The general idea of unsupervised anomaly detection (UAD) realized by an auto-encoder. (a) Train the 
model with only healthy subjects. (b) Test with pathological samples. The residual image depicts the 
anomalies. ©2021 Elsevier. Reprinted, with permission, from [109] 

The auto-encoder (AE) and its variations (Fig. 15) are widely 
used in the UAD problem. All these models generate a 
low-dimensional representation of the input image termed latent 
vector z at the bottleneck. Most of the research concentrates on 
manipulating the distribution of z so that the abnormal region can 
be “cured” in the reconstruction. This process is often referred to as 
image restoration (or sometimes image inpainting) in the computer 
vision literature. The following sections will discuss some main-
stream approaches categorized by the model structure 
implemented. 

The auto-encoder (AE) (Fig. 15a) is the simplest encoder-decoder 
structure. Let an encoder fθ and a decoder gϕ, where θ, ϕ are model 
parameters. Given a healthy input image X h ∈D ×H ×W , the 
encoder learns to project it to a lower-dimensional latent space 
z= fθ(X

h ), z∈L . Then the decoder recovers the original image 
from the latent vector as X̂ 

h 
= gϕðzÞ. The model is trained by 

minimizing the loss function ℒ that delineates the difference 
between the input and the reconstructed image: 

argmin 
θ,ϕ 

ℒθ,ϕðX h , X̂ 
h Þ= kX h - X̂ 

h kn ð33Þ
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Fig. 15 Variations of auto-encoder. (a) The auto-encoder. (b) The variational auto-encoder. (c) The adversarial 
auto-encoder includes a discriminator that provides constraint on the distribution of the latent vector z. (d) 
Anomaly detection VAEGAN introduces a discriminator to check whether the reconstructed image lies in the 
same distribution as the healthy image. ©2021 Elsevier. Reprinted, with permission, from [109] 

The ℓ1-norm (n=1) and ℓ2-norm (mean squared error) (n=2) are 
common choices for the loss function. The training stage is illu-
strated in Fig. 14a. When a sample with anomaly Xa is passed into 
the model, the abnormal region (e.g., lesion, tumor) cannot be well 
reconstructed in X̂ 

a 
as the model has never seen the anomaly in the 

healthy training data. In other words, the AE-based methods lever-
age the models’ dependence on training data to discern the region 
that is out of distribution. Figure 14b shows that the anomaly can 
be roughly represented by the reconstruction error Ŷ = jX a - X̂ 

a j. 

Bayesian Auto-encoder Pawlowski et al. [110] report a Bayesian 
convolutional auto-encoder to model the healthy data distribution. 
They introduce the model uncertainty and deem the reconstructed 
image as the Monte Carlo (MC) estimate. Let FΘ be the auto-
encoder model with weights Θ and D the training dataset. Then, 
the MC estimation can be expressed as 

FΘðX Þ= PðX jΘÞPðΘjDÞdΘ≈ 1 
N 

N 

i =1 

FΘiðX Þ ð34Þ 

where Θi � PðΘjDÞ. In practice, the authors apply the 
MC-dropout to model the weight uncertainty. The segmentation 
is still obtained by setting a threshold on the reconstruction error, 
as in the vanilla auto-encoder.



2.5.3 Variational Auto-

encoders
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In some applications, instead of utilizing the lack of generalizability 
of the model, we want to modify the latent vector z to further 
guarantee that the reconstructed testing image X̂ 

a 
looks closer to a 

healthy subject. Then again, the residual between Xa and X̂ 
a 
is 

sufficient to highlight the anomalies in the image. Usually, such 
manipulation requires probabilistic modeling for the latent mani-
fold. Hence, many applications use the variational auto-encoder 
(VAE) [111] as the backbone of the model (Fig. 15b). 

As previously stated, we want the model to learn the distribu-
tion of healthy data P(Xh ). In the encoder-decoder structure, we 
introduce a latent vector z at the bottleneck which follows a given 
distribution P(z). Usually, P(z) is assumed to follow a normal 
distribution N ð0, I Þ. The encoder and decoder are expressed by 
the conditional probabilities Qθ(z|X

h ) and Pϕ(X
h |z), respectively. 

Then the target distribution is given by 

PðXhÞ= PϕðXhjzÞPðzÞdz: ð35Þ 

In addition to the reconstruction loss (e.g., ℓ1/ℓ2 norm), the 
Kullback-Leibler (KL) divergence DKL[Qθ(z|X

h )kP(z)] that mea-
sures the distance of two distributions is another objective function 
to minimize. This term provides a constraint on the latent manifold 
such that the feature vector z can be stochastically sampled from a 
normal distribution. By modifying Eq. 13.35 and then applying 
Jensen’s inequality, we get the evidence lower bound (ELBO) ℒ for 
the log-likelihood of the healthy data: 

ℒðθ,ϕÞ=z�Q θðzjXhÞ½logPϕðXhjzÞ�-DKL ½Q θðzjXhÞkPðzÞ� ð36Þ 
It has been proved that maximizing the logPðXhÞ is equivalent 

to maximizing its ELBO, so -ℒ serves as an objective function to 
optimize parameters θ and ϕ in the VAE model. By leveraging the 
same idea in the AE-based methods, the neural networks fθ and gϕ 
model the normal brain anatomy if the training data contains only 
the healthy subjects. The approaches using VAE take one more step 
to guarantee the abnormal region cannot be recovered in the 
output, that is, modify the latent vector za of the anomalous 
input such that za�Qθ(z|X

h ). 
Given that healthy brains Xh and subjects with anomaly Xa are 

differently distributed, it is reasonable to assume that their latent 
manifolds Qθ(z|X

h ) and Qθ(z|X
a ) also vary. Suppose za = fθ(X

a ), 
then naturally, za�Qθ(z|X

a ). If we can modify za so that 
za�Qθ(z|X

h ), then after passing through the decoder Pϕ(X
h |z), 

the reconstruction output of the model X̂ 
a 

would belong in 
P(Xh ). That is to say, the modification in the latent manifold 
“cures” the anomaly. It is then easy to identify the anomaly as the 
residual between the input and output. The core part of the process 
is how to “cure” the latent representation of abnormal input. Some 
common ways are reported in the following examples.
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Distribution Constraint A straightforward way to force 
za�Qθ(z|X

h ) is adding a specific loss function at the bottleneck. 
Chen et al. [112] propose an adversarial auto-encoder (AAE) 
shown in Fig. 15c. The encoder works as a generator that produces 
samples in the latent space, and an additional discriminator is 
trained to judge whether the sample is drawn from the normal 
distribution. It emphasizes that all the latent representations should 
follow N ð0, I Þ, whether the input is healthy or not. 

Discrete Encoding Another solution is proposed by Pinaya et al. 
[113]. They implement the vector-quantized variational auto-
encoder (VQ-VAE) [114] to obtain a discrete representation of 
the latent tensor z∈nz × h ×w . It can be regarded as a h×w image 
which contains a vector vi∈nz at each image location, where i=1, 
2, ..., h×w. The quantization of z is realized by a pretrained embed-
ding space (ej∈nz , where j=1, 2, ..., K). It serves as a codebook 
from which we can always find a code ej that is closest to the given 
vi. Then by simply replacing the vector vi with the index of its 
closest counterpart in the codebook, a quantized latent image 

zq∈h ×w is obtained. Theoretically, the abnormal region is 

“cured” by using ej to approximate vi as the embedding space 
follows a fixed distribution. As usual, the residual between input 
and the reconstructed image jX - X̂ j is used to find the anomaly. 

Different Normative Prior Different from the vanilla VAE 
described above, Dilokthanakul et al. [115] propose a Gaussian 
mixture VAE (GMVAE) that replaces the unit multivariate Gauss-
ian prior in the latent space with a Gaussian mixture model. 
GMVAE was used for brain UAD by You et al. [116]. Following 
the same idea of ruling out the anomaly in the latent space, they 
restore the image with anomaly using maximum a posteriori esti-
mation given the Gaussian mixture model. 

2.5.4 Variational Auto-

encoders with Generative 

Adversarial Networks 

A generative adversarial network (GAN) consists of two modules, a 
generator G and a discriminator D. Similar with the decoder in VAE, 
the generator G models the mapping from a latent vector to the 
image space z↦X where z � N ð0, I Þ. The discriminator D can be 
deemed as a trainable loss function that judges whether the generated 
image G(z) is in the image space X . Combining the GAN discrimina-
tor and the VAE backbone has become a common idea in UAD 
problems. More details on GANs can be found in Chap. 5. 

We note that D can be used as an additional loss in either latent 
or image space. In the adversarial auto-encoder (AAE) discussed 
above, the discriminator works to check whether the latent vector is 
drawn from the multivariate normal distribution. In contrast, Buar 
et al. [117] propose the AnoVAEGAN (Fig. 15d) model, in which 
the discriminator is applied in the image space to check whether the 
reconstructed image lies in the distribution of healthy data.
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3 Medical Image Segmentation Challenges 

Medical image segmentation is affected by different aspects of the 
specific task, such as image quality, visibility of tissue boundaries, 
and the variability of the target structures. Moreover, each organ, 
anatomical structure, or lesion type has its own specificities, and a 
given method may perform well for a given target and worse for 
another. Therefore, many public challenges are held that target 
specific problems in an attempt to create benchmarks and attract 
new researchers into an application field. 

In this section, we briefly introduce some of the popular medi-
cal image segmentation challenges related to neuroimages. Then, 
we focus on brain tumor and multiple sclerosis (MS) segmentation 
challenges and summarize the most competitive methods for each 
challenge to highlight examples of the concepts discussed in this 
chapter. 

Medical image segmentation challenges aim to find better solutions 
to certain tasks, and it also provides researchers with benchmark or 
baseline methods for future development. Furthermore, the devel-
opments are driven by the need to clinical problems. 

Medical Segmentation Decathlon There are ten different seg-
mentation tasks in the medical segmentation decathlon (MSD), 
and each task focuses on certain organ/structure [118]. Specifically, 
liver tumors, brain tumors, hippocampus, lung tumors, prostate, 
cardiac, pancreas tumors, colon cancer, hepatic vessels, and spleen 
are the focused organ of each task. Each task usually involves a 
different modality. For example, multimodal multisite MRI data are 
used for brain tumors, while liver tumors are studied from portal 
venous-phase CT data. The Dice score (DSC) and normalized 
surface distance are used as evaluation metrics due their well-
known behavior. Instead of finding the state-of-the-art perfor-
mance for each task, MSD aims to find generalizable methods. 

crossMoDA These years, domain adaptation techniques are a hot 
topic in medical image segmentation field, and a new challenge for 
unsupervised cross-modality domain adaptation is held for 
researchers which is named as cross-modality domain adaptation 
(crossMoDA) for medical image segmentation [119]. Furthermore, 
it is the first large and multi-class benchmark for unsupervised 
domain adaptation to segment vestibular schwannoma (VS) and 
cochleas. In a short summary, crossMoDA consists of labeled and 
unlabeled datasets of T1-weighted and T2-weighted MRIs (T1-w 
and T2-w images are unpaired). It aims to segment the 
corresponding regions of interest in unlabeled T2-weighted MRIs 
by leveraging the information from unpaired and labeled 
T1-weighted MRIs.
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Brain tumor segmentation (BraTS) challenge is an annual challenge 
held since 2012 [104, 120–123]. The participants are provided 
with a comprehensive dataset that includes annotated, multisite, 
and multi-parametric MR images. It is worth noting that the data-
set has increased from 30 cases to 2000 between 2012 and 
2021 [123]. 

Brain tumor segmentation is a difficult task for a variety of 
reasons [124], including morphological and location uncertainty 
of tumor, class imbalance between foreground and background, 
and low contrast of MR images and annotation bias. BraTS focuses 
on segmentations for the enhancing tumor (ET), tumor core (TC), 
and whole tumor (WT). The Dice score, 95% Hausdorff distance, 
sensitivity, and specificity are used as evaluation metrics. 

BraTS 2021 There are two tasks in BraTS 2021 and one of them 
is segmentation of brain tumor subregions (task 1) [123]. 

Dataset The BraTS 2021 competition comprises 8000 multi-
parametric MR images from 2000 patients. The data split is 1251 
cases for training, 219 cases for the validation phase, and 530 cases 
for final ranking, and ground truth labels are only provided to 
participants for the training set. The validation phase aims to help 
the participants examine their algorithm, and the results are shown 
on the public leaderboard. The dataset contains four MRI modal-
ities per subject (Fig. 16): T1-w, post-contrast T1-w (T1Gd), 
T2-w, and T2-fluid-attenuated inversion recovery (T2-FLAIR).

Fig. 16 BraTS 2021 dataset. The images and ground truth labels of enhancing tumor, tumor core, and whole 
tumor are shown in the panels A (T1w with gadolinium injection), B (T2w), and C (T2-FLAIR), respectively. 
Panel D shows the combined segmentations to generate the final tumor subregion labels. Replicated from 
[123] (CC BY 4.0)



3.3 Multiple

Sclerosis

Segmentation

Challenge

The images were acquired at different institutions with different 
protocols and scanners. The pre-processing pipeline includes 
(1) co-registration to the same anatomical template, (2) resampling 
to isotropic 1mm3 resolution, and (3) skull stripping.
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Winner Method Luu et al. contributed a novel method [125] that 
won the first place in the final ranking after being applied to unseen 
test data. Their work is based on the nnU-Net, the winner of BraTS 
2020. Some contributions include using group normalization 
instead of batch normalization; employing axial attention modules 
[126, 127] in the decoder part, which is efficient for multidimen-
sional data; and building a deeper network. In the training phase, 
the networks were trained with 5-fold cross-validation. “Online” 
data augmentations were applied, including random rotation and 
scaling, elastic deformation, additive brightness augmentation, and 
gamma correction. The sum of the cross-entropy and Dice losses 
was used as the loss function. Last but not least, before feeding the 
input, the volumes were cropped to nonzero voxels and normalized 
by their mean and standard deviation. 

Multiple sclerosis (MS) lesion segmentation from MR images is 
challenging for both radiologists and automated algorithms. The 
difficulties of this task include the large variability of lesion appear-
ance, boundary, shape, and location, as well as variations in image 
appearance caused by different scanners and acquisition protocols 
from different institutes [128]. 

MSSEG-2 Delineation of new MS lesions on T2/FLAIR images is 
of interest as a biomarker of the effectiveness of anti-inflammatory 
disease-modifying drugs. Building upon the MSSEG (multiple 
sclerosis segmentation) challenge, MSSEG-2 (https://portal.fli-
iam.irisa.fr/msseg-2/) focuses on new MS lesion detection and 
segmentation. Here, we focus on the new lesion segmentation task. 

Dataset The MSSEG-2 challenge dataset consists of 100 MS 
patients with 200 scans. Each subject has two FLAIR scans at 
different timepoints, with a time gap between 1 and 3 years. The 
images are acquired with 15 different 1.5T/3T scanners. Forty 
patients and their labels are used for training, and 120 scans of 
60 patients are provided to test the performance. 

Winner Method Zhang et al. proposed a novel method for seg-
mentation of new MS lesions [56] that performed best for the Dice 
score evaluation. They adopted the model from [46], which is 
based on the U-Net and dense connections. The model inputs 
the concatenation of MR images from different timepoints and

https://portal.fli-iam.irisa.fr/msseg-2/
https://portal.fli-iam.irisa.fr/msseg-2/


outputs the new MS lesion segmentation for each patient. In 
addition, the 2.5D method, which stacks slices from three different 
orthogonal views (axial, sagittal, and coronal), is applied to each 
MR scan. In this way, both local and global information are 
provided to the model during training. Furthermore, to increase 
the generalizability of the model from the source domain to the 
target domain, three types of data augmentation are used that 
include image quality augmentation, image intensity augmenta-
tion, and spatial augmentation. 
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4 Conclusion 

Image segmentation is a crucial task in medical image analysis. With 
the help of deep learning algorithms, one can achieve more precise 
segmentation on brain structures and lesions. In this chapter, we 
first introduced the fundamental components (Subheadings 2.1.1– 
2.1.6) needed to set up a complete deep neural network for a 
medical image segmentation task. Next, we provided a review of 
the rich literature on medical image segmentation methods cate-
gorized by supervision settings in Subheading 2.2–2.5. For each 
type of supervision, we explained the main ideas and provided 
example applications. Finally, we introduced some medical image 
segmentation challenges (Subheading 3) that have publicly avail-
able data, so that the readers can start their own projects. 
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Chapter 14 

Image Registration: Fundamentals and Recent Advances 
Based on Deep Learning 

Min Chen, Nicholas J. Tustison, Rohit Jena, and James C. Gee 

Abstract 

Registration is the process of establishing spatial correspondences between images. It allows for the 
alignment and transfer of key information across subjects and atlases. Registration is thus a central 
technique in many medical imaging applications. This chapter first introduces the fundamental concepts 
underlying image registration. It then presents recent developments based on machine learning, specifically 
deep learning, which have advanced the three core components of traditional image registration methods— 
the similarity functions, transformation models, and cost optimization. Finally, it describes the key applica-
tion of these techniques to brain disorders. 

Key words Image registration, Alignment, Atlas 

1 Introduction 

In medical image analysis, the correspondence between important 
features or analogous anatomy in two images is an important piece 
of information that can be used to study disease. Knowing the 
correspondences between spatial locations allows for comparisons 
between specific anatomical structures in the images. This allows us 
to answer questions such as “Is this structure larger in subject A 
than in subject B?” or “Is that structure malformed relative to the 
average population?” Likewise, knowing correspondences across 
time allows us to study changes in rates of disease processes. For 
example, “Is a disease causing the structure to grow or shrink 
over time?” or “How does the rate of change compare to an healthy 
individual?” 

Correspondences between images also provide the ability to 
transfer information, which can be used as prior knowledge for 
tasks such as segmentation. Knowing the boundary for a specific 
anatomical structure in image A allows the image to be used as an 
atlas for finding those same boundaries in other images. If the 
correspondences between images A and B are known, then the
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boundary in image A can be transferred through the correspon-
dences and used as an approximate starting point for finding the 
analogous boundaries in image B (called the fixed image).
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Fig. 1 Shown is an example of an atlas alignment using image registration between two different brain 
magnetic resonance images. The atlas image (top left) is transformed (top right) to be aligned with the fixed 
subject image (center). The transformation allows the anatomical labels from the atlas (bottom left) to be 
directly transferred (bottom right) to label the subject image 

In the field of medical imaging and computer vision, the task of 
computing and aligning correspondences between different images 
is referred to as image registration. Given two images, image regis-
tration algorithms use image features such as image intensities or 
structures in the images to find a transformation that best aligns the 
correspondences between the two images. In Fig. 1, we show an 
example where such an algorithm is used to align the image inten-
sities between two different brain images. We see that this align-
ment allows the anatomical labels on an atlas image to be directly 
transferred to the fixed image. 

While the primary concept of image registration is simple, 
finding the solution is not so straightforward. The subject has 
been studied extensively for the past 40 years [1], and there is still 
little of consensus on the best general approach for the problem. 
We often cannot determine what are the correct correspondences 
between two images. In addition, we rarely know the exact way to 
model the transformation that best aligns those correspondences. 
We see from the example in Fig. 1 that aligning the intensity 
correspondences does not accurately align all of the anatomical 
correspondences between the images.
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The number of varieties and applications of image registration 
that have been presented to date is tremendous [2, 3]. In this 
chapter, we will only discuss a limited subset of these techniques, 
specifically methods that have been developed in recent years that 
leverages machine learning (and in particular, deep CNNs) to solve 
the problem. We will start by providing a brief introduction to the 
fundamental building blocks of traditional image registration tech-
niques and then delve into how various pieces of these designs have 
been developed and improved upon using machine learning 
models. 

2 Fundamentals of Image Registration 

The main goal of an image registration algorithm is to take a 
moving image and transform it to be spatially or temporally aligned 
with a target fixed image. The algorithm is generally defined by two 
parts: the type of transformation allowed to be performed on the 
moving image (the transformation model) and a definition of good 
alignment (the similarity cost function) between the two images. 
The algorithm is often iterative, in which case there is also an 
optimizer, which searches for how to adjust the transformation to 
best minimize the cost function. This is typically performed by 
estimating a transformation using the model, applying it to the 
moving image, and then evaluating the cost function between the 
transformed moving image and the fixed image. This cost then 
informs the algorithm on how to estimate a more accurate trans-
formation for the next iteration. The process is repeated and opti-
mized until either the moving and fixed images are considered 
aligned (i.e., a local minimum is reached in the cost function) or a 
maximum iteration count is exceeded. Figure 2 summarizes this 
iterative framework as a block diagram. Figure 3 shows several 
examples of registration results when using different transforma-
tion models to register between two MR images of the brain. 

Evaluate 
Similarity Function 

Estimate New 
Transformation 

Moving 
Image 

Apply Transformation 
to Moving Image 

Registered 
Image 

Fixed 
Image 

Fig. 2 Block diagram of the general registration framework. The coloring represents the main pieces of the 
framework: the input images (green), the output image (purple), the similarity cost function (orange), the 
transformation model (blue), and the optimizer (yellow)
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Moving (a) (b) (c) Fixed 

Fig. 3 Shown are examples of registration results between a moving and fixed MR image of the brain from two 
different subjects, using a (a) rigid, (b) affine, and (c) deformable registration 

2.1 Registration as a 

Minimization Problem 

To describe the general registration problem, we begin by using 
functions Sðx ′ Þ and T ðxÞ to represent the moving and fixed images, 
where x′= (x′, y′, z′) and x= (x, y, z) describe 3D coordinates in the 
moving and fixed image domains ( S and  T , respectively), and 
Sðx ′ Þ and T ðxÞ are the intensities of each image at those coordi-
nates. The primary goal of image registration is to estimate a 
transformation v :  T → S , which maps corresponding loca-
tions between Sðx ′ Þ and T ðxÞ. This is generally represented as a 
pullback vector field, v(x), where the vectors are rooted in the fixed 
domain and point to locations in the moving domain. The field is 
applied to Sðx ′ Þ by pulling moving image intensities into the fixed 
domain. This produces the registration result, a transformed 
moving image, ~S, defined as 

~SðxÞ= S∘vðxÞ= SðvðxÞÞ , 8x∈ T , ð1Þ
which has coordinates in the fixed domain. 

The typical registration algorithm aims to find v such that the 
images ~S and T are as similar as possible while constraining v to be 
smooth and continuous so that the transformation is physically 
sensible. This can be performed by minimizing a cost function 
C ð�, �Þ that evaluates how well aligned S∘vðxÞ and T ðxÞ are to each 
other, and forcing v to follow a specific transformation model. 
Together we can describe this problem as a standard minimization 
problem, 

argmin 
v 

C ðS∘v, T Þ, ð2Þ
where the transformation v is the parameter being optimized. 

2.2 Types of 

Registration 

Registration algorithms are generally categorized by the transfor-
mation model used to constrain v and the cost function C to 
evaluate similarity. The optimization approach, while important, 
does not usually characterize the algorithm and is often chosen to 
best complement the other two components of the algorithm. In 
this section, we cover several standard models and cost functions
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that are regularly used in medical imaging. However, the actual 
number of registration varieties in the current literature is extensive 
and outside the scope of this chapter. Several literature reviews on 
image registration exist for a more comprehensive understanding of 
the subject [2, 3]. 
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2.2.1 Types of 

Transformation Models 

The transformation model used to constrain v in the registration 
algorithm is generally chosen to match the problem at hand. For 
example, suppose we know that the moving and fixed image is of 
the same person, and their only difference is caused by a turn of the 
head in the scanner. In such a case, we would want to use a 
registration algorithm that restricts v to only perform translations 
and rotations in order to limit the possible transformation to what 
we expect has occurred. However, if the two images are of different 
people, then we might consider a more fluid transformation that 
can nonlinearly align parts of the anatomy. Here we will discuss two 
main archetypes of transformation models that are regularly used in 
medical imaging. 

Global Transformation 

Models 

One common choice for the transformation model is to represent 
v entirely through a global transformation on the image coordinate 
system. Here v is described by a single linear transformation matrix 
M and a translation vector t= (tx, ty, tz): 

vðxÞ=Mxþ t : ð3Þ
The transformation matrix M determines the restrictiveness of the 
model, which is often referred to as the model’s degrees of freedom 
(dof). Algorithms that only allow translations and rotations (6 dof1 ) 
are referred to as rigid registrations. In such cases, M is the product 
of three rotation matrices (one for each axis): 

0 0  
s θx - sin θx 
n θx cos θx 

cos θy 0 sin θy 
0 1 0
- sin θy 0 cos θy 

cos θz - sin θz 0 
sin θz cos θz 0 
0 0  

, 

ð4Þ
where θx, θy, and θz determine the amount of rotation around each 
axis. If global scaling is also allowed (7 dof in total), then the 
algorithm becomes a similarity registration, and Mrigid is multiplied 
with an additional scaling matrix: 

M similarity = 

s 0 0  

0 s 0 

0 0  s 

M rigid , ð5Þ

1 Here, dof are given for the 3D case since the vast majority of medical images are 3D.



440 Min Chen et al.

where s determines the amount of scaling. Finally, adding individual 
scaling and shearing (12 dof in total) allows for an affine registra-
tion. Here the scaling matrix is modified to have independent terms 
sx, sy, and sz for each axis, and a shear matrix is included in the 
product: 

M affine = 

1 hxy hxz 

hyx  1 hyz  

hzx hzy 1 

sx 0 0  

0 s y 0 

0 0  sz 

M rigid , ð6Þ

where three pairs of shear terms describe the direction and magni-
tude of shearing in each axis (hyx and hzx for the x-axis; hxy and hzy for 
the y-axis; hxz and hyz for the z-axis). 

The main application of these models is to account for registra-
tion problems where the moving and fixed images differ by very 
limited transformations. Rigid registration is regularly used to align 
images of the same subject, allowing for more accurate longitudinal 
analysis. It is also applied to images from different subjects to 
remove global misalignment, such as movement or shifts in posi-
tion while still maintaining the physical structure in the images. 
Similarity and affine registrations are used when the images are 
expected to have differences in size or large regional transforma-
tions. In medical imaging, they offer a way to normalize different 
subjects in order to remove effects that are often considered unre-
lated to the disease being studied, such as the size of the head. In 
addition, affine registrations can be used to provide an initialization 
for more fluid registrations by removing large sweeping differences, 
and allowing the subsequent algorithm to focus on aligning more 
detailed differences. Figure 3a, b provides examples of results from 
rigid and affine registrations between brain MRIs from two differ-
ent subjects. 

Deformable Model The main disadvantage of using only a transformation matrix to 
represent v is its inability to account for local differences between 
the moving and fixed images. To perform such alignments, a 
deformable registration is necessary, where the transformation is 
individually defined at each point in the image using a vector field: 

vðxÞ= xþ uðxÞ : ð7Þ
The vector field u is referred to as a displacement field and is 
generally restricted to be smooth and continuous to ensure the 
overall deformation is regularized so that the object is transformed 
in a physically sensible way. 

Deformable registration can be loosely divided between algo-
rithms that use parametric or nonparametric transformation models 
to represent v. Parametric registrations use a set number of para-
meters to control basis functions, such as splines [4] or radial basis



functions [5], to construct and interpolate v. The algorithm opti-
mizes these parameters to find the best v that minimizes the cost 
function. The transformations found under these models are often 
smooth and continuous by construction due to the basis 
functions used. 
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Nonparametric registrations are generally designed to create 
transformations that resemble physical motions such as elasticity 
[6], viscosity [7], diffusion [8], and diffeomorphism [9]. Rather 
than optimizing a set of parameters, the algorithm evolves the 
transformation at every iteration using forces imposed by the 
model. The strength and direction of these forces are determined 
by the cost function chosen and the constraints of the physical 
motion being modeled. 

The primary application of deformable registration is to com-
pute and align detailed correspondences between the moving and 
fixed images. This allows such registrations to be better suited for 
information transfer tasks, such as deforming anatomical labels in 
the moving image to match and label the same structures in the 
fixed image, and providing an initialization using various atlases and 
priors. In addition, the displacement field learned in the registra-
tion represents relative spatial change between correspondences in 
the moving and fixed image. Hence, it can be used to analyze 
morphology and shape differences between individuals 
[10, 11]. Figure 3c shows an example of a deformable registration 
performed using an adaptive bases algorithm after an affine align-
ment. Compared to the affine result, we see that the individual 
structures within the brain are now locally better aligned to match 
the same structures in the target brain. 

2.2.2 Types of Cost 

Functions 

The purpose of the similarity cost function is to quantify how 
closely aligned the transformed moving image and fixed images 
are to each other. Since it drives the optimization of the transfor-
mation model, the characteristics of the cost function determine 
what kind of images can be aligned, the degree of accuracy, and the 
ease of optimization. In this section, we will mainly discuss the 
three most popular intensity-based cost functions, which are avail-
able in most algorithms. Naturally, a large number of cost functions 
have been proposed in the literature, and a more complete list can 
be found here [2]. 

Sum of Square Differences. Sum of square differences (SSD), or equivalently mean squared 
error (MSE), between image intensities is one of the most basic 
and earliest cost functions used for evaluating the similarity 
between two images. It consists simply of subtracting the intensity 
difference at each voxel between two images, squaring the differ-
ence, and then summing across all the voxels in the entire image. 
This can be described using
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CSSDðT , ~SÞ= 
x∈T 

T ðxÞ- ~SðxÞ 2 
: ð8Þ

The advantage of SSD is that it is computationally efficient, requir-
ing only roughly three or four operations per voxel. In addition, it 
is very localized, since each voxel between the moving and fixed pair 
is calculated independently and then summed. This allows non-
overlapping regions of the image to be calculated and optimized in 
parallel. In addition, this provides high local acuity, which allows 
small spatial differences between the images to be resolved by the 
cost function. 

The main drawback of using SSD is that it is highly dependent 
on the absolute intensity values in the image. If correspondences in 
two images do not have exactly the same intensity range, the cost 
function will fail to register them correctly. As a result, SSD is very 
susceptible to errors in the presence of artifacts, intensity shifts, and 
partial voluming in the images. 

Normalized Cross 

Correlation 

The cross correlation (CC) function is a concept borrowed from 
signal processing theory for comparing the similarity between 
waveforms. It requires vectorizing the image (reshaping the 3D 
image grir into a single vector), subtracting the mean of each image, 
and then computing the dot product between the image vectors. 
The value is then divided by the magnitude of both mean sub-
tracted vectors. This can be described by 

CCCðT , ~SÞ= 
ðT - μT Þ
jjT - μT jj

, 
ð~S- μ~SÞ
jj~S- μ~S jj

ð9Þ

= x∈ T ðT ðxÞ- μT Þð~SðxÞ- μ~SÞð
jj~S- μ~S jj jjT - μT jj

, ð10Þ

where μT and μ~S are the mean intensities of each image, and ||�|| 
indicate the ℓ2 norm of the vectorized image intensities. 

The primary advantage of CC over SSD is that it is robust to 
relative intensity shifts in the image, while SSD is not. This is due to 
the normalization using the image mean and magnitude, and the 
reliance on multiplication of voxel pairs instead of absolute differ-
ences. In the absence of an intensity shift, NCC can be shown to be 
equivalent to SSD as a cost function for optimization. 

The drawback of CC is that both the mean and magnitude 
require a calculation over the entire image; hence, NCC loses much 
of the parallelization potential of SSD. In addition, the gradient on 
the function is more complicated to evaluate, which makes it a more 
difficult problem to optimize.
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Mutual Information Mutual information (MI) is a probabilistic measure of similarity 
derived from information theory. Using mutual information for 
image registration was originally presented in [12], and since 
then, it has become one of the most widely used registration cost 
functions [3]. Its success largely comes from its probabilistic nature, 
which gives it robustness to noise and shifts in intensity. In addi-
tion, the measure avoids evaluating direct intensity differences and 
instead looks at how the intensities between the two images are 
interdependent. This makes it a very robust measure for evaluating 
similarity between images with different modalities. 

Mutual information is described from an information theory 
perspective. Hence, we start with a discrete random variable A, with 
PAðaÞ representing the probability of the value a occurring in A. 
The Shannon entropy [13] of this variable is defined by 

H ðAÞ= -
a 
PAðaÞ log PAðaÞð Þ : ð11Þ

If the random variable represents image intensity values, then this 
entropy measures how well a given intensity value in the image can 
be predicted. Similarly, for a second random variable B and joint 
probability distribution P , a, b , the joint entropy isA B

H ðA,BÞ= -
a, b 

PA,Bða, bÞ log PA,Bða, bÞ , ð12Þ

which represents how well a given pair of intensity value in the 
images can be predicted. Using these terms, the mutual informa-
tion is given by 

MI A, Bð Þ=H ðAÞ þH ðBÞ-H ðA,BÞ , ð13Þ
which becomes 

CMIðT , ~SÞ= - H ðT Þ þH ð~SÞ-H ðT , ~SÞð , ð14Þ
within the context of our registration problem. Since MI increases 
when the images are more similar, we negate the measure in order 
to fit our minimization framework. 

Intuitively, mutual information describes how dependent the 
intensities in one image are on the other. We see that, when the 
images are entirely independent, the joint entropy becomes the 
sum of the individual entropies and the mutual information is 
zero. On the other hand, when the images are entirely dependent 
(i.e., v maps S exactly to T ), then the joint entropy becomes the 
entropy of the fixed image and the mutual information is maxi-
mized. In practice, the entropy and joint entropies are calculated 
empirically from histograms (and joint histograms) of the intensi-
ties in the images. 

Since the range of entropy is sensitive to the size of the image, it 
is common to use a normalized variant of the measure called 
normalized mutual information (NMI) [14]:
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NMIðT , ~SÞ= 
H ðT Þ þH ð~SÞ

H ðT , ~SÞ : ð15Þ

We see that this measure ranges from one to two, where two 
indicates a perfect alignment. Hence, we must again negate the 
measure when using it as a cost function to fit our minimization 
framework. 

The main drawback of mutual information comes from its 
probabilistic nature. The measure relies on an accurate estimate of 
the probability density of the image intensities. As a result, its 
effectiveness decreases significantly when working with small 
regions within the image, where there is not enough intensity 
samples to accurately estimate such densities. Likewise, the measure 
is ineffective when facing areas of the image that have poor statisti-
cal consistency or lack clear structure [15]. Examples of this include 
cases where there is overwhelming noise or conversely, when the 
area has very homogeneous intensities and provides very little 
information. As a result, mutual information must be calculated 
over a relatively large region of the image, which reduces the 
measure’s local acuity and diminishes its ability to handle small 
changes between the moving and fixed images. Lastly, as men-
tioned before, mutual information is almost entirely calculated 
from counts of intensity pairs, where the actual intensity value 
does not matter. While this is useful for addressing multimodal 
relationships, it also introduces inherent ambiguity into the mea-
sure. Given a moving and fixed image, their intensities can be paired 
in multiple ways to give the exact same mutual information after the 
transformation. Hence, the measure depends heavily on having a 
good initialization where the objects being registered are aligned 
well enough to give the correct intensity pairings at the start of the 
optimization. Otherwise, mutual information can cause the algo-
rithm to align intensity pairs that incorrectly represent the corre-
spondence between the images, resulting in registration 
errors [16]. 

3 Learning-Based Models for Registration 

From the previous sections, we can see that there are numerous 
avenues where machine learning models can potentially be 
employed to address specific parts of the registration problem. We 
can build models to estimate the similarity between images, find 
anatomical correspondences in images, speed up the optimization, 
or even learn to estimate the transformations directly. As with most 
learning models, these techniques can be very broadly categorized 
into supervised and unsupervised techniques. 

Supervised image registration within the context of machine 
learning entails utilizing sufficiently large training data sets of input



moving and fixed image pairs with their corresponding transforma-
tions. These data are used to train a model to learn those transfor-
mation parameters based on features discovered through the 
training process. The loss function quantifies the discrepancy 
between the predicted and input transformation parameters. For 
example, BIR-Net [17] presents a network for learning-based 
deformable registration using a dual supervision strategy where 
the loss is taken between the ground truth deformation field and 
the predicted field, in addition to the dissimilarity between the 
warped and fixed image. To prevent slow learning and overfitting, 
a hierarchical loss function is applied at various levels in the frontal 
part of the network. DeepFLASH [18] uses the fact that the entire 
optimization of large deformation diffeomorphic metric mappings 
(LDDMM) with geodesic shooting can be efficiently carried out in 
a low-dimensional bandlimited space. This motivates conversion of 
the velocity fields into the Fourier domain. However, neural net-
works that operate on complex values are inefficient and not 
straightforward. The method decomposes the registration frame-
work into separable real and imaginary components and proposes 
the use of a dual-net that handles the real and imaginary parts 
separately. 
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One of the primary challenges with employing supervised 
models for image registration is that registration problems rarely 
have ground truth transformation data between the images. 
Beyond simple rigid transformations, it is too laborious and com-
plex of a task to ask human graders to manually generate full 3D 
transforms between images. Instead, the desired transformations 
used in the training data are often obtained using outputs from 
traditional image registration algorithms or synthetically derived 
data sets, both of which can limit the capabilities of the model. 

Given this limitation, more focus has been directed toward 
unsupervised learning-based registration approaches, which are 
more closely related to their traditional analogs in that they lack 
the use of input transformation data. Optimization is driven via loss 
functions which incorporate intensity-based similarity quantifica-
tion in learning the correspondence between the fixed and moving 
images. This is conceptually analogous to the classic neural network 
example of unsupervised learning –the autoencoder (cf [19])– 
where differences between the input and the network-generated 
predicted version of the input are used to learn latent features 
characterizing the data. In the case of unsupervised image registra-
tion, the optimal transformation is that which maximizes the simi-
larity cost function between the input, specifically the fixed image, 
and the network-generated predicted version of the input, specifi-
cally the warped moving image as determined by the concomitantly 
derived transform. Direct analogs to iterative methods can be seen 
in approaches such as [20], which presents a recursive cascade 
network where the moving image is warped iteratively to fit the
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fixed image. Each subnetwork is implemented as a convolutional 
neural network which predicts the deformation field from the 
current warped image and the fixed image. 

446 Min Chen et al.

In the following sections, we will provide an overview of several 
key methodological archetypes in the advancement of image regis-
tration that has been made possible through the application of 
machine learning models. As with other parts of this chapter, it is 
outside of our scope to attempt to provide a comprehensive cover-
age of such a broad topic. Instead, we opt to lean toward more 
contemporary deep neural network-driven approaches, which have 
arisen from recent widespread adoption of deep learning models in 
medical image analysis. However, we encourage interested readers 
to explore several published review articles that can provide a more 
historical survey of this topic [2, 21]. 

3.1 Feature 

Extraction 

Much of the early work incorporating machine learning into solv-
ing image registration problems involved the detection of 
corresponding features and then using that information to deter-
mine the correspondence relationship between spatial domains. 
These included training models to find key landmarks [22]  o  
segmentation of structures [23], and fitting established transforma-
tions models to provide a full transformation between the images. 
Unsurprisingly, adaptions of these ideas carried through to deep 
learning approaches. For example, at the start of the current era of 
deep learning in image-related research, the authors of [24] pro-
posed point correspondence detection using multiple feed-forward 
neural networks, each of which is trained to detect a single feature. 
These neural networks are relatively simple consisting of two 
hidden layers each with 60 neurons where the output is a probabil-
ity of it containing a specific feature at the center of a small image 
neighborhood. These detected point correspondences are then 
used to estimate the total affine transformation with the RANSAC 
algorithm [25]. Similarly, DeepFlow [26] uses CNNs to detect 
matching features (called deep matching) which are then used as 
additional information in the large displacement optical flow frame-
work [27]. A relatively small architecture, consisting of six layers, is 
used to detect features at different convolution sizes which are then 
matched across scales. Two algorithms for more traditional com-
puter vision applications are proposed in [28] and [29] where both 
are based on the VGG architecture [30] for 2D homography 
estimation. The former framework includes both a regression net-
work for determining corner correspondence and a classification 
network for providing confidence estimates of those predictions. 
The work in [29], which is publicly available, uses image patch pairs 
in the input layer and the ℓ1 photometric loss between them to 
remove the need for direct supervision. Finally, in the category of 
feature learning, Wu et al. use nested auto-encoders (AE) to map 
patchwise image content to learned feature vectors [31]. These



patches are then subsampled based on the importance criteria out-
lined in [32] which tends toward regions of high informational 
content such as edges. The AE-based feature vectors at these image 
patches are then used to drive a HAMMER-based registration [33] 
which is inherently a feature-based, traditional image registration 
approach. 
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3.2 Domain 

Adaptation 

In contrast to detecting discrete corresponding feature points to 
drive the image registration, a number of learning models have 
been built to predict the intensity similarity between images, 
directly. These techniques have largely been focused on addressing 
intermodality alignment, which remains an open problem due to 
the complexities of establishing accurate correspondence when the 
intensities themselves do not necessarily correspond. Models have 
been developed to learn intermodal spatial relationships by extend-
ing traditional concepts of image similarity, such as in [34], where 
intermodality transformations involving CT and MRI are learned 
by training on the intramodality image pairs using a basic U-net 
architecture and incorporating a loss function combining normal-
ized cross correlation (NCC) and explicit regularization for enfor-
cing smoothness of the displacement field. A related idea is 
developed in [35] which uses labeled data and intensity information 
during the training phase such that only unlabeled image data is 
required for prediction. The latter architecture is a densely 
connected U-net architecture with three types of residual shortcuts 
[36]. For the loss function, the authors use a multiscale Dice 
function with an explicit regularization term for estimating both 
global and local transformations. Similarity functions can also be 
formulated directly using learning models, such as in [37] where a 
two-channel network is developed for input image patches (T1-
and T2-weighted brain images), and likewise, the B-spline image 
registration algorithm developed from the Insight Toolkit [38], 
which leverages the output of a CNN-based similarity measure for 
comparison with an identical registration setup employing mutual 
information. 

In recent years, intermodality registration has benefited from 
progress made in the field of domain adaptation, also referred to as 
image synthesis in earlier works. The general premise behind these 
frameworks is that learning-based models can be used to establish 
the latent relationship between the intensity domains between 
different modalities. This allows an image in one modality to be 
synthesized into the other modality, or alternatively both modal-
ities can be moved into a third artificial modality that has shared 
features from both modalities. When applied to image registration, 
these synthesized modalities can then be used to convert multi-
modal registration problems into mono-modal problems that can 
be solved by leveraging the efficiency and accuracy of mono-modal 
registration techniques. [39]



448 Min Chen et al.

Of particular note in this area are methods developed around 
generative adversarial networks (GANs), first introduced by Good-
fellow and colleagues [40], which have increasingly found traction 
in addressing many types of deep learning problems in the medical 
imaging domain [41] including image registration. GANs are a 
special type of network composed of two adversarial subnetworks 
known as the generator (usually characterized by deconvolutional 
layers) and the discriminator (usually a CNN). These work in a 
minimax fashion to learn data distributions in the absence of exten-
sive sample data. Seeded with a random noise image (e.g., sampled 
from a uniform or Gaussian distribution), the generator produces 
synthetic images which are then evaluated by the discriminator as 
belonging either to the true or synthetic data distributions in terms 
of some probability scalar value. This back-and-forth results in a 
generator network which continually improves its ability to pro-
duce data that more closely resembles the true distribution while 
simultaneously enhancing the discriminator’s ability to judge 
between true and synthetic data sets. Since the original “vanilla” 
GAN paper, the number of proposed GAN extensions has exploded 
in the literature. Initial extensions included architectural modifica-
tions for improved stability in training which have since become 
standard (e.g., deep convolutional GANs [42]). Please refer to 
Chap. 5 for a more extensive coverage of GANs. 

In order to constrain the mapping between moving and fixed 
images, the GAN-based approach outlined in [43] combines a 
content loss term (which includes subterms for normalized mutual 
information, structural similarity [44], and a VGG-based filter 
feature ℓ2-norm between the two images) with a “cyclical” adver-
sarial loss. This is constructed in the style of [45] who proposed this 
GAN extension, CycleGAN, to ensure that the normally under-
constrained forward intensity mapping is consistent with a similarly 
generated inverse mapping for “image-to-image translation” (e.g., 
converting a Monet painting to a realistic photo or rendering a 
winter nature scene as its summer analog). However, in this case, 
the cyclical aspect is to ensure a regularized field through forward 
and inverse displacement consistency. 

The work of [46] employs discriminator training between 
finite-element modeling and generated displacements for the pros-
tate and surrounding tissues to regularize the predicted displace-
ment fields. The generator loss employs the weakly supervised 
learning method proposed by the same authors in [47] whereby 
anatomical labels are used to drive registration during training only. 
The generator is constructed from an encoder/decoder architec-
ture based on ResNet blocks [36]. The prediction framework 
includes both localized tissue deformation and the linear coordi-
nate system changes associated with the ultrasound imaging 
acquisition.
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In [48], the discriminator loss is based on quantification of how 
well two images are aligned where the negative cases derive from 
the registration generator and the positive cases consist of identical 
images (plus small perturbations). Explicit regularization is added 
to the total loss for the registration network which consists of a 
U-net type architecture that extracts two 3D image patches as input 
and produces a patchwise displacement field. The discriminator 
network takes an image pair as input and outputs the similarity 
probability. 

3.3 Transformation 

Learning 

Many of the methods described so far have been centered around 
using learning models to establish spatial correspondences between 
images, and then fitting traditional transformation models to align 
the images. An alternative approach is to directly learn and predict 
the transformation between images. Earlier work [49] employed 
CNN-based regression for estimation of 2D/3D rigid image align-
ment of 3D X-ray attenuation maps derived from CT and 
corresponding 2D digitally reconstructed (DRR) X-ray images. 
The transformation space is partitioned into distinct zones where 
each zone corresponds to a CNN-based regressor which learns 
transformation parameters in a hierarchical fashion. The loss func-
tion is the mean squared error on the transformation parameters. 

A novel deep learning perspective was given in [50] where 
displacement fields are assumed to form low-dimensional manifolds 
and are represented in the proposed fully connected network as 
low-dimensional vectors. From the input vector, the network gen-
erates a 2D displacement field used to warp the moving image using 
bilinear interpolation. The absolute intensity difference is used to 
optimize the parameters of network and latent vectors. Instead of 
explicit regularization of the displacement field, the sum of squares 
of the network weights is included with the intensity error term in 
the loss function. Instead of training with a loss function based on 
similarity measures between fixed and moving images, the works of 
[51, 52] formulate the loss in terms of the squared difference 
between ground truth and predicted transformation parameters. 
In terms of network architecture, [51] employs a variant of U-net 
for training/prediction based on reference deformations provided 
by registration of previously segmented ROIs for cardiac matching 
where priority is alignment of the epicardium and endocardium. 
Displacement fields are parameterized by stationary velocity fields 
[53]. In contrast, [52] uses a smaller version of the VGG architec-
ture to learn the parameters of a 6 ×6 ×6 thin-plate spline grid. 

In 2015, Jaderberg and his fellow co-authors described a pow-
erful new module, known as the spatial transformer network (STN) 
[54]2 which features prominently now in many contemporary deep

2 Note that these networks are different from transformers and visual transformers described in Chap. 6.



learning-based registration approaches. Generally, STNs enhance 
CNNs by permitting a flexibility which allows for an explicit spatial 
invariance that goes beyond the implicitly limited translational 
invariance associated with the architecture’s pooling layers. In 
many image-based tasks (e.g., localization or segmentation), 
designing an algorithm that can account for possible pose or geo-
metric variation of the object(s) of interest within the image is 
crucial for maximizing performance. The STN is a fully differentia-
ble layer which can be inserted anywhere in the CNN to learn the 
parameters of the transformation of the input feature map (not 
necessarily an image) which renders the output in such a way so as 
to optimize the network based on the specified loss function. The 
added flexibility and the fact that there is no manual supervision or 
special handling required make this module an essential addition 
for any CNN-based toolkit.
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Fig. 4 Diagrammatic illustration of the spatial transformer network. The STN can be placed anywhere within a 
CNN to provide spatial invariance for the input feature map. Core components include the localization network 
used to learn/predict the parameters which transform the input feature map. The transformed output feature 
map is generated with the grid generator and sampler. ©2019 Elsevier. Reprinted, with permission, from [21] 

An STN comprises three principal components: (1) a localiza-
tion network, (2) a grid generator, and (3) a sampler (see Fig. 4). 
The localization network uses the input feature map to learn/ 
regress the transformation parameters which optimize a specified 
loss function. In many examples provided, this amounts to trans-
forming the input feature map to a quasi-canonical configuration. 
The actual architecture of the localization network is fairly flexible, 
and any conventional architecture, such as a fully connected net-
work (FCN), is suitable as long as the output maps to the continu-
ous estimate of the transformation parameters. These 
transformation parameters are then applied to the output of the 
grid generator which are simply the regular coordinates of the input



image (or some normalized version thereof). The sampler, or inter-
polator, is used to map the transformed input feature map to the 
coordinates of the output feature map. 
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Since Jaderberg’s original STN formulation, extensions have 
been proposed such as the inverse compositional STN (IC-STN) 
[55] and the diffeomorphic transformer network [56]. Two issues 
with the STN include the following: (1) potential boundary effects 
in which learned transforms require sampling outside the boundary 
of the input image which can cause potential learning errors for 
subsequent layers and (2) the single-shot estimate of the learned 
transform which can compromise accuracy for large transformation 
distances. The IC-STN addresses both of these issues by (1) propa-
gating transformation parameters instead of propagating warped 
input feature maps until the final transformation layer and (2) recur-
rent usage of the localization network for inferring transform com-
positions in the spirit of the inverse compositional Lucas-Kanade 
algorithm [57]. 

Although discussion of transform generalizability was included 
in the original STN paper [54], discussion was limited to affine, 
attention (scaling + translation), and thin-plate spline transforms 
which all comply with the requirement of differentiability. This 
work was extended to diffeomorphic transforms in [56]. The 
computational load associated with generating traditional diffeo-
morphisms through velocity field integration [58] motivated the 
use of continuous piecewise affine-based (CPAB) transformations 
[59]. The CPAB approach utilizes a tesselation of the image 
domain which translates into faster and more accurate generation 
of the resulting diffeomorphism. Although this does constrain the 
flexibility of the final transformation, the framework provides an 
efficient compromise for use in deep learning architectures. Analo-
gous to traditional image registration, the deep diffeomorphic 
transformer layer can be placed in serial following an affine-based 
STN layer for a global-to-local total transformation estimation. 
This is demonstrated in the experiments reported in [56]. 

The development of the STN has led to a number of notable 
generalized deep learning-based registration approaches. Voxel-
Morph, first presented in [60], incorporates a U-net architecture 
with a STN where the input layer consists of the concatenated full 
fixed and moving image volumes resized and cropped to 
160×192×224 voxels. The output consists of the voxelwise dis-
placement field of the same size as the input (times three—one for 
each vector component). The loss function for training combines 
cross correlation and a diffusion regularizer on the spatial gradients 
of the displacement field. This was extended to a generative 
approach in [61] to yield diffeomorphic transformations based on 
SVFs [53] using novel scaling and squaring network layers. The 
U-net architecture is used to estimate the distribution parameters 
of the velocity fields encapsulated by training data. A new imaging



pair can then be registered by sampling from this learned distribu-
tion, computing the resulting diffeomorphic transformation, and 
then warping the moving image. The underlying code has been 
made publically available which has facilitated independent evalua-
tions such as [62] to compare performance with traditional algo-
rithms (i.e., IRTK [63], AIR [64], Elastix [65], ANTs [66], and 
NiftyReg [67]). Other variations include CycleMorph [68], which 
uses a cycle-consistency objective to learn to produce the original 
image from the deformed image conditioned on the transforma-
tion. This prevents degeneracies in the learned registration fields 
and demonstrates the potential to preserve topologies by inducing 
cycle consistency on the images. Another generative image regis-
tration approach is that of [69] which uses a conditional variational 
autoencoder [70], an extension of the variational autoencoder [71] 
which permits incorporation of additional information for latent 
inference modeling. This multi-scale generative framework encodes 
the SVFs which are ultimately converted to the total transformation 
field in a similar fashion as [61]. 
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3.4 Optimization and 

Equation Solving 

A current limitation of traditional registration techniques is the 
computation cost associated with finding an iterative solution. 
Most existing registration methods do not scale linearly with 
image size; thus, as advancements in medical imaging lead to 
increasingly higher resolution data, the time scale to operate regis-
tration techniques can expand to hours, and possibly days, per 
registration. While not specific to image registration, one area of 
research that can help address this is the application of learning 
models to replace classic optimization and equation solving tech-
niques. These can lead to dramatic speed up of existing registration 
techniques while maintaining the same transformation models. 
Examples of advancements in this area include the use of 
learning-based ODE solutions to perform diffeomorphic registra-
tion [72] and the use of deep learning to initialize classical optimi-
zation approaches, such as Newton’s method [73]. 

4 Registration in the Study of Brain Disorders 

This final section will explore how learning-based models have 
impacted several primary applications of image registration, partic-
ularly for the study of diseases. As before, this discussion is far from 
comprehensive, but more to demonstrate current trends in using 
machine learning models to advance common areas of registration-
driven image analysis.
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4.1 Spatial 

Normalization and 

Atlasing 

Normative and disease-specific atlases play an important role in the 
characterization of a disease. By registering images from different 
subjects into a common atlas space (i.e., spatial normalization), we 
can remove typical variability between subjects, such as brain size, 
to allow for more sensitive detection of disease-driven differences 
between subjects. Learning-based registration can enable higher 
throughput registration during atlas construction [74], thus allow-
ing more subjects to be included into the atlas and better encom-
passing the variability within a cohort. Various models have been 
proposed to embed these advantages directly into the network, 
such as [75], which uses a joint learning framework where image 
attributes are used to learn conditional templates, and an efficient 
deformation to these templates is jointly learned. In addition, 
learning models have been used to provide priors for the atlas 
[76] and establish groupwise correspondence within a cohort [77]. 

4.2 Label Transfer As described in earlier sections, establishing correspondences 
between images via image registration allows for the transfer of 
spatially embedded data, such as structural annotations and seg-
mentations, between different images and subjects. This method, 
colloquially referred to as label transfer, allows for automatic iden-
tification of anatomy in the image that may be relevant to a disease. 
While a natural application of learning models for label transfer is to 
simply replace traditional registration approaches with learning-
based ones, there has also been more sophisticated integration of 
machine learning into these frameworks. Popular among these are 
joint techniques that aim to integrate and solve for both the seg-
mentation and registration problem simultaneously in the same 
framework [78, 79]. For example, LT-Net [80] learns a multi-
atlas registration using cycle consistency and a LSGAN objective 
[81] to discriminate synthesized images from real ones. Cycle 
consistency is applied in the image space (between the true atlas 
and the reconstructed atlas), the transformation space (a voxel 
warped from the forward transformation composed with the 
reversed transformation would end up in its starting point), and 
the segmentation label space. Learning models have also been 
shown to be effective for correcting systematic errors in both the 
registration and segmentation parts of the framework [82]. Other 
models have been proposed for replacing non-registration parts of 
the standard multi-atlas label transfer framework, such as the voting 
scheme [83]. 

4.3 Morphometry Voxel-based [84] and tensor-based [85] morphometry is the anal-
ysis of the transformation result from an image registration to study 
the shape and structural characteristics of a disease. In these 
approaches, a disease cohort is spatially normalized into a common 
space and the warped images and resulting deformation fields from 
each registration are statistically compared on a voxel level to reveal



morphological characteristics in the cohort. Machine learning 
models offer new ways to analyze the resulting morphology, such 
as integrating them as part of a multivariate biomarker framework 
to detect a disease [86, 87]. 
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5 Conclusion 

Image registration is a core pillar of modern-day image analysis, 
allowing for the alignment and transfer of spatial information 
between subjects and imaging modalities. Learning-based models 
have marked improvements on core aspects of image registration, 
ranging from more accurate feature detection, to better intensity 
correspondences, particularly across modalities, to improving the 
speed and accuracy of the alignment. 
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Abstract 

Computer-aided methods have shown added value for diagnosing and predicting brain disorders and can 
thus support decision making in clinical care and treatment planning. This chapter will provide insight into 
the type of methods, their working, their input data –such as cognitive tests, imaging, and genetic data– and 
the types of output they provide. We will focus on specific use cases for diagnosis, i.e., estimating the current 
“condition” of the patient, such as early detection and diagnosis of dementia, differential diagnosis of brain 
tumors, and decision making in stroke. Regarding prediction, i.e., estimation of the future “condition” of 
the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and 
predicting patient outcomes after treatment in brain cancer. Furthermore, based on these use cases, we will 
assess the current state-of-the-art methodology and highlight current efforts on benchmarking of these 
methods and the importance of open science therein. Finally, we assess the current clinical impact of 
computer-aided methods and discuss the required next steps to increase clinical impact. 

Key words Dementia, Stroke, Glioma, Cognitive impairment 

1 Introduction 

Computer-aided methods have major potential value for diagnos-
ing and predicting outcomes in brain disorders such as dementia, 
brain cancer, and stroke. Diagnosis aims to determine the current 
“condition” of the patient. Prediction, or prognosis, on the other 
hand, aims to forecast the future “condition” of the patient. In this 
way, the patient’s current and future condition can be estimated in a 
more detailed and accurate way, which opens up possibilities for 
better patient care and personalized medicine, with interventions 
tailored to the individual patient. Moreover, diagnosis and
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prediction are crucial not only for decision making in clinical care 
and treatment planning but also for managing the expectations of 
patients and their caregivers. This is particularly important in brain 
disorders as they may strongly affect life expectancy and quality of 
life, as symptoms of the disorder and side effects of the treatment 
can have a major impact on the patient’s cognitive skills, daily 
functioning, social interaction, and general well-being. In clinical 
practice, diagnosis and prediction are typically performed using 
multiple sources of information, such as symptomatology, medical 
history, cognitive tests, brain imaging, electroencephalography 
(EEG), magnetoencephalography (MEG), blood tests, cerebrospi-
nal fluid (CSF) biomarkers, histopathological or molecular find-
ings, and lifestyle and genetic risk factors. These various pieces of 
information are integrated by the treating clinician, often in con-
sensus with other experts at a multidisciplinary team meeting, in 
order to reach a final diagnosis and/or treatment plan. The aim of 
computer-aided methods for diagnosis and prediction is to support 
this process, in order to achieve more accurate, objective, and 
efficient decision making.
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In the literature, numerous examples of computer-aided meth-
ods for diagnosis and prediction in brain disorders can be found. 
Most of the state-of-the-art methods use some form of machine 
learning to construct a model that maps (often high-dimensional) 
input data to the output variable of interest. There exists a large 
variation in machine learning technology, types of input data, and 
output variables. Chapters 1–6 introduced the main machine 
learning technologies used for computer-aided diagnosis and pre-
diction. These include, on the one hand, classical methods such as 
linear models, support vector machines, and random forests, and 
on the other hand, deep learning methods such as convolutional 
neural networks and recurrent neural networks. These methods can 
be implemented either as classification models (estimating discrete 
labels) or as regression models (estimating continuous quantities), 
possibly specialized for survival (or “time-to-event”) analysis. In 
addition, Chapter 17 highlights the category of disease progression 
modeling techniques, which could be considered as a specialized 
form of machine learning incorporating models of the disease 
evolution over time. Chapters 7–12 described the main types of 
input data used in machine learning for brain disorders: clinical 
evaluations, neuroimaging, EEG/MEG, genetics and omics data, 
electronic health records, and smartphone and sensor data. The 
current chapter focuses on the choice of the output variable, i.e., 
the diagnosis or prediction of interest (Fig. 1). 

To illustrate the various ways in which machine learning could 
aid diagnosis and prediction, we focus on representative use cases



1.1 Diagnosis

organized according to the type of output. Subheading 1.1 pre-
sents diagnostic use cases, including early diagnosis, differential 
diagnosis, and decision making for treatment. Subheading 1.2 
presents prediction use cases, including estimation of the natural 
disease course and prediction of patient outcomes after 
treatment. While the diagnostic use cases are the core of current 
clinical practice which could be aided by machine learning, the 
prediction use cases represent a potential future application. Cur-
rently, prediction is not so often made as clinicians are not yet able 
to make a reliable prediction in most cases. After these introductory 
sections, Subheading 2 provides a more comprehensive survey of 
the state-of-the-art methodology, and Subheading 3 analyzes the 
clinical impact of such methodology and suggests a roadmap for 
further clinical translation. Finally, Subheading 5 concludes this 
chapter. 
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Fig. 1 Overview of the topics covered in this chapter, in the context of the other chapters in this book 

Diagnosis aims to determine the current “condition” of the patient 
to inform patient care and treatment decisions. Here, we introduce 
three categories of diagnostic tasks that occur in clinical practice 
and describe why and how computer-aided models have or could 
have added value.



462 Vikram Venkatraghavan et al.

Box 1: Diagnosis 
Categories of diagnostic tasks that occur in clinical practice in 
which computer-aided models have or could have added 
value, with brain disorders for which this is relevant as 
examples:

• Early diagnosis Dementia and MS

• Differential diagnosis Dementia and brain cancer

• Decision making for treatment Stroke 

Early diagnosis is highly challenging in neurodegenerative 
diseases such as dementia and multiple sclerosis (MS). Dementia 
is a clinical syndrome which can be caused by several underlying 
diseases, Alzheimer’s disease (AD) being the most prevalent, and is 
estimated to affect 50 million people worldwide [4]. The mean age 
at dementia diagnosis is approximately 83 years [106]. MS is esti-
mated to affect about two million people worldwide, and it primar-
ily affects younger adults with the mean age of onset for incident 
MS being approximately 30 years [74]. Both for dementia and MS, 
establishing the diagnosis usually takes a substantial period of time 
after the first clinical symptoms arise [58, 139]. Early detection and 
accurate diagnosis is crucial for timely decision making regarding 
care and management of dementia symptoms, and as such can 
reduce healthcare costs and improve quality of life as it gives 
patients access to supportive therapies that help to delay institu-
tionalization [107]. Early diagnosis of MS is important, because 
patients who begin treatment earlier do reap more benefit than 
those who start late [90]. In addition, advancing the diagnosis in 
time is essential to support the development of new disease-
modifying treatments, since late treatment is expected to be a 
major factor in failure of clinical trials [88]. The clinical diagnosis 
of dementia is currently based on objective assessment of cognitive 
impairment, assessment of biomarkers [29], and evaluation of its 
interference with daily living [2, 42, 87, 112]. The clinical diagno-
sis of MS is based on frequency of relapsing inflammatory attacks, 
associated symptoms, and distribution of lesions on MRI 
[132]. For a subset of MS patients with demyelinating lesions 
highly suggestive of MS, termed as radiologically isolated syndrome 
(RIS), a separate diagnostic criteria was formed by Okuda et al. [98] 
to improve the diagnostic accuracy. However, objective assessment 
of biomarkers of the underlying processes can advance diagnosis, 
since symptoms are known to arise relatively late in the disease 
process. This holds, for example, for cognitive impairment due to 
dementia and physical disability or cognitive impairment due to MS 
[25, 40, 52]. By combining neuroimaging and other biomarkers



with machine learning based on large datasets, computer-aided 
diagnosis algorithms aim to facilitate medical decision support by 
providing a potentially more objective diagnosis than that obtained 
by conventional clinical criteria [63, 113]. In addition to biomar-
kers, machine learning based on data from remote monitoring 
technology, such as wearables and smart watches, is an emerging 
field of research aimed at detecting cognitive, behavioral, and phys-
ical symptoms in an objective way at the earliest stage possible 
[95, 126]. 
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Beyond an early diagnosis, accurate identification of the under-
lying disease, i.e., differential diagnosis, is crucial for planning 
care and treatment decisions. For example, in dementia, the most 
common underlying diseases are AD, vascular cognitive 
impairment (VCI), dementia with Lewy bodies (DLB), and fron-
totemporal lobar degeneration (FTLD). Although clinical symp-
tomatology differs between the diseases, symptoms in the early 
stage may be unclear and can overlap [42, 87, 112]. The current 
clinical criteria for AD and FTLD, for example, which entail quali-
tative inspection of neuroimaging, fail to accurately differentiate 
the two diseases [47]. Additionally, a young patient (<65 years 
old) with behavioral problems could have a differential diagnosis of 
dementia (i.e., behavioral phenotypes of FTLD or AD) or primary 
psychiatric disorder, as symptomatology overlaps substantially 
[68]. An accurate diagnosis of primary psychiatric disorder can be 
informative in such patients by suggesting that progressive decline 
in the condition is not necessarily expected [30]. For some specific 
diseases, measurements of proteins causing the underlying pathol-
ogy have in the last decade shown high accuracy for diagnosis of the 
pathology. AD is a good example with blood-based biomarkers 
measuring phosphorylated-Tau (P-Tau), CSF biomarkers measur-
ing amyloid β, P-Tau and Tau, and PET imaging measuring amy-
loid-β and Tau. However, while highly promising, measurement of 
these proteins is not yet widely performed in clinical practice as 
blood-based biomarkers of AD are not widely available yet, CSF 
biomarkers require an invasive lumbar puncture, and PET imaging 
is too expensive and not sufficiently widely accessible to be done in 
each patient. Moreover, such markers of the underlying pathology 
are currently unavailable for other types of dementia. As an alterna-
tive, quantitative neuroimaging and other biomarkers, especially in 
combination with machine learning and large datasets, have shown 
to be beneficial in difficult cases of differential diagnosis [14, 110]. 

Another disorder where differential diagnosis is crucial is brain 
cancer. Diagnosis of brain tumors typically starts with the analysis of 
MRI brain data. A first diagnostic task is to differentiate between 
primary and secondary lesions. Primary lesions are tumors that 
originated from healthy brain cells, with glioma being the most 
common primary brain tumor type. Secondary lesions are metas-
tases from tumors located elsewhere in the body, which may trigger



very different care and treatment paths. Also the distinction 
between glioma and other less common malignant primary lesions 
such as lymphoma is relevant. Whereas neuroradiologists are 
trained to differentiate these different types of lesions, the large 
variation in appearance of tumors induces uncertainty in the differ-
ential diagnosis. Machine learning has been shown to be able to 
distinguish glioma from metastasis [20] and lymphoma [86] based 
on quantitative analysis of brain MRI, and may thus be used as a 
“second” reader supporting the radiologists. Once a diagnosis of 
cancer is established, a second task in differential diagnosis is the 
further subtyping of the lesion. While glioma is one of the deadliest 
forms of cancer [97], there exist large differences in survival and 
treatment response between patients. These differences can be 
attributed to the glioma’s genetic and histological features, in 
particular the isocitrate dehydrogenase (IDH) mutation status, 
the 1p19q co-deletion status, MGMT promoter methylation sta-
tus, and the tumor grade [28, 31, 38]. These insights have led to 
classification guidelines by the World Health Organization (WHO) 
[77]. In current clinical practice, these genetic and histological 
features are determined from tumor tissue after resection. How-
ever, there has been an increasing interest in complementary non-
invasive alternatives that can provide the genetic and histological 
information before resection [10, 152]. Also here, neuroradiolo-
gists can be trained to visually distinguish the subtypes based on 
MRI [26, 128], but uncertainty often remains and the inherent 
subjectivity associated with visual inspection of subtle differences in 
appearance, by radiologists with varying levels of expertise, is unde-
sirable. A large body of research has therefore focused on develop-
ment of machine learning approaches to support MRI-based 
determination of genetic and histological features of glioma 
[41, 65, 122, 127]. 
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The third diagnostic task we address is decision making for 
treatment. This is relevant when multiple therapeutic options are 
available, such as for patients with stroke. Multiple treatment 
options for stroke exist such as thrombolytic medication and endo-
vascular clot retrieval (mechanical thrombectomy). Since depend-
ing on the situation different treatments or their combination may 
be optimal, and since the costs per patient are rising, there is a real 
and urgent need for computer-aided diagnosis techniques to aid in 
the streamlined care of patients and individualized treatment deci-
sions [56]. To enable early treatment of acute stroke, early and 
reliable diagnosis is required, which heavily relies on imaging. The 
vast majority of strokes are of ischemic origin, caused by a blood 
clot occluding an artery resulting in oxygen deprivation of the brain 
tissue supplied by this artery. Typical causes are large vessel occlu-
sion with or without thrombus dislodgement (e.g., carotid steno-
sis) or a cardiac cause resulting in embolies (e.g., atrial fibrillation). 
The less common subtype is hemorrhagic stroke, which has



1.2 Prediction

substantially different etiology and is often caused by hypertension. 
Without early treatment of stroke, prognosis is poor. Each minute 
without treatment leads to loss of an estimated 1.8 million neurons 
[64]. Patients who enter the hospital with acute stroke symptoms 
often immediately undergo CT (or MR) scanning, even before 
detailed clinical evaluation of the patient [64]. Imaging here has 
three roles in decision making for treatment: (1) rule out hemor-
rhagic stroke, (2) establish the exact cause and the extent of ische-
mic stroke, and (3) determine a patient’s suitability for (intra-
arterial) treatment [33, 80]. Applications of machine learning for 
treatment decisions in stroke include identification of hemorrhage 
and early identification of imaging findings to determine the cause 
and extent of stroke and estimation of the time of onset. Time of 
onset is relevant since most current treatments aim for rapid reper-
fusion of ischemic tissue, either using intravenous thrombolytic 
medications or using endovascular techniques to mechanically 
remove the obstruction to blood flow, which should be performed 
within 4.5 h of stroke onset [56]. 
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Prediction or prognosis aims to understand the future “condition” 
of the patient, which can then be used for considering and planning 
therapeutic or lifestyle interventions proactively [22] that may slow 
the disease process or may reduce the risk for event recurrence. In 
addition, it can be used for effective patient management, for 
managing the expectations of patients and their caregivers [82], as 
well as for patient selection in clinical trials [35, 102]. We distin-
guish two main categories of prediction targets here: the natural 
disease course and patient outcomes after treatment. 

Box 2: Prediction 
Categories of prediction targets for which computer-aided 
models have or could have added value, with example brain 
disorders for which this is relevant as discussed in this chapter:

• Natural disease course Dementia and MS

• Patient outcomes after treatment MS, brain cancer, and 
stroke 

Predicting the natural disease course, i.e., the future progres-
sion of the disease and its symptoms in a subject, is clinically 
relevant as it can aid care planning and managing the expectations 
of patients and caregivers about their future quality of life, physical 
health, and dependency [81]. Additionally, in disorders where 
treatment options are limited, it would improve future clinical trials



for new medication through identification of patients most likely to 
benefit from an effective treatment, i.e., those at early stages of 
disease who are likely to progress over the short-to-medium term 
(1–5 years) [83]. 
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In dementia, prediction is challenging because of disease het-
erogeneity, i.e., differences in symptoms between patients along the 
disease process. For example, a patient can have either typical AD 
with memory problems or atypical AD with either language pro-
blems [43] or behavioral problems [99]. Moreover, patients with 
comparable brain atrophy may decline differently as the disease 
progresses, reflecting cognitive resilience due to genetic or lifestyle 
factors that may help to compensate for the level of atrophy 
[147]. Lastly, a similar symptom in two patients could be resulting 
from different diseases altogether. For example, a patient with mild 
cognitive impairment (MCI) either may have early stage dementia 
or may have cognitive impairment due to a different cause such as 
older age, injury, or a virus such as SARS-CoV-2 [44]. The latter, 
i.e., cognitive impairment due to non-degenerative disorders, is 
almost twice as prevalent as cognitive impairment due to dementia 
[106]. Here it is of interest to predict how the symptoms will 
develop over time for an individual; while patients without demen-
tia may remain stable over time or even improve, the symptoms of 
patients with dementia typically worsen with time. Hence, the 
applications of machine learning in predicting the future course of 
dementia include the following: (i) predicting if a patient with 
cognitive impairment patient will develop dementia [138], 
(ii) predicting when the patient will reach a clinical dementia stage 
(i.e., duration of the prodromal disease phase) [83], and (iii) pre-
dicting the progression of biomarkers such as cognition and MRI 
measurements [61, 66]. 

In MS, especially in the early stages when patients experience 
clinical symptoms sporadically, prediction of the future disease 
course is highly relevant for care planning and expectation manage-
ment. The early stage of MS, known as the relapsing-remitting 
phase, is characterized by sporadic inflammatory attacks on the 
neuronal protective coating called myelin. Over time, the recovery 
from these relapses becomes incomplete, resulting in permanent 
and progressive disability [144]. Because of this progressive nature 
and the variation between individuals, predicting the number of 
relapses and the time to permanent disability in a specific patient is 
highly important for care and treatment planning [18]. 

Next to prediction of the natural disease course, prediction of 
the future disease course after an intervention, i.e., outcome pre-
diction after treatment, could be instrumental for planning of 
treatment and subsequent follow-up. This is of particular interest 
in MS where multiple treatment options are available. There are



currently 21 FDA-approved disease-modifying drugs available [27] 
that inhibit different aspects of pathological progression of MS 
mainly by immune modulation and sometimes through neuropro-
tection or remyelination. It is hence clinically highly relevant to 
choose the treatment option that an individual patient is expected 
to have most benefit from and to determine whether risks of 
second-line treatment are justified [131]. The same holds for stroke 
in the post-acute phase, where prediction of patient outcomes after 
treatment based on imaging may play a role for choosing between 
available treatments such as medication and rehabilitation therapy 
[80]. Here the focus is on the long term: reducing risk of recur-
rence and optimization of functioning. Computer-aided 
approaches can thus help in personalizing the treatment for a 
patient. 
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Predicting the outcomes after treatment is also of major inter-
est for patients with brain tumors, and specifically in case of glioma 
where treatment response varies greatly across patients. Treatment 
usually consists of surgical resection followed by radiotherapy 
and/or chemotherapy. Almost invariably tumor recurrence or 
regrowth occurs; however, the question is when. In case of high-
grade glioma (i.e., glioblastoma), tumor regrowth typically hap-
pens within a few months. In low-grade glioma, progression after 
treatment is often slower, and it may take years before any signifi-
cant regrowth is detected; at some point, however, malignant 
transformation (to a high-grade glioma) may occur, leading to 
accelerated regrowth. As discussed in Subheading 1.1, computer-
aided diagnosis methods can be used to identify the current 
tumor’s genetic and histological profile, which already provides 
important prognostic information. Beyond this example of 
computer-aided differential diagnosis, machine learning methods 
can contribute in different ways by directly predicting outcomes 
after treatment [65, 127]. First, machine learning methods have 
shown promise to aid the differentiation between tumor progres-
sion and treatment-related abnormalities (pseudoprogression, radi-
ation necrosis) [54, 65, 73, 127, 143]. Second, machine learning 
can be used to predict local relapse locations after radiotherapy, 
thus highlighting locations that should be targeted with a higher 
radiation dose, leading to personalized radiotherapy planning 
[114]. Third, a machine learning approach can predict local 
response to stereotactic radiosurgery of brain metastases, based 
on radiomics analysis of pretreatment MRI, where the outcome of 
interest (local tumor progression) was defined in terms of maxi-
mum axial diameter growth as measured on a follow-up scan 
[94]. Fourth, machine learning methods have been proposed for 
prediction of progression-free and overall survival, which aids care 
planning and managing the expectations of patients about their 
future [60, 108, 122, 127].
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2 Method Evaluation 

2.1 State-of-the-Art 

Methodology for 

Diagnosis and 

Prediction 

For early diagnosis in dementia, a large body of research has been 
published on classification of subjects into AD, mild cognitive 
impairment (MCI), and normal aging [36, 113, 145]. Overall, 
classification methods show high performance for classification of 
AD patients and cognitively normal controls with an area under the 
receiver operating characteristic curve (AUC) of 85-98%. 
Reported performances are somewhat lower for early diagnosis in 
patients with MCI, i.e., prediction of imminent conversion to AD 
(AUC: 62-82%). Dementia classification is usually based on clini-
cal diagnosis as a reference standard for training and validation 
[87], but biological diagnosis based on assessment of amyloid 
pathology with PET imaging or CSF has been increasingly used 
over the last years [53, 129]. Structural T1-weighted (T1w) MRI 
to quantify neuronal loss is the most commonly used biomarker, 
whereas the support vector machine (SVM) is the most commonly 
used classifier. For T1w, both voxel-based maps (e.g., voxel-based 
morphometry maps quantifying local gray matter density [62]) and 
region-based features [78] have been frequently used. While using 
only region-based volumes may limit performance, combining 
those with regional shape and texture has been shown to perform 
competitively with using voxel-wise maps [13, 15, 24]. Using mul-
timodal imaging such as FDG-PETor DTI in addition to structural 
MRI may have added value over structural MRI only, but limited 
data is available [76, 150]. Following the trends and successes in 
medical image analysis and machine learning, neural network 
classifiers –convolutional neural networks (CNN) in particular– 
have increasingly been used since a few years [16, 145], but have 
not been shown to significantly outperform conventional classifiers. 
In addition, data-driven disease progression models are being 
developed [101], which do not rely on a priori defined labels but 
instead derive disease progression in a data-driven way. 

Regarding differential diagnosis in dementia, studies focus 
mostly on discriminating AD from other types of dementia. Differ-
ential diagnosis based on CSF and PET biomarkers of AD pathol-
ogy has shown good performance for distinguishing AD from 
FTLD with sensitivities of 0.83 (p-tau/amyloid-β ratio from 
CSF) and 0.87 (amyloid PET) [48, 111, 117]. In addition, 
machine learning approaches have been published based on either 
structural or multimodal MRI as region-wise or voxel-wise imaging 
features and generally SVM as a classifier, similar to those used for 
early diagnosis in dementia. These methods focused mostly on 
differential diagnosis of AD and FTLD and reported performances 
in the range of AUC = 0.75 - 0.85 [12, 14, 92, 110]. A few 
studies addressed differential diagnosis of AD and vascular



dementia (VaD) [151] or multiclass differential diagnosis (5+ clas-
ses including AD, FTLD, VaD, dementia with Lewy bodies, and 
subjective cognitive decline) [93, 133]. 
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For differential diagnosis in brain cancer, numerous 
MRI-based machine learning approaches have been presented. 
These developments have partly been facilitated by the availability 
of several valuable public datasets; see, for example, the overviews in 
[89, 135]. Most literature is dedicated to glioma characterization, 
which is therefore discussed in more detail here. Studies vary in the 
choice of input MRI sequences (T1w pre- and post-contrast, 
FLAIR, T2w, diffusion-weighted imaging, perfusion-weighted 
imaging, MR spectroscopy, APT CEST), the machine learning 
methodology (ranging from conventional radiomics approaches 
with hand-crafted features derived from manual tumor segmenta-
tions to deep learning approaches that automatically segment the 
tumor), the classification target(s) (e.g., grade, IDH, 1p19q, 
and/or MGMT status), the selection of glioma subtypes on 
which the method is validated (e.g., only low-grade glioma, only 
high-grade glioma, or both), and the extent of validation per-
formed (single train-test split, repeated cross-validation, internal 
versus external validation). A systematic review on the use of 
machine learning in neuro-oncology found four articles on glioma 
grading, and four articles on identifying genetic/molecular char-
acteristics of glioma based on MRI [122]. Among those, only one 
study used convolutional neural networks as a machine learning 
tool—to predict 1p19q status in low-grade glioma [1]. A more 
recent systematic review identified 27 studies on glioma grading of 
which 6 used deep learning, and 48 studies on MRI-based estima-
tion of genetic/molecular characteristics of which 8 used deep 
learning [19]. Another recent review dedicated to machine learning 
approaches for MRI-based glioma characterization found 12 studies 
on glioma grading of which 2 used deep learning, and 43 studies on 
molecular characterization out of which 10 used deep learning 
[41]. These numbers indicate a trend toward deep learning 
approaches as we see in the entire field, but with conventional 
machine learning approaches with pre-defined radiomics features 
still being used frequently. Regarding the performance, two recent 
systematic reviews performed a meta-analysis of studies on molecu-
lar characterization of glioma. Jian et al. [55] found a pooled 
sensitivity/specificity/AUC in the validation set of 0.85/0.83/ 
0.90 for IDH status prediction (12 studies), and 0.70/0.72/0.75 
for 1p19q status prediction (5 studies). For MGMT, sensitivities 
and specificities ranging from 0.70 to 0.88 were found in 3 studies 
reporting validation performance, not allowing a meta-analysis. 
Van Kempen et al. [136] reported a pooled AUC of 0.91 for 
IDH status prediction (7 studies), 0.75 for 1p19q status prediction 
(3 studies), and 0.87 for MGMT promoter status prediction 
(3 studies). Thus, while the studies applied somewhat different



criteria for inclusion in the meta-analysis and used different statisti-
cal analysis methods, they obtained similar performance estimates. 
Whereas both meta-analyses suggest promising accuracy for 
MRI-based MGMT promoter status prediction based on the results 
reported in literature, a comprehensive evaluation of deep learning 
approaches for MGMT promoter status prediction on the 
BraTS2021 dataset [6] yielded disappointing results, with AUCs 
ranging from 0.5 to 0.6 [120]. Also, the winning method of the 
BraTS2021 challenge achieved an AUC of 0.62 [8], suggesting 
that MGMT promoter status prediction from MRI is a very difficult 
task. Both systematic reviews [55, 136] also pointed out the low 
proportion of studies with external validation (10 out of 44 in [55] 
and 12 out of 60 in [136]). Figure 2, recreated based on [55], 
shows a number of other insightful statistics on the methodologies 
found in literature. Finally, both reviews also identified machine 
learning methods aimed at predicting other, less frequently consid-
ered molecular targets, including ATRX, TERT, EGFR, P53, and 
PTEN, indicating the broad range of possible future research direc-
tions in this area. 
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Fig. 2 Summary of tumor segmentation methods (a), types of imaging features (b), means of internal 
validation (c), and external validation (d) used by studies (n= 44) investigating machine learning models for 
predicting genetic subtypes of glioma. VASARI, Visually Accessible Rembrandt Imaging. Recreated from 
[55]. Permission to reuse was kindly granted by the publishers
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Beyond glioma characterization, other differential diagnosis 
problems in brain cancer are differentiation between glioma and 
lymphoma, between glioblastoma and metastasis, between differ-
ent types of meningioma, and between glioma, meningioma, and 
pituitary tumors [19, 65, 122, 127, 149], with promising perfor-
mances reported (AUC/accuracies around 90%). Of note, a recent 
study pointed out an important potential source of bias (the 
“Clever Hans effect”) in studies focused on differentiation between 
glioma, meningioma, and pituitary tumors, due to implicit radiol-
ogist input in the selection of the 2D slices in a commonly used 
benchmark dataset [142]. 

For decision making in stroke, different targets for machine 
learning based on imaging data have been identified, mostly 
focused at determining the cause and extent of stroke and to a 
lesser extent, on informing treatment decisions [56]. Regarding 
cause and extent of acute stroke, automatic lesion detection and 
identification of tissue-at-risk include the most important elements. 
These remain challenging as there is a lot of variation in lesion shape 
and location depending on time-from-symptom onset, vessel 
occlusion site, and collateral status [70]. Machine learning methods 
for segmentation and detection are increasingly successful (see 
Chapter 13). The step toward computer-aided diagnosis in stroke 
is also being taken using, for example, the CE-marked eASPECTS 
score [49], which is a machine learning-based assessment of the 
Alberta Stroke Program Early Computed Tomography Score 
(ASPECTS). This system for scoring acute ischemic damage to 
the brain has shown to be a simple, reliable, and strong predictor 
of functional outcome after stroke. Regarding treatment decisions, 
machine learning is used in several studies to determine whether a 
patient qualifies for a specific stroke treatment. For thrombolytic 
treatment, this qualification depends on time elapsed after symp-
tom onset and treatment should be performed within 4.5 h. For 
this application, methods are developed that provide a binary esti-
mation of stroke onset time (i.e., more or less than 4.5 h) based on 
either DWI and FLAIR [71] or perfusion-weighted imaging (CTor 
MR) [50]. Both approaches used a radiomics-like approach of 
feature extraction (e.g., intensity/gradient/texture based or using 
an autoencoder) followed by a machine learning classifier (support 
vector machine, random forest, and logistic regression). These 
machine learning methods had greater sensitivity than human read-
ers using the standard procedure of DWI-FLAIR mismatch and 
comparable specificity. In addition, thrombolysis may cause the rare 
complication of symptomatic intracranial hemorrhage. Several 
machine learning methods have been developed to predict the 
risk of this complication achieving promising predictive perfor-
mance, for example, using a support vector machine classifiers 
based on CT data (AUC = 0.74) [9].
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For prediction of the future course of subjects at-risk of 
developing dementia, there are three frequently used approaches 
for defining the prediction problem at hand. First, predicting 
whether the patient will develop dementia. In specific diseases, 
measurement of proteins causing underlying pathology has shown 
to be very promising to identify patients in a prodromal disease 
state. Here, prediction is performed either using univariate analysis 
or using logistic regression with few variables as input. Blood-based 
P-Tau biomarker can predict incident AD within 4 years with an 
AUC of 0.78-0.83 [103], and CSF biomarkers and PET images of 
amyloid β and Tau can predict clinical progression of subjects in 
their prodromal AD state with an AUC of 0.94-0.96 [46]. Alter-
natively, in the absence of pathology-specific markers, MRI and 
cognitive markers of a patient together with machine learning 
approaches have been used to predict AD with an AUC of 0.70-
0.83 [16, 23, 75, 141]. For a systematic review of the different 
machine learning methods developed for the purpose of predicting 
AD, see [5]. Support vector machines (SVM) and logistic regres-
sions are the most used algorithms in the last decade (Fig. 3). In 
FTD, where it is currently not possible to measure the pathological 
proteins in body fluids, prediction based on a combination of 
biomarkers that are nonspecific to the underlying pathology is 
promising. This is demonstrated, for example, by van der Ende 
et al. [134], who predicted disease onset in familial FTD based on 
unspecific blood-based and CSF-based biomarkers using a disease 
progression model and identified presymptomatic subjects that 
developed dementia in the near future with an AUC of 0.85. 
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Fig. 3 Evolution with time of the use of various algorithms for predicting the progression of mild cognitive 
impairment. SVM with unknown kernel are simply noted as “SVM.” OPLS, orthogonal partial least square; 
SVM, support vector machine. Reproduced from [5]. Permission to reuse was kindly granted by the publishers
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Second, predicting the time for conversion to dementia. While 
the previous problem predicts a dichotomous output variable, here 
it involves predicting a continuous variable of time to dementia. 
Bilgel et al. [11] predicted time to AD dementia with a mean error 
of <1.5 years. In the TADPOLE challenge, machine learning 
approaches to predict time for conversion to AD dementia of 
33 participating teams have been assessed quantitatively 
[83]. Ansart et al. [5] strongly favor predicting the exact time for 
conversion to dementia and argue against predicting converters 
within a given time interval (e.g., within 3 years), because of the 
precision in the predictions. While this is indeed methodologically 
more elegant, the implications for clinical use and perception of 
patients regarding prediction precision and the inherent uncer-
tainty remain to be established. 

Third, prediction of disease markers could help to obtain 
insight into the clinical prognosis in an individual. Important dis-
ease markers are, for example, measures of global cognition (mini-
mental state examination [MMSE] or Alzheimer’s disease assess-
ment scale [ADAS] scores), or salient imaging markers (volume of 
the brain ventricles or longitudinal Tau protein accumulation). 
ADAS scores could not be reliably predicted by any participating 
team in the TADPOLE challenge [83], but a recent disease pro-
gression model called AD course map [66] could predict ADAS 
scores (which is scored from 0 to 150) after 3 years with a mean 
absolute error of 7.6 points. AD course map could also predict 
MMSE scores (which is scored from 0 to 30) after 3 years with a 
mean absolute error of 3.2 points. While these predictions used 
MRI as input, Tau PET was recently shown to be more predictive of 
future MMSE scores using linear mixed models [100]. However, a 
thorough validation of this Tau PET-based prediction is lacking. 
Predicting salient imaging markers such as volume of the ventricles 
[83], volume of the hippocampus [66], or longitudinal Tau accu-
mulation [72] is a promising topic. Identifying the most clinically 
useful target to be predicted, the imaging modality that has the best 
cost-benefit ratio for prognosis of a patient, and the method that 
best predicts it are all important questions that still need answers in 
the future. 

Most prediction methods in MS focus on predicting either 
physical disability, cognitive impairment, or treatment response in 
imaging data of an individual patient [57]. Physical disability as 
measured by expanded disability status scale (EDSS, range 0–10) 
has been the most commonly used predictor variable as recently 
used in [104, 118]. An ensemble of classifiers consisting of con-
volutional neural networks, random forests, and manifold learning 
was reported to predict EDSS with a mean square error of 3.0 
[118]. Cognitive impairment has been predicted either as a global 
measure of cognition or as specific cognitive domains such as 
attention or working memory [32]. For predicting treatment



response in MS, Signori et al. [124] used meta-analysis to identify 
subject characteristics that have higher treatment effects. In [34], 
the authors used an unsupervised disease progression model to 
identify subtypes of progression pathways in MS and found in 
post hoc analysis that one of the subtypes predicted better treat-
ment effects. Current challenges in this evolving field of predicting 
treatment response in MS and future directions have been summar-
ized in [37]. 
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For the prediction of patient outcomes after treatment of 
brain cancer, most machine learning studies have focused on 
MRI-based prediction of progression-free survival or overall sur-
vival, which will therefore be discussed in more detail here. A 
systematic review by Sarkiss et al. identified nine articles on survival 
prediction in glioma, and two on survival prediction for patients 
after stereotactic radiosurgery of brain metastases [122]. A more 
recent systematic review by Buchlak et al. identified 17 studies on 
survival prediction with performance estimates (AUC or accuracy) 
mostly in the range 0.7–0.8 [19]. Among those, only one study 
reported results of external validation, predicting overall survival of 
patients with low-grade glioma, and obtained an AUC of 0.71 with 
a model combining radiomics with non-imaging features including 
age, resection extent, grade, and IDH status [21]. Random (sur-
vival) forests and support vector machines were most often used 
methods. One study used a CNN as a pre-trained feature extractor 
[69]. Other recent approaches using CNNs to extract features that 
are subsequently combined with other factors into a final prognos-
tic model include [45, 51, 96]. The 2017/2018 editions of the 
well-known BraTS challenges also included a task on overall sur-
vival prediction, with best teams obtaining accuracies around 0.6 in 
a three-class classification setting distinguishing short-, mid-, and 
long-survivors, [7]. Here, it was also pointed out that conventional 
machine learning methods outperformed deep learning methods, 
likely due to the limited size of available datasets for training. 

Beyond MRI-based methods, methods using histopathology 
images and/or genomics data as input for the machine learning 
model are also considered in the literature on outcome prediction 
for glioma patients. In one of the pioneering studies on digital 
pathology images of glioma, better prognostication was obtained 
with deep learning when pathology images were combined with 
genetic markers (IDH, 1p19q) [91]. Preliminary work on so-called 
radiopathomics in glioma is also available, supporting the notion 
that combining histology and radiology features improves prognos-
tication (overall survival prediction) in glioma patients [115, 116]. 

2.2 Benchmarks and 

Challenges 

For 15 years, grand challenges have been organized in the biomed-
ical image analysis research field. These are international bench-
marks in competition form that have the goal of objectively 
comparing algorithms for a specific task on the same clinically



representative data using the same evaluation protocol. In such 
challenges, the organizers supply reference data and evaluation 
measures on which researchers can evaluate their algorithms. Over 
the past years, the number and the impact of such grand challenges 
have increased [79]. Also in the field of computer-aided diagnosis 
and prediction, such grand challenges have been organized. For 
example, in the dementia field, four challenges have been organized 
focusing on early diagnosis [3, 15, 121] and predicting the natural 
disease course [3, 83, 121]. In general, algorithms winning the 
challenges performed rigorous data pre-processing and combined a 
wide range of input features [17]. In the field of brain cancer, the 
series of BraTS challenges has had a major impact [6, 7]. These 
benchmarks are instrumental to gaining insight into successful 
approaches and their potential for use in clinical practice and clinical 
trials. 
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2.3 Open-Source 

Software 

Open-source machine learning software such as scikit-learn1 and 
MONAI2 have been fundamental to the development of this field 
of research. More specifically for computer-aided diagnosis and 
prediction in brain diseases, dedicated platforms are available such 
as Clinica [119], NeuroPredict [109], and PRoNTo [123]. We also 
see a trend of researchers publishing their scripts and trained classi-
fiers with their publications in order to promote reproducibility. 

3 Clinical Impact 

There are multiple ways in which computer-aided diagnosis and 
prediction models can make an impact on clinical practice. Key 
areas of impact are in decision making for treatment and care, 
replacing invasive diagnostic procedures and patient selection for 
clinical trials. Here we will discuss to what extent these clinical 
needs are addressed by current methods. 

First, the most direct impact is on decision making for treat-
ment and care. This not only affects clinical care and treatment 
planning in patients with, for example, dementia, stroke, MS, or 
brain cancer but also is important for managing the expectations of 
patients and their caregivers. Although high performances are 
achieved for some related tasks such as dementia classification, 
validation of those results on external datasets and clinical cohorts 
is still very limited as well as knowledge on the robustness of the 
methods. For other applications, there is still room for performance 
improvement, and key factors in achieving that would be the com-
bination of multimodal input and the availability of more well-

1 https://scikit-learn.org/. 
2 https://monai.io/.

https://scikit-learn.org/
https://monai.io/


maintained and large-scale datasets for training and evaluation. In 
general, there is room for improvement in how well real clinical 
questions are addressed by current methodology. Second, machine 
learning models can have an impact by replacing invasive diagnostic 
procedures. This is especially relevant in brain cancer, where 
machine learning techniques based on imaging data are developed 
to predict, for example, genetic mutation status or tumor grade, 
thereby avoiding or reducing the need for biopsies [10, 152]. As a 
motivating example, MRI-based prediction of MGMT methylation 
status could be beneficial to guide treatment decisions. This is 
supported by findings from a population-based study assessing 
survival in 131 patients with radiological diagnosis of glioblastoma 
who did not undergo surgery and thus lacked (histological or 
molecular) tissue-based verification of the diagnosis [146]. While 
patients without treatment had extremely poor prognosis with 
median survival of 3.6 months, those who received upfront temo-
zolomide treatment did significantly better (with median survival of 
6.8 months). Since the response to temozolomide is known to be 
highly dependent on the MGMT status, MRI-based prediction of 
MGMT status could give insight into which patients would benefit 
from treatment avoiding the need for biopsies in patients to frail for 
tumor biopsy. Third, patient selection for clinical trials is relevant in 
diseases where no to limited options for treatment exist, such as 
dementia, or diseases where existing treatments are suboptimal for 
some patients, such as MS. This can boost the power of trials by 
enrolling, for example, individuals who are more likely to progress 
based on prediction models. Several pilot studies demonstrated the 
added value of machine learning models to select a subgroup of 
participants to increase sensitivity to the treatment using phase III 
trial data (e.g., for Alzheimer’s disease treatment using donepezil or 
semagacestat) [35, 102]. This will ultimately reduce the size, dura-
tion, and cost of clinical trials.
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The number of published methods is not evenly distributed 
over tasks. While many methods have been published on, for exam-
ple, the classification of Alzheimer’s disease patients versus controls, 
much fewer publications exist on differential diagnosis in dementia. 
In addition, there seems to be a mismatch in some applications 
between published classification methods and clinical needs, e.g., 
the clinically relevant problem of early diagnosis does not directly 
translate to the frequently studied classification task of established 
Alzheimer’s disease versus healthy controls, but would instead 
require separation of early disease stage Alzheimer’s disease patients 
from those that have cognitive complaints but not dementia. 

Several approved machine learning products to assist diagnosis 
and prediction are making their way into clinical practice, in partic-
ular in the imaging domain. Van Leeuwen et al. evaluated 100 com-
mercially available products for AI in radiology, of which 38 are 
related to brain diseases [137]. These include mostly segmentation,



quantification, and normative comparison for neurodegenerative 
diseases and detection of lesions for stroke and oncology. Most 
methods generate a sample radiologist report which can be 
inspected and modified. In dementia, for example, 17 reporting 
tools that use automated brain MRI segmentation software and 
normative reference data for single-subject comparison are regu-
latory approved for use in the memory clinic [105]. 
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One of these is Quantib ND (Quantib BV, Rotterdam, the 
Netherlands),3 which is an approved commercial software that per-
forms automatic segmentation into 20 brain regions as well as 
normative volumetry reference curves based on data of 5000 sub-
jects from a population-based cohort. While Quantib ND and most 
other available tools use machine learning for brain segmentation, 
their output is not a diagnostic label produced by a machine 
learning algorithm. Another approved software, cDSI (Combinos-
tics, Tampere, Finland),4 does output diagnostic labels as confi-
dence scores in addition to segmentation and normative volumetry 
based on MRI. It uses univariate machine learning to normalize 
individual biomarkers of different modalities based on reference 
values of patient and control groups, color-codes these biomarkers 
to improve visualization of large-data datasets, and combines con-
fidence scores based on individual biomarkers into one score 
[84, 85]. While cDSI is a machine learning tool for computer-
aided diagnosis and prognosis, it does not exploit the power of 
machine learning to detect complex patterns in high-dimensional 
data but rather focuses on visualization and interpretability. Diag-
nosis and prediction algorithms that map high-dimensional input, 
i.e., images and other clinical data, to an outcome measure using 
machine learning have not yet made their way into clinical practice. 

4 Roadmap for Clinical Translation 

There are numerous challenges for clinical translation of computer-
aided diagnosis and prediction methods. Some key items that 
should be on the roadmap for translation relate to large and stan-
dardized datasets, to technical and clinical validation, to interpret-
ability by clinicians and patients, and to practical issues related to 
implementation. In this section, we will discuss these requirements 
and related developments and initiatives. 

The first requirement for translation is large and standardized 
datasets. For a few brain disorders, one or multiple large datasets 
(i.e., up to 2500 participants) are available to train machine 
learning algorithms for diagnosis and prediction tasks, facilitated

3 quantib.com/solutions/quantib-nd. 
4 combinostics.com/cdsi.

https://quantib.com/solutions/quantib-nd
https://combinostics.com/cdsi


by large multicenter initiatives such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) or the Parkinson’s Progression 
Markers Initiative (PPMI). For validation in other cohorts and for 
development of algorithms in other diseases, there is only limited 
data available and a need for more (well-annotated) data exists. In 
particular, there is a need for validation data that reflect the reality 
of clinical routine with no to limited data harmonization and large 
variation in imaging protocols and data quality. Setting up such 
large-scale datasets is complex due to various reasons including 
obstacles in inter-institutional data sharing and a lack of funding 
for collection, curation, and labeling of data. To overcome these 
challenges, developments in research software and infrastructure 
may provide a solution by sharing easily reproducible algorithms 
rather than the data. Wrapping an algorithm in a container (e.g., 
Docker,5 Singularity [67]) and applying the algorithms locally to 
the data (at one site or multiple sites in a federated approach) 
enables method validation on large sets of data within the confines 
of the local institute’s firewalls. Such an approach could be also used 
for enabling training on larger datasets (i.e., federated learning 
[125]). Standardization of the data is important for eventual trans-
lation as it enables researchers to combine multiple datasets for 
development and validation of machine learning methods for diag-
nosis and prediction. Such standardization entails both data collec-
tion (e.g., diagnostic criteria, protocols for image acquisition, and 
clinical tests) and data organization (e.g., through open-source 
standards and platforms for data storage such as the Brain Imaging 
Data Structure (BIDS) and the Extensible Imaging Archive Toolkit 
(XNAT)).
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Second, technical and clinical validation is a key focus area on 
the roadmap for translation. In the field of radiology, the quantita-
tive neuroradiology initiative (QNI) framework has been developed 
as a model framework for translation defining the technical and 
clinical validation necessary to embed automated software into the 
clinical workflow [39]. Based on this framework, [105] reviewed 
the published evidence regarding commercial automated volumet-
ric MRI tools for dementia diagnosis. For the 17 products identi-
fied, 11 companies have published some form of technical 
validation on their methods, but only 4 have published clinical 
validation in a dementia population. They concluded that there is 
a significant evidence gap in the literature regarding clinical valida-
tion and in-use evaluation. Whereas this review only addressed 
image volumetry in dementia, these findings likely extend to 
other brain diseases, applications, and modalities. Hence, there is 
a need for both retrospective and prospective studies validating 
algorithms in a clinical setting. In addition, performance metrics

5 www.docker.com.

http://www.docker.com


used in validation studies should aim to capture real clinical appli-
cability and address different aspects of the reliability of an algo-
rithm, including accuracy, uncertainty estimation, reproducibility, 
and generalizability to other data. Standards for validation and 
reporting are provided by guidelines such as STARD-AI [130] 
and TRIPOD-AI.6
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A third key item for clinical translation is interpretability by 
end users such as clinicians and patients. As clinicians have respon-
sibility for the decisions related to care and treatment, they should 
have trust in a computer-aided diagnosis or prediction system and 
understand its outputs to an extent that they can rely on them for 
decision making and explanation to a patient. Performance metrics 
should aim to capture real clinical applicability and be understand-
able to intended users [59]. High validation performance is impor-
tant for building trust in methods, but not sufficient by itself, since 
performance may reduce in individual cases because of unac-
counted inter-individual such as comorbidities or population dif-
ferences such as MRI scan protocol. Therefore, apart from model 
accuracy, relevant questions for interpretation are, for example, Is 
the model suitable for the data of this patient? What features 
contribute to the machine learning decision for this patient? How 
certain is the decision for this patient and can the algorithm know 
when it is uncertain about an individual’s decision? Such questions 
are important and methods should be designed and implemented 
in a way that facilitates answers to such questions. This could be 
obtained by using interpretability methods on top of “black box” 
machine learning models or directly by using interpretable models. 
For the first category, many methods have been developed based on 
model weight visualization, feature map visualization, back-
propagation methods, or perturbation of inputs (see also 
Chapter 22). For interpretable models, an example in the field of 
computer-aided diagnosis and prognosis is disease progression 
models [140, 148]. These data-driven models are designed specifi-
cally for neurodegenerative diseases and explain their decisions 
based on their estimate of the natural progression of the disease in 
the cohort (see also Chapter 17). 

As a final key item, we will discuss implementation feasibility. 
For machine learning models to be actually used in practice, it is 
essential that models and reporting are integrated into the clinical 
workflow and that the sending and processing of clinical data and 
receiving results is fully automated. Current commercial products 
for automatic volumetry in dementia all reported to have imple-
mented an integration with radiology systems and the clinical work-
flow. While validation of the workflows is limited [105], this does 
support the feasibility for machine learning in clinical practice.

6 osf.io/zyacb.

http://www.osf.io/zyacb


While these products integrate with the radiological workflow, a key 
challenge for the clinical translation of algorithms that use 
non-imaging clinical data (such as cognitive scores) as input is to 
also integrate with the clinical workflow of multidisciplinary 
diagnosis.
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5 Final Summary and Conclusion 

Computer-aided diagnosis and prediction of brain disorders is an 
important research area, with a wide variety of applications. While 
typically for these applications generic machine learning methods 
are used, domain knowledge of these brain disorders is crucial for 
selecting novel clinically relevant applications as well as for making 
domain-specific methodological improvements. Regarding diagno-
sis, clinical challenges are in early diagnosis of dementia and MS, 
differential diagnosis of dementia and brain cancer, and decision 
making for treatment in stroke. Regarding prediction, challenges 
are in the prediction of the natural disease course in dementia and 
MS, and the prediction of patient outcomes after treatment in 
stroke, brain cancer, and MS. Even though the disorders on 
which we focused are important avenues for impact, computer-
aided diagnosis and prognosis would also be extremely useful in 
other disorders such as movement disorders for predicting response 
to treatment and side effects, epilepsy for predicting response to 
epilepsy surgery, and psychiatric disorders where diagnosis can be 
particularly difficult. 

Key areas of impact are in (1) decision making for treatment 
and care in patients with dementia, stroke, MS, or brain cancer, 
(2) replacing invasive diagnostic procedures in brain cancer, and 
(3) patient selection for clinical trials in dementia and MS. While 
the first AI methods are making their way to clinical practice, 
diagnosis and prediction algorithms that map high-dimensional 
input, i.e., images and other clinical data, to an outcome measure 
using machine learning are not yet clinically available. To enable 
translation, major items on the roadmap relate to the availability of 
large and standardized datasets and technical and clinical validation 
of the developed machine learning methods. In addition, other 
important aspects are interpretability of the results by clinicians 
and patients, optimization of the diagnostic or treatment workflow 
in the clinic, and other practical issues related to implementation. 

With this chapter, we aimed to provide a comprehensive over-
view, bringing together the clinical context of representative use 
cases of diagnosis and prediction in brain disorders and their state-
of-the-art computer-aided methods. Future research should focus 
on bridging the identified gaps between clinical needs and the 
solutions brought by machine learning, to further improve decision 
making, treatment, and care in brain diseases.
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Burgos N, Charlier B, Bertrand A, 
Epelbaum S, Colliot O, Allassonnière S, Durr-
leman S (2021) AD course map charts Alzhei-
mer’s disease progression. Sci Rep 11(1): 
8020. https://doi.org/10.1038/s41598-
021-87434-1 

67. Kurtzer GM, Sochat V, Bauer MW (2017) 
Singularity: scientific containers for mobility 
of compute. PLoS One 12(5):1–20. https:// 
doi.org/10.1371/journal.pone.0177459 

68. Kuruppu DK, Matthews BR (2013) Young-
onset dementia. Semin Neurol 33(4): 
365–385.  https://doi.org/10.1055/s-
0033-1359320 

69. Lao J, Chen Y, Li ZC, Li Q, Zhang J, Liu J, 
Zhai G (2017) A deep learning-based radio-
mics model for prediction of survival in glio-
blastoma multiforme. Sci Rep 7(1):10353. 
https://doi.org/10.1038/s41598-017-10 
649-8 

70. Lee EJ, Kim YH, Kim N, Kang DW (2017) 
Deep into the brain: artificial intelligence in 
stroke imaging. J Stroke 19(3):277–285. 
https://doi.org/10.5853/jos.2017.02054 

71. Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon 
SU, Kim JS, Kim N, Kang DW (2020) 
Machine learning approach to identify stroke 
within 4.5 hours. Stroke 51(3):860–866. 
https://doi.org/10.1161/strokeaha.119. 
027611 

72. Leuzy A, Smith R, Cullen NC, Strandberg O, 
Vogel JW, Binette AP, Borroni E, Janelidze S, 
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Abstract 

The imaging community has increasingly adopted machine learning (ML) methods to provide individua-
lized imaging signatures related to disease diagnosis, prognosis, and response to treatment. Clinical 
neuroscience and cancer imaging have been two areas in which ML has offered particular promise. 
However, many neurologic and neuropsychiatric diseases, as well as cancer, are often heterogeneous in 
terms of their clinical manifestations, neuroanatomical patterns, or genetic underpinnings. Therefore, in 
such cases, seeking a single disease signature might be ineffectual in delivering individualized precision 
diagnostics. The current chapter focuses on ML methods, especially semi-supervised clustering, that seek 
disease subtypes using imaging data. Work from Alzheimer’s disease and its prodromal stages, psychosis, 
depression, autism, and brain cancer are discussed. Our goal is to provide the readers with a broad overview 
in terms of methodology and clinical applications. 

Key words Neuroimaging, Machine learning, Semi-supervised clustering, Heterogeneity 

1 Introduction 

There is a growing clinical evidence that structural and functional 
brain development and aging take heterogeneous paths within differ-
ent subsets of the human population [1–3]. This heterogeneity has 
been relatively ignored in case-control study analyses, yielding a 
limited understanding of the diversity of underlying biological pro-
cesses that might give rise to similar clinical phenotypes. The advent 
of high-throughput neuroimaging technologies and the concen-
trated efforts of the collection of large-scale datasets [4, 5] provide a 
unique opportunity to dissect the structural and functional heteroge-
neity of brain disorders in finer details and in an unbiased data-driven 
manner. A developing body of work that leverages ML and neuroim-
aging seeks disease subtypes of neuropsychiatric and neurodegenera-
tive disorders, including Alzheimer’s disease (AD) [6–11], 
schizophrenia [12, 13], and late-life depression [14]. 
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Subtyping brain diseases is a clustering problem where the goal 
is to break down the set of patients into distinct and relatively 
homogeneous subgroups (i.e., subtypes). While this has been 
actively investigated in the computer science community, subtyping 
neuroimaging data is endowed with a unique set of obstacles, such 
as the “curse of dimensionality” and the confounding nuisance 
effects, such as global demographics and scanner differences. Fur-
thermore, brain development and pathologies often progress along 
a continuum, e.g., from healthy state to preclinical stages to full-
fledged disease [15], thereby modeling directly in the patient 
domain may lead to a biased clustering solution. Thus, to tackle 
these problems, some recent efforts have focused on developing 
semi-supervised [6, 8, 9, 16] and unsupervised clustering methods 
[10, 11]. Early studies mainly focused on unsupervised clustering 
methods, such as K-means [17] or hierarchical clustering [18], to 
derive data-driven subtypes using imaging data. However, such 
approaches directly partition the patients based on similarities/ 
dissimilarities, potentially biased by confounding factors, such as 
demographics or heterogeneity caused by unrelated pathological 
processes. More recently, semi-supervised clustering methods [6, 8, 
9, 16] have been proposed to tackle this problem from a novel 
angle. To seek a pathology-oriented clustering solution, semi-
supervised approaches dissect disease heterogeneity by the “1-to-
k” mapping between the reference group (i.e., healthy control 
(CN)) and the subgroups of the patient group (i.e., the 
k subtypes). This approach presumably zooms into the heterogene-
ity of pathological processes rather than unwanted heterogeneity in 
general. Furthermore, confounding variations, such as demo-
graphics, are often ruled out in these approaches. 

Aiming to provide the reader in the imaging and machine 
learning community with a broad guideline in terms of methodol-
ogy and clinical applications, we organize the remainder of this 
chapter as follows. In Subheading 2, we provide a brief overview 
of clustering methods, including unsupervised and semi-supervised 
approaches. Subheading 3 discusses their applications in various 
neurological and neuropsychiatric disorders and diseases. Subhead-
ing 4 concludes the paper by discussing our main observations, 
methodological limitations, and future directions. 

2 Methodological Development Using Machine Learning and Neuroimaging 

Machine learning and neuroimaging have brought unprecedented 
opportunities to elucidate disease heterogeneity in various brain 
disorders and diseases [19]. Several trailblazing methodological 
papers have been recently published [9–11], challenging the con-
ventional approach of patient stratification that puts all patients into 
the same bucket. Among these, unsupervised [10, 11] and semi-



supervised clustering methods [9] sought to derive biologically 
data-driven disease subtypes, but they anchor the modeling from 
distinct perspectives. For conciseness, let us note that our imaging 
dataset contains q healthy control (CN) samples 
X r = ½x1, . . ., xq �,X r∈p × q , representing our reference group, 

and n patient samples (PT) X t = ½x1, . . ., xm�,X t∈p ×m , represent-
ing the target subtype population. We denote the whole population 
as a matrix X that is organized by arranging each image as a vector 
per column X = ½x1, . . ., xqþm�,X∈p × ðqþmÞ, where p is the num-
ber of features per image. We use binary labels to distinguish the 
patient and control groups, where 1 represents PT and -1 means 
CN. Disease subtyping sought to find the number of clusters (k) in  
the patient group that are neuroanatomically distinct while clini-
cally relevant. 
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2.1 Unsupervised 

Clustering 

Many recent efforts to discover the heterogeneous nature of brain 
diseases have investigated different unsupervised clustering algo-
rithms [10, 11, 20–32]. Among these approaches, the key cluster-
ing methods are often K-means, hierarchical clustering, and 
nonnegative matrix factorization (NMF) (Fig. 1). In this

Fig. 1 Schematic diagram of representative unsupervised clustering methods, K-means, NMF, and hierarchi-
cal clustering



subsection, we first briefly go through these methods. Subse-
quently, we focus on two representative models building on these 
unsupervised methods, i.e., Sustain [10] and latent 
Dirichlet allocation [11].
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2.1.1 K-Means 

Clustering 

K-means clustering aims to directly partition the n patients into 
k clusters. Each patient belongs to the cluster with the nearest mean 
(i.e., cluster centroid) quantified by a distance metric of choice 
(e.g., Euclidean distance). Since searching the global minimum in 
clustering is computationally difficult (NP-hard), local minima are 
searched in the K-means algorithm via an iterative refinement 
approach. This usually involves two steps after giving an initial set 
of k centroids: (i) assignment step, assigning each data point to the 
cluster with the nearest centroid with the least squared Euclidean 
distance, and (ii) update step, recalculating means (centroids) for all 
data points assigned to each cluster. The two steps iteratively con-
tinue until the convergence, i.e., the assignments no longer change. 
More details regarding the k-means algorithm are provided in 
Chap. 2, Subheading 12.1. Please refer to [33–35] for representa-
tive studies using K-means for disease subtyping. 

2.1.2 NMF Clustering Nonnegative matrix factorization (NMF) is a method that implic-
itly performs clustering by taking advantage that complex patterns 
can be construed as a sum of simple parts. In essence, the input data 
Xt is factorized into two nonnegative matrices C∈p × k and 

L∈k ×m , for which we refer to the component matrix and loading 
coefficient matrix, respectively. This method has been widely used 
as an effective dimensionality reduction technique in signal proces-
sing and image analysis [36]. By its nature, the L matrix can be 
directly used for clustering purposes, which is analogous to 
K-means if we impose an orthogonality constraint on the L matrix. 
Specifically, if Lkj> Lij for all i≠k, this clusters the data point xn into 
the k-th cluster. The vectors of the C matrix indicate the cluster 
centroids. Please refer to [32] for a representative study using NMF 
for disease subtyping. 

2.1.3 Hierarchical 

Clustering 

Hierarchical clustering aims to build a hierarchy of clusters, includ-
ing two types of approach: agglomerative and divisive [18]. In 
general, the merges and splits are determined greedily and pre-
sented in a dendrogram. Similarly, a measure of dissimilarity 
between sets of observations is required. Most commonly, this is 
achieved by using an appropriate metric (e.g., Euclidean distance) 
and a linkage criterion that specifies the dissimilarity of sets as a 
function of the pairwise distances of observations. Please refer to 
[24, 25, 30, 37, 38] for representative studies using the hierarchical 
clustering for disease subtyping.



2.2 Semi-supervised

Clustering
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2.1.4 Representative 

Unsupervised Clustering 

Methods 

Sustain [10] is an unsupervised clustering method for subtype and 
stage inference. Specifically, Sustain formulates the model as groups 
of subjects with a particular biomarker progression pattern as a 
subtype. The biomarker evolution of each subtype is modeled as a 
linear z-score model, a continuous generalization of the original 
event-based model [39]. Each biomarker follows a piecewise linear 
trajectory over a common timeframe. The key advantage of this 
model is that it can work with purely cross-sectional data and derive 
an imaging signatures of subtype and stage simultaneously. 

A Bayesian latent Dirichlet allocation model [11] was proposed 
to extract latent AD-related atrophy factors. This probabilistic 
approach hypothesizes that each patient expresses one or more 
latent factors, and each factor is associated with distinct but possibly 
overlapping atrophy patterns. However, due to the nature of latent 
Dirichlet allocation methods, the input images have to be discre-
tized. Moreover, this method exclusively models brain atrophy 
while ignoring brain enlargement. For example, larger brain 
volumes in basal ganglia have been associated with one subtype of 
schizophrenia [12]. 

Semi-supervised clustering methods dissect the subtle heterogene-
ity of interest under the principle of deriving data-driven and 
neurobiologically plausible subtypes (Fig. 2). In essence, these 
methods seek the “1-to-k” mapping between the reference CN

Fig. 2 Schematic diagram of semi-supervised clustering methods. Figure is adapted from [14]



group and the PT group, thereby teasing out clusters that are likely 
driven by distinct pathological trajectories, instead of by global 
similarity/dissimilarity in data, which is the core momentum of 
conventional unsupervised clustering methods.
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In the following subsections, we briefly discuss four semi-
supervised clustering methods. These methods employ different 
techniques to seek this “1-to-k” mapping. In particular, CHI-
MERA [16] and Smile-GAN [9] utilize generative models to 
achieve this mapping, while HYDRA [6] and MAGIC [8] are 
built on top of discriminative models. 

Box 1: Representative Semi-supervised Clustering Methods 
The central principle of semi-supervised clustering methods is 
to seek the “1-to-k” mapping from the reference domain to 
the patient domain.

• CHIMERA: a generative approach that leverages the coher-
ent point drift algorithm and maps the data distribution of the 
CN group to the PT group, thereby enabling to subtype by 
the distinct k regularized transformations.

• Smile-GAN: a generative approach based on GANs to learn 
multiple distinct mappings by generating PT from 
CN. Simultaneously, a clustering model is trained interac-
tively with mapping functions to assign PT into the 
corresponding subtype memberships.

• HYDRA: a discriminative approach which leverages multiple 
linear support vector machines to construct a polytope that 
clusters the patients depending on the patterns of differences 
between the CN group and the PT group.

• MAGIC: a generalization of HYDRA that aims to dissect 
disease heterogeneity at multiple imaging scales for a scale-
consistent solution. 

2.2.1 CHIMERA CHIMERA employs a generative probabilistic approach, considers 
all samples as points in the imaging space, and infers the clusters 
from the transformations between the CN and PT distributions. It 
hypothesizes that the PT distribution can be generated from the 
CN distribution under k sets of transformations, each reflecting a 
distinct disease process. 

Mathematically, the transformation T is a convex 
combination of the k linear transformations that map a CN subject 
in the reference space to the target space: 

xr 
i∈q → x t 

i =T ðxiÞ= k 
j =1ξjT j ðxiÞ, where ξj is the probability 

that a PT belongs to the j-th subtype. Ideally, if the disease subtypes 
were distinct, ξj should take value 1 for the transformation



corresponding to this specific disease subtype and value 0 otherwise. 
At its core, the coherent point drift algorithm [40], a generative 
probabilistic approach, is used to estimate the transformation T. 
Specifically, the CN sample point is mapped to the PT domain and 
regarded as a centroid of a spherical Gaussian cluster, whereas the 
patient points are treated as independent and identically distributed 
data generated by a Gaussian mixture model (GMM) with equal 
weights for each cluster. The goal is to maximize the data likelihood 
during the distribution matching while also taking into account 
covariate confounds (e.g., age and gender). The expectation-
maximization approach is adopted to optimize the resulting energy 
objective. Clustering inference is straightforward after the opti-
mized transformation Tj is achieved, i.e., a patient can be assigned 
the subtype membership corresponding to the largest likelihood. 
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2.2.2 Smile-GAN Smile-GAN is a novel generative deep learning approach based on 
generative adversarial networks (GAN). The reader may refer to 
Chap. 5 for generic information about GANs. Smile-GAN aims to 
learn a mapping function, f, from joint CN domain X and subtype 
domain Z to the PT domain Y , by transforming CN data x to 
different synthesized PT data y′= f(x, z) that are indistinguishable 
from real PT data, y, by the discriminator, D. Mapping function, f, 
is regularized for inverse consistencies, with a clustering function, 
g : Y → Z, trained interactively to reconstruct z from synthesized 
PT data y′. The clustering function, g, can also be directly used to 
cluster both training and unseen test data after the training process. 

More specifically, three different data distributions are denoted 
as x� pCN (for controls), y� pPT (for patients), and z� pSub (for a 
subtype), respectively, where z� pSub is sampled from a discrete 
uniform distribution and encoded as a one-hot vector with dimen-
sion K (number of clusters). Mapping function, f : X � Z → Y , and 
clustering function, g : Y → Z, are learned through the following 
training procedure (lc denotes the cross-entropy loss): 

f , g = argmin 
f , g 

max 
D 

LGANðD, f Þ þ  μLchangeðf Þ þ  λLclusterðf , gÞ ð1Þ 
where 

LGANðD, f Þ =y�pPT ½log ðDðyÞÞ�
þz�pSub,x�pCN ½1- log ðDðf ðx, zÞÞÞ�� ð2Þ 

Lchangeðf Þ =x�pCN,z�pSub ½jjf ðx, zÞ- xjj1� ð3Þ 

Lclusterðf , gÞ =x�pCN,z�pSub ½l cðz, gðf ðx, zÞÞÞ� ð4Þ
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The objective consists of adversarial loss LGAN, regularization terms 
Lchange and Lcluster. Adversarial loss forces the synthesized PT data 
to follow similar distributions as real PT data. The discriminator D, 
trying to identify synthesized PT data from real PT data, attempts 
to maximize the loss, while the mapping f attempts to minimize 
against it. Both regularization terms serve to constrain the function 
class where the mapping function f is sampled from so that it is truly 
meaningful while matching the distributions. Minimization of 
Lchange encourages sparsity of regions captured by f, with the 
assumption that only some regions are changed by disease effect. 
Optimizing Lcluster ensures that the input sub variable z can be 
reconstructed from synthesized PT data y′, so that the mutual 
information between z and y′ are maximized, and distinct imaging 
patterns are synthesized when z takes different values. Further 
regularization is also imposed by forcing mapping function f and 
clustering function g to be Lipschitz continuous. More impor-
tantly, thanks to the inverse consistencies led by Lcluster, function 
g can directly output cluster probabilities and cluster labels when 
given unseen test PT data. 

2.2.3 HYDRA In contrast to the generative approaches used in CHIMERA and 
Smile-GAN, HYDRA leverages a widely used discriminative 
method, i.e., support vector machines (SVM), to seek this “1-to-
k” mapping. The novelty is that HYDRA extends multiple linear 
SVMs to the nonlinear case in a piecewise fashion, thereby simulta-
neously serving for classification and clustering. Specifically, it con-
structs a convex polytope by combining the hyperplane from 
k linear SVMs, separating the CN group and the k subpopulation 
of the PT group. Intuitively, each face of the convex polytope can 
be regarded to encode each subtype, capturing a distinct disease 
effect. 

The convex polytope is estimated by sequentially solving each 
linear SVM as a subproblem under the principle of the sample 
weighted SVM [41]. The optimization stops when the sample 
weights become stable, i.e., the polytope is stably established. The 
objective of maximizing the polytope’s margin can be summarized 
as 

min
fwj , bjgk ðj =1Þ 

k 

ðj =1Þ 

jjwj jj2 2 
2 

þ μ 
ijyi =þ1 

1 
k 
maxf0, 1-wT 

j X
T 
i - bjg 

þμ 
ijyi = -1 

s i,j maxf0, 1þ wT 
j X

T 
i þ bjg 

ð5Þ 
where wj and bj are the weight and bias for each hyperplane, 
respectively. μ is a penalty parameter on the training error, and S is 
the subtype membership matrix of dimension m � k deciding



whether a patient sample i belongs to subtype j. The cluster mem-
bership is inferred as follows: 

Subtyping Brain Diseases 499

S i,j =f1, j = arg maxj ðwT 
j X

T þ bj Þ 
0, otherwise 

ð6Þ 

2.2.4 MAGIC MAGIC was proposed to overcome one of the main limitations that 
HYDRA faced. That is, a single-scale set of features (e.g., atlas-
based regions of interest) may not be sufficient to derive subtle 
differences, compared to global demographics, disease heterogene-
ity, since ample evidence has shown that the brain is fundamentally 
composed of multi-scale structural or functional entities. To this 
objective, MAGIC extracts multi-scale features in a coarse-to-fine 
granular fashion via stochastic orthogonal projective nonnegative 
matrix factorization (opNMF) [42], a very effective unbiased, data-
driven method for extracting biologically interpretable and repro-
ducible feature representations. Together with these multi-scale 
features, HYDRA is embedded into a double-cyclic optimization 
procedure to yield robust and scale-consistent cluster solutions. 

MAGIC encapsulates the two previous proposed methods (i.e., 
opNMF and HYDRA) and optimizes the clustering objective for 
each single-scale feature as a sub-optimization problem. To fuse the 
multi-scale clustering information and enforce the clusters to be 
scale-consistent, it adopts a double-cyclic procedure that transfers 
and fine-tunes the clustering polytope. Firstly, (i) inner cyclic pro-
cedure: let us remind that HYDRA decides the clusters based on 
the subtype membership matrix (S). MAGIC first initializes the S 
matrix with a specific single-scale feature set, i.e., Li, and then the S 
matrix is transferred to the next set of feature set Li+1 until the 
predefined stopping criterion is achieved (i.e., the clustering solu-
tion across scales is stable). Secondly, (ii) outer cyclic procedure: the 
inner cyclic procedure was repeated by initializing with each single-
scale feature set. Finally, to determine the final subtype assignment, 
we perform a consensus clustering by computing a co-occurrence 
matrix based on all the clustering results and then perform spectral 
clustering [43]. 

3 Application to Brain Disorders 

Brain disorders and diseases affect the human brain across a wide 
age range. Neurodevelopmental disorders, such as autism spectrum 
disorders (ASD), are usually present from early childhood and 
affect daily functioning [44]. Psychotic disorders, such as schizo-
phrenia, involve psychosis that is typically diagnosed for the first 
time in late adolescence or early adulthood [45]. Dementia and 
mild cognitive impairment (MCI) prevail both in late mid-life for



early-onset AD (usually 30–60 years of age) and most frequently in 
late-life for late-onset AD (usually over 65 years of age) [46]. Brain 
cancers in children and adults are heterogeneous and encompass 
over 100 different histological types of tumors, based on cells of 
origin and other histopathological features, and have substantial 
morbidity and mortality [47]. Ample clinical evidence encourages 
the stratification of the patients in these brain disorders and cancers, 
potentially paving the road toward individualized precision 
medicine. 
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This section collectively overviews previous work aiming to 
unravel imaging-derived heterogeneity in ASD, psychosis, major 
depressive disorders (MDD), MCI and AD, and brain cancer. 

3.1 Autism Spectrum 

Disorder 

ASD encompasses a broad spectrum of social deficits and atypical 
behaviors [48]. Heterogeneity of its clinical presentation has 
sparked massive research efforts to find subtypes to better delineate 
its diagnosis [49, 50]. Recent initiatives to aggregate neuroimaging 
data of ASD, such as the ABIDE [51] and the EU-AIMS [52], also 
have motivated large-scale subtyping projects using imaging 
signatures [53]. 

Different clustering methods have been applied to reveal struc-
tural brain-based subtypes, but primarily traditional techniques 
such as the K-means [54] or hierarchical clustering [37]. Besides 
structural MRI, functional MRI [55] and EEG [56] have also been 
popular modalities. For reasons discussed earlier, normative clus-
tering and dimensional analyses are better suited to parse a patient 
population that is highly heterogeneous [57]. However, efforts in 
this avenue have been primitive, with only a few recent publications 
using cortical thickness [58]. Taken together, although more vali-
dation and replication efforts are necessary to define any reliable 
neuroanatomical subtypes of ASD, some convergence in findings 
has been noted [53]. First, most sets of ASD neuroimaging sub-
types indicate a combination of both increases and decreases in 
imaging features compared to the CN group, instead of pointing 
in a uniform direction. Second, most subtypes are characterized by 
spatially distributed imaging patterns instead of isolated or focal 
patterns. Both findings emphasize the significant heterogeneity in 
ASD brains and the need for better stratification. 

The search for subtypes in the ASD population has unique 
challenges. First, the early onset of ASD implies that it is heavily 
influenced by neurodevelopmental processes. Depending on the 
selected age range, the results may significantly differ. Second, 
ASD is more prevalent in males, with three to four male cases for 
one female case [59], which adds a layer of potential bias. Third, 
individuals with ASD often suffer psychiatric comorbidities, such as 
ADHD, anxiety disorders, and obsessive-compulsive disorder, 
among many others [60], which, if not screened carefully, can 
dilute or alter the true signal.
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3.2 Psychosis Psychosis is a medical syndrome characterized by unusual beliefs 
called delusions and sometimes hallucinations of visions, sounds, 
smells, or body sensations that are not present in reality. Symptoms, 
functioning, and outcomes are highly heterogeneous across indivi-
duals, leading to long-standing hypotheses of underlying brain 
subgroups. However, objective brain biomarkers have largely not 
been discovered for any psychosis diagnosis, stage, or clinically 
defined subgroup [61, 62]. Neuroimaging studies are also affected 
by brain heterogeneity [63, 64]. Recent research has thus focused 
on finding structural brain subtypes using unbiased statistical tech-
niques [12, 13, 65]. 

Psychosis studies have mainly focused on determining subtypes 
by clustering brain structural data within the chronic schizophrenia 
population that has had the illness for years, with results demon-
strating two [12, 13], three [26], and six [31] subgroups. Various 
clustering techniques have been used to achieve these outcomes, 
including conventional approaches, such as k-means, in addition to 
more advanced machine learning methods, such as semi-supervised 
learning. A limitation of the work so far has been the lack of internal 
or external validation. Still, in studies with robust internal valida-
tion methods using metrics that choose the optimal cluster number 
based on the stability of the solution (e.g., consensus clustering), 
subtypes cluster along the lines of the severity of brain differences. 

In a recent study, with the largest sample to date (n=671), 
clustered individuals with chronic schizophrenia using HYDRA 
and multiple internal validation procedures were applied (i.e., 
cross-validation resampling, split-half reproducibility, and leave-
site-out validation) [12]. A two-subtype solution was found, with 
one subtype demonstrating widespread reductions and the other 
showing the localized larger volume of the striatum that was not 
associated with antipsychotic use. Interestingly, there were limited 
associations with current psychosis symptoms in this work, but 
indications of associations with education and illness duration in 
specific subtypes. 

Functional imaging has also been used to define psychosis 
subgroups using functional connectivity at rest [66] and effective 
connectivity during task performance [67]. The research com-
monly has relatively low sample sizes with little internal or external 
validation. Still, of these works, preliminary results demonstrate 
that clusters can follow diagnostic divisions between individuals 
with psychosis [67] and that specific networks (e.g., frontoparietal 
network) are associated with specific psychotic symptoms [67] 
[66]. A recent advanced deep learning approach has also revealed 
clinical separations along the lines of symptom severity [68]. Taken 
together with brain structural results, it is possible that functional 
imaging maps onto symptom states rather than underlying illness 
traits that are captured by structural imaging. Further internal and 
external validation work is required to investigate this hypothesis by



characterizing, comparing, and ultimately combining clustering 
solutions. A critical future direction will also be to conduct longi-
tudinal studies that track individuals over time. Such research could 
lead the way toward clinical translation. 
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3.3 Major Depressive 

Disorder 

MDD is a common, severe, and recurrent disorder, with over 
300 million people affected worldwide, and is characterized by 
low mood, apathy, and social withdrawal, with symptoms spanning 
multiple domains [69]. Its vast heterogeneity is exemplified by the 
fact that according to DSM-5 criteria, at least 227 and up to 16,400 
unique symptom presentations exist [70, 71]. The potential causes 
for this heterogeneity vary from divergent clinical symptom profiles 
to genetic etiologies and individual differences in treatment 
outcomes. 

Despite neurobiological findings in MDD spanning cortical 
thickness, gray matter volume (GMV), and fractional anisotropy 
(FA) measures, objective brain biomarkers that can be used to 
diagnose and predict disease course and outcome remain elusive 
[71–73]. Recently, there have been efforts to identify neurobiolo-
gically based subtypes of depression using a bottom-up approach, 
mainly using data from resting-state fMRI [71]. Several studies 
[33–35] employed k-means clustering and group iterative multiple 
model estimation, respectively, to identify two functional connec-
tivity subtypes, while Tokuda et al. [74] and Drysdale et al. [75] 
identified three and four subtypes, respectively, using nonparamet-
ric Bayesian mixture models and hierarchical clustering. These 
subtypes are characterized by reduced connectivity in different net-
works, including the default mode network (DMN), ventral atten-
tion network, and frontostriatal and limbic dysfunction. Regarding 
structural neuroimaging, one study has used k-means clustering on 
fractional anisotropy (FA) data to identify two depression subtypes. 
The first subtype was characterized by decreased FA in the right 
temporal lobe and the right middle frontal areas and was associated 
with an older age at onset. In contrast, the second subtype was 
characterized by increased FA in the left occipital lobe and was 
associated with a younger age at onset [76]. 

Current research in the identification of brain subtypes in 
MDD has produced results that are promising but confounded by 
methodological and design limitations. While some studies have 
shown clinical promises such as predicting higher depressive symp-
tomatology and lower sustenance of positive mood [34, 35], 
depression duration [33], and TMS therapy response [75], they 
are confounded by limitations such as relatively small sample sizes; 
nuisance variances such as age, gender, and common ancestry; lack 
of external validation; and lack of statistical significance testing of 
identified clusters. Furthermore, there has been a lack of ambition 
in the use of novel clustering techniques. Clustering based on



structural neuroimaging is limited compared to other disease enti-
ties and is an avenue that future research should consider. Future 
studies should also aim to perform longitudinal clustering to eluci-
date the stability of identified brain subtypes over time and examine 
their utility in predicting disease outcomes. 
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3.4 MCI and AD AD, along with its prodromal stage presenting MCI, is the most 
common neurodegenerative disease, affecting millions across the 
globe. Although a plethora of imaging studies have derived 
AD-related imaging signatures, most studies ignored the heteroge-
neity in AD. Recently, there has been a developing body of effort to 
derive imaging signatures of AD that are heterogeneity-aware (i.e., 
subtypes) [7–11]. 

Most previous studies leveraged unsupervised clustering meth-
ods such as Sustain [10], NMF [32], latent Dirichlet allocation 
[11], and hierarchical clustering [24, 25, 30, 38]. Other papers 
[6, 9, 20, 77, 78] utilized semi-supervised clustering methods. Due 
to the variabilities of the choice of databases and methodologies 
and the lack of ground truth in the context of clustering, the 
reported number of clusters and the subtypes’ neuroanatomical 
patterns differ and cannot be directly compared. The targeted 
heterogeneous population of study also varies across papers. For 
instance, [6] focused on dissecting the neuroanatomical heteroge-
neity for AD patients, while [77] included AD plus MCI and [20] 
studied MCI only. However, some common subtypes were found 
in different studies. First, a subtype showing a typical diffuse atro-
phy pattern over the entire brain was witnessed in several studies 
[6, 8–10, 22, 27, 29, 30, 32, 38, 77]. Another subtype demon-
strating nearly normal brain anatomy was robustly identified [8, 9, 
16, 20, 22, 24, 25, 29, 30]. Moreover, studies [8, 9, 29, 30, 77] 
also reported one subtype showing atypical AD patterns (i.e., hip-
pocampus or medial temporal lobe atrophy spared). 

Though these methods enabled a better understanding of het-
erogeneity in AD, there are still limitations and challenges. First, 
due to demographic variations and the existence of comorbidities, 
it is not guaranteed that models cluster the data based on variations 
of the pathology of interest. Semi-supervised methods might tackle 
this problem to some extent, but more careful sample selection and 
further study with longitudinal data may ensure disease specificity. 
Second, spatial differences and temporal changes may simulta-
neously contribute to subtypes derived through clustering meth-
ods. Third, subtypes captured from neuroimaging data alone bring 
limited insight into disease treatments, thereby a joint study of 
neuroimaging and genetic heterogeneity may provide greater clini-
cal value [14, 79].
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3.5 Brain Cancer Brain tumors, such as glioblastoma (GBM), exhibit extensive inter-
and intra-tumor heterogeneity, diffuse infiltration, and invasiveness 
of various immune and stromal cell populations, which pose diag-
nostic and prognostic challenges, and render the standard therapies 
futile [80]. Deciphering the underlying heterogeneity of brain 
tumors, which arises from genomic instability of these tumors, 
plays a key role in understanding and predicting the course of 
tumor progression and its response to the standard therapies, 
thereby designing effective therapies targeted at aberrant genetic 
alterations [81, 82]. Medical imaging noninvasively portrays the 
phenotypic differences of brain tumors and their microenviron-
ment caused by molecular activities of tumors on a macroscopic 
scale [83, 84]. It has the potential to provide readily accessible and 
surrogate biomarkers of particular genomic alterations, predict 
response to therapy, avoid risks of tumor biopsy or inaccurate 
diagnosis due to sampling errors, and ultimately develop persona-
lized therapies to improve patient outcomes. An imaging subtype 
of brain tumors may provide a wealth of information about the 
tumor, including distinct molecular pathways [85, 86]. 

Recent studies on radiomic analysis of multiparametric MRI 
(mpMRI) scans provide evidence of distinct phenotypic presenta-
tion of brain tumors associated with specific molecular character-
istics. These studies propose that quantification of tumor 
morphology, texture, regional microvasculature, cellular density, 
or microstructural properties can map to different imaging sub-
types. In particular, one study [87] discovered three distinct clus-
ters of GBM subtypes through unsupervised clustering of these 
features, with significant differences in survival probabilities and 
associations with specific molecular signaling pathways. These 
imaging subtypes, namely solid, irregular, and rim-enhancing, 
were significantly linked to different clinical outcomes and molecu-
lar characteristics, including isocitrate dehydrogenase-1, 
O6-methylguanine-DNA methyltransferase, epidermal growth fac-
tor receptor variant III, and transcriptomic molecular subtype 
composition. 

These studies have offered new insights into the characteriza-
tion of tumor heterogeneity on both microscopic, i.e., histology 
and molecular, and macroscopic, i.e., imaging levels, consequently 
providing a more comprehensive understanding of the tumor 
aggressiveness and patient prognosis, and ultimately, the develop-
ment of personalized treatments. 

4 Conclusion 

Taken together, these novel clustering algorithms tailored for high-
resolution yet highly variable neuroimaging datasets have demon-
strated a broad utility in disease subtyping across many neurological 
and psychiatric conditions. Simultaneously, cautions need to be



taken in order not to overclaim the biological importance of sub-
types, since all clustering methods find patterns in data, even if such 
patterns don’t have a meaningful underlying biological correlate 
[88]. External validations are necessary. For instance, evidence of 
post hoc evaluations, e.g., a difference in clinical variables or genetic 
architectures, can support the biological relevance of identified 
neuroimaging-based subtypes [14]. Moreover, good practices 
such as split-sample analysis, permutation tests [12], and compari-
son to the guideline of semi-simulated experiments [8] discern the 
robustness of the subtypes. As dataset sizes and imaging resolution 
improve over time, unique computational challenges are expected 
to appear, along with unique opportunities to further refine our 
methodologies to decipher the diversity of brain diseases. 
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Chapter 17 

Data-Driven Disease Progression Modeling 

Neil P. Oxtoby 

Abstract 

Intense debate in the neurology community before 2010 culminated in hypothetical models of Alzheimer’s 
disease progression: a pathophysiological cascade of biomarkers, each dynamic for only a segment of the full 
disease timeline. Inspired by this, data-driven disease progression modeling emerged from the computer 
science community with the aim to reconstruct neurodegenerative disease timelines using data from large 
cohorts of patients, healthy controls, and prodromal/at-risk individuals. This chapter describes selected 
highlights from the field, with a focus on utility for understanding and forecasting of disease progression. 

Key words Disease progression, Disease understanding, Forecasting, Cross-sectional data, Longitu-
dinal data, Disease timelines, Disease trajectories, Subtyping, Biomarkers 

1 Introduction 

Chronic progressive diseases are a major drain on social and eco-
nomic resources. Many of these diseases have no treatments and no 
cure. In particular, age-related chronic diseases such as neurode-
generative diseases of the brain are a global healthcare pandemic-in-
waiting as most of the world’s population is living ever longer. A 
key example is Alzheimer’s disease—the leading cause of 
dementia—but there are numerous other conditions that cause 
abnormal deterioration of brain tissue, leading to loss of cognitive 
performance, bodily function, independence, and ultimately death. 
Despite the increasing socioeconomic burden, neurodegenerative 
disease research has made impressive progress in the past decade, 
driven largely by the availability of large observational datasets and 
the computational analyses this enables. 

Understanding neurodegenerative diseases is vital if they are to 
be managed, or even cured, but our understanding remains poor 
despite impressive progress in recent years. This poor understand-
ing can be attributed to the many challenges of neurodegenerative 
diseases: no well-defined time axis due in part to heterogeneity in 
onset/speed/presentation, and censoring/attrition especially in
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later stages as patients deteriorate. These challenges, coupled with 
intense debate in the neurology community (hypothetical models 
[1, 2]) and increasing availability of data, piqued the interest of 
computational researchers aiming to provide quantitative answers 
to the mysteries of neurodegenerative diseases. This has ranged 
from vanilla off-the-shelf machine learning approaches through to 
more holistic statistical modeling approaches, the most advanced of 
which is data-driven disease progression modeling (D3 PM).
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D3 PMs are defined by two key features: (1) they simultaneously 
reconstruct the disease timeline and estimate the quantitative dis-
ease signature/trajectory along this timeline; and (2) they are 
directly informed by observed data. D3 PMs strike a balance 
between pure unsupervised learning, which requires truly big 
data, and traditional longitudinal modeling, which relies on a 
well-defined temporal axis—neither of which are available in neu-
rodegenerative diseases. For a review of the history and develop-
ment of D3 PM, see refs. 3. 

The goal of this chapter is to highlight selected key D3 PMs in a 
practical manner. The focus is on model capabilities and data 
requirements, aiming to inform the reader’s D3 PM analysis strategy 
based on the desired disease insight(s) and the data available. 
Figure 1 places selected D3 PMs on a capability×data quadrant

Fig. 1 Quadrant matrix. D3 PMs all estimate a disease timeline, with some capable of estimating multiple 
subtype timelines, using either cross-sectional data (pseudo-timeline) or longitudinal data (time-shift). 
Abbreviations: EBM, event-based model; DEBM, discriminative EBM; KDE-EBM, kernel density estimation 
EBM; DPS, disease progression score; LTJMM, latent-time joint mixed model; GPPM, Gaussian process 
progression model; SuStaIn, subtype and stage inference; SubLign, subtyping alignment



matrix: single timeline estimation vs subtyping, and cross-sectional 
vs longitudinal data availability. Table A.1 lists more methodologi-
cal papers relevant to D3 PM, with model innovations grouped by 
the original paper for that method.
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The chapter is organized as follows. It starts with a brief discus-
sion of data preprocessing considerations in Subheading 2—an 
important step in medical data analysis. The treatment of D3 PMs 
is separated into models for cross-sectional data (Subheading 3) 
and models for longitudinal data (Subheading 4), each split into 
approaches that estimate a single timeline of disease progression 
and those capable of estimating multiple timelines within a dataset 
(subtyping). Subheading 5 concludes. 

For a detailed timeline of D3 PM development including taxon-
omy and pedigree of key models, see Appendix. 

2 Data Preprocessing 

This section briefly touches on two common preprocessing steps 
before fitting a D3 PM to data from a progressive condition such as 
an irreversible chronic disease: controlling for confounding vari-
ables, and handling missing data. We refer to input features as 
biomarkers and use “covariate” and “confounder” interchangeably. 
Missing data can refer to irregular/variable visits across individuals, 
or missing biomarker data due to one or more measurements not 
being performed for some reason. This section deals with the latter, 
since longitudinal models can typically handle irregular visits. 

Controlling for confounding variables is an important element 
of any D3 PM analysis. This helps to prevent the D3 PM from 
learning non-disease-related patterns such as due to confounding 
covariates. Confounders can be included as covariates in certain 
models—to account for that source of variation alongside other 
variables of interest. Another approach, often used for continuous-
valued confounders, is to “regress out” this source of variation prior 
to fitting a model—to remove non-disease-related signal in the 
data. This process involves training regression models on data 
from control participants (who are not expected to develop the 
disease being studied) and then removing the relevant trends from 
all data. This method can also be applied to categorical risk factors 
(discrete variables). The canonical example of a potentially con-
founding variable in neurodegenerative diseases of the brain is 
age—a key risk factor in many chronic diseases. Removing normal 
aging signal is often phrased as “adjusting for” or “controlling 
for” age. 

Handling missing data is an active area of research with a 
considerable body of literature. Broadly speaking, there are two 
strategies. The easiest is to exclude participants having any missing 
biomarker (or covariate) data, but this can considerably reduce the



3 Models for Cross-Sectional Data

sample size of data available for D3 PM analysis. The second 
approach is to impute the missing data, e.g., using group mean 
values. Imputation can be explicit or implicit. An example of 
implicit imputation is in Bayesian models that map data to prob-
abilities and then deal with missing data probabilistically such as in 
the event-based model [4] where P(event|x)=0.5 represents maxi-
mal uncertainty such as when a measurement x is missing. 
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Box 1: Models for Cross-Sectional Data

• Pro: Data-economical. 

Require cross-sectional data only.
• Con: Limited forecasting utility. 

Forecasting requires augmentation with 
longitudinal data.

• Key application(s): assessing disease severity from a single 
visit, e.g., economical stratification for clinical research/trials. 

3.1 Single Timeline 

Estimation Using 

Cross-Sectional Data 

There is only one framework for estimating disease timelines from 
cross-sectional data: event-based modeling. 

3.1.1 Event-Based Model The event-based model (EBM) emerged in 2011 [5, 6]. The con-
cept is simple: in a progressive disease, biomarker measurements 
only ever get worse, i.e., become increasingly and irreversibly 
abnormal. Thus, among a cohort of individuals at different stages 
of a single progressive disease, the cumulative sequence of bio-
marker abnormality events can be inferred from only a single visit 
per individual. This requires making a few assumptions: measure-
ments from individuals are independent and represent samples 
from a single sequence of cumulative abnormality, i.e., a single 
timeline of disease progression. Such assumptions are common-
place in many statistical analyses of disease progression and are 
reasonable approximations to make when analyzing data from 
research studies that typically have strict inclusion and exclusion 
criteria to focus on a single condition of interest. Unsurprisingly, 
the event-based model has proven to be extremely powerful, pro-
ducing insight into many neurodegenerative diseases: sporadic 
Alzheimer’s disease [7–10], familial Alzheimer’s disease [6, 11], 
Huntington’s disease [6, 12], Parkinson’s disease [13], and others 
[14, 15].
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Fig. 2 Event-based models fit a mixture model to map biomarker values to abnormality probabilities. Left to 
right shows the convergence of a kernel density estimate (KDE) mixture model. From Firth et al. [9] (CC BY 4.0) 

EBM Fitting The first step in fitting an event-based model maps biomarker 
values to abnormality values, similar to the hypothetical curves of 
biomarker abnormality proposed in 2010 [1, 2]. The EBM does 
this probabilistically, using bivariate mixture modeling where indi-
viduals can be labeled either as pre-event/normal or post-event/ 
abnormal to allow for (later) events that are yet to occur in patients, 
and similarly for the possibility of (earlier) events to have occurred 
in asymptomatic individuals. Various distributions have been pro-
posed for this mixture modeling: combinations of uniform [5, 6], 
Gaussian [5–7], and kernel density estimate (KDE) distributions 
[9]. This is visualized in Fig. 2. 

The second step in fitting an EBM over N events is to search 
the space of N! possible sequences S to reveal the most likely 
sequence (see refs. 6, 7, 9 for mathematical details). For small 
N≲10, it can be computationally feasible to perform an exhaustive 
search over all possible N! sequences to find the maximum likeli-
hood/a posteriori solution. The EBM uses a combination of 
multiply-initialized gradient ascent, followed by MCMC sampling 
to estimate uncertainty in the sequence. This results in a model 
posterior that is a collection of samples from the posterior proba-
bility density for each biomarker as a function of sequence position. 
This is presented as a positional variance diagram [6], such as in 
Fig. 3. 

For further information and to try out EBM tutorials, the 
reader is directed to the open-source kde_ebm package (github. 
com/ucl-pond/kde_ebm) and  disease-progression-modelling. 
github.io. 

3.1.2 Discriminative 

Event-Based Model 

The discriminative event-based model (DEBM) was proposed in 
2017 by Venkatraghavan et al. [16]. Whereas the EBM treats data 
from individuals as observations of a single group-level disease 
cascade (sequence), the DEBM estimates individual-level 
sequences and combines them into a group-level description of

https://github.com/ucl-pond/kde_ebm
https://github.com/ucl-pond/kde_ebm
https://disease-progression-modelling.github.io
https://disease-progression-modelling.github.io


disease progression. This is done using a Mallow’s model, which is 
the ranking/sequencing equivalent of a univariate Gaussian 
distribution—including estimation of a mean sequence and vari-
ance in this mean. Both EBM and DEBM estimate group-level 
biomarker abnormality using mixture modeling and both 
approaches directly estimate uncertainty in the sequence. 
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Fig. 3 The event-based model posterior is a positional variance diagram showing uncertainty (left-to-right) in 
the maximum likelihood sequence (top-to-bottom). Parkinson’s disease model from Oxtoby et al. [13] (CC BY 
4.0) 

Additionally, Venkatraghavan et al. [16, 17] also introduced a 
pseudo-temporal “disease time” that converts the DEBM posterior 
into a continuous measure of disease severity. 

DEBM Fitting As with the EBM, DEBM model fitting starts with mixture model-
ing (see Subheading 3.1.1). Next, a sequence is estimated for each 
individual by ranking the abnormality probabilities in descending 
order. A group-level mean sequence (with variance) is estimated by 
fitting the individual sequences to a Mallow’s model. For details, 
see refs. 16, 17 and subsequent innovations to the DEBM. Notably, 
DEBM is often quicker to fit than EBM, which makes it appealing 
for high-dimensional extensions, e.g., aiming to estimate voxel-
wise atrophy signatures from cross-sectional brain imaging data.



3.2 Subtyping Using
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For further information and to try it out, the reader is directed 
to the open-source pyebm package (https://github.com/ 
88vikram/pyebm). 

Box 2: Subtyping Models

•

Cross-Sectional Data 

Pro: Uncovering heterogeneity without conflating severity 
with subtype. 

Evidence suggests that disease subtypes exist.
• Con: Overly simplistic. 

Current models ignore comorbidity. 

Augmenting the event-based model concept with unsupervised 
machine learning, subtype and stage inference (SuStaIn), was intro-
duced by Young et al. [18]. This marriage of clustering to disease 
progression modeling has proven very powerful and popular, with 
high-impact results appearing in prominent journals for multiple 
brain diseases [19–21], chronic lung disease [22], and knee osteo-
arthritis [23]. SuStaIn’s popularity is perhaps unsurprising given 
that it was the first method capable of unraveling spatiotemporal 
heterogeneity (pathological severity across an organ) from pheno-
typic heterogeneity (disease subtypes) in progressive conditions 
using only cross-sectional data. 

Figure 4 (adapted from [18]) shows the concept behind SuS-
taIn. SuStaIn iteratively solves the clustering problem from 1 to 
Nmax 

S subtypes. The NS model is fitted by splitting each of the NS-
1 subtypes into two clusters and then solving the NS-cluster prob-
lem, which produces NS-1 candidate NS-cluster models, from 
which the maximum likelihood model is chosen, and then the 
algorithm continues to NS + 1 and so on. 

Young et al. [18] also introduced the z-score event progression 
model that breaks down individual biomarker events into piecewise 
linear transitions between z-scores of interest. This removes the need 
for mixture modeling (such as in event-based modeling) and enables 
inference to be performed at subthreshold biomarker values. 

SuStaIn Fitting 
For the user, a SuStaIn analysis is very similar to an event-based 

model analysis. For further information, the reader is directed to 
the open-source pySuStaIn package [24]  (https://github.com/ 
ucl-pond/pySuStaIn), which includes tutorials. As well as the 
z-score progression model, pySuStaIn includes the various 
event-based models (see Subheading 3.1), and the more recent 
scored-events model for ordinal data [25] such as visual ratings of 
medical images.

https://github.com/88vikram/pyebm
https://github.com/88vikram/pyebm
https://github.com/ucl-pond/pySuStaIn
https://github.com/ucl-pond/pySuStaIn
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Fig. 4 The concept of subtype and stage inference (SuStaIn). Reproduced from Young et al. [18] (CC BY 4.0)



4 Models for Longitudinal Data
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Box 3: Models for Longitudinal Data

• Pro: Good forecasting utility. 

High temporal precision allows individualized 
forecasting.

• Con: Data-heavy. 

Require longitudinal data (multiple visits, years). Can 
be slow to fit.

• Key application(s): assessing speed of disease progression and 
assessing individual variability. 

The availability of longitudinal data has fueled development of 
more sophisticated D3 PMs, inspired by mixed models. Mixed 
(effect) modeling is the workhorse of longitudinal statistical analy-
sis against a known timeline, e.g., age. Mixed models provide a 
hierarchical description of individual-level variation (random 
effects) about group-level trends (fixed effects), hence the common 
parlance “mixed-effects” models. Many of the D3 PMs for longitu-
dinal data discussed below are in fact mixed models with an addi-
tional latent-time parameter that characterizes the disease timeline. 
Similar approaches in various fields are known as “self-modeling 
regression” or “latent-time” models. We focus on parametric mod-
els, but also mention nonparametric models, and an emerging 
hybrid discrete-continuous model. 

4.1 Single Timeline 

Estimation Using 

Longitudinal Data 

There are both parametric and nonparametric approaches to esti-
mating disease timelines from longitudinal data. The common goal 
is to “stitch together” a full disease timeline (decades long) out of 
relatively short samples from individuals (a few years each) covering 
a range of severity in symptoms and biomarker abnormality. Some 
of the earliest work emerged from the medical image registration 
community, where “warping” images to a common template is one 
of the first steps in group analyses [26]. 

Broadly speaking, there are two categories of D3 PMs for 
longitudinal data: time-shifting models and differential equation 
models. Time-shifting models translate/deform the individual 
data, metaphorically stitching them together into a quantitative 
template of disease progression. Differential equation models esti-
mate a statistical model of biomarker dynamics in phase-plane space 
(position vs velocity), which is subsequently inverted to produce 
biomarker trajectories.
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4.1.1 Explicit Models for 

Longitudinal Data: Latent-

Time Models 

Jedynak et al. [27] introduced the disease progression score (DPS) 
model in 2012, which aligns biomarker data from individuals to a 
group template model using a linear transformation of age into a 
disease progression score si=αiage + βi. Individuals have their own 
rate of progression αi (constant over the short observation time) 
and disease onset βi. Group-level biomarker dynamics are modeled 
as sigmoid (“S”) curves. A Bayesian extension of the DPS approach 
(BPS) appeared in 2019 [28]. Code for both the DPS and BPS was 
released publicly: https://www.nitrc.org/projects/progscore; 
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/. 

Donohue et al. [29] introduced a self-modeling regression 
approach similar to the DPS model in 2014. It was later generalized 
into the more flexible latent-time joint mixed (effects) model 
(LTJMM) [30], which can include covariates as fixed effects and 
is a flexible Bayesian framework for inference. The LTJMM soft-
ware was released publicly: https://bitbucket.org/mdonohue/ 
ltjmm. 

A nonparametric latent-time mixed model appeared in 2017: 
the Gaussian process progression model (GPPM) of Lorenzi et al. 
[31]. This is a flexible Bayesian approach akin to (parametric) self-
modeling regression that doesn’t impose a parametric form for 
biomarker trajectories. More recent work supplemented the 
GPPM with a dynamical systems model of molecular pathology 
spread through the brain [32] that can regularize the GPPM fit to 
produce a more accurate disease timeline reconstruction that also 
provides insight into neurodegenerative disease mechanisms 
(which is a topic that could be a standalone chapter of this book). 
The GPPM and GPPM-DS model source code was released pub-
licly via gitlab.inria.fr/epione and tutorials are available at disease-
progression-model.github.io. 

In 2015, Schiratti et al. [33–35] introduced a general frame-
work for estimating spatiotemporal trajectories for any type of 
manifold-valued data. The framework is based on Riemannian 
geometry and a mixed-effects model with time reparametrization. 
It was subsequently extended by Koval et al. [36] to form the 
disease course mapping approach (available in the leaspy software 
package). Disease course mapping combines time warping (of age) 
and inter-biomarker spacing translation. Time warping changes 
disease progression dynamics—time shift/onset and acceleration/ 
progression speed—but not the trajectory. Inter-biomarker spa-
cings shift an individual’s trajectory to account for individual differ-
ences in the timing and ordering of biomarker trajectories. 

Figures 5 and 6 show example outputs of these models when 
trained on data from older people at risk of Alzheimer’s disease, 
including those with diagnosed mild cognitive impairment and 
dementia due to probable Alzheimer’s disease.

https://www.nitrc.org/projects/progscore
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/
https://bitbucket.org/mdonohue/ltjmm
https://bitbucket.org/mdonohue/ltjmm
https://gitlab.inria.fr/epione/GP_progression_model_V2
https://disease-progression-model.github.io
https://disease-progression-model.github.io
https://gitlab.com/icm-institute/aramislab/leaspy
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Fig. 5 Two examples of D3 PMs fit to longitudinal data: disease progression score [27] and Gaussian process 
progression model [31]. (a) Alzheimer’s disease progression score (2012) [27]. Reprinted from NeuroImage, 
Vol 63, Jedynak et al., A computational neurodegenerative disease progression score: Method and results with 
the Alzheimer’s Disease Neuroimaging Initiative cohort, 1478–1486, ©(2012), with permission from Elsevier. 
(b) Gaussian process progression model (2017) [31]. Reprinted from NeuroImage, Vol 190, Lorenzi et al., 
Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and 
prediction in Alzheimer’s disease, 56–68, ©(2019), with permission from Elsevier
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Fig. 6 Two additional examples of D3 PMs fit to longitudinal data: latent-time joint mixed model [30] and 
disease course mapping [36]. (a) Latent-time joint mixed model (2017) [30]. From [37] (CC BY 4.0). (b) 
Alzheimer’s disease course map (2021) [36] (CC BY 4.0)
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Fitting Longitudinal Latent-

Time Models 

Fitting D3 PMs for longitudinal data is more complex than for 
cross-sectional data, and the software packages discussed above 
each expect the data in slightly different formats. One thing they 
have in common is that renormalization (e.g., min-max or z-score) 
and reorientation (e.g., to be increasing) is required to put biomar-
kers on a common scale and direction. In some cases, such pre-
processing is necessary to ensure/accelerate model convergence. 
For example, the LTJMM used a quantile transformation followed 
by inverse Gaussian quantile function to put all biomarkers on a 
Gaussian scale. For further detailed discussion, including model 
identifiability, we refer the reader to the original publications 
cited above and the didactic resources at disease-progression-
modelling.github.io. 

4.1.2 Implicit Models for 

Longitudinal Data: 

Differential Equation 

Models 

Parametric differential equation D3 PMs emerged between 2011 
and 2014 [38–41], receiving a more formal treatment in 2017 
[42]. In a hat-tip to physics, these have also been dubbed “phase-
plane” models, which aids in their understanding as a model of 
velocity (biomarker progression rate) as a function of position 
(biomarker value). Model fitting is a two-step process whereby 
the long-time biomarker trajectory is estimated by integrating the 
phase-plane model estimated on observed data. 

A nonparametric differential equation D3 PM using Gaussian 
processes (GP-DEM) was introduced in 2018 [11]. This added 
flexibility to the preceding parametric approaches and produced 
state-of-the-art results in predicting symptom onset in familial 
Alzheimer’s disease. 

Fitting Differential Equation 

Models 

The concept is shown in Fig. 7: differential equation model fitting 
is a three-step process. First, estimate a single value per individual of 
biomarker “velocity” and “position,” and then estimate a group-
level differential equation model of velocity y as a function of 
position x, which is integrated/inverted to produce a biomarker 
trajectory x(t). For example, linear regression can produce esti-
mates of position (e.g., intercept) and velocity (e.g., gradient). 
Differential equation models can be univariate or multivariate and 
can include covariates explicitly. 

4.1.3 Hybrid Discrete-

Continuous Models 

Recent work introduced the temporal EBM (TEBM) [43, 44], 
which augments event-based modeling with hidden Markov mod-
eling to produce a hybrid discrete-continuous D3 PM. This is a 
halfway house between discrete models (great for medical decision 
making) and continuous models (great for detailed understanding 
of disease progression). Trained on data from ADNI, the TEBM 
revealed the full timeline of the pathophysiological cascade of Alz-
heimer’s disease, as shown in Fig. 8.

https://disease-progression-modelling.github.io
https://disease-progression-modelling.github.io
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Fig. 7 Differential equation models, or phase-plane models, for biomarker dynamics involve a three-step 
process: estimate individual-level position and velocity; fit a group-level model of velocity y vs position x; and 
integrate to produce a trajectory x(t). Reprinted by permission from Springer Nature: Oxtoby, N.P. et al., 
Learning Imaging Biomarker Trajectories from Noisy Alzheimer’s Disease Data Using a Bayesian Multilevel 
Model. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds) Bayesian and grAphical Models 
for Biomedical Imaging. Lecture Notes in Computer Science, vol 8677, pp. 85–94 ©(2014) [41]. (a) Data. (b) 
Differential fit. (c) Est. trajectory. (d) Stochastic model 

Fig. 8 Alzheimer’s disease sequence and timeline estimated by a hybrid discrete-continuous D3 PM: the 
temporal event-based model [43, 44]. Permission to reuse was kindly granted by the authors of [43] 

4.2 Subtyping Using 

Longitudinal Data 

Clustering longitudinal data without a well-defined time axis can be 
extremely difficult. Jointly estimating latent time for multiple tra-
jectories is an identifiability challenge, i.e., multiple parameter 
combinations can explain the same data. This is particularly chal-
lenging when observations span a relatively small fraction of the full 
disease timeline, as in age-related neurodegenerative diseases. 

Chen et al. [45] introduced SubLign for subtyping and align-
ing longitudinal disease data. The authors frame the challenge 
eloquently as having misaligned, interval-censored data: left cen-
soring from patients being observed only after disease onset and 
right censoring from patient dropout in more severe disease. Sub-
Lign combines a deep generative model (based on a recurrent 
neural network [46]) for learning individual latent time-shifts and 
parametric biomarker trajectories using a variational approach, fol-
lowed by k-means clustering. It was applied to data from a Parkin-
son’s disease cohort to recover some known clinical phenotypes in 
new detail.
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Poulet and Durrleman [47] recently added mixture-model 
clustering to the nonlinear mixed model approach of disease course 
mapping [36]. The framework jointly estimates model parameters 
and subtypes using a modification of the expectation-maximization 
algorithm. In simulated data experiments, their approach outper-
forms a naive baseline. Experiments on real data in Alzheimer’s 
disease distinguished rapid from slow clinical progression, with 
minimal differences in biomarker trajectories. 

5 Conclusion 

Twenty-first century medicine faces many challenges due to aging 
populations worldwide, including increasing socioeconomic bur-
den from age-related brain disorders like Alzheimer’s disease. Many 
failed clinical trials fueled intense debate in neurology in the first 
decade of this century, culminating in the prominent hypothesis of 
Alzheimer’s disease progression as a pathophysiological cascade of 
dynamic biomarker events. This inspired the emergence of data-
driven disease progression modeling (D3 PM) from the computer 
science community during the second decade of the twenty-first 
century—an explosion of quantitative models for neurodegenera-
tive disease progression enabling numerous high-impact insights 
across multiple brain disorders. The community continues to build 
and share open-source code (see Box 4) and run machine learning 
challenges [48–50]. What will the third decade of the twenty-first 
century bring for this exciting subset of machine learning for brain 
disorders? 
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Appendix 

A taxonomy and pedigree of key D3 PM papers is given in 
Table A.1. Box 4 contains links to open-source code for D3 PMs. 

Table A.1 
A taxonomy and pedigree of D3 PM papers. *Asterisks denote models for cross-sectional data 

Reference (first author only) Description 

Ashford, Curren. Psych. Rep. (2001) [51] Differential equation 

Gomeni, Alz. Dem. (2011) [52] Differential equation 

Sabuncu, Arch. Neurol. (2011) [38] Differential equation 

Samtani, J. Clin. Pharmacol. (2012) [39] Differential equation 

Jedynak, NeuroImage (2012) [27] Progression score (linear) 

Bilgel, IPMI (2015) [53] 

Bilgel, NIMG (2016) [54] Latent time mixed effects 

Bilgel, Alz. Dem. DADM (2019) [28] Bayesian 

*Fonteijn, IPMI (2011) [5]; Fonteijn, NIMG (2012) [6] Cumulative events 

*Young, Brain (2014) [7] Robust for sporadic disease 

) *Venkatraghavan, IPMI (2017) [16]; Venkatraghavan, 
NIMG (2019) [17] 

Individual-level 

*Young, Nat Commun (2018) [18] + Subtyping, + Z-score model 

*Young, Frontiers (2021) [55] + Scored events model 

*Firth, Alz Dem (2020) [9] +Nonparametric events 

Wijeratne, ML4H2020, IPMI (2021) [43, 44] +Transition times 

Villemagne, Lancet Neurol (2013) [40] Differential equation 

Budgeon, Stat. in Med. (2017) [42] Formalism 

Durrleman, Int. J. Comput. Vis. (2013) [56] Time warping 

) Schiratti, NeurIPS (2015) [33]; IPMI (2015) [34]; JMLR 
(2017) [35] 

Koval, Sci Rep (2021) [36] Latent-time mixed effects 

Poulet, IPMI (2021) [47] +Subtyping 

Donohue, Alz Dem (2014) [29] Latent-time fixed effects 

Li, Stat Meth Med Res (2017) [30] Latent-time mixed effects 

Oxtoby, MICCAI (2014) [57] Differential equation 

Oxtoby, Brain (2018) [11] +Nonparametric 

Guerrero, NeuroImage (2016) [58] Instantiated mixed effects
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(continued)

Reference (first author only) Description 

Leoutsakos, JPAD (2016) [59] Item response theory 

Lorenzi, NeuroImage (2017) [31] Nonparametric latent time 

Garbarino, IPMI (2019) [60] +Differential equation 

Garbarino, NeuroImage (2021) [32] Formalism 

Marinescu, NeuroImage (2019) [61] Spatial clustering (c.f. Schiratti/Bilgel) 

Petrella, Comp. Math. Meth. Med. (2019) [62] Differential equation 

Abi Nader, Brain Commun. (2021) [63] Differential equation 

Chen, AAAI (2022) [45] Subtyping 

Box 4: Example Open-Source D3 PM Code

• D3 PM tutorials: 

https://disease-progression-modelling.github.io
• EuroPOND Software Toolbox: 

https://europond.github.io/europond-software
• KDE EBM: 

https://ucl-pond.github.io/kde_ebm
• pyEBM: 

https://github.com/88vikram/pyebm
• leaspy: 

https://gitlab.com/icm-institute/aramislab/leaspy
• LTJMM: 

https://bitbucket.org/mdonohue/ltjmm 
https://github.com/mcdonohue/rstanarm

• DPS: 

source code; docker image
• pySuStaIn: 

https://ucl-pond.github.io/pySuStaIn
• TADPOLE-SHARE (from TADPOLE Challenge [48, 49]): 

https://github.com/tadpole-share/tadpole-algorithms

https://disease-progression-modelling.github.io
https://europond.github.io/europond-software
https://ucl-pond.github.io/kde_ebm
https://github.com/88vikram/pyebm
https://gitlab.com/icm-institute/aramislab/leaspy
https://bitbucket.org/mdonohue/ltjmm
https://github.com/mcdonohue/rstanarm
https://www.nitrc.org/projects/progscore
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/
https://ucl-pond.github.io/pySuStaIn
https://tadpole.grand-challenge.org
https://github.com/tadpole-share/tadpole-algorithms
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Chapter 18 

Computational Pathology for Brain Disorders 

Gabriel Jiménez and Daniel Racoceanu 

Abstract 

Noninvasive brain imaging techniques allow understanding the behavior and macro changes in the brain to 
determine the progress of a disease. However, computational pathology provides a deeper understanding of 
brain disorders at cellular level, able to consolidate a diagnosis and make the bridge between the medical 
image and the omics analysis. In traditional histopathology, histology slides are visually inspected, under the 
microscope, by trained pathologists. This process is time-consuming and labor-intensive; therefore, the 
emergence of computational pathology has triggered great hope to ease this tedious task and make it more 
robust. This chapter focuses on understanding the state-of-the-art machine learning techniques used to 
analyze whole slide images within the context of brain disorders. We present a selective set of remarkable 
machine learning algorithms providing discriminative approaches and quality results on brain disorders. 
These methodologies are applied to different tasks, such as monitoring mechanisms contributing to disease 
progression and patient survival rates, analyzing morphological phenotypes for classification and quantita-
tive assessment of disease, improving clinical care, diagnosing tumor specimens, and intraoperative inter-
pretation. Thanks to the recent progress in machine learning algorithms for high-content image processing, 
computational pathology marks the rise of a new generation of medical discoveries and clinical protocols, 
including in brain disorders. 

Key words Computational pathology, Digital pathology, Whole slide imaging, Machine learning, 
Deep learning, Brain disorders 

1 Introduction 

1.1 What Are We 

Presenting? 

This chapter aims to assist the reader in discovering and under-
standing state-of-the-art machine learning techniques used to ana-
lyze whole slide images (WSI), an essential data type used in 
computational pathology (CP). We are restricting our review to 
brain disorders, classified within four generally accepted groups:

• Brain injuries: caused by blunt trauma and can damage brain 
tissue, neurons, and nerves.

• Brain tumors: can originate directly from the brain (and be 
cancerous or benign) or be due to metastasis (cancer elsewhere 
in the body and spreading to the brain). 
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• Neurodegenerative diseases: the brain and nerves deteriorate over 
time. We include, here, Alzheimer’s disease, Huntington’s dis-
ease, ALS (amyotrophic lateral sclerosis) or Lou Gehrig’s dis-
ease, and Parkinson’s disease.

• Mental disorders: (or mental illness) affect behavior patterns. 
Depression, anxiety, bipolar disorder, PTSD (post-traumatic 
stress disorder), and schizophrenia are common diagnoses. 

In the last decade, there has been exponential growth in the 
application of image processing and artificial intelligence 
(AI) algorithms within digital pathology workflows. The first 
FDA (US Food and Drug Administration) clearance of digital 
pathology for diagnosis protocols was as early as 2017,1 as the 
emergence of innovative deep learning (DL) technologies have 
made this possible, with the requested degree of robustness and 
repeatability. 

Ahmed Serag et al. [1] discuss the translation of AI into clinical 
practice to provide pathologists with new tools to improve diag-
nostic consistency and reduce errors. In the last five years, the 
authors reported an increase in academic publications (over 1000 
articles reported in PubMed) and over $100M invested in start-ups 
building practical AI applications for diagnostics. The three main 
areas of development are (i) network architectures to extract relevant 
features from WSI for classification or segmentation purposes, 
(ii) generative adversarial networks (GANs) to address some of 
the issues present in the preparation and acquisition of WSIs, and 
(iii) unsupervised learning to create labeling tools for precise anno-
tations. Regarding data, many top-tier conference competitions 
have been organized and released annotated datasets to the com-
munity; however, very few of them contain brain tissue samples. 
Those which do are from brain tumor regions obtained during a 
biopsy, making it harder to study other brain disorder categories 
which frequently require postmortem data. 

In [1], the authors also mention seven key challenges in diag-
nostic AI in pathology, listed as follows:

• Access to large well-annotated datasets. Most articles on brain 
disorders use private datasets due to hospital privacy constraints.

• Context switching between workflows refers to a seamless inte-
gration of AI into the pathology workflow.

• Algorithms are slow to run as image sizes are in gigapixels’ order 
and require considerable computational memory. 

1 https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-sys 
tem-digital-pathology.

https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology
https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology
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• Algorithms require configuration, and fully automated 
approaches with high accuracy are difficult to develop.

• Properly defined protocols are needed for training and 
evaluation.

• Algorithms are not properly validated due to a lack of open 
datasets. However, research in data augmentation might help 
in this regard.

• Introduction of intelligence augmentation to describe compu-
tational pathology improvements in diagnostic pathology. AI 
algorithms work best on well-defined domains rather than in 
the context of multiple clinicopathological manifestations 
among a broad range of diseases; however, they provide relevant 
quantitative insights needed for standardization and diagnosis. 

These challenges limit the translation from research to clinical 
diagnostics. We intend to give the readers some insights into the 
core problems behind the issues listed by briefly introducing WSI 
preparation and image acquisition protocols. Besides, we describe 
the state of the art of the proposed methods. 

1.2 Why AI for Brain 

Disorders? 

An important role of CP in brain disorders is related to the study 
and assessment of brain tumors as they cause significant morbidity 
and mortality worldwide, and pathology data is often available. In 
2022 [2], over 25k adults (14,170 men and 10,880 women) in the 
United States will have been diagnosed with primary cancerous 
tumors of the brain and spinal cord. 85% to 90% of all primary 
central nervous system (CNS) tumors (benign and cancerous) are 
located in the brain. Worldwide, over 300k people were diagnosed 
with a primary brain or spinal cord tumor in 2020. This disorder 
does not distinguish age, as nearly 4.2k children under the age of 
15 will have also been diagnosed with brain or CNS tumors in 
2022, in the United States. 

It is estimated that around one billion people have a mental or 
substance use disorder [3]. Some other key figures related to men-
tal disorders worldwide are given by [4]. Globally, an estimated 
264 million people are affected by depression. Bipolar disorder 
affects about 45 million people worldwide. Schizophrenia affects 
20 million people worldwide, and approximately 50 million have 
dementia. In Europe, an estimated 10.5 million people have 
dementia, and this number is expected to increase to 18.7 million 
in 2050 [5]. 

In the neurodegenerative disease group, 50 million people 
worldwide are living with Alzheimer’s and other types of dementia 
[6], Alzheimer’s disease being the underlying cause in 70% of 
people with dementia [5]. Parkinson’s disease affects approximately 
6.2 million people worldwide [7] and represents the second most 
common neurodegenerative disorder. As the incidence of



Alzheimer’s and Parkinson’s diseases rises significantly with age and 
people’s life expectancy has increased, the prevalence of such dis-
orders is set to rise dramatically in the future. For instance, there 
may be nearly 13 million people with Parkinson’s by 2040 [7]. 
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Brain injuries are also the subject of a considerable number of 
incidents. Every year, around 17 million people suffer a stroke 
worldwide, with an estimate of one in four persons having a stroke 
during their lifetime [8]. Besides, stroke is the second cause of 
death worldwide and the first cause of acquired disability [5]. 

These disorders also impact American regions, with over 500k 
deaths reported in 2019, due to neurological conditions. Among 
the conditions analyzed, the most common ones were Alzheimer’s 
disease, Parkinson’s, epilepsy, and multiple sclerosis [9]. 

In the case of brain tumors, treatment and prognosis require 
accurate and expedient histological diagnosis of the patient’s tissue 
samples. Trained pathologists visually inspect histology slides, fol-
lowing a time-consuming and labor-intensive procedure. There-
fore, the emergence of CP has triggered great hope to ease this 
tedious task and make it more robust. Clinical workflows in oncol-
ogy rely on predictive and prognostic molecular biomarkers. How-
ever, the growing number of these complex biomarkers increases 
the cost and the time for decision-making in routine daily practice. 
Available tumor tissue contains an abundance of clinically relevant 
information that is currently not fully exploited, often requiring 
additional diagnostic material. Histopathological images contain 
rich phenotypic information that can be used to monitor underly-
ing mechanisms contributing to disease progression and patient 
survival outcomes. 

In most other brain diseases, histological images are only 
acquired postmortem, and this procedure is far from being system-
atic. Indeed, it depends on the previous agreement of the patient to 
donate their brain for research purposes. Moreover, as mentioned 
above, the inspection of such images is complex and tedious, which 
further explains why it is performed in a minority of cases. Never-
theless, histopathological information is of the utmost importance 
in understanding the pathophysiology of most neurological disor-
ders, and research progress would be impossible without such 
images. Finally, there are a few examples, beyond brain tumors, in 
which a surgical operation leads to an inspection of resected when 
the patient is alive (this is, for instance, the case of pharmacoresis-
tant epilepsy). 

Intraoperative decision-making also relies significantly on his-
tological diagnosis, which is often established when a small speci-
men is sent for immediate interpretation by a neuropathologist. In 
poor-resource settings, access to specialists may be limited, which 
has prompted several groups to develop machine learning 
(ML) algorithms for automated interpretation. Computerized 
analysis of digital pathology images offers the potential to improve



clinical care (e.g., automated assistive diagnosis) and catalyze 
research (e.g., discovering disease subtypes or understanding the 
pathophysiology of a brain disorder). 
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1.3 How Do We 

Present the 

Information? 

In order to understand the potential and limitations of computa-
tional pathology algorithms, one needs to understand the basics 
behind the preparation of tissue samples and the image acquisition 
protocols followed by scanner manufacturers. Therefore, we have 
structured the chapter as follows. 

Subheading 2 presents an overview of tissue preservation tech-
niques and how they may impact the final whole slide image. 
Subheading 3 introduces the notion of digital pathology and 
computational pathology, and its differences. It also develops the 
image acquisition protocol and describes the pyramidal structure of 
the WSI and its benefits. In addition, it discusses the possible 
impact of scanners on image processing algorithms. Subheading 4 
describes some of the state-of-the-art algorithms in artificial intelli-
gence and its subcategories (machine learning and deep learning). 
This section is divided into methods for classifying and segmenting 
structures in WSI, and techniques that leverage deep learning algo-
rithms to extract meaningful features from the WSI and apply them 
to a specific clinical application. Finally, Subheading 5 explores new 
horizons in digital and computational pathology regarding explain-
ability and new microscopic imaging modalities to improve tissue 
visualization and information retrieval. 

2 Understanding Histological Images 

We dedicate this section to understanding the process of acquiring 
histological images. We begin by introducing the two main tissue 
preservation techniques used in neuroscience studies, i.e., the 
routine-FFPE (formalin-fixed paraffin-embedded) preparation 
and the frozen tissue. We describe the process involved in each 
method and the main limitations for obtaining an appropriate 
histopathological image for analysis. Finally, we present the main 
procedures used in anatomopathology, based on such tissue 
preparations. 

2.1 Formalin-Fixed 

Paraffin-Embedded 

Tissue 

FFPE is a technique used for preserving biopsy specimens for 
clinical examination, diagnostic, experimental research, and drug 
development. A correct histological analysis of tissue morphology 
and biomarker localization in tissue samples will hinge on the ability 
to achieve high-quality preparation of tissue samples, which usually 
requires three critical stages: fixation, processing (also known as 
pre-embedding), and embedding. 

Fixation is the process that allows the preservation of the tissue 
architecture (i.e., its cellular components, extracellular material, 
and molecular elements). Histotechnologists perform this



procedure right after removing the tissue, in case of surgical pathol-
ogy, or soon after death, during autopsy. Time is essential in pre-
venting the autolysis and necrosis of excised tissues and preserving 
their antigenicity. Five categories of fixatives are used in this stage: 
aldehydes, mercurials, alcohols, oxidizing agents, and picrates. The 
most common fixative used for imaging purposes is formaldehyde 
(also known as formalin), included in the aldehyde group. Fixation 
protocols are not standardized and vary according to the type of 
tissue and the histologic details needed to analyze it. The variability 
in this stage induces the possibility for several factors to affect this 
process, such as buffering (pH regulation), penetration (also 
depending on tissue thickness), volume (the usual ratio is 10:1), 
temperature, fixative concentration (10% solution is typical), and 
fixation time. These factors impact the quality of the scanned 
image, since stains used to highlight specific tissue properties may 
not react as expected. 
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After fixation, the tissue undergoes a processing stage necessary 
to create a paraffin embedding, which allows histotechnologists to 
cut the tissue into microscopic slides for further examination. The 
processing involves removing all water from the tissue using a series 
of alcohols and then clearing the tissue, which consists of removing 
the dehydrator with a miscible substance with the paraffin. Nowa-
days, tissue processors can automate this stage, by reducing inter-
expert variability. 

Dehydration and clearing will leave the tissue ready for the 
technician to create the embedded paraffin blocks. Depending on 
the tissue, these embeddings must be correctly aligned and ori-
ented, determining which tissue section or cut is studied. Also, the 
embedding parameters (e.g., embedding temperature or peculiar 
chemicals involved) may defer from the norm for unique studies, so 
the research entity and the laboratory making the acquisition need 
to define them beforehand. Figure 1 shows a paraffin embedding 
cassette where the FFPE tissue samples can be stored even at room 
temperature for long periods. 

Fig. 1 Paraffin cassettes
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These embeddings undergo two more stages before being 
scanned: sectioning and staining. These procedures are discussed 
in the last section as they are no longer related to tissue preserva-
tion; instead, they are part of the tissue preparation stages before 
imaging. 

2.2 Frozen 

Histological Tissue 

Pathologists often use this tissue preservation method during sur-
gical procedures where a rapid diagnosis of a pathological process is 
needed (extemporaneous preparation). In fact, frozen tissue pro-
duces the fastest stainable sections, although, compared to FPPE 
tissue, its morphological properties are not as good. 

Frozen tissue (technically referred to as cryosection) is created 
by submerging the fresh tissue sample into cold liquid (e.g., 
pre-cooled isopentane in liquid nitrogen) or by applying a tech-
nique called flash freezing, which uses liquid nitrogen directly. As in 
FFPE, the tissue needs to be embedded in a medium to fix it to a 
chuck (i.e., specimen holder) in an optimal position for microscopic 
analysis. However, unlike FFPE tissue, no fixation or 
pre-embedding processes are needed for preservation. 

For embedding, technicians use OCT (optimal cutting temper-
ature compound), a viscous aqueous solution of polyvinyl alcohol 
and polyethylene glycol designed to freeze, providing the ideal 
support for cutting the cryosections in the cryostat (microtome 
under cold temperature). Different embedding approaches exist 
depending on the tissue orientation, precision and speed of the 
process, tissue wastage, and the presence of freeze artifacts in the 
resulting image. Stephen R. Peters describes these procedures and 
other important considerations needed to prepare tissue samples 
using the frozen technique [10]. 

Frozen tissue preservation relies on storing the embeddings at 
low temperatures. Therefore, the tissue will degrade if the cold 
chain breaks due to tissue sample mishandling. However, as it 
better preserves the tissue’s molecular genetic material, it is fre-
quently used in sequencing analysis and immunohistochemistry 
(IHC). 

Other factors that affect the tissue quality and, therefore, the 
scanned images are the formation of ice crystals and the thickness of 
the sections. Ice crystals form when the tissue is not frozen rapidly 
enough, and it may negatively affect the tissue structure and, there-
fore, its morphological characteristics. On the other hand, frozen 
sections are often thicker than FFPE sections increasing the poten-
tial for lower resolution at higher magnifications and poorer 
images. 

2.3 Tissue 

Preparation 

We described the main pipeline to extract and preserve tissue 
samples for further analysis. Although the techniques described 
above can also be used for molecular and protein analysis (especially 
the frozen sections), we now focus only on the image pipeline by



describing the slide preparation for scanning and the potential 
artifacts observed in the acquired images. 
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Once the tissue embeddings are obtained, either by FFPE or 
frozen technique, they are prepared for viewing under a microscope 
or scanner. The tissue blocks are cut, mounted on glass slides, and 
stained with pigments (e.g., hematoxylin and eosin [H&E], saf-
fron, or molecular biomarkers) to enhance the contrast and high-
light specific cellular structures under the microscope. 

Cutting the embeddings involves using a microtome to cut 
very thin tissue sections, later placed on the slide. The thickness 
of these sections is usually in the range of 4–20 microns. It will 
depend on the microscopy technique used for image acquisition 
and the experiment parameters. Special diamond knives are needed 
to get thinner sections, increasing the price of the microtome 
employed. If we use frozen embeddings, a cryostat keeps the envir-
onment’s temperature low, avoiding tissue degradation. 

Once on the slide, the tissue is heated to adhere to the glass and 
avoid wrinkles. If warming the tissue damages some of its properties 
(especially for immunohistochemistry), glue-coated slides can be 
used instead. For cryosections, pathologists often prefer to add a 
fixation stage to resemble the readings of an FFPE tissue section. 
This immediate fixation is achieved using several chemicals, includ-
ing ethanol, methanol, formalin, acetone, or a 
combination. S. Peters describes the differences in the image qual-
ity based on these fixatives, as well as the proposed protocol for 
cutting and staining frozen sections [10]. For FFPE sections, 
Zhang and Xiong [11] describe neural histology’s cutting, mount-
ing, and staining methods. Protocols suggested by the authors are 
valuable guidelines for histotechnologists as tissue usually folds or 
tears, and bubbles form when cutting the embeddings. Minimizing 
these issues is essential to have good-quality images and accurate 
quantification of histological results. 

Staining is the last process applied to the tissue before being 
imaged. Staining agents do not react with the embedding chemicals 
used to preserve the tissue sample; therefore, the tissue section 
needs to be cleaned and dried beforehand (e.g., eliminating all 
remains of paraffin wax used in the embedding). In [12], the 
authors present a review of the development of stains, techniques, 
and applications throughout time. One of the most common stains 
used in histopathology is hematoxylin and eosin (H&E). This agent 
highlights cell nuclei with a purple-blue color and the extracellular 
matrix and cytoplasm with the characteristic pink. Other structures 
in the tissue will show different hues, shades, and combinations of 
these colors. Figure 2 shows an H&E-stained human brainstem 
tissue and specific structures found on it. 

Other staining agents can be used depending on the structure 
we would like to study or the clinical procedure. For instance, the 
toluidine blue stain is frequently used for intraoperative



consultation. Frozen sections are usually stained with this agent as 
it reacts almost instantly with the tissue. However, one disadvan-
tage is that it only presents shades of blue and purple, so there is 
considerably less differential staining of the tissue structures [10]. 
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White matter tracts (axons) 

Small nuclei (oligodendrocytes) 

Blood vessel wall 

Red blood cells (erythrocytes) in blood vessels 

Large nuclei with darkly stained nucleolus (neurons) 

Fig. 2 H&E-stained WSI from human brainstem tissue preserved using FFPE. Relevant structures were 
annotated by expert pathologist. Abbreviations. H&E: hematoxylin and eosin. FFPE: formalin-fixed paraffin-
embedded. WSI: whole slide image 

For brain histopathology, other biomarkers are also available. 
For instance, the cresyl violet (or Nissl staining) is commonly used 
to identify the neuronal structure in the brain and spinal cord tissue



[13]. Also, the Golgi method, which uses a silver staining tech-
nique, is used for observing neurons under the microscope 
[11]. Studies for Alzheimer’s disease also frequently use ALZ50 
and AT8 antibodies to reveal phosphorylated tau pathology using a 
standardized immunohistochemistry protocol [14–16]. Figure 3 
shows the difference between ALZ50 and AT8 biomarkers and 
tau pathologies found in the tissue. 
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Fig. 3 [Top left] ALZ50 antibody used to discover compacted structures (tau pathologies). Below the WSI is an 
example of a neurofibrillary tangle (left) and a neuritic plaque (right) stained with ALZ50 antibody. [Top right] 
AT8 antibody, the most widely used in clinics, helps to discover all structures in a WSI. Below the WSI, there is 
an example of a neurofibrillary tangle (left) and a neuritic plaque stained with AT8 antibody (right). 
Abbreviation. WSI: whole slide image 

Having the slide stained is the last stage to prepare for studying 
microscopic structures of diseased or abnormal tissues. Considering 
the number of people involved in these processes (pathologists, 
pathology assistants, histotechnologists, tissue technicians, and 
trained repository managing personnel) and the precision of each 
stage, standardizing certain practices to create valuable slides for 
further analysis is needed. 

Eiseman et al. [17] reported a list of best practices for biospeci-
men collection, processing, annotation, storage, and distribution. 
The proposal aims to set guidelines for managing large biospecimen 
banks containing the tissue sample embeddings excised from dif-
ferent organs with different pathologies and demographic 
distributions. 

More specific standardized procedures for tissue sampling and 
processing have also been reported. For instance, in 2012, the 
Society of Toxicologic Pathology charged a Nervous System Sam-
pling Working Group with devising recommended practices to



routinely screen the central nervous system (CNS) and peripheral 
nervous system (PNS) during nonclinical general toxicity studies. 
The authors proposed a series of approaches and recommendations 
for tissue fixation, collection, trimming, processing, histopathology 
examination, and reporting [18]. Zhang J. et al. also address the 
process of tissue preparation, sectioning, and staining but focus 
only on brain tissue [11]. Although these recommendations aim 
to standardize specific techniques among different laboratories, 
they are usually imprecise and approximate, leaving the final deci-
sion to the specialists based on the tissue handled. 
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Due to this lack of automation during surgical removal, fixa-
tion, tissue processing, embedding, microtomy, staining, and 
mounting procedures, several artifacts can impact the quality of 
the image and the results of the analysis. A review of these artifacts 
is presented in [19]. The authors review the causes of the most 
frequent artifacts, how to identify them, and propose some ideas to 
prevent them from interfering with the diagnosis of lesions. For 
better understanding and following the tissue preparation and 
image acquisition procedure, the authors proposed a classification 
of eight classes: prefixation artifacts, fixation artifacts, artifacts 
related to bone tissue, tissue-processing artifacts, artifacts related 
to microtomy, artifacts related to floatation and mounting, staining 
artifacts, and mounting artifacts. Figure 4 shows some of them. 

Fig. 4 [Top left] Folding artifact (floatation and mounting-related artifact), [Top right] Marking fixation process 
(fixation artifact), [Bottom left] Breaking artifact (microtome-related artifact), [Bottom right] Overlaying tissue 
(mounting artifact)
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3 Histopathological Image Analysis 

This section aims to better understand the role that digital pathol-
ogy plays in the analysis of complex and large amounts of informa-
tion obtained from tissue specimens. As an additional option to 
incorporate more images with higher throughput, whole slide 
image scanners are briefly discussed. Therefore, we must discuss 
the DICOM standard used in medicine to digitally represent the 
images and, in this case, the tissue samples. We then focus on 
computational pathology, which is the analysis of the reconstructed 
whole slide images using different pattern recognition techniques 
such as machine learning (including deep learning) algorithms. 
This section contains some extractions from Jimeénez’s thesis 
work [20]. 

3.1 Digital Pathology Digital systems were introduced to the histopathological examina-
tion in order to deal with complex and vast amounts of information 
obtained from tissue specimens. Digital images were originally 
generated by mounting a camera on the microscope. The static 
pictures captured only reflected a small region of the glass slide, and 
the reconstruction of the whole glass slide was not frequently 
attempted due to its complexity and the fact that it is time-
consuming. However, precision in the development of mechanical 
systems has made possible the construction of whole slide digital 
scanners. Garcia et al. [21] reviewed a series of mechanical and 
software systems used in the construction of such devices. The 
stored high-resolution images allow pathologists to view, manage, 
and analyze the digitized tissue on a computer monitor, similar to 
under an optical microscope but with additional digital tools to 
improve the diagnosis process. 

WSI technology, also referred to as virtual microscopy, has 
proven to be helpful in a wide variety of applications in pathology 
(e.g., image archiving, telepathology, image analysis). In essence, a 
WSI scanner operation principle consists of moving the glass slide a 
small distance every time a picture is taken to capture the entire 
tissue sample. Every WSI scanner has six components: (a) a micro-
scope with lens objectives, (b) a light source (bright field and/or 
fluorescent), (c) robotics to load and move glass slides around, 
(d) one or more digital cameras for capture, (e) a computer, and 
(f) software to manipulate, manage, and view digital slides 
[22]. The hardware and software used for these six components 
will determine the key features to analyze when choosing a scanner. 
Some research articles have compared the hardware and software 
capabilities of different scanners in the market. For instance, in 
[22], Farahani et al. compared 11 WSI scanners from different 
manufacturers regarding imaging modality, slide capacity, scan 
speed, image magnification, image resolution, digital slide format,



multilayer support, and special features their hardware and software 
may offer. This study showed that robotics and hardware used in a 
WSI scanner are currently state of the art and almost standard in 
every device. Software, on the other hand, has some ground for 
further development. A similar study by Garcia et al. [21] reviewed 
31 digital slide systems comparing the same characteristics in Far-
ahani’s work. In addition, the authors classified the devices into 
digital microscopes (WSI) for virtual slide creation and diagnosis-
aided systems for image analysis and telepathology. Automated 
microscopes were also included in the second group as they are 
the baseline for clinical applications. 
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3.2 Whole Slide 

Image Structure 

The Digital Imaging and Communications in Medicine (DICOM) 
standard was adopted to store WSI digital slides into commercially 
available PACS (picture archiving and communication system) and 
facilitate the transition to digital pathology in clinics and labora-
tories. Due to the WSI dimension and size, a new pyramidal 
approach for data organization and access was proposed by the 
DICOM Standards Committee in [23]. 

A typical digitalization of a 20 mm ×15 mm sample using a 
resolution of 0.25 μm/pixel, also referred to as 40× magnification, 
will generate an image of approximately 80, 000× 60, 000 pixels. 
Considering a 24-bit color resolution, the digitized image size is 
about 15 GB. Data size might even go one order of magnitude 
higher if the scanner is configured to a higher resolution (e.g., 80 ×, 
100×), Z planes are used, or additional spectral bands are also 
digitized. In any case, conventional storage and access to these 
images will demand excessive computational resources to be imple-
mented into commercial systems. Figure 5 describes the traditional 
approach (i.e., single frame organization), which stores the data in 
rows that extend across the entire image. This row-major approach 
has the disadvantage of loading unnecessary pixels into memory, 
especially if we want to visualize a small region of interest. 

Other types of organizations have also been studied. Figure 6 
describes the storage of pixels in tiles, which decreases the compu-
tational time for visualization and manipulation of WSI by loading 
only the subset of pixels needed into memory. Although this 
approach allows faster access and rapid visualization of the WSI, it 
fails when dealing with different magnifications of the images, as is 
the case in WSI scanners. Figure 7 depicts the issues with rapid 
zooming of WSI. Besides loading a larger subset of pixels into 
memory, algorithms to perform the down-sampling of the image 
are time-consuming. At the limit, to render a low-resolution 
thumbnail of the entire image, all the data scanned must be 
accessed and processed [23]. Stacking precomputed 
low-resolution versions of the original image was proposed in 
order to overcome the zooming problem. Figure 8 describes the 
pyramidal structure used to store different down-sampled versions
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Fig. 5 Single frame organization of whole slide images 

Fig. 6 Tiled image organization of whole slide images. Tiles’ size can range from 240 × 240 pixels up to 4096 
× 4096 pixels



of the original image. The bottom of the pyramid corresponds to 
the highest resolution and goes up to the thumbnail (lowest reso-
lution) image. For further efficiency, tiling and pyramidal methods 
are combined to facilitate rapid retrieval of arbitrary subregions of 
the image as well as access to different resolutions. As depicted in 
Fig. 8, each image in the pyramid is stored as a series of tiles. In 
addition, the baseline image tiles can contain different colors or 
z-planes if multispectral images are acquired or if tracking variations 
in the specimen thickness are needed. This combined approach can 
be easily integrated into a web architecture such as the one pre-
sented by Lajara et al. [24] as tiles of the current user’s viewport can 
be cached without high memory impact.
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Fig. 7 Rapid zooming issue when accessing lower-resolution images: large amount of data need to be loaded 
into memory. In this example, the image size at the highest resolution (221 nm/pixels) is 82,432 × 80,640 
pixels 

As mentioned in previous paragraphs, WSI can occupy several 
terabytes of memory due to the data structure. Depending on the 
application, lossless or lossy compression algorithms can be applied. 
Lossless compression typically yields a 3X-5X reduction in size; 
meanwhile, lossy compression techniques such as JPEG and 
JPEG2000 can achieve from 15X-20X up to 30X-50X reduction, 
respectively [23]. Due to no standardization of WSI file formats,



scan manufacturers may also develop their proprietary compression 
algorithms based on JPEG and JPEG2000 standards. Commercial 
WSI formats have a mean default compression value ranging from 
13X to 27X. Although the size of WSI files is considerably reduced, 
efficient data storage was not the main issue when designing WSI 
formats for more than 10 years. In [25], Helin et al. addressed this 
issue and proposed an optimization to the JPEG2000 format, 
which yields up to 176X compression. Although no computational 
time has been reported in the aforementioned study, this break-
through allows for efficient transmission of data through systems 
relying on Internet communication protocols. 
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Fig. 8 Pyramidal organization of whole slide images. In this example, the image size at the highest resolution 
(221 nm/pixels) is 82,432 × 80,640 pixels. The compressed (JPEG) file size is 2.22 GB, whereas the 
uncompressed version is 18.57 GB 

3.3 Computational 

Pathology 

Computational pathology is a term that refers to the integration of 
WSI technology and image analysis tools in order to perform tasks 
that were too cumbersome or even impossible to undertake manu-
ally. Image processing algorithms have evolved, yielding enough 
precision to be considered in clinical applications, such is the case 
for surgical pathology using frozen samples reported by Bauer et al. 
in [26]. Other examples mentioned in [22] include morphological 
analysis to quantitatively measure histological structures [27], auto-
mated selection of regions of interest such as areas of most active 
proliferative rate [28], and automated grading of tumors 
[29]. Moreover, educational activities have also benefited from 
the development of computational pathology. Virtual tutoring,



online medical examinations, performance improvement programs, 
and even interactive illustrations in articles and books are being 
implemented, thanks to this technology [22]. 
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In order to validate a WSI scanner for clinical use (diagnosis 
purposes), several tests are conducted following the guidelines 
developed by the College of American Pathologists (CAP) 
[30]. On average, reported discrepancies between digital slides 
and glass slides are in the range of 1–5%. However, even glass-to-
glass slide comparative studies can yield discrepancies due to 
observer variability, and increasing case difficulty. 

Although several studies in the medical community have 
reported using WSI scanners to perform the analysis of tissue 
samples, pathologists remain reluctant to adopt this technology in 
their daily practice. Lack of training, limiting technology, short-
comings in scanning all slides, cost of equipment, and regulatory 
barriers have been reported as the principal issues [22]. In fact, it 
was until early 2017 that the first WSI scanner was approved by the 
FDA and released to the market [31]. Nevertheless, WSI technol-
ogy represents a milestone in modern pathology, having the poten-
tial to enhance the practice of pathology by introducing new tools 
which help pathologists provide a more accurate diagnosis based on 
quantitative information. Besides, this technology is also a bridge 
for bringing omics closer to routine histopathology toward future 
breakthroughs as spatial transcriptomics. 

4 Methods in Brain Computational Pathology 

This section is dedicated to different machine learning and deep 
learning methodologies to analyze brain tissue samples. We 
describe the technology by focusing on how this is applied (i.e., at 
the WSI or the patch level), the medical task associated with it, the 
dataset used, the core structure/architecture of the algorithms, and 
the significant results. 

We begin by describing the general challenges in WSI analysis. 
Then we move on to deep learning methods concerning only WSI 
analysis, and we finalize with machine learning and deep learning 
applications for brain disorders focusing on the disease rather than 
the processing of the WSI. In addition, as in the primary biomedical 
areas, data annotation is a vital issue in computational pathology, 
generating accurate and robust results. Therefore, some new tech-
niques used to create reliable annotations—based on a seed-
annotated dataset—will be presented and discussed. 

4.1 Challenges in 

WSI Analysis Using ML 

Successful application of machine learning algorithms to WSIs can 
improve—or even surpass—the accuracy, reproducibility, and 
objectivity of current clinical approaches and propel the creation 
of new clinical tools providing new insights on various pathologies



[32]. Due to the characteristics of a whole slide image and the 
acquisition process described in the sections above, researchers 
usually face two nontrivial challenges related to the visual under-
standing of the WSIs and the inability of hardware and software to 
facilitate learning from such high-dimensional images. 
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Regarding the first challenge, the issue relies on the lack of 
generalization of ML techniques due to image artifacts and color 
variability in staining. Imaging artifacts directly result from the 
tissue section processing errors and the hardware (scanners) used 
to digitize the slide. The uneven illumination, focusing, and image 
tiling are a few imaging artifacts present in the WSI, being the first 
the most relevant and studied as it is challenging for an algorithm to 
extract useful features from some regions of the scanned tissue. It 
gets even worse when staining artifacts such as stain variability are 
also present. 

To address this problem, we find several algorithms for color 
normalization in the literature. Macenko [33], Vahadane [34], and 
Reinhard [35] algorithms are classical algorithms for color normal-
ization implementing image processing techniques such as histo-
gram normalization, color space transformations, color 
deconvolution (color unmixing), reference color density maps, or 
histogram matching. Extensions from these methods are also 
reported. For instance, Magee et al. [36] proposed two approaches 
to extend the Reinhard method: a multimodal linear normalization 
in the Lab color space and normalization in a representation space 
using stain-specific color deconvolution. 

The use of machine learning techniques, specifically deep con-
volutional neural networks, has also been studied for color normal-
ization. In [37], the authors proposed the StainNet for stain 
normalization. The framework consists of a GAN2 (teacher net-
work) trained to learn the mapping relationship between a source 
and target image, and an FCNN3 (student network) able to transfer 
the mapping relationship of the GAN based on image content into 
a mapping relationship based on pixel values. A similar approach 
using cycle-consistent GANs was also proposed for the normaliza-
tion of H&E-stained WSIs [38]. In the last case, synthetically 
generated images capture the representative variability in the color 
space of the WSI, enabling the architecture to transfer any color 
information from a new source image into a target color space. 

On the other hand, the second challenge related to the high 
dimensionality of WSIs is addressed in two ways: processing using 
patch-level or slide-level annotations. Dimitriou N. et al. reported 
an overview of the literature for both approaches in [32]. For 
patch-based annotations, the authors reported patch sizes ranging

2 GAN: generative adversarial networks. 
3 FCNN: fully convolutional neural network.



from 32 × 32 pixels up to 10,000 × 10,000 pixels and a frequent 
value of 256 × 256 pixels. Patches are generated and processed by 
sequentially dividing the WSI into tiles, which demand higher 
computational resources, by random sampling, leading to class 
imbalance issues, or by following a guided sampling based on 
pixel annotations. Patch-level annotations usually contain pixel-
level labels. Frequently approaches using these annotations focus 
on the segmentation of morphological structures in patches rather 
than the classification of the entire WSI. In [39], the authors 
studied the potential of semantic architectures such as the U-Net 
and compared it to classical CNN approaches for pixel-wise classifi-
cation. Another approach known as HistoSegNet [40] implements 
a combination of visual attention maps (or activation maps) using 
the Grad-CAM algorithm and CNN for semantic segmentation of 
WSI. In addition, several methods are summarized in [41, 42] 
using graph deep neural networks to detect and segment morpho-
logical structures in WSIs.
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Pixel labeling at high resolution is a time-demanding task and is 
prone to inter- and intra-expert variabilities impacting the learning 
process of machine learning algorithms. Therefore, despite the 
lower granularity of labeling, several studies have shown promising 
results when working with slide-based annotations. 

With no available information about the pixel label, most algo-
rithms usually aim to identify patches (or regions of interest in the 
WSI) that can collectively or independently predict the classification 
of the WSI. These techniques often rely on multiple instance 
learning, unsupervised learning, reinforcement learning, transfer 
learning, or a combination thereof [32]. Tellez et al. [43] proposed 
a two-step method for gigapixel histopathology analysis based on 
an unsupervised neural network compression algorithm to extract 
latent representations of patches and a CNN to predict image-level 
labels from those compressed images. In [44], the authors pro-
posed a four-stage methodology for survival prediction based on 
randomly sampled patches from different patients’ slides. They 
used PCA to reduce the features’ space dimension prior to the 
K-means clustering process to group patches according to their 
phenotype. Then, a deep convolutional network (DeepConvSurv) 
is used to determine which patches are relevant for the aggregation 
and final survival score. Qaiser et al. [45] proposed a model mim-
icking the histopathologist practice using recurrent neural net-
works (RNN) and CNN. In their proposal, they treat images as 
the environment and the RNN+CNN as the agent acting as a 
decision-maker (same as the histopathologists). The agent then 
looks at high-level tissue components (low magnification) and 
evaluates different regions of interest at low-level magnification, 
storing relevant morphological features into memory. Similarly, 
Momeni et al. [46] suggested using deep recurrent attention mod-
els (DRAMs) and CNN to create an attention-based architecture to



process large input patches and locate discriminatory regions more 
efficiently. This last approach needs, however, further validation as 
results are not conclusive and have not been accepted by the scien-
tific community yet. 
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Relevant features for disease analysis, diagnosis, or patient 
stratification can be extracted from individual patches by looking 
into cell characteristics or morphology; however, higher structural 
information, such as the shape or extent of a tumor, can only be 
captured in more extensive regions. Some approaches to processing 
multiple magnification levels of a WSI are reported in [47– 
51]. They involve leveraging the pyramidal structure of WSI to 
access features from different resolutions and model spatial correla-
tions between patches. 

All the studies cited so far have no specific domain of applica-
tion. Most of them were trained and tested using synthetic or 
public datasets containing tissue pathologies from different body 
areas. Therefore, most of the approaches can extend to different 
pathologies and diseases. In the following subsections, however, we 
will focus only on specific brain disorder methodologies. 

4.2 DL Algorithms for 

Brain WSI Analysis 

In recent times, deep-learning-based methods have shown 
promising results in digital pathology [52]. Unfortunately, only a 
few public datasets contain WSI of brain tissue, and most of them 
only contain brain tumors. In addition, most of them are annotated 
at the slide level, making the semantic segmentation of structures 
more challenging. Independently of the task (i.e., detection/classi-
fication or segmentation) and the application in brain disorders, we 
will explore the main ideas behind the methodologies proposed in 
the literature. 

For the analysis of benign or cancerous pathologies in brain 
tissue, tumor cell nuclei are of significant interest. The usual frame-
work for analyzing such pathologies was reported in [53] and used 
the WSI of diffuse glioma. The method first segments the regions 
of interest by applying classical image processing techniques such as 
mathematical morphology and thresholding. Then, several hand-
crafted features such as nuclear morphometry, region texture, 
intensity, and gradient statistics were computed and inputted to a 
nuclei classifier. Although such an approach—using quadratic dis-
criminant analysis and maximum a posteriori (MAP) as a classifica-
tion mechanism—reported an overall accuracy of 87.43%, it falls 
short compared to CNN, which relies on automated feature extrac-
tions using convolutions rather than on handcrafted features. Xing 
et al. [54] proposed an automatic learning-based framework for 
robust nucleus segmentation. The method begins by dividing the 
image into small regions using a sliding window technique. These 
patches are then fed to a CNN to output probability maps and 
generate initial contours for the nuclei using a region merging 
algorithm. The correct nucleus segmentation is obtained by



alternating dictionary-based shape deformation and inference. This 
method outperformed classical image processing algorithms with 
promising results (mean Dice similarity coefficient of 0.85 and 
detection F1 score of 0.77 computed using gold-standard regions 
within 15 pixels for every nucleus center) using CNN-based fea-
tures over classical ones. 
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Following a similar approach, Xu et al. [55] reported the use of 
deep convolutional activation features for brain tumor classification 
and segmentation. The authors used a pre-trained AlexNet CNN 
[56] on the ImageNet dataset to extract patch features from the last 
hidden layer of the architecture. Features are then ranked based on 
the difference between the two classes of interest, and the top 
100 are finally input to an SVM for classification. For the segmen-
tation of necrotic tissue, an additional step involving probability 
mappings from SVM confidence scores and morphological 
smoothing is applied. Other approaches leveraging the use of 
CNN-based features for glioma are presented in [47, 57]. The 
experiments reported achieved a maximum accuracy of 97.5% for 
classification and 84% for segmentation. Although these results 
seemed promising, additional tests with different patch sizes in 
[47] suggested that the method’s performance is data-dependent 
as numbers increase when larger patches, meaning more context 
information, are used. 

With the improvement of CNN architectures for natural 
images, more studies are also leveraging transfer learning to pro-
pose end-to-end methodologies for analyzing brain tumors. Ker 
et al. [58] used a pre-trained Google Inception V3 network to 
classify brain histology specimens into normal, low-grade glioma 
(LGG), or high-grade glioma (HGG). Meanwhile, Truong et al. 
[59] reported several optimization schemes for a pre-trained 
ResNet-18 for brain tumor grading. The authors also proposed 
an explainability tool base on tile-probability maps to aid patholo-
gists in analyzing tumor heterogeneity. A summary of DL 
approaches used in brain WSI processing, alongside other brain 
imaging modalities such as MRI or CT, is reported by Zadeh 
et al. in [60]. 

Let us now focus on studies dealing with tau pathology, which 
is a hallmark of Alzheimer’s disease. In [61], three different DL 
models were used to segment tau aggregates (tangles) and nuclei in 
postmortem brain WSIs of patients with Alzheimer’s disease. The 
three models included an FCNN, U-Net [62], and SegNet [63], 
with SegNet achieving the highest accuracy in terms of the 
intersection-over-union index. In [64], an FCNN was used on a 
dataset of 22 WSIs for semantic segmentation of tangle objects 
from postmortem brain WSIs. Their model is able to segment 
tangles of varying morphologies with high accuracy under diverse 
staining intensities. An FCNN model is also used in [65] to classify 
morphologies of tau protein aggregates in the gray and white



matter regions from 37 WSIs representing multiple degenerative 
diseases. In [14], tau aggregate analysis is processed on a dataset of 
six postmortem brain WSIs with a combined classification-
segmentation framework which achieved an F1 score of 81.3% and 
75.8% on detection and segmentation tasks, respectively. In [16], 
neuritic plaques have been processed from eight human brain WSIs 
from the frontal lobe, stained with AT8 antibody (majorly used in 
clinics, helping to highlight most of the relevant structures). The 
impact of the staining (ALZ50 [14] vs. AT8 [16]), the normaliza-
tion method, the slide scanner, the context, and the DL traceabil-
ity/explainability have been studied, and a comparison with 
commercial software has been made. A baseline of 0.72 for the 
Dice score has been reported for plaque segmentation, reaching 
0.75 using an attention U-Net. 
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Several domains in DL-based histopathological analysis of AD 
tauopathy remain unexplored. Firstly, even if, as discussed, a first 
work concerning neuritic plaques has been recently published by 
our team in [16], most of the existing works have used DL for 
segmentation of tangles rather than plaques, as the latter are harder 
to identify against the background gray matter due to their diffuse/ 
sparse appearance. Secondly, annotations of whole slide images are 
frequently affected by errors by human annotators. In such cases, a 
DL preliminary model may be trained using weakly annotated data 
and used to assist the expert in refining annotations. Thirdly, con-
temporary tau segmentation studies do not consider context infor-
mation. This is important in segmenting plaques from brain WSIs 
as these occur as sparse objects against an extended background of 
gray matter. Finally, DL models with explainability features have 
not yet been applied in tau segmentation from WSIs. This is a 
critical requirement for DL models used in clinical applications 
[66] [67]. The DL models should not only be able to precisely 
identify regions of interest, but clinicians and general users need to 
know the discriminative image features the model identifies as 
influencing their decisions. 

4.3 Applications of 

Brain Computational 

Pathology 

Digital systems were introduced to the histopathological examina-
tion to deal with complex and vast amounts of information 
obtained from tissue specimens. Whole slide imaging technology 
has proven to be helpful in a wide variety of applications in pathol-
ogy (e.g., image archiving, telepathology, image analysis), especially 
when combining this imaging technique with powerful machine 
learning algorithms (i.e., computational pathology). 

In this section, we will describe some applications of computa-
tional pathology for the analysis of brain tissue. Most methods 
focus on tumor analysis and cancer; however, we also find interest-
ing results in clinical applications, drug trials [68], and neurode-
generative diseases. The authors cited in this section aim to 
understand brain disorders and use deep learning algorithms to 
extract relevant information from WSI.
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In brain tumor research, an early survival study for brain glioma 
is presented in [44]. The approach has been previously described 
above. In brief, it is a four-stage methodology based on randomly 
sampled patches from different patients’ slides. They perform 
dimensionality reduction using PCA and then K-means clustering 
to group patches according to their phenotype. Then, the patches 
are sent to a deep convolutional network (DeepConvSurv) to 
determine which were relevant for the aggregation and final sur-
vival score. The deep survival model is trained on a small dataset 
leveraging the architecture the authors proposed. Also, the method 
is annotation-free, and it can learn information about one patient, 
regardless of the number or size of the WSIs. However, it has a high 
computational memory footprint as it needs hundreds of patches 
from a single patient’s WSI. In addition, the authors do not address 
the evaluation of the progression of the tumor, and a deeper 
analysis of the clusters could provide information about the phe-
notypes and their relation to brain glioma. 

Whole slide images have been used as a primary source of 
information for cancer diagnosis and prognosis, as they reveal the 
effects of cancer onset and its progression at the subcellular level. 
However, being an invasive image modality (i.e., tissue gathered 
during a biopsy), it is less frequently used in research and clinical 
settings. As an alternative, noninvasive and nonionizing imaging 
modalities, such as MRI, are quite popular for oncology imaging 
studies, especially in brain tumors. 

Although radiology and pathology capture morphologic data 
at different biological scales, a combination of image modalities can 
improve image-based analysis. In [69], the authors presented three 
classification methods to categorize adult diffuse glioma cases into 
oligodendroglioma and astrocytoma classes using radiographic and 
histologic image data. Thirty-two cases were gathered from the 
TCGA project4 containing a set of MRI data (T1, T1C, FLAIR, 
and T2 images) and its corresponding WSI, taken from the same 
patient at the same time point. The methods described were pro-
posed in the context of the Computational Precision Medicine 
(CPM) satellite event at MICCAI 2018, one of the first combining 
radiology and histology imaging analyses. The first one develops 
two independent pipelines giving two probability scores for the 
prediction of each case. The MRI pipeline preprocesses all images 
to remove the skull, co-register, and resample the data to leverage a 
fully convolutional neural network (CNN) trained on another MRI 
dataset (i.e., BraTS-2018) to segment tumoral regions. Several 
radiomic features are computed from such regions, and after reduc-
ing its dimensionality with PCA, a logistic regression classifier

4 https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/ 
typesan.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/typesan
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/typesan


outputs the first probability score. WSIs also need a preprocessing 
stage as tissue samples may contain large areas of glass background. 
After a color space transformation to HSV (hue saturation value), 
lower and upper thresholds are applied to get a binary mask with 
the region of interest, which is then refined using mathematical 
morphology. Color-normalized patches of 224× 224 pixels are 
extracted from the region of interest (ROI) and filtered to exclude 
outliers. The remaining patches are used to refine a CNN (i.e., 
DenseNet-161) pre-trained on the ImageNet dataset. In the pre-
diction phase, the probability score of the WSI is computed using a 
voting system of the classes predicted for individual patches. The 
scores from both pipelines are finally processed in a confidence-
based voting system to determine the final class of each case. This 
proposal achieved an accuracy score of 0.9 for classification.
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The second and third approaches also processed data in two 
different pipelines. There are slight variations in the WSI prepro-
cessing step in the second method, including Otsu thresholding for 
glass background removal and histogram equalization for color 
normalization of patches of 448×448 pixels. Furthermore, the 
authors used a 3D CNN to generate the output predictions for 
the MRI data and a DenseNet pre-trained architecture for WSI 
patch classification. The last feature layer from each classification 
model is finally used as input to an SVM model for a unified 
prediction. In addition, regularization using dropout is performed 
in the test phase to avoid overfitting the models. The accuracy 
obtained with this methodology was 0.8. 

The third approach uses larger patches from WSI and an active 
learning algorithm proposed in [70] to extract regions of interest 
instead of randomly sampling the tissue samples. Features from the 
WSI patches are extracted using a VGG16 CNN architecture. The 
probability score is combined with the output probability of a 
U-Net + 2D DenseNet architecture used to process the MRI 
data. The method achieved an accuracy of 0.75 for unified classifi-
cation. Although results are promising and provide a valid approach 
to combining imaging modalities, data quality and quantity are still 
challenging. The use of pre-trained CNN architectures for transfer 
learning using a completely different type of imaging modality 
might impact the performance of the whole pipeline. As seen in 
previous sections, WSI presents specific characteristics depending 
on the preparation and acquisition procedures not represented in 
the ImageNet dataset. 

An extension to the previous study is presented in [71]. The 
authors proposed a two-stage model to classify gliomas into three 
subtypes. WSIs were divided into tiles and filtered to exclude 
patches containing glass backgrounds. An ensemble learning 
framework based on three CNN architectures (EfficientNet-B2, 
EfficientNet-B3, and SEResNeXt101) is used to extract features 
which are then combined with meta-data (i.e., age of the patient) to



predict the class of glioma. MRI data is preprocessed in the same 
way as described before and input to a 3D CNN network with a 3D 
ResNet architecture as a backbone. 
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The release of new challenges and datasets, such as the Compu-
tational Precision Medicine: Radiology-Pathology Challenge on 
brain tumor classification (CPM-RadPath), has also allowed studies 
using weakly supervised deep learning methods for glioma subtype 
classification. For instance, in [72], the authors combine 2D and 
3D CNN to process 388 WSI, and its corresponding multipara-
metric MRI collected from the same patients. Based on a confi-
dence index, the authors were able to fuse WSI- and-MRI-based 
predictions improving the final classification of the glioma subtype. 

Moving on from brain tumors, examining brain WSI also pro-
vides essential insights into spatial characteristics helpful in under-
standing brain disorders. 

In this area, analyzing small structures present in postmortem 
brain tissue is crucial to understanding the disease deeply. For 
instance, in Alzheimer’s disease, tau proteins are essential markers 
presenting the best histopathological correlation with clinical 
symptoms [73]. Moreover, these proteins can aggregate in three 
different structures within the brain (i.e., neurites, tangles, and 
neuritic plaques) and constitute one significant biomarker to 
study the progression of the disease and stratify patients 
accordingly. 

In [14], the authors addressed the detection task of the Alzhei-
mer’s patient stratification pipeline. The authors proposed a U-
Net-based methodology for tauopathies segmentation and a 
CNN-based architecture for tau aggregates’ classification. In addi-
tion, the pipelines were completed with a nonlinear color normali-
zation preprocessing and a morphological analysis of segmented 
objects. These morphological features can aid in the clustering of 
patients having different disease manifestations. One limitation, 
however, is the accuracy obtained in the segmentation/detection 
process. 

Understanding the accumulation of abnormal tau protein in 
neurons and glia allows differentiating tauopathies such as Alzhei-
mer’s disease, progressive supranuclear palsy (PSP), cortico-basal 
degeneration (CBD), and Pick’s disease (PiD). In [74], the authors 
proposed a diagnostic tool consisting of two stages: (1) an object 
detection pipeline based on the CNN YOLOv3 and (2) a random 
forest classifier. The goal is to detect different tau lesion types and 
then analyze their characteristics to determine to which specific 
pathology they belong. With an accuracy of 0.97 over 2522 WSI, 
the study suggests that machine learning methods can be applied to 
help differentiate uncommon neurodegenerative tauopathies. 

Tauopathies are analyzed using postmortem brain tissue sam-
ples. For in vivo studies, there exist tau PET tracers that, unfortu-
nately, have not been validated and approved for clinical use as



correlations with histological samples are needed. In [75], the 
authors proposed an end-to-end solution for performing large-
scale, voxel-to-voxel correlations between PET and high-resolution 
histological signals using open-source resources and MRI as the 
common registration space. A U-Net-based architecture segments 
tau proteins in WSI to generate 3D tau inclusion density maps later 
registered to MRI to validate the PET tracers. Although segmenta-
tion performance was around 0.91 accurate in 500 WSI, the most 
significant limitation is the tissue sample preparation, meaning 
extracting and cutting brain samples to reconstruct 3D histological 
volumes. Additional studies combining postmortem MRI and WSI 
for neurodegenerative diseases were reported by Jonkman et al. 
in [76]. 
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5 Perspectives 

This last section of the chapter deals with new techniques for the 
explainability of artificial intelligence algorithms. It also describes 
new ideas related to responsible artificial intelligence in the context 
of medical applications, computational histopathology, and brain 
disorders. Besides, it introduces new image acquisition technology 
mixing bright light and chemistry to improve intraoperative appli-
cations. Finally, we will highlight computational pathology’s strate-
gic role in spatial transcriptomics and refined personalized 
medicine. 

In [15, 16], we address the issue of accurate segmentation by 
proposing a two-loop scheme as shown in Fig. 9. In our method, a 
U-Net-based neural network is trained on several WSIs manually 
annotated by expert pathologists. The structures we focus on are 
neuritic plaques and tangles following the study in [14]. The net-
work’s predictions (in new WSIs) are then reviewed by an expert 
who can refine the predictions by modifying the segmentation 
outline or validating new structures found in the WSI. Additionally, 
an attention-based architecture is used to create a visual explanation 
and refine the hyperparameters of the initial architecture in charge 
of the prediction proposal. 

We tested the attention-based architecture with a dataset of 
eight WSIs divided into patches following an ROI-guided sam-
pling. Results show qualitatively in Fig. 10 that through this visual 
explanation, the expert in the loop could define the border of the 
neuritic plaque (object of interest) more accurately so the network 
can update its weights accordingly. Additionally, quantitative results 
(Dice score of approximately 0.7) show great promise for this 
attention U-Net architecture. 

Our next step is to use a single architecture for explainability 
and segmentation/classification. We believe our method will 
improve the accuracy of the neuritic plaques and tangles outline



and create better morphological features for patient stratification 
and understanding of Alzheimer’s disease [15, 16]. 
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Fig. 9 Expert-in-the-loop architecture proposal to improve tauopathies’ segmentation and to stratify AD 
patients 

Despite their high computational efficiency, artificial 
intelligence—in particular deep learning—models face important 
usability and translational limitations in clinical use, as in biomedi-
cal research. The main reason for these limitations is generally low 
acceptability by biomedical experts, essentially due to the lack of 
feedback, traceability, and interpretability. Indeed, domain experts 
usually feel frustrated by a general lack of insights, while the imple-
mentation of the tool itself requires them to make a considerable 
effort to formalize, verify, and provide a tremendous amount of 
domain expertise. Some authors speak of a “black-box” phenome-
non, which is undesirable for a traceable, interpretable, explicable, 
and, ultimately, responsible use of these tools.
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Fig. 10 Attention U-Net results. The figure shows a patch of size 128 × 128 pixels, the ground-truth binary 
mask, and the focus progression using successive activation layers of the network 

In recent years, explainable AI (xAI) models have been devel-
oped to provide insights from and understand the AI decision-
making processes by interpreting their second-opinion quantifica-
tions, diagnoses, and predictions. Indeed, while explaining simple 
AI models for regression and classification tasks is relatively 
straightforward, the explainability task becomes more difficult as 
the model’s complexity increases. Therefore, a novel paradigm 
becomes necessary for better interaction between computer scien-
tists, biologists, and clinicians, with the support of an essential new 
actor: xAI, thus opening the way toward responsible AI: fairness, 
ethics, privacy, traceability, accountability, safety, and carbon 
footprint. 

In digital histopathology, several studies report on the usage 
and the benefits of explainable AI models. In [77], the authors 
describe an xAI-based software named HistoMapr and its applica-
tion to breast core biopsies. This software automatically identifies 
the regions of interest (ROI) and rapidly discovers key diagnostic 
areas from whole slide images of breast cancer biopsies. It generates



o

a provisional diagnosis based on the automatic detection and clas-
sification of relevant ROIs and also provides a list of key findings to 
pathologists that led to the recommendation. An explainable seg-
mentation pipeline for whole slide images is described in [40], 
which does a patch-level classification of colon glands for different 
cancer grades using a CNN followed by inference of class activation 
maps for the classifier. The activation maps are used for final pixel-
level segmentation. The method outperforms other weakly super-
vised methods applied to these types of images and generalizes to 
other datasets easily. A medical use-case of AI versus human inter-
pretation of histopathology data using a liver biopsy dataset is 
described in [78], which also stresses the need to develop methods 
for causability or measurement of the quality of AI explanations. In 
[67], AI models like deep auto-encoders were used to generate 
features from whole-mount prostate cancer pathology images that 
pathologists could understand. This work showed that a combina-
tion of human and AI-generated features produced higher accuracy 
in predicting prostate cancer recurrence. Finally, in [16], the 
authors show that, besides providing valuable visual explanation 
insights, the use of attention U-Net is even helping to increase the 
results of neuritic plaques segmentation by pulling up the Dice 
score to 0.75 from 0.72 (with the original U-Net). 
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Based on the fusion of MRI and histopathology imaging data-
sets, a deep learning 3D U-Net model with explanations is used in 
[79] for prostate tumor segmentation. Grad-CAM [80] heat maps 
were estimated for the last convolutional layer of the U-Net for 
interpreting the recognition and localization capability of the 
U-Net. In [81], a framework named NeuroXAI is proposed to 
render explainability to existing deep learning models in brain 
imaging research without any architecture modification or reduc-
tion in performance. This framework implements seven state-of-
the-art explanation methods—including Vanilla gradient [82], 
Guided back-propagation, Integrated gradients [83], SmoothGrad 
[84], and Grad-CAM. These methods can be used to generate 
visual explainability maps for deep learning models like 2D and 
3D CNN, VGG [85], and Resnet-50 [86] (for classification) and 
2D/3D U-Net (for segmentation). In [87], the high-level features 
of three deep convolutional neural networks (DenseNet-121, Goo-
gLeNet, MobileNet) are analyzed using the Grad-CAM explain-
ability technique. The Grad-CAM outputs helped distinguish these 
three models’ brain tumor lesion localization capabilities. An 
explainability framework using SHAP [88] and LIME [89]  t  
predict patient age using the morphological features from a brain 
MRI dataset is developed in [90]. The SHAP explainability model 
is robust for this imaging modality to explain morphological feature 
contributions in predicting age, which would ultimately help 
develop personalized age-related biomarkers from MRI. Attempts 
to explain the functional organization of deep segmentation



models like DenseUnet, ResUnet, and SimUnet and understand 
how these networks achieve high accuracy brain tumor segmenta-
tion are presented in [91]. While current xAI methods mainly focus 
on explaining models on single image modality, the authors of [92] 
address the explainability issue in multimodal medical images, such 
as PET-CT or multi-stained pathological images. Combining 
modality-specific information to explain diagnosis is a complex 
clinical task, and the authors developed a new multimodal explana-
tion method with modality-specific feature importance. 
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Intraoperative tissue diagnostic methods have remained 
unchanged for over 100 years in surgical oncology. Standard light 
microscopy used in combination with H&E and other staining 
biomarkers has improved over the last decades with the appearance 
of new scanner technology. However, the steps involved in the 
preparation and some artifacts introduced by scanners pose a 
potential barrier to efficient, reproducible, and accurate intraopera-
tive cancer diagnosis and other brain disorder analyses. As an alter-
native, label-free optical imaging methods have been developed. 

Label-free imaging is a method for cell visualization which does 
not require labeling or altering the tissue in any way. Bright-field, 
phase contrast, and differential interference contrast microscopy 
can be used to visualize label-free cells. The two latter techniques 
are used to improve the image quality of standard bright-field 
microscopy. Among its benefits, the cells are analyzed in their 
unperturbed state, so findings are more reliable and biologically 
relevant. Also, it is a cheaper and quicker technique as tissue does 
not need any genetic modification or alteration. In addition, experi-
ments can run longer, making them appropriate for studying cellu-
lar dynamics [93]. Raman microscopy, a label-free imaging 
technique, uses infrared incident light from lasers to capture vibra-
tional signatures of chemical bonds in the tissue sample’s mole-
cules. The biomedical tissue is excited with a dual-wavelength fiber 
laser setup at the so-called pump and Stokes frequencies to enhance 
the weak vibrational effect [94]. This technique is known as coher-
ent anti-Stokes Raman scattering (CARS) or stimulated Raman 
scattering histology (SRH). 

Sarri et al. [95] proposed the first one-to-one comparison 
between SRH and H&E as the latter technique remains the stan-
dard in histopathology analyses. The evaluation was conducted 
using the same cryogenic tissue sample. SRH data was first col-
lected as it did not need staining. SRH and SHG (second harmonic 
generation, another label-free nonlinear optical technique) were 
combined to generate a virtual H&E slide for comparison. The 
results evidenced the almost perfect similarity between SRH and 
standard H&E slides. Both virtual and real slides show the relevant 
structures needed to identify cancerous and healthy tissue. In addi-
tion, SRH proved to be a fast histologic imaging method suitable 
for intraoperative procedures.
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Similar to standard histopathology, computational methods are 
also applicable to SRH technology. For instance, Hollon and Orrin-
ger [96] proposed a CNN methodology to interpret histologic 
features from SRH brain tumor images and accurately segment 
cancerous regions. Results show a slightly better performance 
(94.6%) than the one obtained by the pathologist (93.9%) in the 
control group. This study was extended and validated for intrao-
perative diagnosis in [97]. The study used 2.5 million SRH images 
and predicted brain tumor diagnosis in under 150 s with an accu-
racy of 94.6%. The results clearly show the potential of combining 
computational pathology and stimulated Raman histology for fast 
and accurate diagnostics in surgical procedures. 

Finally, due to its strategic positioning at the cross of molecular 
biology/omics, radiology/radiomics, and clinics, the rise of 
computational pathology—by generating “pathomic” features—is 
expected to play a crucial role in the revolution of spatial transcrip-
tomics, defined as the ability to capture the positional context of 
transcriptional activity in intact tissue. Spatial transcriptomics is 
expected to generate a set of technologies allowing researchers to 
localize transcripts at tissue, cellular, and subcellular levels by 
providing an unbiased map of RNA molecules in tissue sections. 
These techniques use microscopy and next-generation sequencing 
to allow scientists to measure gene expression in a specific tissue or 
cellular context, consistently paving the road toward more effective 
personalized medicine. Coupled with these new technologies for 
data acquisition, we have the release of new WSI brain datasets 
[98], new frameworks for deep learning analysis of WSI 
[99, 100], and methods to address the ever-growing concern of 
privacy and data sharing policies [101]. 
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Chapter 19 

Integration of Multimodal Data 

Marco Lorenzi, Marie Deprez, Irene Balelli, Ana L. Aguila, 
and Andre Altmann 

Abstract 

This chapter focuses on the joint modeling of heterogeneous information, such as imaging, clinical, and 
biological data. This kind of problem requires to generalize classical uni- and multivariate association 
models to account for complex data structure and interactions, as well as high data dimensionality. 
Typical approaches are essentially based on the identification of latent modes of maximal statistical 

association between different sets of features and ultimately allow to identify joint patterns of variations 
between different data modalities, as well as to predict a target modality conditioned on the available ones. 
This rationale can be extended to account for several data modalities jointly, to define multi-view, or multi-
channel, representation of multiple modalities. This chapter covers both classical approaches such as partial 
least squares (PLS) and canonical correlation analysis (CCA), along with most recent advances based on 
multi-channel variational autoencoders. Specific attention is here devoted to the problem of interpretability 
and generalization of such high-dimensional models. These methods are illustrated in different medical 
imaging applications, and in the joint analysis of imaging and non-imaging information, such as -omics or 
clinical data. 

Key words Multivariate analysis, Latent variable models, Multimodal imaging, -Omics, Imaging-
genetics, Partial least squares, Canonical correlation analysis, Variational autoencoders, Sparsity, 
Interpretability 

1 Introduction 

The goal of multimodal data analysis is to reveal novel insights on 
complex biological conditions. Through the combined analysis of 
multiple type of data, and the complementary views on pathophysi-
ological processes they provide, we have the potential to improve 
our understanding of the underlying processes leading to complex 
and multifactorial disorders [1]. In medical imaging applications, 
multiple imaging modalities, such as structural magnetic resonance 
imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging 
(DTI), or positron emission tomography (PET), can be jointly 
analyzed to better characterize pathological conditions affecting 
individuals [2]. Other typical multimodal analysis problems involve
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1.1 Challenges of

Multimodal Data

Assimilation

the joint analysis of heterogeneous data types, such as imaging and 
genetics data, where medical imaging is associated with the 
patient’s genotype information, represented by genetic variants 
such as single-nucleotide polymorphisms (SNPs) [3]. This kind of 
application, termed imaging-genetics, is of central importance for 
the identification of genetic risk factors underlying complex dis-
eases including age-related macular degeneration, obesity, schizo-
phrenia, and Alzheimer’s disease [4].
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Despite the great potential of multimodal data analysis, the 
complexity of multiple data types and clinical questions poses sev-
eral challenges to the researchers, involving scalability, interpret-
ability, and generalization of complex association models. 

Due to the complementary nature of multimodal information, 
there is great interest in combining different data types to better 
characterize the anatomy and physiology of patients and indivi-
duals. Multimodal data is generally acquired using heterogeneous 
protocols highlighting different anatomical, physiological, clinical, 
and biological information for a given individual [5].

•

Typical multimodal data integration challenges are: 

Non-commensurability. Since each data modality quantifies dif-
ferent physical and biological phenomena, multimodal data is 
represented by heterogeneous physical units associated to differ-
ent aspects of the studied biological process (e.g., brain struc-
ture, activity, clinical scores, gene expression levels).

• Spatial heterogeneity. Multimodal medical images are character-
ized by specific spatial resolution, which is independent from the 
spatial coordinate system on which they are standardized.

• Heterogeneous dimensions. The data type and dimensions of 
medical data can vary according to the modality, ranging from 
scalars and time series typical of fMRI and PET data to 
structured tensors of diffusion weighted imaging.

• Heterogeneous noise. Medical data modalities are characterized by 
specific and heterogeneous artifacts and measurement uncer-
tainty, resulting from heterogeneous acquisition and processing 
routines.

• Missing data. Multimodal medical datasets are often incomplete, 
since patients may not undergo the same protocol, and some 
modalities may be more expensive to acquire than others.

• Interpretability. A major challenge of multimodal data integra-
tion is the interpretability of the analysis results. This aspect is 
impacted by the complexity of the analysis methods and gener-
ally requires important expertise in data acquisition, processing, 
and analysis.
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Multimodal data analysis methods proposed in the literature 
have been focusing on different data complexity and integration, 
depending on the application of interest. Visual inspection is the 
typical initial step of multimodal studies, where single modalities 
are compared on a qualitative basis. For example, different medical 
imaging modalities can be jointly visualized for a given individual to 
identify common spatial patterns of signal changes. Data integra-
tion can be subsequently performed by jointly exploring unimodal 
features and unimodal analysis results. To this end, we may stratify 
the cohort of a clinical study based on some biomarkers extracted 
from different medical imaging modalities exceeding predefined 
thresholds. Finally, multivariate statistical and machine learning 
techniques can be applied for data-driven analysis of the joint 
relationship between information encoded in different modalities. 
Such approaches attempt to maximize the advantages of combining 
cross-modality information, dimensions, and resolution of the mul-
timodal signal. The ultimate goal of such analysis methods is to 
identify the “mechanisms” underlying the generation of the 
observed medical data, to provide a joint representation of the 
common variation of heterogeneous data types. 

The literature on multimodal analysis approaches is extensive, 
depending on the kind of applications and related data types. In this 
chapter we focus on general data integration methods, which can 
be classically related to the fields of multivariate statistical analysis 
and latent variable modeling. The importance of these approaches 
lies in the generality of their formulation, which makes them an 
ideal baseline for the analysis of heterogeneous data types. Further-
more, this chapter illustrates current extensions of these basic 
approaches to deep probabilistic models, which allow great model-
ing flexibility for current state-of-the-art applications. 

In Subheading 1.2 we provide an overview of typical multi-
modal analyses in neuroimaging applications, while in Subheading 
2 we introduce the statistical foundations of multivariate latent 
variable modeling, with emphasis on the standard approaches of 
partial least squares (PLS) and canonical correlation analysis 
(CCA). In Subheading 3, these classical methods are reformulated 
under the Bayesian lens, to define linear counterparts of latent 
variable models (Subheading 3.2) and their extension to multi-
channel and deep multivariate analysis (Subheadings 3.3 and 3.4). 
In Subheading 4 we finally address the problem of group-wise 
regularization to improve the interpretability of multivariate associ-
ation models, with specific focus in imaging-genetics applications.
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Box 1: Online Tutorial 
The material covered in this chapter is available at the follow-
ing online tutorial: 

https://bit.ly/3y4RaIO 

1.2 Motivation from 

Neuroimaging 

Applications 

Multimodal analysis methods have been explored for their potential 
in automatic patient diagnosis and stratification, as well as for their 
ability to identify interpretable data patterns characterizing clinical 
conditions. In this section, we summarize state-of-the-art contri-
butions to the field, along with the remaining challenges to 
improve our understanding and applications to complex brain 
disorders.

• Structural-structural combination. Methods combining sMRI 
and dMRI imaging modalities are predominant in the field. 
Such combined analysis has been proposed, for example, for 
the detection of brain lesions (e.g., strokes [6, 7]) and to study 
and improve the management of patients with brain 
disorders [8].

• Functional-functional combination. Due to the complementary 
nature of EEG and fMRI, research in brain connectivity analysis 
has focused in the fusion of these modalities, to optimally inte-
grate the high temporal resolution of EEG with the high spatial 
resolution of the fMRI signal. As a result, EEG-fMRI can pro-
vide simultaneous cortical and subcortical recording of brain 
activity with high spatiotemporal resolution. For example, this 
combination is increasingly used to provide clinical support for 
the diagnosis and treatment of epilepsy, to accurately localize 
seizure onset areas, as well as to map the surrounding functional 
cortex in order to avoid disability [9–11].

• Structural-functional combination. The combined analysis of 
sMRI, dMRI, and fMRI has been frequently proposed in neu-
ropsychiatric research due to the high clinical availability of these 
imaging modalities and due to their potential to link brain 
function, structure, and connectivity. A typical application is in 
the study of autism spectrum disorder and attention-deficit 
hyperactivity disorder (ADHD). The combined analysis of such 
modalities has been proposed, for example, for the identification 
of altered white matter connectivity patterns in children with 
ADHD [12], highlighting association patterns between regional 
brain structural and functional abnormalities [13].

• Imaging-genetics. The combination of imaging and genetics 
data has been increasingly studied to identify genetic risk factors 
(genetic variations) associated with functional or structural 
abnormalities (quantitative traits, QTs) in complex brain disor-
ders [3]. Such multimodal analyses are key to identify the

https://bit.ly/3y4RaIO


2.1 From

Multivariate

Regression to Latent

Variable Models
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underlying mechanisms (from genotype to phenotype) leading 
to neurodegenerative diseases, such as Alzheimer’s disease [14] 
or Parkinson’s disease [15]. This analysis paradigm paves the way 
to novel data integration scenarios, including imaging and tran-
scriptomics, or multi-omic data [16]. 

Overall, multimodal data integration in the study of brain 
disorders has shown promising results and is an actively evolving 
field. The potential of neuroimaging information is continuously 
improving, with increasing resolution and improved image con-
trast. Moreover, multiple imaging modalities are increasingly avail-
able in large collections of multimodal brain data, allowing for the 
application of complex modeling approaches on representative 
cohorts. 

2 Methodological Background 

The use of multivariate analysis methods for biomedical data analy-
sis is widespread, for example, in neuroscience [17], genetics [18], 
and imaging-genetics studies [19, 20]. These approaches come 
with the potential of explicitly highlighting the underlying relation-
ship between data modalities, by identifying sets of relevant features 
that are jointly associated to explain the observed data. 

In what follows, we represent the multimodal information 
available for a given subject k as a collection of arrays xk 

i , i=1, 
. . ., M, where M is the number of available modalities. Each array 
has dimension dimðxk 

i Þ=Di. A multimodal data matrix for 
N individuals is therefore represented by the collection of matrices 
Xi, with dim(Xi)=N×Di. For sake of simplicity, we assume that 

xk 
i∈Di . 

A first assumption that can be made for defining a multivariate 
analysis method is that a target modality, say Xj, is generated by the 
combination of a set of given modalities {Xi}i ≠ j. A typical example 
of this application concerns the prediction of certain clinical vari-
ables from the combination of imaging features. In this case, the 
underlying forward generative model for an observation xk 

j can be 
expressed as: 

xk 
j = gðfxk 

i gi ≠ j Þ þ  εk j , ð1Þ 
where we assume that there exists an ideal mapping g(�) that trans-
forms the ensemble of observed modalities for the individual k, to  
generate the target one xk 

j . Note that we generally assume that the 
observations are corrupted by a certain noise εk j , whose nature 
depends on the data type. The standard choice for the noise is 
Gaussian, εk j � N ð0, σ2 IdÞ. 

Within this setting, a multimodal model is represented by a 
function f ðfX igM 

i =1, θÞ, with parameters θ, taking as input the 
ensemble of modalities across subjects. The model f is optimized



with respect to θ to solve a specific task. In our case, the set of input 
modalities can be used to predict a target modality j, in this case we 
have f : i ≠ j

Di↦Dj . 
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Noise process 

Fig. 1 Illustration of a generative process for the modeling of imaging and 
genetics data 

In its basic form, this kind of formulation includes standard 
multivariate linear regression, where the relationship between two 
modalities X1 and X2 is modeled through a set a linear parameters 

θ=W∈D2 ×D1 and f(X2)= X2 �W. Under the Gaussian noise 
assumption, the typical optimization task is formulated as the 
least squares problem: 

W � = argmin 
W 

kX 1 -X 2 �W k2 : ð2Þ 

When modeling jointly multiple modalities, the forward gener-
ative model of Eq. 1 may be suboptimal, as it implies the explicit 
dependence of the target modality upon the other ones. This 
assumption may be too restrictive, as often an explicit assumption 
of dependency cannot be made, and we are rather interested in 
modeling the joint variation between data modalities. This is the 
rationale of latent variable models. 

In the latent variable setting, we assume that the multiple 
modalities are jointly dependent from a common latent representa-
tion z (Fig. 1) belonging to an ideal low-dimensional space of 
dimension D≤min{dim(Di), i=1, . . ., M}.1 In this case, Eq. 1 
can be extended to the generative process: 

xk 
i = giðzkÞ þ  εk i , i =1, . . .,M : ð3Þ 

1 Note that we could also consider overcomplete basis for the latent space such that D>min{dim(Di), i=1, . . ., 
M}. This choice may be motivated by the need of accounting for modalities with particularly low dimension. The 
study of overcomplete latent data representations is focus of active research [21–23].



2.2 Classical Latent

Variable Models: PLS

and CCA
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Equation 3 is the forward process governing the data genera-
tion. The goal of latent variable modeling is to make inference on 
the latent space and on the generative process from the observed 
data modalities, based on specific assumptions on the transforma-
tions from the latent to the data space, and on the kind of noise 
process affecting the observations (Box 2). In particular, the infer-
ence problem can be tackled by estimating inverse mappings, 

f j ðxk 
j Þ, from the data space of the observed modalities to the latent 

space. 
Based on this framework, in the following sections, we illustrate 

the standard approaches for solving the inference problem of Eq. 1. 

The forward model of Eq. 3 for multimodal data generation can be easily coded in 
Python to generate a synthetic multimodal dataset: 

Box 2: Online Tutorial—Generative Models 

# N subjects 
n = 500 
# here we define 2 Gaussian latents variables 
# z = (l_1, l_2) 
l1 = np.random.normal(size=n) 
l2 = np.random.normal(size=n) 

latents = np.array([l1, l2]).T 

# We define two random transformations from the latent 
# space to the 5D space of X1 and X2 respectively 
transform_x = \ 

np.random.randint(-8,8, size = 10).reshape([2,5]) 
transform_y = \ 

np.random.randint(-8,8, size = 10).reshape([2,5]) 

# We compute data X = z  w_x, and Y = z w_y 
X1 = latents.dot(transform_x) 
X2 = latents.dot(transform_y) 

# We add some random Gaussian noise 
X1 = X1 + 2*np.random.normal(size = n*5).reshape((n, 5)) 
X2 = X2 + 2*np.random.normal(size = n*5).reshape((n, 5)) 

Classical latent variable models extend the standard linear regres-
sion to analyze the joint variability of different modalities. Typical 
formulation of latent variable models include partial least squares 
(PLS) and canonical correlation analysis (CCA) [24], which have 
successfully been applied in biomedical research [25], along with 
multimodal [26, 27] and nonlinear [28, 29] variants.

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Box 3: Online Tutorial—PLS and CCA with sklearn 

from sklearn.cross_decomposition import PLSCanonical, CCA 

####################################### 
# We fit PLS and CCA as provided by scikit-learn 

#Defining PLS object, no scaling of input X1 and X2 
plsca = PLSCanonical(n_components=2, scale = False) 
cca = CCA(n_components=2, scale = False) 

#Fitting on train data 
plsca.fit(X1, X2) 
cca.fit(X1, X2) 

#We project the training data in the latent dimension 
X1_pls_r, X2_pls_r = \ 

plsca.transform(X1, X2) 
X1_cca_r, X2_cca_r = \ 

cca.transform(X1, X2) 

The basic principle of these multivariate analysis techniques 
relies on the identification of linear transformations of modalities 
Xi and Xj into a lower dimensional subspace of dimension D≤min 
{dim(Di), dim(Dj)}, where the projected data exhibits the desired 
statistical properties of similarity. For example, PLS aims at max-
imizing the covariance between these combinations (or projections 
on the modes’ directions), while CCA maximizes their statistical 
correlation (Box 3). For simplicity, in what follows we focus on the 
joint analysis of two modalities X1 and X2, and the multimodal 
model can be written as 

f ðX 1,X 2, θÞ = ½f 1ðX 1,u1Þ, f 2ðX 2,u2Þ� ð4Þ 
= ½z1, z2�, ð5Þ 

where θ= {u1, u2} are linear projection operators for the modal-
ities, ui∈Di , while z i =X i � ui∈N are the latent projections for 
each modality i=1, 2. The optimization problem can thus be 
formulated as: 

u�
1,u

�
2 = argmax 

θ 
Simðz1, z2Þ ð6Þ 

= argmax 
u1,u2 

SimðX 1 � u1,X 2 � u2Þ, ð7Þ 

where Sim is a suitable measure of statistical similarity, depending 
on the envisaged methods (e.g., variance for PLS, or correlation for 
CCA) (Fig. 2).

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Fig. 2 Illustration of latent variable modeling for an idealized application to the 
modeling of genetics and imaging data 

2.3 Latent Variable 

Models Through 

Eigen-Decomposition 

For PLS, the problem of Eq. 6 requires the estimation of projec-
tions u1 and u2 maximizing the covariance between the latent 
representation of the two modalities X1 and X2: 

u�
1,u

�
2 = argmax 

u1,u2 

CovðX 1 � u1,X 2 � u2Þ, ð8Þ2.3.1 Partial Least 

Squares 

where 

CovðX 1 � u1,X 2 � u2Þ= 
uT 
1 Su2 

uT 
1 u1 uT 

2 u2 

, ð9Þ 

and S =X T 
1 X 2 is the sample covariance between modalities. 

Without loss of generality, the maximization of Eq. 9 can be 
considered under the orthogonality constraint 

uT 
1 u1 = uT 

2 u2 =1. This constrained optimization problem 

can be expressed in the Lagrangian form: 

ℒðu1,u2, λx , λyÞ=uT 
1 Su2 - λxðuT 

1 u1 -1Þ- λyðuT 
2 u2 -1Þ, ð10Þ 

whose solution can be written as: 

0 S 

ST 0 

u1 

u2 

= λ 
u1 

u2 

: ð11Þ 

Equation 11 corresponds to the primal formulation of PLS and 
shows that the PLS projections maximizing the latent covariance 
are the left and right eigen-vectors of the sample covariance matrix 
across modalities. This solution is known as PLS-SVD and has been 
widely adopted in the field of neuroimaging [30, 31], for the study 
of common patterns of variability between multimodal imaging 
data, such as PET and fMRI.
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It is worth to notice that classical principal component analysis 
(PCA) is a special case of PLS when X1= X2. In this case the latent 
projections maximize the data variance and correspond to the 
eigen-modes of the sample covariance matrix S =X T 

1 X 1. 

2.3.2 Canonical 

Correlation Analysis 

In canonical correlation analysis (CCA), the problem of Eq. 6 is 
formulated by optimizing linear transformations such that X1u1 

and X2u2 are maximally correlated: 

u�
1,u

�
2 = argmax 

u1,u2 

Corr X 1u1,X 2u2ð Þ, ð12Þ 

where 

Corr ðX 1u1,X 2u2Þ = 
uT 
1 Su2 

uT 
1 S1u1 uT 

2 S2u2 

: ð13Þ 

where S1 =X T 
1 X 1 and S2 =X T 

2 X 2 are the sample covariances of 
modality 1 and 2, respectively. 

Proceeding in a similar way as for the derivation of PLS, it can 
be shown that CCA is associated to the generalized eigen-
decomposition problem [32]: 

0 S 

ST 0 

u1 

u2 

= λ 
S1 0 

0 S2 

u1 

u2 

, ð14Þ 

It is common practice to reformulate the CCA problem of 
Eq. 14 with a regularized version aimed to avoid numerical instabil-
ities due to the estimation of the sample covariances S1 and S2: 

0 S 

ST 0 

u1 

u2 

= λ 
S1 þ δI 0 

0 S2 þ δI 
u1 

u1 

: ð15Þ 

In this latter formulation, the right hand side of Eq. 14 is 
regularized by introducing a constant diagonal term δ, propor-
tional to the regularization strength (with δ=0 we obtain 
Eq. 14). Interestingly, for large value of δ, the diagonal term 
dominates the sample covariance matrices of the right-hand side, 
and we retrieve the standard eigen-value problem of Eq. 11. This 
shows that PLS can be interpreted as an infinitely regularized 
formulation of CCA. 

2.4 Kernel Methods 

for Latent Variable 

Models 

In order to capture nonlinear relationships, we may wish to project 
our input features into a high-dimensional space prior to 
performing CCA (or PLS): 

ϕ : X = ðx1 , . . ., xN Þ↦ ϕðx1Þ, . . . ,ϕðxNÞ ð16Þ 
where ϕ is a nonlinear feature map. As derived by Bach et al. [33], 
the data matrices X1 and X2 can be replaced by the Gram matrices 
K1 and K2 such that we can achieve a nonlinear feature mapping via 
the kernel trick [34]:



2.5 Optimization of

Latent Variable Models

1 1
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K1 x i 
1, x 

j 
1 = ϕ x i 

1 ,ϕ x 
j 
1 and K2 x i 

2, x 
j 
2 = ϕ x i 

2 ,ϕ x 
j 
2 

ð17Þ 

where K1 = ½K1 x i 
1, x 

j 
1 �

N ×N 
and K2 = ½K2 x i 

2, x 
j 
2 �

N ×N 
. In this 

case, kernel CCA canonical directions correspond to the solutions 
of the updated generalized eigen-value problem: 

0 K1K2 

K2K1 0 

α1 

α2 
= λ 

K2 
1 0 

0 K2 
2 

α1 

α2 
: ð18Þ 

Similarly to the primal formulation of CCA, we can apply an ℓ2-
norm regularization penalty on the weights α1 and α2 of Eq. 18, 
giving rise to regularized kernel CCA: 

0 K1K2 

K2K1 0 

u1 

u2 

= λ 
K2 

1 þ δI 0 

0 K2 
2 þ δI 

u1 

u2 

, ð19Þ 

The nonlinear iterative partial least squares (NIPALS) is a classical 
scheme proposed by H. Wold [35] for the optimization of latent 
variable models through the iterative computation of PLS and CCA 
projections. Within this method, the projections associated with 
the modalities X1 and X2 are obtained through the iterative solu-
tion of simple least squares problems. 

The principle of NIPALS is to identify projection vectors 
u1,u2∈ and corresponding latent representations z1 and z2 to 
minimize the functionals 

ℒi = kXi - z iuT 
i k2 , ð20Þ 

subject to the constraint of maximal similarity between representa-
tions z1 and z2 (Fig. 3). 

Following [37], the NIPALS method is optimized as follows 
(Algorithm 1). The latent projection for modality 1 is first initia-
lized as z

ð0Þ 
1 from randomly chosen columns of the data matrix X1. 

Subsequently, the linear regression function 

ℒð0Þ 
2 = kX 2 - z

ð0Þ 
1 u

T 
2 k2 

is optimized with respect to u2, to obtain the projection u
ð0Þ 
2 . After 

unit scaling of the projection coefficients, the new latent represen-
tation is computed for modality 2 as z

ð0Þ 
2 =X 2 � uð0Þ 

2 . At this point, 
the latent projection is used for a new optimization step of the 
linear regression problem 

ℒð0Þ 
1 = kX 1 - z

ð0Þ 
2 u

T 
1 k2 , 

this time with respect to u1, to obtain the projection parameters 

u
ð0Þ 
1 relative to modality 1. After unit scaling of the coefficients, the 

new latent representations is computed for modality 1 as 

z
ð1Þ =X 1 � uð0Þ

. The whole procedure is then iterated.
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Fig. 3 Schematic of NIPALS algorithm (Algorithm 1). This implementation can be 
found in standard machine learning packages such as scikit-learn [36] 

It can be shown that the NIPALS method of Algorithm 1 
converges to a stable solution for projections and latent parameters 
and the resulting projection vectors correspond to the first left and 
right eigen-modes associated to the covariance matrix S =X T 

1 �X 2. 

Algorithm 1 NIPALS iterative computation for PLS compo-
nents [37] 

Initialize z(0) 
1 , i = 0.  

Until not converged do: 
1. Estimate the projection u(i) 

2 by minimizing L(i) 
2 = ‖X2 − z

(i) 
1 u

T 
2 ‖2: 

u
(i) 
2 = XT 

2 z
(i) 
1

(
z
(i) 
1 

T 
z
(i) 
1

)−1 

2. Normalize u(i) 
2 ← u

(i) 
2

‖u(i) 
2 ‖ . 

3. Estimate the latent representation for modality 2: 
z
(i) 
2 = X2 · u(i) 

2 

4. Estimate the projection u(i) 
1 by minimizing L(i) 

1 = ‖X1 − z
(i) 
2 u

T 
1 ‖2: 

u
(i) 
1 = XT 

1 z
(i) 
2

(
z
(i) 
2 

T 
z
(i) 
2

)−1 

5. Normalize u(i) 
1 ← u

(i) 
1

‖u(i) 
1 ‖ . 

6. Update the latent representation for modality 1: 
z
(i+1) 
1 = X1 · u(i) 

1 . 

After the first eigen-modes are computed through Algorithm 
1, the higher-order components can be subsequently computed by 
deflating the data matrices X1 and X2. This can be done by regres-
sing out the current projections in the latent space: 

X i ←X i - z i 
zT i X i 

zT i z i 
ð21Þ
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NIPALS can be seamlessly used to optimize the CCA problem. 
Indeed, it can be shown that the CCA projections and latent 
representations can be obtained by estimating the linear projections 
u2 and u1 in steps 1 and 4 of Algorithm 1 via the linear regression 
problems 

ℒðiÞ 
2 = kX 2u2 - z

ðiÞ 
1 k2 ðstep 1 for CCAÞ, 

and 

ℒðiÞ 
1 = kX 1u1 - z

ðiÞ 
2 k2 ðstep 4 for CCAÞ: 

Box 4: Online Tutorial—NIPALS Implementation 
The online tutorial provides an implementation of the 
NIPALS algorithm for both CCA and PLS, corresponding 
to Algorithm 1. It can be verified that the numerical solution 
is equivalent to the one provided by sklearn and to the one 
obtained through the solution of the eigen-value problem. 

3 Bayesian Frameworks for Latent Variable Models 

Bayesian formulations for latent variable models have been devel-
oped in the past, including for PLS [38] and CCA [39]. The 
advantage of employing a Bayesian framework to solve the original 
inference problem is that it provides a natural setting to quantify the 
parameters’ variability in an interpretable manner, coming with 
their estimated distribution. In addition, these methods are partic-
ularly attractive for their ability of integrating prior knowledge on 
the model’s parameters. 

Recently, the seminal work of Tipping and Bishop on probabilistic 
PCA (PPCA) [40] has been extended to allow the joint integration 
of multimodal data [41] (multi-view PPCA), under the assumption 
of a common latent space able to explain and generate all 
modalities. 

Recalling the notation of Subheading 2.1, let x = fxk 
i g

M 

i =1 be an 
observation of M modalities for subject k, where each xk 

i is a vector 
of dimension Di. We denote by zk the D-dimensional latent variable 
commonly shared by each xk 

i . In this context, the forward process 
underlying the data generation of Eq. 1 is linear, and for each 
subject k and modality i, we write (see Fig. 4a): 

xk 
i =WiðzkÞ þ  μi þ εi, ð22Þ 

i =1, . . .,M ; k=1, . . .,N ; dimðzkÞ< minðDiÞ, ð23Þ

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Fig. 4 (a) Graphical model of multi-view PPCA. The green node represents the 
latent variable able to jointly describe all observed data explaining the patient 
status. Gray nodes denote original multimodal data, and blue nodes the view-
specific parameters. (b) Hierarchical structure of multi-view PPCA: prior knowl-
edge on model’s parameters can be integrated in a natural way when the model 
is embedded in a Bayesian framework 

where Wi represents the linear mapping from the ith-modality to 
the latent space, while μi and εi denote the common intercept and 
error for modality i. Note that the modality index i does not appear 
in the latent variable zk , allowing a compact formulation of the 
generative model of the whole dataset (i.e., including all modalities) 
by simple concatenation: 

xk : = 

xk 
1 

⋮ 

xk 
M 

= 

W 1 

⋮ 

WM 

zk þ 
μ1 

⋮ 

μM 

þ 
ε1 

⋮ 

εM 

= : W zk þ μþ ε: 

ð24Þ 

Further hypotheses are needed to define the probability distri-
butions of each element appearing in Eq. 22, such as zk� p(zk ), the



standard Gaussian prior distribution for the latent variables, and 
εi� p(εi), a centered Gaussian distribution. From these assump-
tions, one can finally derive the likelihood of the data given latent 
variables and model parameters, pðxk 

i jzk , θiÞ, θi= {Wi, μi, εi} and, 
by using Bayes theorem, also the posterior distribution of the latent 
variables, pðzkjxk 

i Þ. 
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Box 5: Online Tutorial—Multi-view PPCA 

from Model.mvPPCA import MVPPCA 

### Data in mv-PPCA is specified by: 
# 1 - number of views, views' dimensions 
# and latent dimension 
n_views = 2  # X1 and X2 
n_components = n_components 
dim_views = [X.shape[1], Y.shape[1]] 
# 2 - a  dataframe containing all views 
data = pd.DataFrame(np.hstack((X, Y))) 

### Here we create an instance of the model 
#and a dataframe to store results during training 
n_iterations=200 
results = pd.DataFrame() 
# Multi-views PPCA 
mvPPCA = MVPPCA(data=data, norm=False, 

dim_views=dim_views, 
n_components=n_components, 
n_iterations=n_iterations) 

################### 
## Model Fitting ## 
################### 
results = results.append(mvPPCA.fit(), ignore_index=True) 
# Optimized parameters can be recovered as follows: 
muk, Wk, Sigma2k = mvPPCA.local_params 

3.1.1 Optimization In order to solve the inference problem and estimate the model’s 
parameters in θ, the classical expectation-maximization 
(EM) scheme can be deployed. EM optimization consists in an 
iterative process where each iteration is composed of two steps:

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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• Expectation step (E): Given the parameters previously opti-
mized, the expectation of the log-likelihood of the joint distri-
bution of xi and z

k with respect to the posterior distribution of 
the latent variables is evaluated.

• Maximization step (M): The functional of the E step is max-
imized with respect to the model’s parameters. 

It is worth noticing that prior knowledge on the model’s para-
meters distribution can be easily integrated in this Bayesian frame-
work (Fig. 4b), with minimal modification of the optimization 
scheme, consisting in a penalization of the functional to be maxi-
mized in theM-step forcing theoptimizedparameters to remain close 
to their priors. In this case we talk about maximum a posteriori 
(MAP) optimization. 

3.2 Bayesian Latent 

Variable Models via 

Autoencoding 

Autoencoders and variational autoencoders have become very pop-
ular approaches for the estimation of latent representation of com-
plex data, which allow powerful extensions of the Bayesian models 
presented in Subheading 3.1 to account for nonlinear and deep 
data representations. 

Autoencoders (AEs) extend classical latent variable models to 
account for complex, potentially highly nonlinear, projections from 
the data space to the latent space (encoding), along with recon-
struction functions (decoding) mapping the latent representation 
back to the data space. Since typical encoding ( fe) and decoding 
( fd) functions of AEs are parameterized by feedforward neural 
networks, inference can be efficiently performed by means of sto-
chastic gradient descent through backpropagation. In this sense, 
AEs can be seen as a powerful extension of classical PCA, where 
encoding into the latent representations and decoding are jointly 
optimized to minimize the reconstruction error of the data: 

ℒ= X - f dðf eðX ÞÞ 2 2 ð25Þ 
The variational autoencoder (VAE) [42, 43] introduces a Bayesian 
formulation of AEs, akin to PPCA, where the latent variables are 
inferred by estimating the associated posterior distributions. In this 
case, the optimization problem can be efficiently performed by 
stochastic variational inference [44], where the posterior moments 
of the variational posterior of the latent distribution are parameter-
ized by neural networks. 

In the same way PLS and CCA extend PCA for multimodal 
analysis, research has been devoted to define equivalent extensions 
for the VAEs to identify common latent representations of multiple 
data modalities, such as the multi-channel VAE [23], or deep CCA 
[29]. These approaches are based on a similar formulation, which is 
provided in the following section.



3.3.1 Optimization
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3.3 Multi-channel 

Variational 

Autoencoder 

The multi-channel variational autoencoder (mcVAE) assumes the 
following generative process for the observation set: 

zk � pðzkÞ 
xk 
i � pðxk 

i jzk , θiÞ i = 1, . . .,M , 
ð26Þ 

where p(zk ) is a prior distribution for the latent variable. In this 
case, pðxk 

i jz, θiÞ is the likelihood of the observed modality i for 
subject k, conditioned on the latent variable and on the generative 
parameters θi parameterizing the decoding from the latent space to 
the data space of modality i. 

Solving this inference problem requires the estimation of the 
posterior for the latent distribution p(z|X1, . . ., XM), which is 
generally an intractable problem. Following the VAE scheme, vari-
ational inference can be applied to compute an approximate 
posterior [45]. 

The inference problem of mcVAE is solved by identifying varia-
tional posterior distributions specific to each data modality 

qðzkjxk 
i ,φiÞ, by conditioning them on the observed modality xi 

and on the corresponding variational parameters φi parameterizing 
the encoding of the observed modality to the latent space. 

In this way, since each modality provides a different approxi-
mation, a similarity constraint is imposed in the latent space to 
enforce each modality-specific distribution qðzkjxk 

i ,φiÞ to be as 
close as possible to the common target posterior distribution. The 
measure of “proximity” between distributions is the Kullback-
Leibler (KL) divergence. This constraint defines the following 
functional: 

argmin 
q i 

DKL qðzkjxk 
i ,φiÞkpðzjxk 

1, . . ., x
k 
M Þ ð27Þ 

where the approximate posteriors q(z|xi, φi) represent the view on 
the latent space that can be inferred from the modality xi. In [23] it  
was shown that the optimization of Eq. 27 is equivalent to the 
optimization of the following evidence lower bound (ELBO): 

ℒ=D-R ð28Þ 
where R= iKL qðzkjxk 

i ,φiÞkpðzÞ , and D=∑iLi, with 

Li = 
qðzk jxk 

i 
,φiÞ 

M 

j =1 

ln p x j jz, θj 

is the expected log-likelihood of each data channel xj quantifying 
the reconstruction obtained by decoding from the latent represen-
tation of the remaining channels xi. Therefore, optimizing the term 
D in Eq. 28 with respect to encoding and decoding parameters 

fθi,φigM 
i =1 identifies the optimal representation of each modality in



the latent space which can, on average, jointly reconstruct all the 
other channels. This term thus enforces a coherent latent represen-
tation across different modalities and is balanced by the regulariza-
tion term R, which constrains the latent representation of each 
modality to the common prior p(z). As for standard VAEs, encod-
ing and decoding functions can be arbitrarily chosen to parameter-
ize respectively latent distributions and data likelihoods. Typical 
choices for such functions are neural networks, which can provide 
extremely flexible and powerful data representation (Box 6). For 
example, leveraging the modeling capabilities of deep convolu-
tional networks, mcVAE has been used in a recent cardiovascular 
study for the prediction of cardiac MRI data from retinal fundus 
images [46]. 
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Box 6 Online Tutorial—mcVAE with PyTorch 

import torch 
from mcvae.models import Mcvae 
from mcvae.models.utils import DEVICE, load_or_fit 

### Data in mcvae is specified by: 
#  1 - a  dictionary with the data characteristics 
init_dict = { 

'n_channels': 2, #  X1  and  X2  
'lat_dim': n_components, 
'n_feats': tuple([X1.shape[1], X2.shape[1]]), 

} 
#  2 - a  list with the different data channels 
data = [] 
data.append(torch.FloatTensor(X1)) 
data.append(torch.FloatTensor(X2)) 

# Here we create an instance of the model 
adam_lr = 1e-2 
n_epochs = 4000 
# Multi-Channel VAE 
torch.manual_seed(24) 
model = Mcvae(**init_dict) 
model.to(DEVICE) 
################### 
## Model Fitting ## 
################### 
model.optimizer = torch.optim.Adam(model.parameters(),\ 

lr=adam_lr) 
load_or_fit(model=model, data=data, epochs=n_epochs,\ 

ptfile='model.pt', force_fit=FORCE_REFIT)

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg


Þ

ℒ= -DKL

Integration of Multimodal Data 591

3.4 Deep CCA The mcVAE uses neural network layers to learn nonlinear repre-
sentations of multimodal data. Similarly, Deep CCA [29] provides 
an alternative to kernel CCA to learn nonlinear mappings of multi-
modal information. Deep CCA computes representations by pass-
ing two views through functions f1 and f2 with parameters θ1 and 
θ2, respectively, which can be learnt by multilayer neural networks. 
The parameters are optimized by maximizing the correlation 
between the learned representations f1(X1;θ1) and f2(X2;θ2): 

θ1opt , θ2opt = argmaxCorr f 1 X 1; θ1ð Þ, f 2 X 2; θ2ð Þð θ1, θ2ð Þ  ð29Þ 
In its classical formulation, the correlation objective given in Eq. 29 
is a function of the full training set, and as such, mini-batch opti-
mization can lead to suboptimal results. Therefore, optimization of 
classical deep CCA must be performed with full-batch optimiza-
tion, for example, through the L-BFGS (limited Broyden-Fletcher-
Goldfarb-Shanno) scheme [47]. For this reason, with this vanilla 
implementation, deep CCA is not computationally viable for large 
datasets. Furthermore, this approach does not provide a model for 
generating samples from the latent space. To address these issues, 
Wang et al. [48] introduced deep variational CCA (VCCA) which 
extends the probabilistic CCA framework introduced in Subhead-
ing 3 to a nonlinear generative model. In a similar approach to 
VAEs and mcVAE, deep VCCA uses variational inference to 
approximate the posterior distribution and derives the 
following ELBO: 

qϕðz j x1ÞkpðzÞ þ qϕðzjx1Þ log pθ1ðx1 j zÞþ log pθ2ðx2 j zÞ ð30Þ 

where the approximate posterior, qϕ(zjx1), and likelihood distribu-
tions, pθ1ðx1 j zÞ and pθ2ðx2 j zÞ, are parameterized by neural net-
works with parameters ϕ, θ1, and θ2. 

We note that, in contrast to mcVAE, deep VCCA is based on 
the estimation of a single latent posterior distribution. Therefore, 
the resulting representation is dependent on the reference modality 
from which the joint latent representation is encoded and may 
therefore bias the estimation of the latent representation. Finally 
Wang et al. [48] introduce a variant of deep VCCA, VCCA-private, 
which extracts the private, in addition to shared, latent information. 
Here, private latent variables hold view-specific information which 
is not shared across modalities.
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4 Biologically Inspired Data Integration Strategies 

Medical imaging and -omics data are characterized by nontrivial 
relationships across features, which represent specific mechanisms 
underlying the pathophysiological processes. 

For example, the pattern of brain atrophy and functional 
impairment may involve brain regions according to the brain con-
nectivity structure [49]. Similarly, biological processes such as gene 
expression are the result of the joint contribution of several SNPs 
acting according to biological pathways. According to these pro-
cesses, it is possible to establish relationships between genetics 
features under the form of relation networks, represented by ontol-
ogies such as the KEGG pathways2 and the Gene Ontology 
Consortium.3 

When applying data-driven multivariate analysis methods to 
this kind of data, it is therefore relevant to promote interpretability 
and plausibility of the model, by enforcing the solution to follow 
the structural constraints underlying the data. This kind of model 
behavior can be achieved through regularization of the model 
parameters. 

In particular, group-wise regularization [50] is an effective 
approach to enforce structural patterns during model optimization, 
where related features are jointly penalized with respect to a com-
mon parameter. For example, group-wise constraints may be intro-
duced to account for biological pathways in models of gene 
association, or for known brain networks and regional interactions 
in neuroimaging studies. More specifically, we assume that the Di 

features of a modality x i = ðxi1, . . ., xiDi
Þ are grouped in subsets 

fS lgL l =1, according to the indices S l = ðs1, . . ., sN l
Þ. The regulariza-

tion of the of the general multivariate model of Eq. 2 according to 
the group-wise constraint can be expressed as: 

W � = argmin 
W 

kX 1 -X 2 �W k2 þ λ 
L 

l =1 

βlRðW lÞ, ð31Þ 

where RðW lÞ= D1 

j =1 s∈S l 
W ½s , j �2 is the penalization of the 

entries of W associated with the features of X2 indexed by S l. The 
total penalty is achieved by the sum across the D1 columns. 

Group-wise regularization is particularly effective in the follow-
ing situations:

• To compensate for large data dimensionality, by reducing the 
number of “free parameters” to be optimized by aggregating the 
available features [51]. 

2 https://www.genome.jp/kegg/pathway.html. 
3 http://geneontology.org/.

https://www.genome.jp/kegg/pathway.html
http://geneontology.org/
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• To account for the small effect size of each independent features, 
to combine features in order to increase the detection power. 
For example, in genetic analysis, each SNP accounts for below 
1% of the variance in brain imaging quantitative traits when 
considered individually [52, 53].

• To meaningfully integrate complementary information to intro-
duce biologically inspired constraints into the model. 

In the context of group-wise regularization in neural networks, 
several optimization/regularization strategies have been proposed 
to allow the identification of compressed representation of multi-
modal data in the bottleneck layers, such as by imposing sparsity of 
the model parameters or by introducing grouping constraints moti-
vated by prior knowledge [54]. 

For instance, the Bayesian Genome-to-Phenome Sparse 
Regression (G2PSR) method proposed in [55] associates genomic 
data to phenotypic features, such as multimodal neuroimaging and 
clinical data, by constraining the transformation to optimize rele-
vant group-wise SNPs-gene associations. The resulting architecture 
groups the input SNP layer into corresponding genes represented 
in the intermediate layer L of the network (Fig. 6). Sparsity at the 
gene level is introduced through variational dropout [56], to esti-
mate the relevance of each gene (and related SNPs) in reconstruct-
ing the output phenotypic features. 

In more detail, to incorporate biological constraints in G2PSR 
framework, a group-wise penalization is imposed with nonzero 
weights Wg mapping the input SNPs to their common gene g. 
The idea is that during optimization the model is forced to jointly 
discard all the SNPs mapping to genes which are not relevant to the 
predictive task. Following [56], the variational approximation is

Fig. 5 The multi-channel VAE (mcVAE) for the joint modeling of multimodal 
medical imaging, clinical, and biological information. The mcVAE approximates 
the latent posterior p(z|X1, X2, X3, X4) to maximize the likelihood of the data 
reconstruction p(X1, X2, X3, X4|z) (plus a regularization term)



parametrized as q(Wg ), such that each element of the input layer is 
defined as W 

g 
i � N ðμg i ; αg :μg i 2Þ [57], where the parameter αg is 

optimized to quantify the common uncertainty associated with 
the ensemble of SNPs contributing to the gene g.

594 Marco Lorenzi et al.

Fig. 6 Illustration of G2PSR SNP-gene grouping constraint and overall neural 
network architecture 

5 Conclusions 

This chapter presented an overview of basic notions and tools for 
multimodal analysis. The set of frameworks introduced here repre-
sents an ideal starting ground for more complex analysis, either 
based on linear multivariate methods [58, 59] or on neural network 
architectures, extending the modeling capabilities to account for 
highly heterogeneous information, such multi-organ data [46], 
text information, and data from electronic health records [60, 61]. 
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Chapter 20

Evaluating Machine Learning Models and Their Diagnostic
Value

Gael Varoquaux and Olivier Colliot

Abstract

This chapter describes model validation, a crucial part of machine learning whether it is to select the best
model or to assess performance of a given model. We start by detailing the main performance metrics for
different tasks (classification, regression), and how they may be interpreted, including in the face of class
imbalance, varying prevalence, or asymmetric cost–benefit trade-offs. We then explain how to estimate
these metrics in an unbiased manner using training, validation, and test sets. We describe cross-validation
procedures—to use a larger part of the data for both training and testing—and the dangers of data
leakage—optimism bias due to training data contaminating the test set. Finally, we discuss how to obtain
confidence intervals of performance metrics, distinguishing two situations: internal validation or evaluation
of learning algorithms and external validation or evaluation of resulting prediction models.

Key words Validation, Performance metrics, Cross-validation, Data leakage, External validation

1 Introduction

A machine learning (ML) model is validated by evaluating its
prediction performance. Ideally, this evaluation should be represen-
tative of how the model would perform when deployed in a real-life
setting. This is an ambitious goal that goes beyond the settings of
academic research. Indeed, a perfect validation would probe
robustness to any possible variation of the input data that may
include different acquisition devices and protocols, different prac-
tices that vary from one country to another, from one hospital to
another, and even from one physician to another. A less ambitious
goal for validation is to provide an unbiased estimate of the model
performance on new—never before seen—data similar to that used
for training (but not the same data!). By similar, we mean data that
have similar clinical or sociodemographic characteristics and that
have been acquired using similar devices and protocols. To go
beyond such internal validity, external validation would evaluate

Olivier Colliot (ed.),Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_20,
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generalization to data from different sources (for example, another
dataset, data from another hospital).
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This chapter addresses the following questions. How to quan-
tify the performance of the model? This will lead us to present, in
Subheading 2, different performance metrics that are adequate for
different ML tasks (classification, regression, . . .). How to estimate
these performance metrics? This will lead to the presentation of
different validation strategies (Subheading 3). We will also explain
how to derive confidence intervals for the estimated performance
metrics, drawing the distinction between evaluating a learning
algorithm or a resulting prediction model. We will present various
caveats that pertain to the use of performance metrics on medical
data as well as to data leakage, which can be particularly insidious.

2 Performance Metrics

Metrics allow to quantify the performance of an ML model. In this
section, we describe metrics for classification and regression tasks.
Other tasks (segmentation, generation, detection,. . .) can use some
of these but will often require other metrics that are specific to these
tasks. The reader may refer to Chap. 13 for metrics dedicated to
segmentation and to Subheading 6 of Chap. 23 for metrics dedi-
cated to segmentation, classification, and detection.

2.1 Metrics for

Classification

For classification tasks, the results can be summarized in a matrix
called the confusion matrix (Fig. 1). For binary classification, the
confusion matrix divides the test samples into four categories,
depending on their true and predicted labels:2.1.1 Binary

Classification

Fig. 1 Confusion matrix. The confusion matrix represents the results of a
classification task. In the case of binary classification (two classes), it divides
the test samples into four categories, depending on their true (e.g., disease
status, D) and predicted (test output, T ) labels: true positives (TP), true negatives
(TN), false positives (FP), false negatives (FN)
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• True Positives (TP): Samples for which the true and predicted
labels are both 1. Example: The patient has cancer (1), and the
model classifies this sample as cancer (1).

• TrueNegatives (TN): Samples for which the true and predicted
labels are both 0. Example: The patient does not have cancer (0),
and the model classifies this sample as non-cancer (0).

• False Positives (FP): Samples for which the true label is 0 and
the predicted label is 1. Example: The patient does not have
cancer (0), and the model classifies this sample as cancer (1).

• False Negatives (FN): Samples for which the true label is 1 and
the predicted label is 0. Example: The patient has cancer (1), and
the model classifies this sample as non-cancer (0).

Are false positives and false negatives equally problematic? This
depends on the application. For instance, consider the case of
detecting brain tumors. For a screening application, detected posi-
tive cases would then be subsequently reviewed by a human expert,
and one can thus consider that false negatives (missed brain tumor)
lead to more dramatic consequences than false positives. On the
opposite, if a detected tumor leads the patient to be sent to brain
surgery without complementary exam, false positives are problem-
atic and brain surgery is not a benign operation. For automatic
volumetry from magnetic resonance images (MRI), one could
argue that false positives and false negatives are equally problematic.

Box 1: Performance Metrics for Binary Classification

Basic metrics

T denotes test: classifier output;D denotes diseased status.

• Sensitivity (also called recall): A fraction of positive samples
actually retrieved.

Sensitivity= TP
TPþFN Estimates P(T + jD+).

• Specificity: A fraction of negative samples actually classified as
negative.

Specificity= TN
TNþFP Estimates P(T-jD-).

• Positive predictive value (PPV, also called precision): A
fraction of the positively classified samples that are indeed
positive.

PPV= TP
TPþFP Estimates P(D+ jT +).

• Negative predictive value (NPV): A fraction of the nega-
tively classified samples that are indeed negative.

NPV= TN
TNþFN Estimates P(D-jT -).



PPV Sensitivity

ðTPþFPÞ× ðTPþFNÞ× ðTNþFPÞ× ðTNþFNÞ
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Box 1 (continued)
Summary metrics

• Accuracy: A fraction of the samples correctly classified.

Accuracy= TPþTN
TPþFPþTNþFN.

• Balanced accuracy (BA): Accuracy metric that accounts for
unbalanced samples.

BA= SensitivityþSpecificity
2 .

• F1 score: Harmonic mean of PPV (precision) and sensitivity
(recall).

F 1 = 2
1 þ 1 = 2TP

2TPþFPþFN :

• Matthews correlation coefficient (MCC). MCC=1 for per-
fect classification, MCC=0 for random classification,
MCC=-1 for perfectly wrong classification.

MCC= TP×TN-FP×FNp .

• Markedness = TP
TPþFP - FP

FPþTN =PPV þNPV- 1.

• Area under the receiver operating characteristic curve
(ROC AUC).

• Area under the precision–recall curve (PR AUC, also
called average precision).

Multiple performance metrics can be derived from the confu-
sion matrix, all easily computed using sklearn.metrics from
scikit-learn [1]. They are summarized in Box 1. One can distinguish
between basic metrics that only focus on false positives or false
negatives and summary metrics that aim at providing an overview
of the performance with a single metric.

The performance of a classifier is characterized by pairs of basic
metrics: either sensitivity and specificity, or PPV and NPV, which
characterize respectively the probability of the test given the dis-
eased status or vice versa (see Box 1). Note that each basic metric
characterizes only the behavior of the classifier on the positive class
(D+ ) or the negative class (D-); thus measuring both sensitivity
and specificity and PPV and NPV is important. Indeed, a classifier
always reporting a positive prediction would have a perfect sensitiv-
ity, but a disastrous specificity.

Simple Summaries and

Their Pitfalls

It is convenient to use summary metrics that provide a more global
assessment of the performance, for instance, to select a “best”
model. However, as we will see, summary metrics, when used in
isolation, can lead to erroneous conclusions. The most widely used
summary metric is arguably accuracy. Its main advantage is a natural
interpretation: the proportion of correctly classified samples. How-
ever, it is misleading when the data are imbalanced. Let us for



instance consider a dataset with 10 cancer samples and
990 non-cancer samples. A trivial majority classifier that decides
that cancer does not exist achieves 99% accuracy. Balanced accuracy
helps for imbalanced samples. However, balanced accuracy also
comes with its loopholes. Indeed, a high balanced accuracy does
not always mean that individuals classified as diseased are likely to be
so. Let us consider a diagnostic test for a disease that has a sensitivity
of 99% and a specificity of 90% (and thus a balanced accuracy of
94.5%). Suppose that a given person takes the test and that the test is
positive. At this point, we do not have enough information to
compute the probability that the person actually has the disease.
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The probability that the person has the disease is given by the
PPV, related to the sensitivity and the specificity by Bayes’ rule:

P (D+ | T+) =
sensitivity× prevalence

(1− specificity)× (1− prevalence) + sensitivity× prevalence
.

Diseased

Test positive

Bayes’ rule thus shows that we must account for the prevalence: the
proportion of the people with the disease in the target population,
the population in which the test is intended to be applied. The
target population can be the general population for a screening test.
It could be the population of people with memory complaints for a
test aiming to diagnose Alzheimer’s disease. Now, suppose that the
prevalence is low, which will often be the case for a screening test in
the general population. For instance, prevalence=0.001. This
leads to P(D+ jT +)=0.0098≈1%. So, if the test is positive, there
is only 1% chance that the patient has the disease. Even though our
classifier has seemingly good sensitivity, specificity, and balanced
accuracy, it is not very informative on the general population. The
PPV and NPV readily give the information of interest: P(D+ jT +)
and P(D-jT -). However, they are not natural metrics to report a
classifier’s performance because, unlike sensitivity and specificity,
they are not intrinsic to the test (in other words the trained ML
model) but also depend on the prevalence and thus on the target
population (Fig. 2).
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specificity = 0.9
PPV

NPV

Fig. 2 NPV and PPV as functions of prevalence when the sensitivity and the specificity are fixed (image
courtesy of Johann Faouzi)
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Summary Metrics for Low

Prevalence

The F1 score is another summary metric, built as the harmonic
mean of the sensitivity (recall) and PPV (precision). It is popular
in machine learning but, as we will see, it also has substantial
drawbacks. Note that it is equal to the Dice coefficient used for
segmentation. Given that it builds on the PPV rather than the
specificity to characterize retrieval, it accounts slightly better for
prevalence. In our example, the F1 score would have been low.
The F1 score can nevertheless be misleading if the prevalence is
high. In such a case, one can have high values for sensitivity,
specificity, PPV, F1 score but a low NPV. A solution can be to
exchange the two classes. The F1 score becomes informative again.
Those shortcomings are fundamental, as the F1 score is
completely blind to the number of true negatives, TNs. This is
probably one of the reasons why it is a popular metric for seg-
mentation (usually called Dice rather than F1) as in this task TN is
almost meaningless (TN can be made arbitrarily large by just
changing the field of view of the image). In addition, this metric
has no simple link to the probabilities of interest, even more so
after switching classes.

Another option is to use Matthews Correlation Coefficient
(MCC). The MCC makes full use of the confusion matrix and can
remain informative even when prevalence is very low or very high.
However, its interpretation may be less intuitive than that of the
other metrics. Finally, markedness [2] is a seldom known summary
metric that deals well with low-prevalence situations as it is built
from the PPV and NPV (Box 1). Its drawback is that it is as much
related to the population under study as to the classifier.

As we have seen, it is important to distinguish metrics that are
intrinsic characteristics of the classifier (sensitivity, specificity,
balanced accuracy) from those that are dependent on the target
population and in particular of its prevalence (PPV, NPV, MCC,
markedness). The former are independent of the situation in
which the model is going to be used. The latter inform on the
probability of the condition (the output label) given the output
of the classifier, but they depend on the operational situation
and, in particular, on the prevalence. The prevalence can be
variable (for instance, the prevalence of an infectious disease
will be variable across time, and the prevalence of a neurodegen-
erative disease will depend on the age of the target population),
and a given classifier may be intended to be applied in variou
situations. This is why the intrinsic characteristics (sensitivity and
specificity) need to be judged according to the different
intended uses of the classifier (e.g., a specificity of 90% may
be considered excellent for some applications, while it would
be considered unacceptable if the intended use is in a
low-prevalence situation).
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Metrics for Shifts in

Prevalence

Odds enable designing metrics that characterize the classifier but
are adapted to target populations with a low prevalence. Odds are
defined as the ratio between the probability that an event occurs
and the probability this event does not occur:OðaÞ= PðaÞ

1-PðaÞ. Ratios
between odds can be invariant to the sampling frequency
(or prevalence) of a—see Appendix “Odds Ratio and Diagnostic
Tests Evaluation” for an introduction to odds and their important
properties. For this reason, they are often used in epidemiology. A
classifier can be characterized by the ratio between the pre-test and
post-test odds, often called the positive likelihood ratio:

LR þ = OðDþjTþÞ
OðDþÞ = sensitivity

1- specif icity. This quantity depends only on sen-

sitivity and specificity, properties of the classifier only, and not of the
prevalence on the study population. Yet, given a target population,
post-test odds can easily be obtained by multiplying LR+ by
pre-test odds, itself given by prevalence: OðDþÞ= prevalence

1- prevalence.
The larger the LR+ , the more useful the classifier and a classifier
with LR+=1 or less brings no additional information on the
likelihood of the disease. An equivalent to LR+ characterizes the
negative class: controlling on “T-” instead of “T+ ” gives the
negative likelihood ratio: LR - = 1- sensitivity

specificity ; and low values of
LR- (below 1) denote more useful predictions. These metrics,
LR+ and LR-, are very useful in a situation common in biomedical
settings where the only data available to learn and evaluate a classi-
fier are study population with nearly balanced classes, such as a case–
control study, while the target application—the general
population—is one with a different prevalence (e.g., a very low
prevalence) or when the intended use considers variable
prevalences.

Multi-threshold Metrics Many classification algorithms output a continuous value that is
then thresholded to get a binary label. When the output is a
probability, one often simply uses a threshold of 0.5. However,
there are cases where one is interested to study the performance
for varying thresholds on the output. The two main tools for that
purpose are the receiver operating characteristic (ROC) curve and
the precision–recall (PR) curve. The ROC curve plots the Sensitiv-
ity as a function of 1- Specificity (Fig. 3). It can be again summar-
ized with a single value: the area under the ROC curve (ROC
AUC). The ROC AUC has a probabilistic interpretation: it is the
probability that a positive sample has a higher classification score
(as positive) than a negative sample. A perfect classification corre-
sponds to an ROC AUC of 1 and a random classification to an
ROC AUC of 0.5. While chance remains 0.5 whatever the class
imbalance, the ROC curve becomes less interesting for highly
imbalanced classes, because a seamingly small difference on speci-
ficity or sensitivity may make a large difference to the application,
but not change much the ROC curve. For this reason, it is often



complemented with the precision–recall (PR) curve that focuses on
the minority class. The PR curve plots the Precision (also called
PPV) as a function of Recall (also called sensitivity) (Fig. 4). It can
also be summarized using a single measure: the PR AUC, also
called average precision. As for the ROC AUC, a perfect classifica-
tion corresponds to a value of 1. However, unlike for ROC AUC, a
dummy classification does not necessarily lead to a value of 0.5. It
depends on the prevalence.
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Fig. 3 ROC curve for different classifiers. AUC denotes the area under the curve,
typically used to extract a number summarizing the ROC curve

Fig. 4 Precision–recall curve for different classifiers. AUC denotes the area under
the curve, often called average precision here. Note that the chance level
depends on the class imbalance (or prevalence), here 0.57



Machine-Learning Evaluation 609

Box 2: Assessing Confidence Scores and Calibration

Expected calibration error (ECE): average classifier error
It is computed by consideringK bins of confidence scores and
comparing the observed fraction of positives to the mean
confidence score. The ECE itself is then the average over
the bins: ECE= K

i=1PðiÞ � f i- s i , where fi is the observed
fraction of positive instances in bin i, si is the mean of classifier
scores for the instances in bin i, and P(i) is the fraction of all
instances that fall into bin i [3].

Example for a Gaussian Naive Bayes classifier (GaussianNB).

Metrics on individual probabilities: error on P(y|X)

Brier score =
∑

i

(ŝi − yi)2
Observed (binary) label

Confidence score

Minimal for Ŝ =PðyjX Þ

Brier skill score = 1− Brier(ŝ, y)
Brier(ȳ, y)

Class prevalence

A value of 1 means a perfect prediction, while a value of
0 means that the confidence scores are not more informative
than the class prevalence.

Confidence Scores and

Calibration

It can be useful to interpret a non-thresholded classifier score as a
confidence score or a probability, for instance, to balance cost and
benefits when the prediction is used to decide on an intervention
[4]. But a continuous score by itself does not warrant such inter-
pretation: a classifier may be over-confident, under-confident, or
have uneven scores over the population, even for good binary
decisions. Two types of metrics, detailed in Box 2, are useful to



evaluate continuous outputs as probabilities: the expected calibra-
tion error (ECE) and the Brier score. The ECE measures whether,
on samples predicted with a score s, the error rate is indeed s, in
which case the classifier is said to be calibrated. The Brier score is
minimal when the classifier score is the true probability of the class
given the data for an individual, for instance, the probability of the
presence of a tumor given the image. These two notions are similar,
but it is important to understand that ECE controls average error
rates, while Brier score controls individual probabilities, which is
much more stringent and more useful to the practitioner [5]. Accu-
rate probabilities of individual predictions can be used for optimal
decision-making, e.g., opting for brain surgery only for individuals
for which a diagnostic model predicts cancer with high confidence.

610 Gael Varoquaux and Olivier Colliot

A given value of ECE is easy to interpret, as it qualifies prob-
abilities mostly independently of prediction performance. On the
other hand, the Brier score accounts for both the quality of prob-
abilities and corresponding binary decisions as a low Brier score
captures the ability to give good probabilistic prediction of the
output. For any classification problem, there exist many classifiers
with 0 expected calibration errors, including some with very poor
predictions. On the other hand, even the best possible prediction
has a non-zero Brier score, unless the output is a deterministic
function of the data. The Brier skill score, a variant of the Brier
score, is often used to assess how far a predictor is from the best
possible prediction, more independent of the intrinsic uncertainty
in the data. The Brier skill score is a rescaled version of the Brier
score taking as a reference a reasonable baseline: 1 is a perfect
prediction, while negative values mean predictions worse than
guessing from class prevalence.

To Conclude When assessing a classifier:

• Always look at all the individual metrics: false positives and false
negatives are seldom equivalent. Understand the medical prob-
lem to know the right trade-off [4].

• Never trust a single summary metric (accuracy, balanced accu-
racy, ROC AUC, . . .).

• Consider the prevalence in your target population. It may be
that the prevalence in your testing sample is not representative of
that of the target population. In that case, aside from LR+ and
LR-, performance metrics computed from the testing sample
will not be representative of those in the target population.

2.1.2 Multi-class

Classification

When there are multiple classes to distinguish, the main difference
with two-class classification is that the problem can no longer be
separated into a positive class (typically individuals with the medical
condition of interest) and a negative class (individuals without). As
a consequence, sensitivity and specificity no longer have a meaning



for the whole data, nor do F1 score, or the ROC or precision–recall
curves. Accuracy is still defined and easy to compute, but still suffers
from its common drawbacks, in particular that it may not be
straightforward to interpret in the face of class imbalance.
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A classic approach is to aggregate metrics for binary settings
considering successively each class as the positive instances and all
the others as the negatives, in a form of “one versus all.” There are
different approaches to averaging the results for each class. Macro-
averaging computes the metric, for instance, the ROC AUC, for
each class, and then averages the results. One drawback is that it
may put too much emphasis on classes that are more infrequent.
Weighted or micro-averaging combines the results of the different
classes weighed by the number of instances of each class. The
difference between the two is that weighted averaging computes
the average of the metric weighted by the number of true instances
for each class, while micro-averaging computes the metric by add-
ing the number of TPs (resp., TNs, FPs, FNs) across all classes.

Inspecting the confusion matrix extended to multi-class set-
tings gives an interesting tool to understand errors: it displays how
many times a given true class is predicted as another (Fig. 5). A
perfect prediction has non-zero entries only on the diagonal. The
confusion matrix may be interesting to reveal which classes are
commonly confused, as its name suggests. In our example,
instances that are actually of class C2 are often predicted as of
class C3.

Multilabel Classification Multilabel settings are when the multiple classes are not mutually
exclusive: for instance, if an individual can have multiple patholo-
gies. The problem is then to detect the presence or absence of each
label for an individual. In terms of evaluation, multilabel settings
can be understood as several binary classification problems, and
thus the corresponding metrics can be used on each label. As in
the multi-class settings, there are different ways to average the
results for each label—macro, micro—that put more or less empha-
sis on the rare labels.

Fig. 5 Multi-class confusion matrix, for a 3-class problem, C1, C2, C3. Each
entry gives the number of instances predicted of a given class, knowing the
actual class. A perfect prediction would give non-zero entries only on the
diagonal
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2.2 Metrics for

Regression

In regression settings, the outcome to predict y is continuous, for
instance, an individual’s age, cognitive scores, or glucose level.
Corresponding error metrics gauge how far the prediction ŷ is
from the observed y.

R2 Score. The go-to metric here is typically the R2 score, some-
times called explained variance—however, the term R2 score
should be preferred, as some authors define explained variance as
ignoring bias. Mathematically, the R2 score is the fraction of vari-
ance of the outcome y explained by the prediction ŷ, relative to the
variance explained by the mean �y on the test set:

R2=1-
SSðy - ŷÞ
SSðy - �yÞ ,

where SS is the sum of squares on the test data. A strong benefit of
this metric is that it comes with a natural scale: an R2 of 1 implies
perfect prediction, while anR2 of zero implies a trivial and not very
useful prediction. Note that chance-level predictions (as obtained
for instance by learning on permuted y) yield slightly negative
predictions: indeed, even when the data do not support a predic-
tion of y—as in chance settings—it is impossible to estimate the
mean y perfectly and predictions will be worse than the actual mean.
In this respect, the R2 score has a different behavior in machine
learning settings compared to inferential statistics settings not
focused on prediction: in-sample (for inferential statistics) versus
out-of-sample settings (for machine learning). Indeed, when the
mean of y is computed on the same data as the model, the R2
score is positive and is the square of the correlation between y and ŷ.
This is not the case in predictive settings, and the correlation
between y and ŷ should not be used to judge the quality of a
prediction [6], because it discards errors on the mean and the
scale of the prediction, which are important in practice.

Absolute Error Measures. Reporting only the R2 score is not
sufficient to characterize well a predictive model. Indeed, the R2
score depends on the variance of the outcome y in the study
population and thus does not enable comparing predictive models
on different samples. For this purpose, it is important to report also
an absolute error measure. The root mean square error (RMSE)
and the mean absolute error (MAE) are two of such measures that
give an error in the scale of the outcome: if the outcome y is an age
in years, the error is also in years. The mean absolute error is easier
to interpret. Compared to the root mean square error, the mean
absolute error will put much less weight on some rare large devia-
tions. For instance, consider the following prediction error (on 11
observations):
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Fig. 6 Visualizing prediction errors—plotting the predicted outcome as a
function of the observed one enables to detect structure in the error beyond
summary metric. Here the error increases for large values of y, for which there is
also a systematic undershoot

error = ½1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100�
MAE=10 RMSE≈30:17:

Note that if the error was uniformly equal to the same value (10, for
instance), both measures would give the same result.

Assessing the Distribution of Errors. The difference between the
mean absolute error and the root mean square error arises from the
fact that both measures account differently for the tails of the
distribution of errors. It is often useful to visualize these errors, to
understand how they are structured. Figure 6 shows such visualiza-
tion: predicted y as a function of observed y. It reveals that for large
values of y, the predictive model has a larger prediction error, but
also that it tends to undershoot: predict a value that underestimates
the observed value. This aspect of the prediction error is not well
captured by the summary metrics because there are comparatively
much less observations with large y.

Concluding Remarks on Performance Metrics. Whether it is in
regression or in classification, a single metric is not enough to
capture all aspects of prediction performance that are important
for applications. Heterogeneity of the error, as we have just seen in
our last example, can be present not only as a function of prediction
target, but of any aspect of the problem, for instance, the sex of the
individuals. Problems related to fairness, where some groups (e.g.,
demographic, geographic, socioeconomic groups) suffer more
errors than others, can lead to loss of trust or amplification of
inequalities [7]. For these reasons, it may be important to also
report error metrics on relevant subgroups, following common
medical research practice of stratification.
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3 Evaluation Strategies

The previous section detailed metrics for assessing the performance
of a ML model. We now focus on how to estimate the expected
prediction performance of the model with these metrics. Impor-
tantly, we draw the difference between evaluating a learning proce-
dure, or learner, and a learnedmodel. While these two questions are
often conflated in the literature, the first one must account for
uncontrolled fluctuations in the learning procedure, while the sec-
ond one controls a given model on a target external population.
The first question is typically of interest to the methods researcher,
to conclude on learning procedures, while the second is central to
the medical research, to conclude on the clinical application of a
model.

Additional information on validation strategies, seen from the
perspective of regulatory science, can be found in Subheading 3 of
Chap. 23. We focus here on an accessible discussion of the main
concepts to have in mind concerning model evaluation strategies,
and Raschka [8] gives a more mathematically detailed coverage of
related topics.

3.1 Evaluating a

Learning Procedure

We first focus on assessing the expected performance of a learning
procedure on data drawn from a given population. Here, the model
is validated on data with similar characteristics to the one used for
training, a validation sometimes called internal validation. Most
importantly, performance should not be evaluated using the same
data that were used for training [6]. Therefore, the first step is to
split the data into a training set and a testing set. This should be
done before starting any work on the data, be it training a ML
model or even doing simple statistics for identifying interesting
features. Splitting the data can be done using sklearn.model_
selection.train_test_split or sklearn.model_selec-
tion.ShuffleSplit(n_splits=1) from scikit-learn. When
one simply performs a single split of the data into training and
testing set, the validation method is called “hold-out.” One should
nevertheless check that the training and testing sets have similar
characteristics. More precisely, we want the output variable distri-
bution to be approximately the same in the training and testing
sets. This is called stratification. For instance, for classification,
the proportion of diseased individuals should approximately
be the same in the two sets. To that purpose, use Stratified-
ShuffleSplit(n_splits=1). In medical applications, it is
recommended to control not only for the disease status but also
for other variables, such as sociodemographic information (age,
sex, . . .) or some relevant clinical variables. It will often be difficult
(and it is not even necessary) to obtain almost identical distribu-
tions between training and testing sets. In practice, it is often



sufficient to have similar means and variances for continuous vari-
ables and similar proportions for categorical variables. The first two
rows of Fig. 7 illustrate the concepts of “hold-out” and
stratification.
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Non-independent Samples. Prediction may be performed across
non-independent data points, for instance, different points in a
time series, or repeated measures of the same individual. In such
case, it is important that samples in the train and test sets are
independent, which may require selecting separated time windows.
Also, the cross-validation should mimic the intended usage of the
predictor. For instance, a diagnostic model intended to be applied
to new individuals should be evaluated making sure that there are
no shared individuals between the train and test sets.

3.1.1 Cross-validation The split between train and test sets is arbitrary. With the same
machine learning algorithm, two different data splits will lead to
two different observed performances, both of which are noisy
estimates of the expected generalization performance of prediction
models built with this learning procedure. A common strategy to
obtain better estimates consists in performing multiple splits of the
whole dataset into training and testing sets: a so-called cross-valida-
tion loop. For each split, a model is trained using the training set,
and the performances are computed using the testing set. The
performances over all the testing sets are then aggregated. Figure 7
displays different cross-validation methods. k-fold cross-validation
consists in splitting the data into k sets (called folds) of approxi-
mately equal size. It ensures that each sample in the dataset is used
exactly once for testing. For classification, sklearn.model_
selection.StratifiedKFold performs stratified k-fold cross-
validation.

In each split, ideally, one would want to have a large training
set, because it usually allows training better performing models,
and a large testing set, because it allows a more accurate estimation
of the performance. But the dataset size is not infinite. Splitting out
10–20% for the test set is a good trade-off [9], which amounts to
k=5 or 10 in a k-fold. With small datasets, to maximize the amount
of train data, it may be tempting to leave out only one observation,
in a so-called leave-one-out cross-validation. However, such deple-
tion of the test set gives overall worse estimates of the generaliza-
tion performance. Increasing the number of splits is, however,
useful, and thus another strategy consists in performing a large
number of random splits of the data, breaking from the regularity
of the k-fold. If the number of splits is sufficiently large, all samples
will be approximately used the same number of times for training
and testing. This strategy can be done using sklearn.model_
selection.StratifiedSuffleSplit(n_splits) and is
called “Repeated hold-out” or “Monte-Carlo cross-validation.”
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Fig. 7 Different validation methods, from top to bottom. The first method, called “hold-out,” involves a single
split of the dataset into training and testing sets. It is thus not a cross-validation method. Stratification is the
procedure that controls that the output variable (for instance, disease vs. healthy) has approximately the same
distribution in the training and testing sets. k-fold cross-validation consists in splitting the data into k sets
(called folds) of approximately equal size. Repeated hold-out consists in performing a large number of random
splits of the data



Beyond giving a good estimate of the generalization performance,
an important benefit of this strategy is that it enables to study
the variability of the performances. However, running many splits
may be computationally expensive with models that are slow to
train.
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3.1.2 The Need of an

Additional Validation Set

Often, it is useful to make choices on the model to maximize
prediction performance: make changes on the architecture, tune
hyper-parameters, perform early stopping,. . . . As the test set per-
formance is our best estimate of prediction performance, it would
be be natural to run cross-validation and pick the best model.
However, in such a situation, the performances reported on the
testing set will have an optimistic bias: a data-dependent choice has
been made on this test set. There are two main solutions to this
issue. The first one is usually applied when the model training is fast
and the dataset is of small size. It is called nested cross-validation. It
consists in running two loops of cross-validation, one nested into
the other. The inner loop serves for hyper-parameter tuning or
model selection, while the outer loop is used to evaluate the per-
formance. The second solution is to separate from the whole data-
set the test set, which will only be used to evaluate the
performances. Then, the remainder of the dataset can be further
split into training data and data used to make modeling choices,
called the validation set.1 Such a procedure is illustrated in Fig. 8.
Commonly, the training and validation sets will be used in a cross-
validation manner. They can then be used to experiment with
different models, tune parameters, . . . . It is absolutely crucial that
the test set is isolated at the very beginning, before any experiment
is done. It should be left untouched and used only at the end of the
study to report the performances. As for the split between training
and validation sets, it is desirable that stratification is done when
isolating the test set.

If the dataset is very small, nested cross-validation should be
preferred as it gives better testing power than hold-out: all the data
are used alternatively for model testing. If the dataset feels too small
to split into train, validation, test, it may be too small to conduct a
trustworthy machine learning study [10].

3.1.3 Various Sources of

Data Leakage

Data leakage denotes cases where some information from the train-
ing set has “leaked” into the test set. As a consequence, the estima-
tion of the performances is likely to be optimistic. Data leakage can
be introduced in many ways, some of which are particularly insidi-

1 In Chapter 23, the validation set is called the tuning set, as it is the standard practice in regulatory science and
because it insists on the fact that it should not be used to evaluate the final performance, which should be done on
an independent test set. In the present chapter, we use the term validation set as it is the most common in the
academic setting.



ous and may not be obvious to a researcher that is not familiar with
a specific application field. Below, we describe some common causes
of data leakage. A summary can be found in Box 3.
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Fig. 8 A standard approach consists in splitting the whole dataset into training, validation, and test sets. The
test set must be isolated from the very beginning, left untouched until the end of the study and only be used to
evaluate the performance. The training and validation sets are often used in a cross-validation manner. They
can be used to experiment with different architectures and tune parameters

Box 3: Some Common Causes of Data Leakage

• Perform feature selection using the whole dataset.

• Perform dimensionality reduction using the whole dataset.

• Perform parameter selection using the whole dataset or the
test set.

• Perform model or architecture search using the whole dataset
or the test set.

• Report the performance obtained on the validation set that
was used to decide when to stop training (in deep learning).

• For a given patient, put some of its visits in the training set
and some in the validation set.

• For a given 3D medical image, put some 2D slices in the
training set and some in the validation set.
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A first basic cause of data leakage is to use the whole dataset for
performing various operations on the data. A very common example
is to perform feature selection using thewhole dataset and then to use
the selected features for model training. A similar situation is when
dimensionality reduction is performed on the whole dataset. If this is
done in an unsupervised manner (for example, using principal com-
ponent analysis), it is likely to introduce less bias in the performance
estimation because the target is not used. It nevertheless remains, in
principle, a bad practice. A common practice in deep learning is to
perform early stopping, i.e., use the validation set to determine when
to stop training. If this is the case, the validation performances can be
overoptimistic, and a separate test dataset should be used to report
performance. Another cause of data leakage is when there are multi-
ple longitudinal visits (i.e., the patient is evaluated at several time
points) or multiple modalities for a given patient. In such as case, one
should never put data from the same patient in both the training and
validation sets. For instance, one should not, for a given patient, put
the visit at month 0 in the training set and the visit at month 6 in the
validation set. Similarly, one should not use the magnetic resonance
imaging (MRI) data of a given patient for training and the positron
emission tomography (PET) image for validation. A similar situation
arises when dealing with 3D medical image. It is absolutely manda-
tory to avoid putting some of the 2D slices of a given patient in the
training set and the rest of the slices in the validation set. More
generally, in medical applications, the split between training and test
sets should always be done at the patient level. Unfortunately, data
leakage is still prevalent in many machine learning studies on brain
disorders. For instance, a literature review identified that up to 40% of
the studies on convolutional neural networks for automatic classifica-
tion of Alzheimer’s disease from T1-weighted MRI potentially suf-
fered from data leakage [11].

3.1.4 Statistical Testing Train–test splits, cross-validation, and the like seek to estimate the
expected generalization performance of a learning procedure.
Keeping test data rigorously independent from algorithm develop-
ment minimizes the bias of this estimation. However, there are
multiple sources of arbitrary variations in these estimates. The most
obvious one is the intrinsic randomness of certain aspects of learning
procedures, such as the random initial weights in deep learning.
Indeed, while fixing the seed of the random number generator may
remove the randomness on given train data, this stability is mislead-
ing given this choice is arbitrary and not representative of the overall
behavior of the machine learning algorithm on the data distribution
of interest [12]. A systematic study of machine learning benchmarks
[13] shows that their most important sources of variance are:

Choice of test data/split. A given test set is an arbitrary
sample of the actual population
that we are trying to generalize
to. As a result, the corresponding

Sources of Variance



measure of performance is an
imperfect estimate of the actual
expected performance. Subhead-
ing 3.2, below, gives the resulting
confidence intervals for a fixed
test set. Using multiple splits,
and thus multiple test sets,
improves the estimation [13],
though it makes computing con-
fidence intervals hard [14].

Hyper-parameter optimization. The choice of hyper-parameters is
imperfect, for instance, because
of limited resources to tune
these hyper-parameters. Another
attempt to tune hyper-parameter
would lead to a slightly different
choice. Thus benchmarks do not
give an absolute characterization
of a learning procedure but are
muddied by imperfect hyper-
parameters.

Random seeds. As mentioned above, random
choices in a learning procedure—
initial weights, random drop-out
for neural networks, or boot-
straps in bagging—lead to
uncontrolled fluctuations in
benchmarking results that do
not characterize the procedure’s
ability to generalize to new data.
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Conclusions Must Account

for Benchmarking Variance

With all these sources of arbitrary variance, the question is: given
benchmarks of a learning procedure performance, or improvement,
is it likely to generalize reliably to new data or rather to be due to
benchmarking fluctuations? Considering, for instance, the perfor-
mance metrics in Table 1, it seems a safe bet to say that the
convolutional neural network outperforms the two others but
what about the difference between the two other models? From
an application perspective, the question is whether this observed
difference is likely to generalize to new data.

To answer this question, we must account for estimation error
for the expected generalization performance from the different
sources of uncontrolled variance in the benchmarks, as listed
above. The first source of error comes from the limited sample
size to test the predictions of the different learning procedures.
Indeed, suppose that the testing set was composed of 100 samples.
In that case, if only 3 more samples had been misclassified by the



support vector machine, the two models would have had the same
performance. A difference of 3 out of 100 could be easily due to
having drawn 3 samples not representative of the population. Other
sources of variance are due to how stable the learning pipeline is:
sensitivity to hyper-parameters, random initialization, etc.
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Table 1
Accuracies obtained by different ML models on a binary classification
task. Which model performs best? While it is quite likely that the
convolutional neural network outperforms the two other models, it is less
clear for the two other models. It seems that the support vector machine
results in a slightly higher accuracy but is it due to random fluctuations in
the benchmarks? Will the difference carry over to new data?

Model Accuracy

Logistic regression 0.72

Support vector machine 0.75

Convolutional neural network 0.95

Box 4: Statistical Procedure to Characterize a Learner

1. Perform k runs of:
(a) Randomly splitting out a test set

(b) Training the learning procedure on the train set

(c) Measuring the performance p on the test set

Choose different values of arbitrary parameters (such
as random seeds) on each run, and if enough computing
power, run hyper-parameter optimization each time. This
results in a set of performance measures
ℳ= fm1, :::,mkg.

2. Use all the values {m1, ..., mk} to conclude on the perfor-
mance of the learner:
fidence intervals are given by percentiles of ℳ.

ndard deviation of ℳ can be used to gauge typical
variance of performance, as it requires
performing a smaller number of runs
k than percentiles. Standard error
should not be used (see text).

rner comparison can be done by comparing two such set
of values ℳ and ℳ ′ , typically count-
ing the fractions of values in ℳ that
outperformℳ ′ (without any pairing).
Statistical procedures such as t-test
should not be used (see text).

Con
Sta

Lea
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A Simple Statistical Testing

Procedure

Training and testing a prediction pipeline multiple times are needed
to estimate the variability of the performance measure. The simplest
solution is to do this several times while varying the arbitrary
factors, such as split between the train and the test or random
initialization (see Box 4). The resulting set of performance measures
is similar to bootstrap samples and can be used to draw conclusions
on the distribution of performances in a test set. Confidence inter-
vals can be computed using percentiles of this distribution. Two
learning procedures can be compared by counting the number of
times that one outperforms the other: outperforming 75% of the
times is typically considered as a reliable improvement [13]. If the
available computing power enables training learning procedures
only a few times, empirical standard deviations should be used, as
they require less runs to estimate. The improvements brought by a
learning procedure can then be compared to these standard
deviations.

Note these procedures do not perform classic null-hypothesis
significance testing, which is difficult here. In particular, the stan-
dard error across the various runs should not be used instead of the
standard deviation: the standard error is the standard deviation
divided by the number of runs. The number of runs can be made
arbitrarily large given enough compute power, thus making the
standard error arbitrarily small. But in no way does the uncertainty
due to the limited test data vanish. This uncertainty can be quanti-
fied for a fixed test set—see Subheading 3.2, but in repeated splits or
cross-validation, it is difficult to derive confidence intervals because
the runs are not independent [14, 15]. In particular, it is invalid to
use a standard hypothesis test—such as a T-test—across the different
folds of a cross-validation. There are some valid options to perform
hypothesis testing in a cross-validation setting [14, 16], but they
must be implemented with care.

Another reason not to rely on null-hypothesis testing is that
their statistical significance only asserts that the expected
performance—or improvement—is non-zero over a test population
of infinite size. From a practical perspective, we care about mean-
ingful improvements on test sets of finite size, which is related to
the notion of acceptance tests —as opposed to significance—in the
Neyman–Pearson framework of statistical testing [17]. Unlike null-
hypothesis significance testing, it requires choosing a non-zero
difference considered as acceptable, for instance as implicitly set
by considering that a new learning procedure should improve upon
an existing one 75% of the times—far from chance, which lies at
50%.

3.2 Generalization to

an External Population

The Importance of External Validation
The procedures described above characterize the expected

error of a learning procedure applied on a given population. A
related, but different, question is that of characterizing the error



of a given predictive model, typically output by a training machine
learning procedure on a study population. That second question,
related to the notion of external validity, is important for two
reasons. First, it characterizes the specific predictive model that
will be used in practice, “in production.” Indeed, variance in the
learning procedure will lead to arbitrary variation in model perfor-
mance as large as typical improvements achieved by developing
better models [13]. Second, characterizing the model on the target
population may be important, as it may differ markedly from the
study population. Indeed, the techniques in the previous section
rely on splitting the initial dataset in training and testing
(or validation) sets; hence, these different sets are by construction
drawn from the same population and have similar characteristics
(data coming from the same hospital/centers/countries, similar
age/sex,. . .). They only demonstrate the ability of the model to
generalize to new but similar data. To better assess model utility,
guidelines on evaluating clinical prediction models insist on exter-
nal validation using data collected later in time, or in a different
geographical area [18].
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Testing whether a prediction model can generalize to dissimilar
data is important as it is all too frequent that the study sample, on
which the model was developed, does not represent the target
population [19]. The target data may, for instance, come from
different hospitals and different countries, be acquired with differ-
ent acquisition devices and protocols or with different sociodemo-
graphic or clinical characteristics than those of the training data. For
instance, it has been shown that the type of MRI scanner can have a
substantial impact on the generalization ability of ML models. To
assess such generalization ability, a common practice is to use one
or several additional datasets for testing, these datasets being
acquired using different protocols and at different sites (Fig. 9).
Most often, these datasets come from other research studies (dif-
ferent from the one used for training). However, research studies
do not usually reflect well clinical routine data. Indeed, in research
studies, the acquisition protocols are often standardized and rigor-
ous data quality control is applied. Moreover, participants may not
be representative of the target population. This can be due to
inclusion/exclusion criteria (for instance, excluding patients with
vascular abnormalities in a study on Alzheimer’s disease) or due to
uncontrolled biases. For instance, participants to research studies
tend to have a higher socioeconomic status than the general popu-
lation. Therefore, it is highly valuable to also perform validation on
clinical routine data, whenever possible, as it is more likely to reflect
“real-life” situations. One should nevertheless be aware that a given
clinical routine dataset may come with specificities that may not
generalize to all settings. For instance, data collected within a
specialized center of a university hospital may substantially differ
from that seen by a general practitioner.
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Fig. 9 In order to assess the generalization ability of a model under different conditions (such as data coming
from different hospitals/countries, acquired with different devices and protocols. . .), a common practice is to
use one or several additional datasets that come from other studies than the one used for training

Testing Procedures for External Validation

External validation of a predictive model relies on an indepen-
dent test set and not cross-validation. Statistical testing thus
amounts to derive confidence intervals or null-hypothesis signifi-
cance testing for the metric of interest on this test set, exactly as
when characterizing a diagnostic test [20].

For simple metrics that rely on counting successes, such as
accuracy, sensitivity, PPV, NPV, the sampling distribution can be
deduced from a binomial law. Table 2 gives such confidence inter-
vals for a different set of the test set and different values of the
ground-truth accuracy. These can be easily adapted to other counts
of errors as follows:

Accuracy N is the size of the test set

Sensitivity N is the number of negative samples in the test set

Specif icity N is the number of positive samples in the test set

PPV N is the number of positively classif ied test samples

NPV N is the number of negatively classif ied test samples

We believe it is very important to have in mind the typical
orders of magnitude reported in Table 2. It is not uncommon to
find medical classification studies where the test set size is about a
hundred or less. In such a situation, the uncertainty on the estima-
tion of the performance is very high.

These parametric confidence intervals are easy to compute and
refer to. But actual confidence intervals may be wider if the samples
are not i.i.d. In addition, some interesting metrics, such as AUC
ROC, do not come with such parametric confidence interval. A



general and good option, applicable to all situations, is to approxi-
mate the sampling distribution of the metric of interest by boot-
strapping the test set [8].
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Table 2
Binomial confidence intervals on accuracy (95% CI) for different values of
ground-truth accuracy

N 65% 80% 90% 95%

100 [-9.0% 9.0%] [-8.0% 8.0%] [-6.0% 5.0%] [-5.0% 4.0%]

1000 [-3.0% 2.9%] [-2.5% 2.4%] [-1.9% 1.8%] [-1.4% 1.3%]

10,000 [-0.9% 0.9%] [-0.8% 0.8%] [-0.6% 0.6%] [-0.4% 0.4%]

100,000 [-0.3% 0.3%] [-0.2% 0.2%] [-0.2% 0.2%] [-0.1% 0.1%]

Finally, note that all these confidence intervals assume that the
available labels are the ground truth. In practice, medical truth is
difficult to establish, and label error may bias the estimation of error
rates.

When comparing two classifiers, a McNemar’s test is useful to
test whether the observed difference in errors can be explained
solely by sampling noise [21, 22]. The test is based on the number
of samples misclassified by one classifier and not the other, n01 and
vice versa n10. The test statistics is then written (|n01 - n10|- 1)2/
(n01 +n10); it is distributed under the null as a χ2 with 1 degree of
freedom. To compare classifiers scanning the trade-off between
specificity and sensitivity without choosing a specific threshold on
their score, one option is to compare areas under the curve of the
ROC, using the DeLong test [23] or a permutation scheme to
define the null [24].

4 Conclusion

Evaluating machine learning models is crucial. Can we claim that a
new model outperforms an existing one? Is a given model trust-
worthy enough to be “deployed,” making decisions in actual clini-
cal settings? A good answer to these questions requires model
evaluation experiments adapted to the application settings. There
is no one-size-fits-all solution. Multiple performance metrics are
often important, chosen to reflect target population and cost–
benefit trade-offs of decisions, as discussed in Subheading 2. The
prediction model must always be evaluated on unseen “test” data,
but different evaluation goals lead to procedures to choose these
test data. Evaluating a “learner”—a model construction
algorithm—leads to cross-validation, while evaluating the fitness



of a given prediction rule—as output by model fitting—calls for
left-out data representative of the target population. In all settings,
accounting for uncertainty or variance of the performance estimate
is important, for instance, to avoid investing in models that bring
no reliable improvements.
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Appendix

Odds Ratio and

Diagnostic Tests

Evaluation

Odds and odds ratio are frequently used in biostatistics and epide-
miology, but less in machine learning. Here we give a quick intro-
duction to these topics.

Odds Odds are a measure of likelihood of an outcome: the ratio of the
number of events that produce that outcome to the number that do
not. The odds OðaÞ of an outcome a are simply related to the
probability P(a) of this outcome:

Odds of a OðaÞ= PðaÞ
1-PðaÞ : ð1Þ

In other words, OðaÞ is the number of times the event a would
occur for each occurrence of the opposite event. This intuitive
explanation has led odds to be often used for sports gambling.
For instance, if the odds are 3 (or more specifically in gambling
terminology 3 : 1) for FC Barcelona vs. Real Madrid, it means that
FC Barcelona has a probability of winning against Real Madrid of
75% (PðaÞ= OðaÞ

OðaÞþ1). Coming back to diseases, supposing that only
a minority of the population is affected, if the odds of the disease are
1%, which can be written as 1 : 100, this means that for every
diseased person in the population, there are 100 persons without
it. The prevalence is thus 1

101 =0:99%≈1%. One can see that when
the prevalence is low, it is close to the odds, which is not the case
when prevalence gets higher. This is true in general of probabilities
and odds: when the probability is low, it is close to the odds.
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Odds Ratio and Invariance

to Class Sampling

The odds ratio measures the association between two events, a and
b, which we can arbitrarily call respectively outcome and property.
The odds ratio is defined as the ratio of the odds of the outcome in
the group where the property holds to that in the group where the
property does not hold:

Odds ratio between a and b ORða, bÞ= Oðajb=þÞ
Oðajb= - Þ :

ð2Þ
To compute the odds ratio, the problem is fully specified by the
counts in the following contingency table:

ð3Þ

The odds are written: Oðajb=þÞ= nþþ
n-þ

and Oðajb= - Þ= nþ-
n- -

;
hence, the odds ratio reads

ORða, bÞ= nþþ
n-þ

n- -

nþ-
: ð4Þ

Note that this expression is unchanged swapping the role of a and
b; the odds ratio is symmetric, OR(a, b)=OR(b, a).

Invariance to Class Sampling

Suppose we have sampled the population selecting with a frequency
f on the outcome a + , for instance, to oversample the positive
outcome or the positive property.2 In Eq. 4, n++ is replaced by
f n++ and n+- by f n+-; however, the factor f cancels out and the
overall expression of the odds ratio is unchanged. This is a central
property of the odds ratio:

The odds ratio is unchanged by sample selection bias on one of the variables
(a or b).

This property is one reason why odds and odds ratio are so
central to biostatistics and epidemiology: sampling or recruitment
bias is an important concern in these fields. For instance, a case–
control study has a very different prevalence as the target popula-
tion, where the frequency of the disease is typically very low.

2 Indeed, thankfully, many diseases have a prevalence much lower than 50%, e.g., 1%, which is already considered a
frequent disease. Therefore, in order to have a sufficient number of diseased individuals in the sample without
dramatically increasing the cost of the study, diseased participants will be oversampled. One extreme example, but
very common in medical research, is a case–control study where the number of diseased and healthy individuals is
equal.
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Confusion with Risk Ratio
The odds ratio is often wrongly interpreted as a risk ratio—or
relative risk—which is more easily understood.

The risk ratio is the ratio of the probability of an outcome in a
group where the property holds to the probability of this outcome
in a group where this property does not hold. The risk ratio thus
differs from the odds ratio in that it is expressed for probabilities
and not odds. Even though the values for odds ratio and risk ratio
are often close because, in most diseases being diseased in much less
likely than not, they are fundamentally different because the odds
ratio does not depend on sampling whereas the risk ratio does.

Likelihood Ratio of

Diagnostic Tests or

Classifiers

The likelihood ratio used to characterize diagnostic tests or classi-
fiers is strongly related to the odds ratio introduced above, though
it is not strictly speaking an odds ratio. It is defined as

LR þ =
PðTþ jDþÞ
PðTþ jD- Þ : ð5Þ

Using the expressions in Box 1 and the fact that P(T+ |D+)=1-
P(T -|D+), the LR+ can be written as

LR þ =
Sensitivity

1- Specificity
: ð6Þ

Link to Pre-test and Post-test Odds
We can write this in terms of the contingency table in Eq. 3 (the link
to the confusion matrix in Fig. 1 is given by a=D, b=T and thus
n++=TP, n-+=FP, n+-=FN, n--=TN):

LRþ =
nþþ

nþþ þ nþ-

n-þ þ n- -

n-þ
ð7Þ

=
nþþ
n-þ

PðDþjTþÞ
PðD- jTþÞ=OðDþjTþÞ

n-þ þ n- -

nþþ þ nþ-

PðD- Þ
PðDþÞ =

1
OðDþÞ

ð8Þ

LRþ =
OðD þ jT þÞ

OðDþÞ : ð9Þ

Indeed, OðD þ jTþÞ= PðDþjTþÞ
1-PðDþjTþÞ =

PðDþjTþÞ
PðD- jTþÞ and

OðDþÞ= PðDþÞ = PðDþÞ .ð þÞ ð Þ
O(D+) is called the pre-test odds (the odds of having the

disease in the absence of test information). O(D+ |T+) is called
the post-test odds (the odds of having the disease once the test
result is known).



Machine-Learning Evaluation 629

Equation 9 shows how the LR+ relates pre- and post-test odds,
an important aspect of its practical interpretation.

Invariance to Prevalence
If the prevalence of the population changes, the quantities are
changed as follows: nþþ → f nþþ, nþ- → f nþ- ,
n-þ → ð1- f Þ n-þ, n- - → ð1- f Þ n- - , affecting LR+ as
follows:

LR þ =
f nþþ

ð1- f Þ n-þ
ð1- f Þ n-þ þ ð1- f Þ n- -

f nþþ þ f nþ-
: ð10Þ

The factors f and (1- f ) cancel out, and thus the expression of LR
+ is unchanged for a change of the pre-test frequency of the label
(prevalence of the test population). This is alike odds ratio, though
the likelihood ratio is not an odds ratio (and does not share all
properties; for instance, it is not symmetric).
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Chapter 21 

Reproducibility in Machine Learning for Medical Imaging 

Olivier Colliot, Elina Thibeau-Sutre, and Ninon Burgos 

Abstract 

Reproducibility is a cornerstone of science, as the replication of findings is the process through which they 
become knowledge. It is widely considered that many fields of science are undergoing a reproducibility 
crisis. This has led to the publications of various guidelines in order to improve research reproducibility. 

This didactic chapter intends at being an introduction to reproducibility for researchers in the field of 
machine learning for medical imaging. We first distinguish between different types of reproducibility. For 
each of them, we aim at defining it, at describing the requirements to achieve it, and at discussing its utility. 
The chapter ends with a discussion on the benefits of reproducibility and with a plea for a nondogmatic 
approach to this concept and its implementation in research practice. 

Key words Reproducibility, Replicability, Reliability, Repeatability, Open science, Machine learning, 
Artificial intelligence, Deep learning, Medical imaging 

1 Introduction 

Reproducibility is at the core of the scientific method. In its general 
and most common meaning, it corresponds to the ability to repro-
duce the findings of a given experimental study. This is a necessary 
(but not sufficient) condition for a scientific statement to become 
accepted as new knowledge. Let’s illustrate this with a simple 
example, considering the following statement: “the volume of the 
hippocampus is, on average, smaller in patients with Alzheimer’s 
disease (AD) than in healthy people of comparable age.” Such 
statement was the conclusion of studies which measured such 
volume from magnetic resonance images (MRI). To the best of 
our knowledge, the first study to assert this was that of Seab et al 
[1]. This was later reproduced by many other studies (e.g., [2, 3]). 
It is now widely accepted, which would not have been the case if the 
study had proven impossible to reproduce. Note that, as stated 
above, this is a necessary but not a sufficient condition. Indeed, 
there could be other reasons for such statement not to be consid-
ered as knowledge. For instance, let’s imagine that some other
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(continued)

researchers discover that there is an artifact that is systematically 
present in the MRI of patients with AD and which leads to errone-
ous volume estimation. Then, the statement could not be consid-
ered new knowledge even though it had been reproduced several 
times.
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Machine learning (ML) is, in part, an experimental science. 
This is not the case of the entirety of the discipline, part of which 
is theoretical (for instance, mathematical proofs of convergence or 
of approximation capabilities of different classes of models) or 
methodological (the invention of a new approach). Nevertheless, 
since ML ultimately aims at solving practical problems, its experi-
mental component is essential. Typically, one would want to be able 
to make statements of the type described above from an experimen-
tal study. Here is an example of such statement: “this ML model 
(for instance, a specific convolutional neural network [CNN] archi-
tecture), using MRI data as input, is capable of classifying AD 
patients and healthy controls with an accuracy superior to 80%.” 
In order to end an article with such a statement, one needs to 
conduct an experimental study. For such findings to become 
knowledge, it needs to be subsequently reproduced. Of course, 
this statement is unlikely to be universal, and one would want to 
know under which conditions it holds: for instance, is it restricted 
to a specific class of MRI scanners, to specific disease stages, to 
specific age ranges? 

Box 1: Glossary 
The readers will find the definition of the terms we used in the 
present document.

• Reproducibility, replicability, repeatability. In the present 
document, these will be used as synonyms of reproducibility.

• Original study. Study that first showed a finding.

• Replication study. Study that subsequently aimed at replicat-
ing an original study, with the hope to support its findings.

• Research artifact. Any output of scientific research: papers, 
code, data, protocols. . . . Not to be confused with imaging 
artifacts which are defects of imaging data.

• Claims. The conclusions of a study. Basically a set of state-
ments describing the results and a set of limitations which 
delineate the boundaries within which the claims are stated 
(the term “claim” is here used in the broad scientific sense not 
with the specific meaning it has in the context of regulation of 
medical devices although the two may be related).

• Limitations. A set of restrictions under which the claims may 
not hold (usually because the corresponding settings have not 
been explored).
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oxB 1 (continued)
• Method. The ML approach described in the paper, indepen-

dently of its implementation.

• Code. The implementation of the method.

• Software dependencies. Other software packages that the 
main code relies on and which are necessary for its execution.

• Public data. Data that can be accessed by anybody with no or 
little restriction (for instance, the data hosted at https:// 
openneuro.org).

• Semi-public data. Data which requires approval of a research 
project (for instance, the Alzheimer’s Disease Neuroimaging 
Initiative [ADNI] http://www.adni-info.org). The research-
ers can then use the data only for the intended research 
purpose and cannot redistribute it.

• Data split. Separation into training, validation, and test sets.

• Data leakage. Faulty procedure which has led information 
from the training set to leak into the test set. See refs. 4, 5 for 
details.

• Error margins. A general term for providing the precision of 
the performance estimates (e.g., standard-error or confidence 
intervals).

• Researcher degrees of freedom. Number of different com-
ponents (e.g., different architectures, hyperparameter values, 
subsamples. . .) which have been tried before arriving to the 
final method [6]. Too many degrees of freedom tend to 
produce methods that do not generalize.

• p-hacking. A bad practice that involves too many degrees of 
freedom and which consists is trying many different statistical 
procedures until a significant p-value is found.

• Acquisition settings. Factors that influence the scan of a 
given patient (imaging device, acquisition paratemeters, 
image quality).

• Image artifacts. Defects of a medical image, these may 
include noise, field heterogeneity, motion artifacts, and 
others.

• Preregistration. The deposit of the study protocol prior to 
performing the study. Limits degrees of freedom and 
increases likelihood of robust findings. 

In the examples above, we have actually illustrated only one on 
the many possible meanings of reproducibility: the addition of new 
evidence to support a scientific finding of an original study through 
reproduction under different experimental conditions (see Box 1 for 
a glossary of some of the key concepts used). However, it is also 
used for very different meanings. In computational sciences, it is

https://openneuro.org
https://openneuro.org
http://www.adni-info.org


often used for the ability to exactly reproduce the results (i.e., the 
exact numbers) in a given study. In sciences which aim at providing 
measurements (as is often the case in medical imaging), the word 
may be used to describe the variability of a given measurement tool 
under different acquisition settings. We shall provide more details 
on these different meanings in Subheading 2. Finally, the topics of 
reproducibility and open science are obviously related since the 
latter favors the former. However, open science encompasses a 
broader objective which is to make all research artifacts (code, 
data, papers. . .) openly available for the benefit of the whole society. 
Conversely, open research may still be unreproducible (e.g., 
because it has relied on faulty statistical procedures). 
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There has been increasing concern that science is undergoing a 
reproducibility crisis [7–10]. This is present in various fields from 
psychology [11] to preclinical oncology research [12]. ML [13– 
17], digital medicine [18], ML for healthcare [19, 20], and ML for 
medical imaging [21] are no exception. The concerns are multifac-
eted. In particular, they include two substantially different aspects: 
the report of failures to reproduce previous studies and the obser-
vation that many papers do not provide sufficient information for 
reproducing their results. It is important to have in mind that, while 
the two may be related, there is not a direct relationship 
between them: it may very well be that a paper seems to include 
all the necessary information for reproduction and that reproduc-
tion attempts fail (for instance, because the original study had too 
many degrees of freedom and led to a method that only works on a 
single dataset, see Subheading 4). 

Various guidelines have been proposed to improve research 
reproducibility. Such guidelines may be general [10] or devoted 
to specific fields including brain imaging [22–25] and ML for 
healthcare and life sciences [26, 27]. Moreover many other papers, 
even though not strictly providing guidelines, provide very valuable 
pieces of advice for making research more trustworthy and in 
particular more reproducible (e.g., [14, 19, 28–32]). 

This chapter is an introduction to the topic of reproducibility 
for researchers in the field of ML for medical imaging. It is not 
meant at providing a replacement for the aforementioned previ-
ously published guidelines that we strongly encourage the reader to 
refer to. 

The remainder of the chapter is organized as follows. We first 
start by introducing different types of reproducibility (Subheading 
2). For each of them, we attempt to clearly define it and describe 
what are the requirements to achieve it and the benefits it can 
provide (Subheadings 3, 4, 5, and 6). All this information is given 
with having the field of ML for medical imaging as a target, even 
though part of it may apply to other fields. Finally, we conclude 
with a discussion which both describes the benefits of reproducibil-
ity but also advocates for a nondogmatic point of view on the topic 
(Subheading 7).
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2 The Polysemy of Reproducibility 

The term “reproducibility” has been used with various meanings 
which may range from the exact reproduction of a study with the 
same material and methods, to the reproduction of a result using 
new experimental data to the support of a scientific idea using a 
completely different experimental setup [33, 34]. Moreover, vari-
ous terms have been introduced including reproducibility, replica-
bility, repeatability, reliability, robustness, generalizability. . .Some 
of these words, for instance, reproducibility vs replicability, have 
even been used by some authors with opposite meanings 
[33, 34]. We will not aim at assigning an unambiguous meaning 
to each of these words, as we find this of little interest, and will use 
the term “reproducibility,” “replicability,” and “repeatability” as 
synonyms. On the other hand, we believe, as many other authors 
[19, 23, 33, 35], that it is important to distinguish between differ-
ent types of reproducibility. To that purpose, it is useful to have a 
taxonomy of reproducibility. Below, we describe such a taxonomy. 
We do not claim that it is novel, as it takes inspiration from other 
papers [14, 19, 23, 33, 35] nor that it should be universally 
adopted. Furthermore, boundaries between different types of 
reproducibility are partly fuzzy. We simply hope that it will be useful 
for the different concepts that we subsequently introduce and that 
it will be well adapted to the field of ML for medical imaging. 

We distinguish between four main types of reproducibility: 
exact reproducibility, statistical reproducibility, conceptual 
reproducibility, and measurement reproducibility. We describe 
those four main types in the following sections. They are also 
summarized in Fig. 1. As will be explained below, the three first 
types have relationships with each other (this is why they have the 
same color in the figure) while the fourth is more separated. 

What Is It? Exact reproducibility aims at reproducing strictly 
identical results as those of a previously published paper. Con-
cretely, this amounts to being able to reproduce tables and figures 
as they appear in the original paper following the same procedures 
as the authors. 

What Does It Require? Exact reproducibility requires to have 
access to all components that led to the results including, of course, 
data and code.
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Fig. 1 Different types of reproducibility. Note that, in the case of “statistical” and “conceptual” reproducibility, 
the terms come from [19] but the exact definition provided in each corresponding section may differ 

Access to data is obviously necessary [19, 22, 27]. Open data has 
been described (together with code and papers) as one of the pillars 
of open science [22]. It is widely accepted that scientific data should 
adhere to the FAIR (Findable, Accessible, Interoperable, Reusable) 
principles (please refer to https://www.go-fair.org/fair-principles

https://www.go-fair.org/fair-principles


and [36] for more details). Among these principles, accessibility is 
often the most difficult to adhere to for medical imaging data 
(or healthcare data in general). It is very common in medical papers 
that data is mentioned as available upon request. However, a study 
has showed that, when data is subsequently requested, many 
researchers actually do not comply with the data accessibility state-
ment [37]. This is worrisome, and more transparent ways of data 
sharing would be welcome. However, as mentioned above, such 
transparent sharing procedures may be difficult to put in place for 
healthcare data. In particular, making the data public is often 
difficult due to regulatory and privacy constraints [19]. Gorgo-
lewski and Poldrack [22] provide useful pieces of advice to facilitate 
sharing, but there are cases where public sharing will remain impos-
sible. In particular, one must distinguish between research data 
(acquired as part of a research protocol), which can often be made 
public or semi-public1 provided that adequate measures have been 
taken at data collection (e.g., adequate participant consent), and 
routine clinical data (acquired as part of the routine clinical care of 
the patients), which sharing can be much more complicated. It is 
important that data is easily findable and that it is shared on a server 
which has a long-term maintenance. General purpose data reposi-
tories such as Zenodo2 provide a good solution. Another important 
aspect is to adhere to community standards for data organization, 
so that it can easily be reused by researchers. For brain imaging, the 
community standard is BIDS (Brain Imaging Data Structure) [38].3 

This standard is already very mature and has already been extended 
to incorporate other modalities such as microscopy images, for 
instance (Microscopy-BIDS [39]). Note that there is an ongoing 
proposal to extend it to other organs (MIDS – Medical Imaging 
Data Structure [40]4 ). Finally, we would like to draw the attention 
to an important point that is often overlooked. Even when a study 
relies on public or semi-public data, it is absolutely necessary to 
specify which samples (e.g., which participants and which scans) 
have been used; otherwise, the study is not reproducible [41]. Ide-
ally, one would provide code to automatically make the data selec-
tion [42] in order to ease the replication. 
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Another key component is that the code is accessible [19, 22, 
27]. Indeed, it would be delusional to think that exactly the same 
results could be obtained using a reimplementation based on infor-
mation provided in the paper (even though it is good practice to 
provide as much detail as possible about the methods in the paper).

1 See glossary Box 1. 
2 https://zenodo.org/. 
3 https://bids.neuroimaging.io/. 
4 See BIDS extension proposal (BEP) number 25 (BEP025) https://bids.neuroimaging.io/get_involved. 
html#extending-the-bids-specification

https://zenodo.org/
https://bids.neuroimaging.io/
https://bids.neuroimaging.io/get_involved.html#extending-the-bids-specification
https://bids.neuroimaging.io/get_involved.html#extending-the-bids-specification


Theoretically, it does not mean that the code must come with an 
open software license. However, doing so has many additional 
benefits such as allowing other researchers to use the code or 
parts of it for different purposes. The code should be made accord-
ing to good coding practices which include the use of a versioning 
system and adequate documentation [20]. Furthermore, although 
not strictly needed for reproducibility, the use of continuous inte-
gration makes the code more robust and eases its long-term main-
tenance. Besides, it is good to ease as much as possible the 
installation of dependencies [27]. This can be done with pip5 

when programming in Python. One can also use containers such 
as Docker.6 One can find useful additional advice in the Tips for 
Publishing Research Code.7 Note that we are not saying that all 
these components should be present in any study or are prerequi-
sites for good research. They constitute an ideal 
reproducibility goal.
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Sharing well-curated notebooks is also a way to ease reproduc-
ibility of results by other researchers. This can be done through 
standard means, but dedicated servers also exist. One can, for 
instance, cite an interesting initiative called NeuroLibre8 which 
provides a preprint server for reproducible data analysis in neuro-
science, in particular providing curated and reviewed Jupyter 
notebooks [43]. 

In ML, sharing the code itself is not enough for exact repro-
ducibility. First, every element of the training procedure should be 
stored: this includes the data splits and the criteria for model 
selection. Moreover, there usually are non-deterministic compo-
nents so it is necessary to store random seeds [27]. Furthermore, 
software/operating system versions, the GPU model/version, and 
threading have been deemed necessary to obtain exact reproduc-
ibility [44]. The ClinicaDL software platform provides a framework 
for easing exact reproducibility of deep learning for neuroimag-
ing [5].9 Although it is targeted at brain imaging, many of its 
components and concepts are applicable to medical imaging in 
general. Also in the field of brain imaging, NiLearn10 facilitates 
the reproducibility of statistics and ML. One can also cite Pymia11 

which provides data handling and validation functionalities for deep 
learning in medical imaging [45]. 

5 https://pypi.org/project/pip/. 
6 https://www.docker.com/. 
7 https://github.com/paperswithcode/releasing-research-code. 
8 https://neurolibre.org/. 
9 https://clinicadl.readthedocs.io/en/latest/. 
10 https://nilearn.github.io/stable/index.html. 
11 https://github.com/rundherum/pymia.

https://pypi.org/project/pip/
https://www.docker.com/
https://github.com/paperswithcode/releasing-research-code
https://neurolibre.org/
https://clinicadl.readthedocs.io/en/latest/
https://nilearn.github.io/stable/index.html
https://github.com/rundherum/pymia


Reproducibility 639

Finally, it may seem obvious, but, even when the code is shared, 
the underlying theory of the method, all its components, and 
implementation details need to be present in the paper [14]. 

It is in principle possible to retrain models identically if the 
above elements are provided. It nevertheless remains a good prac-
tice to share trained models, in order to allow other researchers to 
check that retraining indeed led to the same results but also to save 
computational resources. However, models can be attacked to 
recover training data [27, 46]. This is not a problem when the 
training data is public. When it is privacy-sensitive, methods to 
preserve privacy exist [27, 47]. 

In medical imaging, preprocessing and feature extraction are 
often critical steps that will subsequently influence the ML results. 
It is thus necessary to also provide code for such parts. Several 
software initiatives including BIDSApps [48]12 and Clinica [49]13 

provide ready-to-use tools for preprocessing and feature extraction 
for various brain imaging modalities. Applicable to many medical 
imaging modalities, the ITK [50, 51]14 framework provides a wide 
range of processing tools. It can ease the work of researchers who 
do not want to spend time on preprocessing and feature extraction 
pipelines and focus on the ML part of their work. 

Why Is It Useful? It has been claimed that exact reproducibility is 
of little interest, that pursuing it is a waste of energy of the commu-
nity, and that its only possible use would be the detection of 
outright fraud which is rare [52]. We disagree with that view. 
Let’s start with fraud. It may be of low occurrence, although its 
exact prevalence is difficult to establish. Even so, it is of disastrous 
consequences as it leads to loss of trust by students, scientists, and 
the general public. In particular, a survey of 1,576 researchers 
indicated that 40% of them believe that fraud is a factor that 
“always/often” contributes to irreproducible research and that 
70% of them think that it “sometimes” contributes [7]. Exact 
reproducibility can certainly contribute to reduce fraud as full 
transparency obviously makes fraud more difficult. Fraud remains 
possible (one could forge some data and share it), but it is more 
difficult to achieve under transparency constraints. Fraud may be 
rare but errors are much more common. The framework of exact 
reproducibility eases the detection of errors which is a service to 
science and even to the authors themselves. In particular, it may 
help discover “biases and artifacts in the data that were missed by 
the authors and that cannot be discovered if the data are never 
made available” [27]. Similarly, it can lead to the discovery of

12 https://bids-apps.neuroimaging.io/. 
13 https://www.clinica.run/. 
14 https://itk.org/.

https://bids-apps.neuroimaging.io/
https://www.clinica.run/
https://itk.org/
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wrong validation schemes, including data leakage or errors in 
implementation that make it inconsistent with the methodology 
presented in the paper. Overall, it may make progress slower, but it 
will definitely make it steadier. However, this does not mean that 
exact reproducibility should be aimed in all works or made a 
requirement for all publications (see Subheading 7.4).
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What Is It? Statistical reproducibility aims at reproducing findings 
under statistically equivalent conditions.15 The specific definition 
may vary, but the following choices are often considered reason-
able. The implementation of the method (the code) remains the 
same. Random components are left random. Regarding the data, 
the general idea is that the sample would be drawn from the same 
population. One could, for instance, use subsamples of the original 
data or another subsample of a larger source population. An inter-
esting case is to study different data splits. A less restrictive view of 
statistical reproducibility would be to use another dataset whose 
characteristics are similar to those of the original dataset (for 
instance, similar age, sex, scanner distributions). Note that the 
boundary between statistical and conceptual reproducibility 
(defined in the next section) is fuzzy. We do not believe it is possible 
to draw exact frontiers that would delimit the statistical variations 
that are admissible in a statistical reproducibility study. Finally, it is 
important that those who conduct the statistical replication study 
clearly indicate which components of variability they study. 

What Does It Require? Here one needs to distinguish between 
two types of factors: those necessary to attempt reproducibility and 
those that increase the likelihood of successful reproducibility. 

Regarding the first type, most factors are common with those 
for exact reproducibility. Code needs to be accessible so that varia-
tions coming from reimplementation do not impact the replication. 
Random seeds, GPU model, or other software/execution para-
meters will not be set to be identical because the aim is precisely 
to check if the findings of the study are statistically reproducible 
under such variations. Knowing their value in the original study is 
nevertheless useful in order to dissect potential reasons for failed 
replication. Trained models are in a similar situation: they will 
usually not be used for statistical replication (models will be 
retrained) but shall prove useful to dissect potential failures. Data

15 We use the term of [19] although with a slightly different (more extensive) meaning.



accessibility is also very valuable because it will allow studying 
different data splits, or subsamples.
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The abovementioned elements make it possible for other 
researchers to attempt statistical replication of a given study. On 
the other hand, there are features of the original study that will 
make such replication more likely to be successful (equivalently, one 
could say that the original findings are robust). One important 
factor is that the original study reports error margins (reporting 
the standard error or equivalently a confidence interval). It is 
important in this specific context because statistical reproducibility 
does not aim at obtaining (and cannot obtain) exactly the same 
results. One wants the results to be compatible with original ones: 
typically a successful replication would produce results which are 
within the error margin of the original study. Beyond the topic of 
statistical reproducibility, the report of error margins is of great 
importance in general, in particular in the field of ML for medical 
imaging, because it provides a precision on the estimates of the 
performance. Unfortunately, this practice is still too uncommon in 
the ML field as a whole [19]. Even worse, it is not uncommon to 
find faulty interpretations of estimates. For instance, one should 
never estimate standard errors (SE) from multiple runs of a cross-
validation, as the number of runs can be made arbitrarily large and 
as a consequence the SE arbitrarily small (see [4]). A very common 
example is papers which report empirical standard deviation 
(SD) across k-folds (or more generally across splits). Unlike what 
is quite widely believed, this value does not allow to gauge the 
precision of the performance estimation. It provides some insight 
on the variability of the learning procedure under variations of the 
training and validation sets. Further, keep in mind that when the 
number of splits is small, such gauge will be very rough. When the 
number of splits is sufficiently large (and typically using random 
splits rather than k-fold), it is possible to assess if a “learner” (i.e., 
an ML procedure to perform a task) is superior to another one by 
counting the fraction of folds on which it obtains superior perfor-
mance (e.g., 75%) [53]. See Chap. 21 for more details on this 
question. However, in no case can such procedures estimate the 
precision of the performance of the trained model, in other words 
the precision of the computed biomarker or computer-aided diag-
nosis tool. This requires an independent test set, from which SE 
and confidence intervals can be computed. 

Why Is It Useful? Statistical replication has many merits. First, by 
reassessing ML methods using different data splits, one can spot 
faulty procedures including data leakage which is prevalent in the 
field of medical imaging [54–57]. See refs. 4, 5 for more details on 
data leakage. Beyond procedures which are clearly wrong, it can 
also detect lack of robustness to different parameters. One would



consider that the procedure is not statistically replicable if it leads to 
substantially different results under different train/test data splits, 
different random seeds, or small changes in hyperparameters. Such 
an ML algorithm would display poor robustness and would be 
unlikely to be of future clinical use. Note that, regarding the use 
of different train/test data splits, these would need to preserve a 
distribution of metadata (for instance, age, sex, diagnosis. . .) 
between train and test that is similar to that of the original study. 
Most classically, if the original study has stratified the splits, the 
statistical replication study would also need to stratify the splits. 
Using different distributions (e.g., not stratified) is also interesting 
but, in our view, falls within conceptual rather than statistical 
reproducibility. Furthermore, it is very interesting to attempt repli-
cation on a different dataset with statistically equivalent character-
istics: for instance, another subsample which has not been used in 
the original study (but comes from the same larger dataset) or a 
different dataset but with similar characteristics (e.g., same MRI 
scanners, similar age, similar disease stage. . .). Unsuccessful replica-
tion may be an indication of overfitting of the dataset of the original 
study through excessive experimentation with different architec-
tures or hyperparameters which ended up with a method that 
would work only on this very specific dataset. This is referred to 
as the researcher degrees of freedom [6, 22]. This concept extends 
beyond the field of ML. It actually comes from experimental 
sciences where different statistical procedures are tried until a sta-
tistically significant result is found, a bad practice known as p-hack-
ing [58]. It is important that researchers in our field have this 
problem in mind. Experimental sciences have proposed preregis-
tered and registered studies as a potential solution to ban such bad 
practices. Preregistration means that the research plan is written 
down and made public before the study starts. It can, for example, 
be published on the Open Science Framework website.16 This 
mechanism reduces the researcher degrees of freedom and is thus 
likely to lead to more robust results. Registration goes one step 
further. The research plan is submitted to a journal and peer-
reviewed. Thus (most of) the peer review is done before the results 
are known. It has the additional advantage of putting more focus 
on methodological soundness than on the groundbreaking nature 
of results (for instance, negative results will be published). More 
details about preregistration and registration can be found in 
[59]. Preregistration and registration are not yet widely used in 
ML for medical imaging. Such practices would certainly not fit all 
studies because they leave no room for methodological creativity. 
On the other hand, they should be very valuable to experimental
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16 https://osf.io.
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studies aiming at validating ML methods. We believe that, as a 
community, we should try to adapt such procedures to our field.
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What Is It? Conceptual reproducibility can be seen as the 
ultimate goal: the one which lead to the consolidation of scientific 
knowledge. The general idea is to be able to validate the findings 
under conceptually similar conditions.17 Conceptually similar 
means that the method, the data, and the experiments are compati-
ble with the claims of the original study but they are not identical. 
We will come back to the notion of claims of a study, and their 
relationships to generalizability and limitations, later in this section. 

What Does It Require? Again, we may distinguish between fac-
tors that make it possible to attempt replication and those that will 
make it more likely to be successful. 

In theory, nothing but the original paper should be strictly 
necessary. Nevertheless, this assumes that the original paper has 
adhered to the scientific gold standard of providing all details 
necessary for replication: not only a description of the methods 
which makes reimplementation possible but a detailed description 
of the datasets and experimental procedure. It is particularly worri-
some that many medical imaging publications do not even report 
basic demographic statistics [30]. [14] argues that the replication 
should be independent of the implementation. We agree in princi-
ple but believe that such requirement would considerably lower the 
number of conceptual replication attempts, while more are needed 
to advance our field in a steadier manner. In practice, it is extremely 
useful to be able to access the code, not only to save a lot of time 
but also to make sure that an unsuccessful replication is not due to a 
faulty reimplementation. The same can be said for trained models. 
Access to the original data can be useful to dissect the potential 
reasons for differences in results. In summary, none of the elements 
of exact reproducibility are required, all of them are welcome. 

There are several characteristics of an original study that make it 
less likely for it to be replicated. Low sample size not only means 
that it is less likely to find a true effect if it exists but also increases 
the odds that a positive finding is false [9]. This is not only true in 
ML but in experimental sciences in general. Ideally, the sample size 
should be justified by a previous power analysis [24]. Causes for 
failure of statistical reproducibility also apply here. In particular, too 
many researcher degrees of freedom increase the likelihood of

17 Again, we use the term of [19] although with a slightly different meaning.
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having built a method that is overly specific to a dataset. Another 
problem is that the datasets used in medical imaging ML papers are 
very often not representative of what would be found in the clinic 
[30]. Indeed, they often come from research datasets where the 
inclusion criteria are specific, the medical imaging protocols are 
harmonized, and the data quality is controlled. Thus, it is necessary 
to have more studies including clinical routine data (e.g., [60, 61]). 
Finally, it is very important to have in mind that most scientific 
findings will not universally replicate but that the replication will 
only succeed under specific conditions. This is why it is critical that 
scientific papers precisely define their claims and their limitations. 
For instance, a claim could be that a given algorithm can segment 
brain tumors with a Dice of 0.9±0.02 when the MR images are 
acquired at 3 Tesla and have only minimal artifacts. The same paper 
would mention as limitations that it is unclear how the algorithm 
would perform at 1.5 Tesla or with data of lower quality. One can 
see that stating clear claims and limitations will allow defining the 
scope of conceptual replication studies. Studies outside that scope 
would aim at studying generalizability beyond original claims.
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Why Is It Useful? As mentioned above, conceptual reproducibil-
ity is the ultimate goal, the one which, through accumulation of 
evidence, builds consensus about new scientific knowledge. Its 
utility in general is thus obvious. More specifically, it provides 
different benefits. In particular, in the field of ML for medical 
imaging, it allows studying the generalizability of a method. It is 
thus a step towards its applicability to the clinic. To that aim, the use 
of multiple datasets is of paramount importance. This will not only 
allow ruling out that a method is overly specific to a given dataset. It 
will allow defining which are the bounds within which the method 
applies. This includes the machine model, the acquisition para-
meters, and the data quality. It also includes factors which are 
unrelated to imaging such as population age, sex, geographic ori-
gin, disease severity, and others. 

What Is It? Measurement reproducibility is the study of the varia-
bility of a specific measurement under different acquisition condi-
tions. We are aware that, at first sight, this concept does not fit 
ideally in our taxonomy (see Subheading 7.1 for a more detailed 
discussion). Nevertheless, we chose to present it as a separate entity 
because this is a very common meaning of the word reproducibility



in medical imaging18 (e.g., [62–69]) and we thus believe that it 
deserves a special treatment. Here, we consider an algorithm that 
produces a measurement for each individual patient (for instance, 
the volume of an anatomical structure computed by a segmentation 
method). A prototypical example of measurement reproducibility is 
the test-retest reproducibility: how much does the measure vary 
when applied to two different scans of the same patient? One can 
then introduce different variations: scans on the same day or not, 
scans on the same or different machines, systematic addition of 
noise or artifacts to the data. . . . Finally, some authors call inter-
method reproducibility the comparison of different software 
packages for the measurement of the same anatomical entity 
[70]. We do not believe this falls within the topic of reproducibility 
but rather of methods’ comparison.19 
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What Does It Require? The code is necessary to make sure that 
variations do not depend on implementation and to ease the repro-
ducibility study. The trained models are also very welcome to 
facilitate the process. It is then necessary to have access to test-
retest data, meaning different acquisitions of the same patient. As 
mentioned above: the more varied these different acquisitions, the 
more extensive the study. Ideally, one would want to have access to 
scans performed on the same day [62, 67], on different days 
[65, 66], at different times during the day (e.g., before or after 
caffeine consumption, a factor which affects functional MRI mea-
sures [71]), on different imaging devices [63], and with different 
acquisition parameters [68]. . .It is unlikely to obtain that many 
scans for the same patients. A more feasible approach is to study 
these different factors of variations for different patients. Further-
more, starting with a given image, it is possible to simulate different 
types of alterations and defects by adding them to the original 
image. This can be very useful because it allows generating very 
large numbers of images easily and to control for specific imaging 
characteristics (such as, e.g., the level of noise or the strength of 
motion artifacts). Such simulations can involve completely syn-
thetic images called phantoms [72] which mimic real images. It 
can also be done through the addition of defects to real images [73– 
75]. Ideally, measurement reproducibility should be performed in 
different populations of participants separately (for instance, a child 
with autism spectrum disorder or a patient with Parkinson’s disease 
is more likely to move during the acquisition, and the image is thus 
more likely to be affected by motion artifacts). 

18 Note that the word is used to evaluate reproducibility of automatic methods across different scans of the same 
subject but also when a human rater is involved (manual or semi-automated measurements), including intra-rater 
(measurement twice by the same rater) and inter-rater (two different raters) reproducibility from a single scan. 
19 It is of interest to compare which of them is the most accurate or robust, with respect to a ground truth. 
However, as mentioned above, we do not believe it falls within the topic of reproducibility.
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Why Is It Useful? Measurement reproducibility is central for 
measurement sciences, and medical imaging is one of those. It is 
an extremely precious information to the user (for instance, the 
radiologist). Indeed, it provides, at the individual patient level, and 
ideally for different categories of patients, the precision that they 
may expect from the measurement tool. There is a wide tradition to 
perform such reproducibility studies in radiology journals. We 
believe that it would be very welcome that it becomes more com-
monplace in the ML for medical imaging community. 

7 Discussion 

7.1 About the 

Different Types of 

Reproducibility 

We have presented different types of reproducibility. Our taxonomy 
is not original nor aims at being universal. The boundaries between 
types are partly fuzzy. For instance, to which degree replication 
with a different but similar dataset should be considered statistical 
or conceptual reproducibility? We do not believe such questions to 
be of great importance. Rather, it is fruitful, following Gundersen 
and Kjensmo [14] and Peng [76], to consider reproducibility as a 
spectrum. In particular, one can consider that the first three types 
provide increasing support for a finding: conceptual provides more 
support than statistical which in turns provides more support than 
exact. The amount of components necessary to perform them is in 
the reverse order: exact requires more than statistical which requires 
more than conceptual. Does it mean that only conceptual repro-
ducibility matters? Absolutely not. As we mentioned, other types of 
reproducibility are necessary to dissect why a given replication has 
failed as well as to better specify the bounds within which a scientific 
claim is valid. Last but not least, exact reproducibility also helps 
build trust in science. 

We must admit that measurement reproducibility does not fit 
very well in this landscape. Moreover, one could also argue that it is 
a type of conceptual reproducibility, which is partly true as it aims at 
studying the reproducibility when varying the input data. We nev-
ertheless believe it deserves a special treatment, for several reasons. 
First, here reproducibility is studied at the individual (i.e., patient) 
level and not at the population level. Also, the emphasis is on the 
measurement rather than the finding. Even if it has its role in the 
building of scientific knowledge, it has specific practical implica-
tions for the user. Moreover, as mentioned above, this is actually 
the most widely used meaning of reproducibility in medical imag-
ing, and it seemed important that the reader is acquainted with it.
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7.2 The Many 

Benefits of 

Reproducibility 

“Der Weg ist das Ziel” is a German saying which can be roughly 
translated as: “the path is the goal.” Indeed, reproducibility allows 
researchers to discover many new places down the road before 
reaching the final destination. Even if this destination is never 
reached, the benefits of the travel are of major importance. Let us 
try to list some of them. 

There are many individual benefits for researchers and labs. An 
important one is that aiming at reproducible research results in 
reusable research artifacts. How agreeable it is for a researcher to 
easily reuse an old code for a new project! How useful it is for a 
research lab to have data organized according to community stan-
dards making it easier to reuse and share! Moreover, papers that 
come with shared data [22, 77, 78] or code attract [79], on 
average, more citations. Thus aiming at reproducibility is also in 
the researchers’ self-interest. 

There are also considerable benefits for the scientific commu-
nity as a whole. As mentioned before, reproducible research is often 
associated to open code, open data, and available trained models. 
This allows researchers not only to use them to perform replication 
studies but also to use these research artifacts for completely differ-
ent purposes such as building new methods or conducting analysis 
on pooled datasets. In the specific case of ML for medical imaging, 
it also allows assessing independently the influence of preproces-
sing, feature extraction, and ML method. This is particularly impor-
tant when claims of superiority of a new ML method are made, but 
the original paper uses overly specific preprocessing steps. 

Of course, at the end of the path, the goal itself brings many 
benefits. These have already largely described in the previous sec-
tions so we will just mention them briefly. Conceptual replication 
studies are necessary for corroborating findings and thus building 
new scientific knowledge. Statistical replication allows ensuring that 
results are not due to cherry picking. Exact replication allows 
detecting errors and increases trust in science in general. 

7.3 Awareness Is 

Rising 

Throughout this chapter, we have referred to numerous papers, 
resources, and tools that demonstrate that awareness regarding 
reproducibility has strongly risen in the past years. 

Various papers and studies have highlighted the lack of repro-
ducibility in different fields (e.g., [11, 15, 19]). In machine learning 
for medical imaging, Simko et al. [21] have studied the reproduc-
ibility of methods (mainly code availability and usability thus 
restricted to exact reproducibility) published at the Medical Imag-
ing with Deep Learning (MIDL) conference from 2018 to 2022



and found that about 20% of papers came with a repository that was 
deemed reproducible. 
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Various papers have been published providing advice and 
guidelines [10, 17, 22–27]. Some of the guidelines include repro-
ducibility checklists. Some checklists are associated to a specific 
journal or conference and are provided to the reviewers so that 
they can take these aspects in consideration when evaluating papers. 
One can cite, for example, the MICCAI (Medical Image Comput-
ing and Computer-Assisted Intervention conference) reproducibil-
ity checklist.20,21 

Finally, it is very important that reproducibility studies, asses-
sing all aspects of reproducibility (exact, statistical, conceptual, 
measurement), are performed, published, and widely read. Unfor-
tunately, it is still easier to publish in a high-impact journal a study 
that is not reproducible but describes exciting results than a repli-
cation study. The good news is that this is starting to change. 
Reproducibility challenges have been proposed in various fields 
including machine learning22 and medical image computing 
[80]. In the field of neuroimaging, the journal NeuroImage: 
Reports publishes Open Data Replication Reports.23 the Organi-
zation for Human Brain Mapping has a replication award.24 and the 
MRITogether workshop25 emphasizes reproducibility. 

7.4 One Size Does 

Not Fit All 

We hope the reader is now convinced of the benefits of aiming 
towards reproducible research. Does it mean that reproducibility 
requirements should be the same for all studies? We strongly believe 
the opposite. To take an extreme example, requiring all studies to 
be exactly reproducible with minimal efforts (like with running a 
single command) would be an awful idea. We believe, on the 
contrary, that reproducibility efforts should vary according to 
many factors including the type of study and the context in which 
it is performed. One would probably not have the same level of 
requirement for a methodological paper and for an extensive medi-
cal application with strong claims about clinical applicability. For 
the former, one may be satisfied with an experiment on a single or a 
few datasets. For the later, one would expect the study to include

20 https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf. 
21 https://github.com/JunMa11/MICCAI-Reproducibility-Checklist. 
22 https://paperswithcode.com/rc2022. 
23 https://www.journals.elsevier.com/neuroimage-reports/infographics/neuroimage-reports-presents-open-
data-replication-reports?utm_campaign=STMJ_176479_SC&utm_medium=email&utm_acid=268008024& 
SIS_ID=&dgcid=STMJ_176479_SC&CMX_ID=&utm_in=DM292849&utm_source=AC_. 
24 https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=3731. 
25 https://mritogether.esmrmb.org/.
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multiple datasets with varying characteristics and a comprehensive 
assessment of generalizability under different factors such as imag-
ing devices and acquisition parameters. Also, there are some cases 
where sharing the code is not desired (e.g., because an industrial 
application is foreseen) or where the code will not adhere to best 
development practices because it is just a prototype to test a new 
methodology. Nevertheless, sharing weakly documented code is 
always better than no sharing at all. Similarly, there are cases 
where data sharing is difficult or even impossible due to regulatory 
constraints. As mentioned above, reproducibility is a spectrum. 
Where a given study should lie in this spectrum should depend on 
the type of study and the constraints the researchers face.
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We thus advocate for a nondogmatic approach to reproducibil-
ity. Guidelines are extremely useful, but they should not be carved 
in stone. Also, we believe that the requirements should be assessed 
by the reviewers on a case-by-case basis. Indeed, what matters is 
that the reproducibility level matches the claims made in the paper. 
Of course, it is a good thing that journals and conferences provide 
requirements for reporting essential information. It is helpful to 
researchers and makes the community progress towards better 
science. Also, some bad practices such as data leakage or 
p-hacking need to be banished. But we believe that very high 
reproducibility requirements (e.g., requiring that exact reproduc-
ibility is feasible) at the level of a given journal or conference would 
be counterproductive. Finally, we like the idea of a badging system 
[27] which would tag papers according to their reproducibility 
level. It remains to be seen how such system should be 
implemented. 

To conclude, we firmly believe that it is essential for researchers 
and students in the field of ML for medical imaging to be trained to 
the concepts and practice of reproducibility. It will be beneficial to 
them as well as to the community in general. But this does not 
mean that researchers should aim at perfect reproducibility in all 
their studies. Diversity in research approaches and practices is also a 
factor that drives science forward and which should be preserved. 
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Chapter 22 

Interpretability of Machine Learning Methods Applied 
to Neuroimaging 

Elina Thibeau-Sutre, Sasha Collin, Ninon Burgos, and Olivier Colliot 

Abstract 

Deep learning methods have become very popular for the processing of natural images and were then 
successfully adapted to the neuroimaging field. As these methods are non-transparent, interpretability 
methods are needed to validate them and ensure their reliability. Indeed, it has been shown that deep 
learning models may obtain high performance even when using irrelevant features, by exploiting biases in 
the training set. Such undesirable situations can potentially be detected by using interpretability methods. 
Recently, many methods have been proposed to interpret neural networks. However, this domain is not 
mature yet. Machine learning users face two major issues when aiming to interpret their models: which 
method to choose and how to assess its reliability. Here, we aim at providing answers to these questions by 
presenting the most common interpretability methods and metrics developed to assess their reliability, as 
well as their applications and benchmarks in the neuroimaging context. Note that this is not an exhaustive 
survey: we aimed to focus on the studies which we found to be the most representative and relevant. 

Key words Interpretability, Saliency, Machine learning, Deep learning, Neuroimaging, Brain 
disorders 

1 Introduction 

1.1 Need for 

Interpretability 

Many metrics have been developed to evaluate the performance of 
machine learning (ML) systems. In the case of supervised systems, 
these metrics compare the output of the algorithm to a ground 
truth, in order to evaluate its ability to reproduce a label given by a 
physician. However, the users (patients and clinicians) may want 
more information before relying on such systems. On which fea-
tures is the model relying to compute the results? Are these features 
close to the way a clinician thinks? If not, why? This questioning 
coming from the actors of the medical field is justified, as errors in 
real life may lead to dramatic consequences. Trust into ML systems 
cannot be built only based on a set of metrics evaluating the 
performance of the system. Indeed, various examples of machine 
learning systems taking correct decisions for the wrong reasons
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exist, e.g., [1–3]. Thus, even though their performance is high, 
they may be unreliable and, for instance, not generalize well to 
slightly different data sets. One can try to prevent this issue by 
interpreting the model with an appropriate method whose output 
will highlight the reasons why a model took its decision.
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Fig. 1 Example of an interpretability method highlighting why a network took the wrong decision. The 
explained classifier was trained on the binary task “Husky” vs “Wolf.” The pixels used by the model are 
actually in the background and highlight the snow. (Adapted from [1]. Permission to reuse was kindly granted 
by the authors) 

In [1], the authors show a now classical case of a system that 
correctly classifies images for wrong reasons. They purposely 
designed a biased data set in which wolves always are in a snowy 
environment whereas huskies are not. Then, they trained a classifier 
to differentiate wolves from huskies: this classifier had good accu-
racy but classified wolves as huskies when the background was 
snowy and huskies as wolves when there was no snow. Using an 
interpretability method, they further highlighted that the classifier 
was looking at the background and not at the animal (see Fig. 1). 

Another study [2] detected a bias in ImageNet (a widely used 
data set of natural images) as the interpretation of images with the 
label “chocolate sauce” highlighted the importance of the spoon. 
Indeed, ImageNet “chocolate sauce” images often contained 
spoons, leading to a spurious correlation. There are also examples 
of similar problems in medical applications. For instance, a recent 
paper [3] showed with interpretability methods that some deep 
learning systems detecting COVID-19 from chest radiographs 
actually relied on confounding factors rather than on the actual 
pathological features. Indeed, their model focused on other regions 
than the lungs to evaluate the COVID-19 status (edges, dia-
phragm, and cardiac silhouette). Of note, their model was trained 
on public data sets which were used by many studies.
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1.2 How to Interpret 

Models 

According to [4], model interpretability can be broken down into 
two categories: transparency and post hoc explanations. 

A model can be considered as transparent when it (or all parts 
of it) can be fully understood as such, or when the learning process 
is understandable. A natural and common candidate that fits, at first 
sight, these criteria is the linear regression algorithm, where coeffi-
cients are usually seen as the individual contributions of the input 
features. Another candidate is the decision tree approach where 
model predictions can be broken down into a series of understand-
able operations. One can reasonably consider these models as 
transparent: one can easily identify the features that were used to 
take the decision. However, one may need to be cautious not to 
push too far the medical interpretation. Indeed, the fact that a 
feature has not been used by the model does not mean that it is 
not associated with the target. It just means that the model did not 
need it to increase its performance. For instance, a classifier aiming 
at diagnosing Alzheimer’s disease may need only a set of regions 
(for instance, from the medial temporal lobe of the brain) to achieve 
an optimal performance. This does not mean that other brain 
regions are not affected by the disease, just that they were not 
used by the model to take its decision. This is the case, for example, 
for sparse models like LASSO, but also standard multiple linear 
regressions. Moreover, features given as input to transparent mod-
els are often highly engineered, and choices made before the train-
ing step (preprocessing, feature selection) may also hurt the 
transparency of the whole framework. Nevertheless, in spite of 
these caveats, such models can reasonably be considered transpar-
ent, in particular when compared to deep neural networks which 
are intrinsically black boxes. 

The second category of interpretability methods, post hoc 
interpretations, allows dealing with non-transparent models. Xie 
et al. [5] proposed a taxonomy in three categories: visualization 
methods consist in extracting an attribution map of the same size as 
the input whose intensities allow knowing where the algorithm 
focused its attention, distillation approaches consist in reproducing 
the behavior of a black box model with a transparent one, and 
intrinsic strategies include interpretability components within the 
framework, which are trained along with the main task (e.g., a 
classification). In the present work, we focus on this second cate-
gory of methods (post hoc) and proposed a new taxonomy includ-
ing other methods of interpretation (see Fig. 2). Post hoc 
interpretability is the most used category nowadays, as it allows 
interpreting deep learning methods that became the state of the art 
for many tasks in neuroimaging, as in other application fields.
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1.3 Chapter Content 

and Outline 

This chapter focuses on methods developed to interpret 
non-transparent machine learning systems, mainly deep learning 
systems, computing classification, or regression tasks from high-
dimensional inputs. The interpretability of other frameworks 
(in particular generative models such as variational autoencoders 
or generative adversarial networks) is not covered as there are not 
enough studies addressing them. It may be because high-
dimensional outputs (such as images) are easier to interpret “as 
such,” whereas small dimensional outputs (such as scalars) are less 
transparent. 

Most interpretability methods presented in this chapter pro-
duce an attribution map: an array with the same dimensions as that 
of the input (up to a resizing) that can be overlaid on top of the 
input in order to exhibit an explanation of the model prediction. In 
the literature, many different terms may coexist to name this output 
such as saliency map, interpretation map, or heatmap. To avoid 
misunderstandings, in the following, we will only use the term 
“attribution map.” 

The chapter is organized as follows. Subheading 2 presents the 
most commonly used interpretability methods proposed for com-
puter vision, independently of medical applications. It also 
describes metrics developed to evaluate the reliability of interpret-
ability methods. Then, Subheading 3 details their application to 
neuroimaging. Finally, Subheading 4 discusses current limitations 
of interpretability methods, presents benchmarks conducted in the 
neuroimaging field, and gives some advice to the readers who 
would like to interpret their own models. 

Mathematical notations and abbreviations used during this 
chapter are summarized in Tables 1 and 2. A short reminder on 
neural network training procedure and a brief description of the 
diseases mentioned in the present chapter are provided in 
Appendices A and B. 

2 Interpretability Methods 

This section presents the main interpretability methods proposed in 
the domain of computer vision. We restrict ourselves to the meth-
ods that have been applied to the neuroimaging domain (the 
applications themselves being presented in Subheading 3). The 
outline of this section is largely inspired from the one proposed 
by Xie et al. [5]: 

1. Weight visualization consists in directly visualizing weights 
learned by the model, which is natural for linear models but 
quite less informative for deep learning networks.
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2. Feature map visualization consists in displaying intermediate 
results produced by a deep learning network to better under-
stand its operation principle. 

3. Back-propagation methods back-propagate a signal through 
the machine learning system from the output node of interest oc 
to the level of the input to produce an attribution map. 

Table 1 
Mathematical notations 

X0 is the input tensor given to the network, and X refers to any input, sampled from the set X . 

y is a vector of target classes corresponding to the input. 

f is a network of L layers. The first layer is the closest to the input; the last layer is the closest to the output. 
A layer is a function. 

g is a transparent function which aims at reproducing the behavior of f. 

w and b are the weights and the bias associated to a linear function (e.g., in a fully connected layer). 

u and v are locations (set of coordinates) corresponding to a node in a feature map. They belong 
respectively to the set U and V . 

A
ðlÞðuÞ is the value of the feature map computed by layer l, of  K channels at channel k, at position u. 

R
ðlÞ 
k ðuÞ is the value of a property back-propagated through the l+ 1,  of  K channels at channel k, at  

position u. R(l ) and A(l ) have the same number of channels. 

oc is the output node of interest (in a classification framework, it corresponds to the node of the class c). 

Sc is an attribution map corresponding to the output node oc. 

m is a mask of perturbations. It can be applied to X to compute its perturbed version Xm . 

Φ is a function producing a perturbed version of an input X. 

Γc is the function computing the attribution map Sc from the black-box function f and an input X0. 

Table 2 
Abbreviations 

CAM Class activation maps 

CNN Convolutional neural network 

CT Computed tomography 

Grad-CAM Gradient-weighted class activation mapping 

LIME Local interpretable model-agnostic explanations 

LRP Layer-wise relevance 

MRI Magnetic resonance imaging 

SHAP SHapley Additive exPlanations 

T1w T1-weighted [Magnetic Resonance Imaging]
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4. Perturbation methods locally perturb the input and evaluate 
the difference in performance between using the original input 
and the perturbed version to infer which parts of the input are 
relevant for the machine learning system. 

5. Distillation approximates the behavior of a black box model 
with a more transparent one and then draw conclusions from 
this new model. 

6. Intrinsic includes the only methods of this chapter that are not 
post hoc explanations: in this case, interpretability is obtained 
thanks to components of the framework that are trained at the 
same time as the model. 

Finally, for the methods producing an attribution map, a sec-
tion is dedicated to the metrics used to evaluate different properties 
(e.g., reliability or human intelligibility) of the maps. 

We caution readers that this taxonomy is not perfect: some 
methods may belong to several categories (e.g., LIME and SHAP 
could belong either to perturbation or distillation methods). More-
over, interpretability is still an active research field, and then some 
categories may (dis)appear or be fused in the future. 

The interpretability methods were (most of the time) originally 
proposed in the context of a classification task. In this case, the 
network outputs an array of size C, corresponding to the number of 
different labels existing in the data set, and the goal is to know how 
the output node corresponding to a particular class c interacts with 
the input or with other parts of the network. However, these 
techniques can be extended to other tasks: for example, for a 
regression task, we will just have to consider the output node 
containing the continuous variable learned by the network. More-
over, some methods do not depend on the nature of the algorithm 
(e.g., standard perturbation or LIME) and can be applied to any 
machine learning algorithm. 

2.1 Weight 

Visualization 

At first sight, one of can be tempted to directly visualize the weights 
learned by the algorithm. This method is really simple, as it does 
not require further processing. However, even though it can make 
sense for linear models, it is not very informative for most networks 
unless they are specially designed for this interpretation. 

This is the case for AlexNet [7], a convolutional neural network 
(CNN) trained on natural images (ImageNet). In this network the 
size of the kernels in the first layer is large enough (11× 11) to 
distinguish patterns of interest. Moreover, as the three channels in 
the first layer correspond to the three color channels of the images 
(red, green, and blue), the values of the kernels can also be repre-
sented in terms of colors (this is not the case for hidden layers, in 
which the meaning of the channels is lost). The 96 kernels of the 
first layer were illustrated in the original article as in Fig. 3.



However, for hidden layers, this kind of interpretation may be 
misleading as nonlinearity activation layers are added between the 
convolutions and fully connected layers; this is why they only 
visualized the weights of the first layer. 
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Fig. 3 96 convolutional kernels of size 3@11 × 11 learned by the first convolutional layer on the 3@224 × 224 
input images by AlexNet. (Adapted from [7]. Permission to reuse was kindly granted by the authors) 

Fig. 4 The weights of small kernels in hidden layers (here 5× 5) can be really difficult to interpret alone. Here 
some context allows better understanding how it modulates the interaction between concepts conveyed by the 
input and the output. (Adapted from [8] (CC BY 4.0)) 

To understand the weight visualization in hidden layers of a 
network, Voss et al. [8] proposed to add some context to the input 
and the output channels. This way they enriched the weight visuali-
zation with feature visualization methods able to generate an image 
corresponding to the input node and the output node (see Fig. 4). 
However, the feature visualization methods used to bring some 
context can also be difficult to interpret themselves, and then it 
only moves the interpretability problem from weights to features. 

2.2 Feature Map 

Visualization 

Feature maps are the results of intermediate computations done 
from the input and resulting in the output value. Then, it seems 
natural to visualize them or link them to concepts to understand 
how the input is successively transformed into the output. 

Methods described in this section aim at highlighting which 
concepts a feature map (or part of it) A conveys.
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2.2.1 Direct 

Interpretation 

The output of a convolution has the same shape as its input: a 2D 
image processed by a convolution will become another 2D image 
(the size may vary). Then, it is possible to directly visualize these 
feature maps and compare them to the input to understand the 
operations performed by the network. However, the number of 
filters of convolutional layers (often a hundred) makes the interpre-
tation difficult as a high number of images must be interpreted for a 
single input. 

Instead of directly visualizing the feature map A, it is possible to 
study the latent space including all the values of the samples of a 
data set at the level of the feature map A. Then, it is possible to 
study the deformations of the input by drawing trajectories 
between samples in this latent space, or more simply to look at 
the distribution of some label in a manifold learned from the latent 
space. In such a way, it is possible to better understand which 
patterns were detected, or at which layer in the network classes 
begin to be separated (in the classification case). There is often no 
theoretical framework to illustrate these techniques, and then we 
referred to studies in the context of the medical application (see 
Subheading 3.2 for references). 

2.2.2 Input Optimization Olah et al. [9] proposed to compute an input that maximizes the 
value of a feature map A (see Fig. 5). However, this technique leads 
to unrealistic images that may be themselves difficult to interpret, 
particularly for neuroimaging data. To have a better insight of the 
behavior of layers or filters, another simple technique illustrated by 
the same authors consists in isolating the inputs that led to the 
highest activation of A. The combination of both methods, dis-
played in Fig. 6, allows a better understanding of the concepts 
conveyed by A of a GoogLeNet trained on natural images. 

2.3 Back-

Propagation Methods 

The goal of these interpretability methods is to link the value of an 
output node of interest oc to the image X0 given as input to a 
network. They do so by back-propagating a signal from oc to X0:

Fig. 5 Optimization of the input for different levels of feature maps. (Adapted from [9] (CC BY 4.0))



2.3.1 Gradient Back-

Propagation

this process (backward pass) can be seen as the opposite operation 
than the one done when computing the output value from the 
input (forward pass).
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Fig. 6 Interpretation of a neuron of a feature map by optimizing the input associated with a bunch of training 
examples maximizing this neuron. (Adapted from [9] (CC BY 4.0)) 

Fig. 7 Attribution map of an image found with gradients back-propagation. (Adapted from [10]. Permission to 
reuse was kindly granted by the authors) 

Any property can be back-propagated as soon as its value at the 
level of a feature map l-1 can be computed from its value in the 
feature map l. In this section, the back-propagated properties are 
gradients or the relevance of a node oc. 

During network training, gradients corresponding to each layer are 
computed according to the loss to update the weights. Then, we 
can see these gradients as the difference needed at the layer level to 
improve the final result: by adding this difference to the weights, 
the probability of the true class y increases. 

In the same way, the gradients can be computed at the image 
level to find how the input should vary to change the value of oc (see 
example on Fig. 7. This gradient computation was proposed by 
[10], in which the attribution map Sc corresponding to the input



image X0 and the output node oc is computed according to the 
following equation: 
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Sc = 
∂oc 
∂X

j
X =X 0 

ð1Þ 

Due to its simplicity, this method is the most commonly used 
to interpret deep learning networks. Its attribution map is often 
called a “saliency map”; however, this term is also used in some 
articles to talk about any attribution map, and this is why we chose 
to avoid this term in this chapter. 

This method was modified to derive many similar methods 
based on gradient computation described in the following 
paragraphs. 

Gradient Input This method is the point-wise product of the 
gradient map described at the beginning of the section and the 
input. Evaluated in [11], it was presented as an improvement of the 
gradients method, though the original paper does not give strong 
arguments on the nature of this improvement. 

DeconvNet & Guided Back-Propagation The key difference 
between this procedure and the standard back-propagation method 
is the way the gradients are back-propagated through the ReLU 
layer. 

The ReLU layer is a commonly used activation function that 
sets to 0 the negative input values and does not affect positive input 
values. The derivative of this function in layer l is the indicator 
function 1AðlÞ >0 : it outputs 1 (resp. 0) where the feature maps 
computed during the forward pass were positive (resp. negative). 

Springenberg et al. [12] proposed to back-propagate the signal 
differently. Instead of applying the indicator function of the feature 
map A(l ) computed during the forward pass, they directly applied 
ReLU to the back-propagated values Rðlþ1Þ = ∂oc 

∂Aðlþ1Þ, which corre-
sponds to multiplying it by the indicator function 1Rðlþ1Þ >0. This 
“backward deconvnet” method allows back-propagating only the 
positive gradients, and, according to the authors, it results in a 
reconstructed image showing the part of the input image that is 
most strongly activating this neuron. 

The guided back-propagation method (Eq. 4) combines the 
standard back-propagation (Eq. 2) with the backward deconvnet 
(Eq. 3): when back-propagating gradients through ReLU layers, a 
value is set to 0 if the corresponding top gradients or bottom data is 
negative. This adds an additional guidance to the standard back-
propagation by preventing backward flow of negative gradients.
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RðlÞ = 1AðlÞ >0 �Rðlþ1Þ ð2Þ 

RðlÞ = 1Rðlþ1Þ >0 �Rðlþ1Þ ð3Þ 

RðlÞ = 1AðlÞ >0 � 1Rðlþ1Þ >0 �Rðlþ1Þ ð4Þ 
Any back-propagation procedure can be “guided,” as it only 

concerns the way ReLU functions are managed during back-
propagation (this is the case, e.g., for guided Grad-CAM). 

While it was initially adopted by the community, this method 
showed severe defects as discussed later in Subheading 4. 

CAM & Grad-CAM In this setting, attribution maps are com-
puted at the level of a feature map produced by a convolutional 
layer and then upsampled to be overlaid and compared with the 
input. The first method, class activation maps (CAM), was pro-
posed by Zhou et al. [13] and can be only applied to CNNs with 
the following specific architecture: 

1. A series of convolutions associated with activation functions 
and possibly pooling layers. These convolutions output a fea-
ture map A with N channels. 

2. A global average pooling that extracts the mean value of each 
channel of the feature map produced by the convolutions. 

3. A single fully connected layer 

The CAM corresponding to oc will be the mean of the channels 
of the feature map produced by the convolutions, weighted by the 
weights wkc learned in the fully connected layer 

Sc = 
N 

k=1 

wkc �Ak: ð5Þ 

This map has the same size as Ak, which might be smaller than 
the input if the convolutional part performs downsampling opera-
tions (which is very often the case). Then, the map is upsampled to 
the size of the input to be overlaid on the input. 

Selvaraju et al. [14] proposed an extension of CAM that can be 
applied to any architecture: Grad-CAM (illustrated on Fig. 8). As in 
CAM, the attribution map is a linear combination of the channels of 
a feature map computed by a convolutional layer. But, in this case, 
the weights of each channel are computed using gradient back-
propagation 

αkc = 
1 
jUj

u∈U 

∂oc 
∂AkðuÞ : ð6Þ



2.3.2 Relevance Back-

Propagation
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Fig. 8 Grad-CAM explanations highlighting two different objects in an image. (a) the original image, (b) the 
explanation based on the “dog” node, (c) the explanation based on the “cat” node. ©2017 IEEE. (Reprinted, 
with permission, from [14]) 

The final map is then the linear combination of the feature 
maps weighted by the coefficients. A ReLU activation is then 
applied to the result to only keep the features that have a positive 
influence on class c 

Sc =ReLU 
N 

k=1 

αkc �Ak : ð7Þ 

Similarly to CAM, this map is then upsampled to the input size. 
Grad-CAM can be applied to any feature map produced by a 

convolution, but in practice the last convolutional layer is very often 
chosen. The authors argue that this layer is “the best compromise 
between high-level semantics and detailed spatial information” (the 
latter is lost in fully connected layers, as the feature maps are 
flattened). 

Because of the upsampling step, CAM and Grad-CAM produce 
maps that are more human-friendly because they contain more 
connected zones, contrary to other attribution maps obtained 
with gradient back-propagation that can look very scattered. How-
ever, the smallest the feature maps Ak, the blurrier they are, leading 
to a possible loss of interpretability. 

Instead of back-propagating gradients to the level of the input or of 
the last convolutional layer, Bach et al. [15] proposed to back-
propagate the score obtained by a class c, which is called the 
relevance. This score corresponds to oc after some post-processing 
(e.g., softmax), as its value must be positive if class c was identified 
in the input. At the end of the back-propagation process, the goal is 
to find the relevance Ru of each feature u of the input (e.g., of each 
pixel of an image) such that oc = u∈URu. 

In their paper, Bach et al. [15] take the example of a fully 
connected function defined by a matrix of weights w and a bias



b at layer l+ 1. The value of a node v in feature map A(l+1) is 
computed during the forward pass by the given formula: 
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Fig. 9 LRP attribution maps explaining the decision of a neural network trained on MNIST. ©2017 IEEE. 
(Reprinted, with permission, from [16]) 

Aðlþ1ÞðvÞ= b þ 
u∈U 

wuvA
ðlÞðuÞ ð8Þ 

During the back-propagation of the relevance, R(l ) (u), the 
value of the relevance at the level of the layer l +1 is computed 
according to the values of the relevance R(l+1) (v) which are 
distributed according to the weights w learned during the forward 
pass and the values of A(l ) (v): 

RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ AðlÞðuÞwuv 

u0∈U 

AðlÞðu0Þwu0v 
: ð9Þ 

The main issue of the method comes from the fact that the 
denominator may become (close to) zero, leading to the explosion 
of the relevance back-propagated. Moreover, it was shown by [11] 
that when all activations are piece-wise linear (such as ReLU or 
leaky ReLU), the layer-wise relevance (LRP) method reproduces 
the output of gradient input, questioning the usefulness of the 
method. 

This is why Samek et al. [16] proposed two variants of the 
standard LRP method [15]. Moreover they describe the behavior 
of the back-propagation in other layers than the linear ones (the 
convolutional one following the same formula as the linear). They 
illustrated their method with a neural network trained on MNIST 
(see Fig. 9). To simplify the equations in the following paragraphs, 
we now denote the weighted activations as zuv=A(l ) (u)wuv. 

e-rule The E-rule integrates a parameter E>0, used to avoid 
numerical instability. Though it avoids the case of a null denomina-
tor, this variant breaks the rule of relevance conservation across 
layers
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RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ zuv 

u0∈U 

zu0v þ ε× sign 
u0∈U 

zu0v 

: ð10Þ 

β-rule The β-rule keeps the conservation of the relevance by treat-
ing separately the positive weighted activations zþ 

uv from the nega-
tive ones z-

uv 

RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ ð1þ βÞ zþ 
uv 

u0∈U 

zþ 
u0v

- β 
z-
uv 

u0∈U 

z-
u0v 

: ð11Þ 

Though these two LRP variants improve the numerical stability 
of the procedure, they imply to choose the values of parameters that 
may change the patterns in the obtained attribution map. 

Deep Taylor Decomposition Deep Taylor decomposition [17] 
was proposed by the same team as the one that proposed the 
original LRP method and its variants. It is based on similar princi-
ples as LRP: the value of the score obtained by a class c is back-
propagated, but the back-propagation rule is based on first-order 
Taylor expansions. 

The back-propagation from node v in at the level of R(l+1) to 
u at the level of R(l ) can be written 

RðlÞðuÞ= 
v∈V 

∂Rðlþ1ÞðvÞ 
∂AðlÞðuÞ ~A

ðlÞ 
v ðuÞ 

AðlÞðuÞ- ~A
ðlÞ 
v ðuÞ : ð12Þ 

This rule implies a root point ~A
ðlÞ 
v ðuÞ which is close to A(l ) (u) 

and meets a set of constraints depending on v. 

2.4 Perturbation 

Methods 

Instead of relying on a backward pass (from the output to the 
input) as in the previous section, perturbation methods rely on 
the difference between the value of oc computed with the original 
inputs and a locally perturbed input. This process is less abstract for 
humans than back-propagation methods as we can reproduce it 
ourselves: if the part of the image that is needed to find the good 
output is hidden, we are also not able to predict correctly. More-
over, it is model-agnostic and can be applied to any algorithm or 
deep learning architecture. 

The main drawback of these techniques is that the nature of the 
perturbation is crucial, leading to different attribution maps 
depending on the perturbation function used. Moreover, 
Montavon et al. [18] suggest that the perturbation rule should



keep the perturbed input in the training data distribution. Indeed, 
if it is not the case, one cannot know if the network performance 
dropped because of the location or the nature of the perturbation. 
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Fig. 10 Attribution maps obtained with standard perturbation. Here the perturbation is a gray patch covering a 
specific zone of the input as shown in the left column. The attribution maps (second row) display the 
probability of the true label: the lower the value, the most important it is for the network to correctly identify 
the label. This kind of perturbation takes the perturbed input out of the training distribution. (Reprinted by 
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, ECCV 2014: Visualizing 
and Understanding Convolutional Networks, [19], 2014) 

2.4.1 Standard 

Perturbation 

Zeiler and Fergus [19] proposed the most intuitive method relying 
on perturbations. This standard perturbation procedure consists in 
removing information locally in a specific zone of an input X0 and 
evaluating if it modifies the output node oc. The more the pertur-
bation degrades the task performance, the more crucial this zone is 
for the network to correctly perform the task. To obtain the final 
attribution map, the input is perturbed according to all possible 
locations. Examples of attribution maps obtained with this method 
are displayed in Fig. 10. 

As evaluating the impact of the perturbation at each pixel 
location is computationally expensive, one can choose not to per-
turb the image at each pixel location but to skip some of them (i.e., 
scan the image with a stride > 1). This will lead to a smaller 
attribution map, which needs to be upsampled to be compared to 
the original input (in the same way as CAM & Grad-CAM).
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However, in addition to the problem of the nature of the 
perturbation previously mentioned, this method presents two 
drawbacks:

• The attribution maps depend on the size of the perturbation: if 
the perturbation becomes too large, the perturbation is not local 
anymore; if it is too small, it is not meaningful anymore (a pixel 
perturbation cannot cover a pattern).

• Input pixels are considered independently from each other: if the 
result of a network relies on a combination of pixels that cannot 
all be covered at the same time by the perturbation, their influ-
ence may not be detected. 

2.4.2 Optimized 

Perturbation 

To deal with these two issues, Fong and Vedaldi [2] proposed to 
optimize a perturbation mask covering the whole input. This per-
turbation mask m has the same size as the input X0. Its application 
is associated with a perturbation function Φ and leads to the com-
putation of the perturbed input Xm 

0 . Its value at a coordinate 
u reflects the quantity of information remaining in the perturbed 
image:

• If m(u)=1, the pixel at location u is not perturbed and has the 
same value in the perturbed input as in the original input 
(Xm 

0 ðuÞ=X 0ðuÞ).
• If m(u)=0, the pixel at location u is fully perturbed and the 

value in the perturbed image is the one given by the perturba-
tion function only (Xm 

0 ðuÞ=ΦðX 0ÞðuÞ). 
This principle can be extended to any value between 0 and 

1 with the a linear interpolation 

Xm 
0 ðuÞ=mðuÞX 0ðuÞþð1-mðuÞÞΦðX 0ÞðuÞ: ð13Þ 

Then, the goal is to optimize this mask m according to three 
criteria: 

1. The perturbed input Xm 
0 should lead to the lowest performance 

possible. 

2. The mask m should perturb the minimum number of pixels 
possible. 

3. The mask m should produce connected zones (i.e., avoid the 
scattered aspect of gradient maps). 

These three criteria are optimized using the following loss: 

f ðXm 
0 Þ þ  λ1k1-mkβ1 β1 

þ λ2k∇mkβ2 β2 
ð14Þ 

with f a function that decreases as the performance of the 
network decreases. 

However, the method also presents two drawbacks:



2.5.1 Local

Approximation
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Fig. 11 In this example, the network learned to classify objects in natural images. Instead of masking the 
maypole at the center of the image, it creates artifacts in the sky to degrade the performance of the network. 
©2017 IEEE. (Reprinted, with permission, from [2])

• The values of hyperparameters must be chosen (λ1, λ2, β1, β2) to  
find a balance between the three optimization criteria of 
the mask.

• The mask may not highlight the most important pixels of the 
input but instead create artifacts in the perturbed image to 
artificially degrade the performance of the network (see Fig. 11). 

2.5 Distillation Approaches described in this section aim at developing a transpar-
ent method to reproduce the behavior of a black box one. Then it is 
possible to consider simple interpretability methods (such as weight 
visualization) on the transparent method instead of considering the 
black box. 

LIME Ribeiro et al. [1] proposed local interpretable model-
agnostic explanations (LIME). This approach is:

• Local, as the explanation is valid in the vicinity of a specific input 
X0

• Interpretable, as an interpretable model g (linear model, deci-
sion tree. . .) is computed to reproduce the behavior of f on X0

• Model-agnostic, as it does not depend on the algorithm trained 

This last property comes from the fact that the vicinity of X0 is 
explored by sampling variations of X0 that are perturbed versions of 
X0. Then LIME shares the advantage (model-agnostic) and draw-
back (perturbation function dependent) of perturbation methods 
presented in Subheading 2.4. Moreover, the authors specify that, in 
the case of images, they group pixels of the input in d super-pixels 
(contiguous patches of similar pixels). 

The loss to be minimized to find g specific to the input X0 is the 
following: 

ℒðf , g , πX 0
Þ þ ΩðgÞ, ð15Þ
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where πX 0 
is a function that defines the locality of X0 (i.e., 

πX 0
ðX Þ decreases as X becomes closer to X0), ℒ measures how 

unfaithful g is in approximating f according πX 0 
, and Ω is a measure 

of the complexity of g. 
Ribeiro et al. [1] limited their search to sparse linear models; 

however, other assumptions could be made on g. 
g is not applied to the input directly but to a binary mask 

m∈{0, 1}d that transforms the input X in Xm and is applied 
according to a set of d super-pixels. For each super-pixel u: 

1. If m(u)=1, the super-pixel u is not perturbed. 

2. If m(u)=0, the super-pixel u is perturbed (i.e., it is grayed). 

They used 

πX 0
ðX Þ= exp 

ðX -X 0Þ2 
σ2 

and 

ℒðf , g , πX 0
Þ= 

m 
πX 0

ðXm 
0 Þ � ðf ðXm 

0 Þ- gðmÞÞ2 : 
Finally Ω(g) is the number of non-zero weights of g, and its value is 
limited to K. This way they select the K super-pixels in X0 that best 
explain the algorithm result f(X0). 

SHAP Lundberg and Lee [20] proposed SHAP (SHapley Addi-
tive exPlanations), a theoretical framework that encompasses sev-
eral existing interpretability methods, including LIME. In this 
framework each of the N features (again, super-pixels for images) 
is associated with a coefficient ϕ that denotes its contribution to the 
result. The contribution of each feature is evaluated by perturbing 
the input X0 with a binary mask m (see paragraph on LIME). Then 
the goal is to find an interpretable model g specific to X0, such that 

gðmÞ=ϕ0 þ 
N 

1 

ϕimi ð16Þ 

with ϕ0 being the output when the input is fully perturbed. 

The authors look for an expression of ϕ that respects three 
properties:

• Local accuracy g and f should match in the vicinity of X0: 
gðmÞ= f ðXm 

0 Þ.
• Missingness Perturbed features should not contribute to the 

result: mi =0→ϕi =0.

• Consistency Let’s denote as m ∖ i the mask m in which mi=0. 
For any two models f 1 and f 2 ,  if
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Fig. 12 Visualization of a soft decision tree trained on MNIST. (Adapted from [21]. Permission to reuse was 
kindly granted by the authors) 

f 1ðXm 
0 Þ- f 1ðXm∖i 

0 Þ≥ f 2ðXm 
0 Þ- f 2ðXm∖i 

0 Þ 
then for all m∈{0, 1}N ϕ1 

i ≥ϕ2 
i (ϕ

k are the coefficients associated 
with model f k ). 

Lundberg and Lee [20] show that only one expression is possi-
ble for the coefficients ϕ, which can be approximated with different 
algorithms: 

ϕi = 
m∈f0, 1gN 

jmj!ðN - jmj-1Þ! 
N ! 

f ðXm 
0 Þ- f ðXm∖i 

0 Þ : ð17Þ 

2.5.2 Model Translation Contrary to local approximation, which provides an explanation 
according to a specific input X0, model translation consists in 
finding a transparent model that reproduces the behavior of the 
black box model on the whole data set. 

As it was rarely employed in neuroimaging frameworks, this 
section only discusses the distillation to decision trees proposed in 
[21] (preprint). For a more extensive review of model translation 
methods, we refer the reader to [5]. 

After training a machine learning system f, a binary decision 
tree g is trained to reproduce its behavior. This tree is trained on a 
set of inputs X, and each inner node i learns a matrix of weights wi 

and biases bi. The forward pass of X in the node i of the tree is as 
follows: if sigmoid(wiX+ bi)>0.5, then the right leaf node is cho-
sen, else the left leaf node is chosen. After the end of the decision 
tree’s training, it is possible to visualize at which level which classes 
were separated to better understand which classes are similar for the



network. It is also possible to visualize the matrices of weights 
learned by each inner node to identify patterns learned at each 
class separation. An illustration of this distillation process, on the 
MNIST data set (hand-written digits), can be found in Fig. 12. 
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2.6 Intrinsic Contrary to the previous sections in which interpretability methods 
could be applied to (almost) any network after the end of the 
training procedure, the following methods require to design the 
framework before the training phase, as the interpretability compo-
nents and the network are trained simultaneously. In the papers 
presented in this Subheading [22–24], the advantages of these 
methods are dual: they improve both the interpretability and per-
formance of the network. However, the drawback is that they have 
to be implemented before training the network, and then they 
cannot be applied in all cases. 

2.6.1 Attention Modules Attention is a concept in machine learning that consists in produc-
ing an attribution map from a feature map and using it to improve 
learning of another task (such as classification, regression, 
reconstruction. . .) by making the algorithm focus on the part of 
the feature map highlighted by the attribution map. 

In the deep learning domain, we take as reference [22], in 
which a network is trained to produce a descriptive caption of 
natural images. This network is composed of three parts: 

1. A convolutional encoder that reduces the dimension of the 
input image to the size of the feature maps A 

Fig. 13 Examples of images correctly captioned by the network. The focus of the attribution map is highlighted 
in white and the associated word in the caption is underlined. (Adapted from [22]. Permission to reuse was 
kindly granted by the authors)
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2. An attention module that generates an attribution map St from 
A and the previous hidden state of the long short-term mem-
ory (LSTM) network 

3. An LSTM decoder that computes the caption from its previous 
hidden state, the previous word generated, A and St 

As St is of the same size as A (smaller than the input), the result 
is then upsampled to be overlaid on the input image. As one 
attribution map is generated per word generated by the LSTM, it 
is possible to know where the network focused when generating 
each word of the caption (see Fig. 13). In this example, the attribu-
tion map is given to a LSTM, which uses it to generate a context 
vector zt by applying a function ϕ to A and St. 

More generally in CNNs, the point-wise product of the attri-
bution map S and the feature map A is used to generate the refined 
feature map A′ which is given to the next layers of the network. 
Adding an attention module implies to make new choices for the 
architecture of the model: its location (on lower or higher feature 
maps) may impact the performance of the network. Moreover, it is 
possible to stack several attention modules along the network, as it 
was done in [23]. 

2.6.2 Modular 

Transparency 

Contrary to the studies of the previous sections, the frameworks of 
these categories are composed of several networks (modules) that 
interact with each other. Each module is a black box, but the 
transparency of the function, or the nature of the interaction

Fig. 14 Framework with modular transparency browsing an image to compute the output at the global scale. 
(Adapted from [24]. Permission to reuse was kindly granted by the authors)



between them, allows understanding how the system works glob-
ally and extracting interpretability metrics from it.
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A large variety of setups can be designed following this princi-
ple, and it is not possible to draw a more detailed general rule for 
this section. We will take the example described in [24], which was 
adapted to neuroimaging data (see Subheading 3.6), to illustrate 
this section, though it may not be representative of all the aspects of 
modular transparency. 

Ba et al. [24] proposed a framework (illustrated in Fig. 14) to  
perform the analysis of an image in the same way as a human, by 
looking at successive relevant locations in the image. To perform 
this task, they assemble a set of networks that interact together:

• Glimpse network This network takes as input a patch of the 
input image and the location of its center to output a context 
vector that will be processed by the recurrent network. Then this 
vector conveys information on the main features in a patch and 
its location.

• Recurrent network This network takes as input the successive 
context vectors and update its hidden state that will be used to 
find the next location to look at and to perform the learned task 
at the global scale (in the original paper a classification of the 
whole input image).

• Emission network This network takes as input the current 
state of the recurrent network and outputs the next location to 
look at. This will allow computing the patch that will feed the 
glimpse network.

• Context network This network takes as input the whole input 
at the beginning of the task and outputs the first context vector 
to initialize the recurrent network.

• Classification network This network takes as input the cur-
rent state of the recurrent network and outputs a prediction for 
the class label. 

The global framework can be seen as interpretable as it is 
possible to review the successive processed locations. 

2.7 Interpretability 

Metrics 

To evaluate the reliability of the methods presented in the previous 
sections, one cannot only rely on qualitative evaluation. This is why 
interpretability metrics that evaluate attribution maps were pro-
posed. These metrics may evaluate different properties of attribu-
tion maps.

• Fidelity evaluates if the zones highlighted by the map influence 
the decision of the network.

• Sensitivity evaluates how the attribution map changes accord-
ing to small changes in the input X0.
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• Continuity evaluates if two close data points lead to similar 
attribution maps. 

In the following, Γ is an interpretability method computing an 
attribution map S of the black box network f and an input X0. 

2.7.1 (In)fidelity Yeh et al. [25] proposed a measure of infidelity of Γ based on 
perturbations applied according to a vector m of the same shape 
as the attribution map S. The explanation is infidel if perturbations 
applied in zones highlighted by S on X0 lead to negligible changes 
in f ðXm 

0 Þ or, on the contrary, if perturbations applied in zones not 
highlighted by S on X0 lead to significant changes in f ðXm 

0 Þ. The 
associated formula is 

ðΓ, f ,X 0Þ=m 
i j 

mijΓðf ,X 0Þij - ðf ðX 0Þ- f ðXm 
0 ÞÞ2 : ð18Þ 

2.7.2 Sensitivity Yeh et al. [25] also gave a measure of sensitivity. As suggested by the 
definition, it relies on the construction of attribution maps accord-
ing to inputs similar to X0: ~X 0. As changes are small, sensitivity 
depends on a scalar E set by the user, which corresponds to the 
maximum difference allowed between X0 and ~X 0. Then sensitivity 
corresponds to the following formula: 

NSmaxðΓ, f , X 0, εÞ= max 
X 0

�
-X 0 ≤ ε 

kΓðf ,X 0

�
Þ-Γðf , X 0Þk: ð19Þ 

2.7.3 Continuity Continuity is very similar to sensitivity, except that it compares 
different data points belonging to the input domain X , whereas 
sensitivity may generate similar inputs with a perturbation method. 
This measure was introduced in [18] and can be computed using 
the following formula: 

CONTðΓ, f , XÞ= max 
X 1,X 2∈X & X 1 ≠X 2 

kΓðf ,X 1Þ-Γðf ,X 2Þk1 
kX 1 -X 2k2 

: ð20Þ 

As these metrics rely on perturbation, they are also influenced 
by the nature of the perturbation and may lead to different results, 
which is a major issue (see Subheading 4). Other metrics were also 
proposed and depend on the task learned by the network: for 
example, in the case of a classification, statistical tests can be con-
ducted between attribution maps of different classes to assess 
whether they differ according to the class they explain.
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3 Application of Interpretability Methods to Neuroimaging Data 

In this section, we provide a non-exhaustive review of applications 
of interpretability methods to neuroimaging data. In most cases, 
the focus of articles is prediction/classification rather than the 
interpretability method, which is just seen as a tool to analyze the 
results. Thus, authors do not usually motivate their choice of an 
interpretability method. Another key consideration here is the 
spatial registration of brain images, which enables having brain 
regions roughly at the same position between subjects. This tech-
nique is of paramount importance as attribution maps computed 
for registered images can then be averaged or used to automatically 
determine the most important brain areas, which would not be 
possible with unaligned images. All the studies presented in this 
section are summarized in Table 3. 

Table 3 
Summary of the studies applying interpretability methods to neuroimaging data which are presented 
in Subheading 3 

Interpretability 
method 

Abrol et al. [28] ADNI T1w AD classification FM visualization, 

Perturbation 

3.2, 3.4 

Bae et al. [32] ADNI sMRI AD classification Perturbation 3.4 

Ball et al. [33] PING T1w Age prediction Weight visualization, 

SHAP 

3.1, 3.5 

Biffi et al. [29] ADNI T1w AD classification FM visualization 3.2 

Böhle et al. [34] ADNI T1w AD classification LRP, Guided back-

propagation 

3.3 

Burduja et al. [35] RSNA CT scan Intracranial 

Hemorrhage 

detection 

Grad-CAM 3.3 

Cecotti and 

Gr€aser [26] 

in-house EEG P300 signals detection Weight visualization 3.1 

Dyrba et al. [36] ADNI T1w AD classification DeconvNet, Deep 
Taylor 

decomposition, 

Gradient 

Input, LRP, Grad-
CAM 

3.3 

Eitel and Ritter [37] ADNI T1w AD classification Gradient 

Input, Guided 

back-propagation, 

LRP, Perturbation 

3.3, 3.4
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(continued)

Interpretability 
method 

Eitel et al. [38] ADNI, 

in-house 

T1w Multiple Sclerosis 

detection 

Gradient Input, 

LRP 

3.3 

Fu et al. [39] CQ500, RSNA CT scan Detection of Critical 
Findings in Head CT 

scan 

Attention 
mechanism 

3.6 

Gutiérrez-Becker 

and 

Wachinger [40] 

ADNI T1w AD classification Perturbation 3.4 

Hu et al. [41] ADNI, NIFD T1w AD/CN/FTD 

classification 

Guided back-

propagation 

3.3 

Jin et al. [42] ADNI, 
in-house 

T1w AD classification Attention 
mechanism 

3.6 

Lee et al. [43] ADNI T1w AD classification Modular 

transparency 

3.6 

Leming et al. [31] OpenFMRI, 

ADNI, 

ABIDE, 
ABIDE II, 

ABCD, 

NDAR 

ICBM, UK 
Biobank, 

1000FC 

fMRI Autism classification Sex 

classification Task vs 

rest classification 

FM visualization, 

Grad-CAM 

3.2, 3.3 

Magesh et al. [44] PPMI SPECT Parkinson’s disease 

detection 

LIME 3.5 

Martinez-Murcia 

et al. [30] 

ADNI T1w AD classification 

Prediction of 

neuropsychological 
tests & other clinical 

variables 

FM visualization 3.2 

Nigri et al. [45] ADNI, 

AIBL 

T1w AD classification Perturbation, Swap 

test 

3.4 

Oh et al. [27] ADNI T1w AD classification FM visualization, 

Standard back-
propagation, 

Perturbation 

3.2, 3.3, 3.4 

Qiu et al. [46] ADNI, AIBL, 

FHS, NACC 

T1w AD classification Modular 

transparency 

3.6 

Ravi et al. [47] ADNI T1w CN/MCI/AD 

reconstruction 

Modular 

transparency 

3.6
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(continued)

Interpretability 
method 

Rieke et al. [48] ADNI T1w AD classification Standard back-

propagation, 
Guided back-

propagation, 

Perturbation, 
Brain area 

occlusion 

3.3, 3.4 

Tang et al. [49] UCD-ADC, 

Brain Bank 

Histology Detection of amyloid-β 
pathology 

Guided back-

propagation, 

Perturbation 

3.3, 3.4 

Wood et al. [50] ADNI T1w AD classification Modular 

transparency 

3.6 

Data sets: 1000FC, 1000 Functional Connectomes; ABCD, Adolescent Brain Cognitive Development; ABIDE, Autism 

Brain Imaging Data Exchange; ADNI, Alzheimer‘s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Bio-
markers and Lifestyle; FHS, Framingham Heart Study; ICBM, International Consortium for Brain Mapping; NACC, 

National Alzheimer’s Coordinating Center; NDAR, National Database for Autism Research; NIFD, frontotemporal 

lobar degeneration neuroimaging initiative; PING, Pediatric Imaging, Neurocognition and Genetics; PPMI, Parkinson‘s 

Progres- sion Markers Initiative; RSNA, Radiological Society of North America 2019 Brain CT Hemorrhage data set; 
UCD-ADC Brain Bank, University of California Davis Alzhei-mer‘s Disease Center Brain Bank 

Modalities: CT, computed tomography; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; 

sMRI, structural magnetic resonance imaging; SPECT, single-photon emission computed tomography; T1w, T1-

weighted [magnetic resonance imaging] 
Tasks: AD, Alzheimer’s disease; CN, cognitively normal; FTD, frontotemporal dementia; MCI, mild cognitive 

impairment 

Interpretability methods: FM, feature maps; Grad-CAM, gradient-weighted class activation mapping; LIME, local 
interpretable model-agnostic explanations; LRP, layer-wise relevance; SHAP, SHapley Additive exPlanations 

This section ends with the presentation of benchmarks con-
ducted in the literature to compare different interpretability meth-
ods in the context of brain disorders. 

3.1 Weight 

Visualization Applied 

to Neuroimaging 

As the focus of this chapter is on non-transparent models, such as 
deep learning ones, weight visualization was only rarely found. 
However, this was the method chosen by Cecotti and Gr€aser 
[26], who developed a CNN architecture adapted to weight visual-
ization to detect P300 signals in electroencephalograms (EEG). 
The input of this network is a matrix with rows corresponding to 
the 64 electrodes and columns to 78 time points. The two first 
layers of the networks are convolutions with rectangular filters: the 
first filters (size 1×64) combine the electrodes, whereas the second 
ones (13×1) find time patterns. Then, it is possible to retrieve a 
coefficient per electrode by summing the weights associated with 
this electrode across the different filters and to visualize the results 
in the electroencephalogram space as shown in Fig. 15.



682 Elina Thibeau-Sutre et al.

Fig. 15 Relative importance of the electrodes for signal detection in EEG using 
two different architectures (CNN-1 and CNN-3) and two subjects (A and B) using 
CNN weight visualization. Dark values correspond to weights with a high 
absolute value while white values correspond to weights close to 0. ©2011 
IEEE. (Reprinted, with permission, from [26]) 

3.2 Feature Map 

Visualization Applied 

to Neuroimaging 

Contrary to the limited application of weight visualization, there is 
an extensive literature about leveraging individual feature maps and 
latent spaces to better understand how models work. This goes 
from the visualization of these maps or their projections [27–29], 
to the analysis of neuron behavior [30, 31], through sampling in 
latent spaces [29]. 

Oh et al. [27] displayed the feature maps associated with the 
convolutional layers of CNNs trained for various Alzheimer’s dis-
ease status classification tasks (Fig. 16). In the first two layers, the 
extracted features were similar to white matter, cerebrospinal fluid, 
and skull segmentations, while the last layer showcased sparse, 
global, and nearly binary patterns. They used this example to 
emphasize the advantage of using CNNs to extract very abstract 
and complex features rather than using custom algorithms for 
feature extraction [27]. 

Another way to visualize a feature map is to project it in a two-
or three-dimensional space to understand how it is positioned with 
respect to other feature maps. Abrol et al. [28] projected the 
features obtained after the first dense layer of a ResNet architecture 
onto a two-dimensional space using the classical t-distributed sto-
chastic neighbor embedding (t-SNE) dimensionality reduction 
technique. For the classification task of Alzheimer’s disease



statuses, they observed that the projections were correctly ordered 
according to the disease severity, supporting the correctness of the 
model [28]. They partitioned these projections into three groups: 
Far-AD (more extreme Alzheimer’s Disease patients), Far-CN 
(more extreme Cognitively Normal participants), and Fused (a set 
of images at the intersection of AD and CN groups). Using a t-test, 
they were able to detect and highlight voxels presenting significant 
differences between groups (Fig. 17). 
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Fig. 16 Representation of a selection of feature maps (outputs of 4 filters on 10 for each layer) obtained for a 
single individual. (Adapted from [27] (CC BY 4.0)) 

Biffi et al. [29] not only used feature map visualization but also 
sampled the feature space. Indeed, they trained a ladder variational 
autoencoder framework to learn hierarchical latent representations 
of 3D hippocampal segmentations of control subjects and Alzhei-
mer’s disease patients. A multilayer perceptron was jointly trained 
on top of the highest two-dimensional latent space to classify 
anatomical shapes. While lower spaces needed a dimensionality 
reduction technique (i.e., t-SNE), the highest latent space could 
directly be visualized, as well as the anatomical variability it cap-
tured in the initial input space, by leveraging the generative process 
of the model. This sampling enabled an easy visualization and 
quantification of the anatomical differences between each class.
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Fig. 17 Difference in neuroimaging space between groups defined thanks to t-SNE projection. Voxels showing 
significant differences post false discovery rate (FDR) correction ( p< 0.05) are highlighted. (Reprinted from 
Journal of Neuroscience Methods, 339, [28], 2020, with permission from Elsevier) 

Finally, it may be very informative to better understand the 
behavior of neurons and what they are encoding. After training 
deep convolutional autoencoders to reconstruct MR images, seg-
mented gray matter maps, and white matter maps, Martinez-
Murcia et al. [30] computed correlations between each individual 
hidden neuron value and clinical information (e.g., age, mini-
mental state examination) which allowed them to determine to 
which extent this information was encoded in the latent space. 
This way they determined which clinical data was the most strongly 
associated. Using a collection of nine different MRI data sets, 
Leming et al. [31] trained CNNs for various classification tasks 
(autism vs typically developing, male vs female, and task vs rest). 
They computed a diversity coefficient for each filter of the second 
layer based on its output feature map. They counted how many 
different data sets maximally activated each value of this 
feature map: if they were mainly activated by one source of data, 
the coefficient would be close to 0, whereas if they were activated by 
all data sets, it would be close to 1. This allows assessing the layer 
stratification, i.e., to understand if a given filter was mostly maxi-
mally activated by one phenotype or by a diverse population. They 
found out that a few filters were only maximally activated by images 
from a single MRI data set and that the diversity coefficient was not 
normally distributed across filters, having generally two peaks at the



beginning and at the end of the spectrum, respectively, exhibiting 
the stratification and strongly diverse distribution of the filters. 
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3.3 Back-

Propagation Methods 

Applied to 

Neuroimaging 

Back-propagation methods are the most popular methods to inter-
pret models, and a wide range of these algorithms have been used 
to study brain disorders: standard and guided back-propagation 
[27, 34, 37, 41, 48], gradient input [36–38], Grad-CAM 
[35, 36], guided Grad-CAM [49], LRP [34, 36–38], DeconvNet 
[36], and deep Taylor Decomposition [36]. 

3.3.1 Single 

Interpretation 

Some studies implemented a single back-propagation method and 
exploited it to find which brain regions are exploited by their 
algorithm [27, 31, 41], to validate interpretability methods [38], 
or to provide attribution maps to physicians to improve clinical 
guidance [35]. 

Oh et al. [27] used the standard back-propagation method to 
interpret CNNs for classification of Alzheimer’s disease statuses. 
They showed that the attribution maps associated with the predic-
tion of the conversion of prodromal patients to dementia included 
more complex representations, less focused on the hippocampi, 
than the ones associated with classification between demented 
patients from cognitively normal participants (see Fig. 18). In the 
context of autism, Leming et al. [31] used the Grad-CAM

Fig. 18 Distribution of discriminant regions obtained with gradient back-propagation in the classification of 
demented patients and cognitively normal participants (top part, AD vs CN) and the classification of stable and 
progressive mild cognitive impairment (bottom part, sMCI vs pMCI). (Adapted from [27] (CC BY 4.0))



algorithm to determine the most important brain connections from 
functional connectivity matrices. However, the authors pointed out 
that without further work, this visualization method did not allow 
understanding the underlying reason of the attribution of a given 
feature: for instance, one cannot know if a set of edges is important 
because it is under-connected or over-connected. Finally, Hu et al. 
[41] used attribution maps produced by guided back-propagation 
to quantify the difference in the regions used by their network to 
characterize Alzheimer’s disease or frontotemporal dementia.
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The goal of Eitel et al. [38] was different. Instead of identifying 
brain regions related to the classification task, they exhibited with 
LRP that transfer learning between networks trained on different 
diseases (Alzheimer’s disease to multiple sclerosis) and different 
MRI sequences enabled obtaining attribution maps focused on a 
smaller number of lesion areas. However, the authors pointed out 
that it would be necessary to confirm their results on larger 
data sets. 

Finally, Burduja et al. [35] trained a CNN-LSTM model to 
detect various hemorrhages from brain computed tomography 
(CT) scans. For each positive slice coming from controversial or 
difficult scans, they generated Grad-CAM-based attribution maps 
and asked a group of radiologists to classify them as correct, par-
tially correct, or incorrect. This classification allowed them to 
determine patterns for each class of maps and better understand 
which characteristics radiologists expected from these maps to be 
considered as correct and thus useful in practice. In particular, 
radiologists described maps including any type of hemorrhage as 
incorrect as soon as some of the hemorrhages were not highlighted, 
while the model only needed to detect one hemorrhage to correctly 
classify the slice as pathological. 

3.3.2 Comparison of 

Several Interpretability 

Methods 

Papers described in this section used several interpretability meth-
ods and compared them in their particular context. However, as the 
benchmark of interpretability methods is the focus of Subheading 
4.3, which also include other types of interpretability than back-
propagation, we will only focus here on what conclusions were 
drawn from the attribution maps. 

Dyrba et al. [36] compared DeconvNet, guided back-
propagation, deep Taylor decomposition, gradient input, LRP 
(with various rules), and Grad-CAM methods for classification of 
Alzheimer’s disease, mild cognitive impairment, and normal cogni-
tion statuses. In accordance with the literature, they obtained a 
highest attention given to the hippocampus for both prodromal 
and demented patients. 

Böhle et al. [34] compared two methods, LRP with β-rule and 
guided back-propagation for Alzheimer’s disease status classifica-
tion. They found that LRP attribution maps highlight the individ-
ual differences between patients and then that they could be used as 
a tool for clinical guidance.
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3.4 Perturbation 

Methods Applied to 

Neuroimaging 

The standard perturbation method has been widely used in the 
study of Alzheimer’s disease [32, 37, 45, 48] and related symptoms 
(amyloid-β pathology) [49]. However, most of the time, authors 
do not train their model with perturbed images. Hence, to generate 
explanation maps, the perturbation method uses images outside the 
distribution of the training set, which may call into question the 
relevance of the predictions and thus the reliability of 
attention maps. 

3.4.1 Variants of the 

Perturbation Method 

Tailored to Neuroimaging 

Several variations of the perturbation method have been developed 
to adapt to neuroimaging data. The most common variation in 
brain imaging is the brain area perturbation method, which consists 
in perturbing entire brain regions according to a given brain atlas, 
as done in [27, 28, 48]. In their study of Alzheimer’s disease, Abrol 
et al. [28] obtained high values in their attribution maps for the 
usually discriminant brain regions, such as the hippocampus, the 
amygdala, the inferior and superior temporal gyruses, and the 
fusiform gyrus. Rieke et al. [48] also obtained results in accordance 
with the medical literature and noted that the brain area perturba-
tion method led to a less scattered attribution map than the stan-
dard method (Fig. 19). Oh et al. [27] used the method to compare 
the attribution maps of two different tasks: (1) demented patients 
vs cognitively normal participants and (2) stable vs progressive mild 
cognitively impaired patients and noted that the regions targeted

Fig. 19 Mean attribution maps obtained on demented patients. The first row corresponds to the standard and 
the second one to the brain area perturbation method. (Reprinted by permission from Springer Nature 
Customer Service Centre GmbH: Springer Nature, MLCN 2018, DLF 2018, IMIMIC 2018: Understanding and 
Interpreting Machine Learning in Medical Image Computing Applications, [48], 2018)



for the first task were shared with the second one (medial temporal 
lobe) but that some regions were specific to the second task (parts 
of the parietal lobe).
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Gutiérrez-Becker and Wachinger [40] adapted the standard 
perturbation method to a network that classified clouds of points 
extracted from neuroanatomical shapes of brain regions (e.g., left 
hippocampus) between different states of Alzheimer’s disease. For 
the perturbation step, the authors set to 0 the coordinates of a 
given point x and the ones of its neighbors to then assess the 
relevance of the point x. This method allows easily generating and 
visualizing a 3D attribution map of the shapes under study. 

3.4.2 Advanced 

Perturbation Methods 

More advanced perturbation-based methods have also been used in 
the literature. Nigri et al. [45] compared a classical perturbation 
method to a swap test. The swap test replaces the classical pertur-
bation step by a swapping step where patches are exchanged 
between the input brain image and a reference image chosen 
according to the model prediction. This exchange is possible as 
brain images were registered and thus brain regions are positioned 
in roughly the same location in each image. 

Finally, Thibeau-Sutre et al. [51] used the optimized version of 
the perturbation method to assess the robustness of CNNs in 
identifying regions of interest for Alzheimer’s disease detection. 
They applied optimized perturbations on gray matter maps 
extracted from T1w MR images, and the perturbation method 
consisted in increasing the value of the voxels to transform patients 
into controls. This process aimed at stimulating gray matter recon-
struction to identify the most important regions that needed to be 
“de-atrophied” to be considered again as normal. However, they 
unveiled a lack of robustness of the CNN: different retrainings led 
to different attribution maps (shown in Fig. 20) even though the 
performance did not change. 

3.5 Distillation 

Methods Applied to 

Neuroimaging 

Distillation methods are less commonly used, but some very inter-
esting use cases can be found in the literature on brain disorders, 
with methods such as LIME [44] or SHAP [33]. 

Fig. 20 Coronal view of the mean attribution masks on demented patients obtained for five reruns of the same 
network with the optimized perturbation method. (Adapted with permission from Medical Imaging 2020: 
Image Processing, [51].)
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Fig. 21 Mean absolute feature importance (SHAP values) averaged across all subjects for XGBoost on regional 
thicknesses (red) and areas (green). (Adapted from [33] (CC BY 4.0)) 

Magesh et al. [44] used LIME to interpret a CNN for Parkin-
son’s disease detection from single-photon emission computed 
tomography (SPECT) scans. Most of the time, the most relevant 
regions are the putamen and the caudate (which is clinically rele-
vant), and some patients also showed an anomalous increase in 
dopamine activity in nearby areas, which is a characteristic feature 
of late-stage Parkinson’s disease. The authors did not specify how 
they extracted the “super-pixels” necessary to the application of the 
method, though it could have been interesting to consider neuro-
anatomical regions instead of creating the voxel groups with an 
agnostic method. 

Ball et al. [33] used SHAP to obtain explanations at the indi-
vidual level from three different models trained to predict partici-
pants’ age from regional cortical thicknesses and areas: regularized 
linear model, Gaussian process regression, and XGBoost (Fig. 21). 
The authors exhibited a set of regions driving predictions for all 
models and showed that regional attention was highly correlated on 
average with weights of the regularized linear model. However, 
they showed that while being consistent across models and training 
folds, explanations of SHAP at the individual level were generally 
not correlated with feature importance obtained from the weight 
analysis of the regularized linear model. The authors also exempli-
fied that the global contribution of a region to the final prediction 
error (“brain age delta”), even with a high SHAP value, was in 
general small, which indicated that this error was best explained by 
changes spread across several regions [33]. 

3.6 Intrinsic Methods 

Applied to 

Neuroimaging 

Attention modules have been increasingly used in the past couple of 
years, as they often allow a boost in performance while being rather 
easy to implement and interpret. To diagnose various brain diseases 
from brain CT images, Fu et al. [39] built a model integrating a 
“two-step attention” mechanism that selects both the most3.6.1 Attention Modules



important slices and the most important pixels in each slice. The 
authors then leveraged these attention modules to retrieve the five 
most suspicious slices and highlight the areas with the more signifi-
cant attention.
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Fig. 22 Attribution maps (left, in-house database; right, ADNI database) generated by an attention mechanism 
module, indicating the discriminant power of various brain regions for Alzheimer’s disease diagnosis. (Adapted 
from [42] (CC BY 4.0)) 

In their study of Alzheimer’s disease, Jin et al. [42] used a 3D 
attention module to capture the most discriminant brain regions 
used for Alzheimer’s disease diagnosis. As shown in Fig. 22, they 
obtained significant correlations between attention patterns for two 
independent databases. They also obtained significant correlations 
between regional attention scores of two different databases, which 
indicated a strong reproducibility of the results. 

3.6.2 Modular 

Transparency 

Modular transparency has often been used in brain imaging analy-
sis. A possible practice consists in first generating a target probabil-
ity map of a black box model, before feeding this map to a classifier 
to generate a final prediction, as done in [43, 46]. 

Qiu et al. [46] used a convolutional network to generate an 
attribution map from patches of the brain, highlighting brain 
regions associated with Alzheimer’s disease diagnosis (see Fig. 23). 
Lee et al. [43] first parcellated gray matter density maps into 
93 regions. For each of these regions, several deep neural networks 
were trained on randomly selected voxels, and their outputs were 
averaged to obtain a mean regional disease probability. Then, by 
concatenating these regional probabilities, they generated a region-
wise disease probability map of the brain, which was further used to 
perform Alzheimer’s disease detection. 

The approach of Ba et al. [24] was also applied to Alzheimer’s 
disease detection [50] (preprint). Though that work is still a pre-
print, the idea is interesting as it aims at reproducing the way a 
radiologist looks at an MR image. The main difference with [24]  is



the initialization, as the context network does not take as input the 
whole image but clinical data of the participant. Then the frame-
work browses the image in the same way as in the original paper: a 
patch is processed by a recurrent neural network and from its 
internal state the glimpse network learns which patch should be 
looked at next. After a fixed number of iterations, the internal state 
of the recurrent neural network is processed by a classification 
network that gives the final outcome. The whole system is inter-
pretable as the trajectory of the locations (illustrated in Fig. 24) 
processed by the framework allows understanding which regions 
are more important for the diagnosis. However, this framework 
may have a high dependency to clinical data: as the initialization 
depends on scores used to diagnose Alzheimer’s disease, the classi-
fication network may learn to classify based on the initialization 
only, and most of the trajectory may be negligible to assess the 
correct label. 
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Fig. 23 Randomly selected samples of T1-weighted full MRI volumes are used as input to learn the 
Alzheimer’s disease status at the individual level (Step 1). The application of the model to whole images 
leads to the generation of participant-specific disease probability maps of the brain (Step 2). (Adapted from 
Brain: A Journal of Neurology, 143, [46], 2020, with permission of Oxford University Press) 

Another framework, the DaniNet, proposed by Ravi et al. [47], 
is composed of multiple networks, each with a defined function, as 
illustrated in Fig. 25.

• The conditional deep autoencoder (in orange) learns to reduce 
the size of the slice x to a latent variable Z (encoder part) and
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Fig. 24 Trajectory taken by the framework for a participant from the ADNI test set. A bounding box around the 
first location attended to is included to indicate the approximate size of the glimpse that the recurrent neural 
network receives; this is the same for all subsequent locations. (Adapted from [50]. Permission to reuse was 
kindly granted by the authors) 

Fig. 25 Pipeline used for training the proposed DaniNet framework that aims to learn a longitudinal model of 
the progression of Alzheimer’s disease. (Adapted from [47] (CC BY 4.0)) 

then to reconstruct the original image based on Z and two 
additional variables: the diagnosis and age (generator part). Its 
performance is evaluated thanks to the reconstruction loss Lrec .
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• Discriminator networks (in yellow) either force the encoder to 
take temporal progression into account (Dz) or try to determine 
if the output of the generator are real or generated images (Db).

• Biological constraints (in grey) force the previous generated 
image of the same participant to be less atrophied than the 
next one (voxel loss) and learn to find the diagnosis thanks to 
regions of the generated images (regional loss).

• Profile weight functions (in blue) aim at finding appropriate 
weights for each loss to compute the total loss. 

The assembly of all these components allows learning a longitudi-
nal model that characterizes the progression of the atrophy of each 
region of the brain. This atrophy evolution can then be visualized 
thanks to a neurodegeneration simulation generated by the trained 
model by sampling missing intermediate values. 

3.7 Benchmarks 

Conducted in the 

Literature 

This section describes studies that compared several interpretability 
methods. We separated evaluations based on metrics from those 
which are purely qualitative. Indeed, even if the interpretability 
metrics are not mature yet, it is essential to try to measure quanti-
tatively the difference between methods rather than to only rely on 
human perception, which may be biased. 

3.7.1 Quantitative 

Evaluations 

Eitel and Ritter [37] tested the robustness of four methods: stan-
dard perturbation, gradient input, guided back-propagation, and 
LRP. To evaluate these methods, the authors trained ten times the 
same model with a random initialization and generated attribution 
maps for each of the ten runs. For each method, they exhibited 
significant differences between the averaged true positives/nega-
tives attribution maps of the ten runs. To quantify this variance, 
they computed the ℓ2-norm between the attribution maps and 
determined for each model the brain regions with the highest 
attribution. They concluded that LRP and guided back-
propagation were the most consistent methods, both in terms of 
distance between attribution maps and most relevant brain regions. 
However, this study makes a strong assumption: to draw these 
conclusions, the network should provide stable interpretations 
across retrainings. Unfortunately, Thibeau-Sutre et al. [51] showed 
that the study of the robustness of the interpretability method and 
of the network should be done separately, as their network retrain-
ing was not robust. Indeed, they first showed that the interpretabil-
ity method they chose (optimized perturbation) was robust 
according to different criteria, and then they observed that network 
retraining led to different attribution maps. The robustness of an 
interpretability method thus cannot be assessed from the protocol 
described in [37]. Moreover, the fact that guided back-propagation



is one of the most stable method meets the results of [6], who 
observed that guided back-propagation always gave the same result 
independently from the weights learned by a network (see 
Subheading 4.1). 
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Böhle et al. [34] measured the benefit of LRP with β-rule 
compared to guided back-propagation by comparing the intensities 
of the mean attribution map of demented patients and the one of 
cognitively normal controls. They concluded that LRP allowed a 
stronger distinction between these two classes than guided back-
propagation, as there was a greater difference between the mean 
maps for LRP. Moreover, they found a stronger correlation 
between the intensities of the LRP attribution map in the hippo-
campus and the hippocampal volume than for guided back-
propagation. But as [6] demonstrated that guided back-
propagation has serious flaws, it does not allow drawing strong 
conclusions. 

Nigri et al. [45] compared the standard perturbation method 
to a swap test (see Subheading 3.4) using two properties: the 
continuity and the sensitivity. The continuity property is verified if 
two similar input images have similar explanations. The sensitivity 
property affirms that the most salient areas in an explanation map 
should have the greater impact in the prediction when removed. 
The authors carried out experiments with several types of models, 
and both properties were consistently verified for the swap test, 
while the standard perturbation method showed a significant 
absence of continuity and no conclusive fidelity values [45]. 

Finally, Rieke et al. [48] compared four visualization methods: 
standard back-propagation, guided back-propagation, standard 
perturbation, and brain area perturbation. They computed the 
Euclidean distance between the mean attribution maps of the 
same class for two different methods and observed that both gradi-
ent methods were close, whereas brain area perturbation was dif-
ferent from all others. They concluded that as interpretability 
methods lead to different attribution maps, one should compare 
the results of available methods and not trust only one 
attribution map. 

3.7.2 Qualitative 

Evaluations 

Some works compared interpretability methods using a purely 
qualitative evaluation. 

First, Eitel et al. [38] generated attribution maps using the LRP 
and gradient input methods and obtained very similar results. 
This could be expected as it was shown that there is a strong link 
between LRP and gradient input (see Subheading 2.3.2). 

Dyrba et al. [36] compared DeconvNet, guided back-
propagation, deep Taylor decomposition, gradient input, LRP 
(with various rules), and Grad-CAM. The different methods 
roughly exhibited the same highlighted regions but with a



significant variability in focus, scatter, and smoothness, especially 
for the Grad-CAM method. These conclusions were derived from a 
visual analysis. According to the authors, LRP and deep Taylor 
decomposition delivered the most promising results with a highest 
focus and less scatter [36]. 
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Tang et al. [49] compared two interpretability methods that 
seemed to have different properties: guided Grad-CAM would 
provide a fine-grained view of feature salience, whereas standard 
perturbation highlights the interplay of features among classes. A 
similar conclusion was drawn by Rieke et al. [48]. 

3.7.3 Conclusions from 

the Benchmarks 

The most extensively compared method is LRP, and each time it has 
been shown to be the best method compared to others. However, 
its equivalence with gradient input for networks using ReLU 
activations still questions the usefulness of the method, as gra-
dient input is much easier to implement. Moreover, the studies 
reaching this conclusion are not very insightful: [37] may suffer 
from methodological biases; [34] compared LRP only to guided 
back-propagation, which was shown to be irrelevant [6]; and [36] 
only performed a qualitative assessment. 

As proposed in conclusion by Rieke et al. [48], a good way to 
assess the quality of interpretability methods could be to produce 
some form of ground truth for the attribution maps, for example, 
by implementing simulation models that control for the level of 
separability or location of differences. 

4 Limitations and Recommendations 

Many methods have been proposed for interpretation of deep 
learning models. The field is not mature yet, and none of them 
has become a standard. Moreover, a large panel of studies has been 
applied to neuroimaging data, but the value of the results obtained 
from the interpretability methods is often still not clear. Further-
more, many applications suffer from methodological issues, making 
their results (partly) irrelevant. In spite of this, we believe that using 
interpretability methods is highly useful, in particular to spot cases 
where the model exploits biases in the data set. 

4.1 Limitations of the 

Methods 

It is not often clear whether the interpretability methods really 
highlight features relevant to the algorithm they interpret. This 
way, Adebayo et al. [6] showed that the attribution maps produced 
by some interpretability methods (guided back-propagation and 
guided Grad-CAM) may not be correlated at all with the weights 
learned by the network during its training procedure. They prove it 
with a simple test called “cascading randomization.” In this test, 
the weights of a network trained on natural images are randomized 
layer per layer, until the network is fully randomized. At each step,



they produce an attribution map with a set of interpretability meth-
ods to compare it to the original ones (attribution maps produced 
without randomization). In the case of guided back-propagation 
and guided Grad-CAM, all attribution maps were identical, which 
means that the results of these methods were independent of the 
training procedure. 
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Unfortunately, this type of failures does not only affect inter-
pretability methods but also the metrics designed to evaluate their 
reliability, which makes the problem even more complex. Tomsett 
et al. [52] investigated this issue by evaluating interpretability 
metrics with three properties:

• Inter-rater interpretability assesses whether a metric always 
rank different interpretability methods in the same way for dif-
ferent samples in the data set.

• Inter-method reliability checks that the scores given by a met-
ric on each saliency method fluctuate in the same way between 
images.

• Internal consistency evaluates if different metrics measuring 
the same property (e.g., fidelity) produce correlated scores on 
a set of attribution maps. 

They concluded that the investigated metrics were not reliable, 
though it is difficult to know the origin of this unreliability due to 
the tight coupling of model, interpretability method, and metric. 

4.2 Methodological 

Advice 

Using interpretability methods is more and more common in med-
ical research. Even though this field is not yet mature and the 
methods have limitations, we believe that using an interpretability 
method is usually a good thing because it may spot cases where the 
model took decisions from irrelevant features. However, there are 
methodological pitfalls to avoid and good practices to adopt to 
make a fair and sound analysis of your results. 

You should first clearly state in your paper which interpretabil-
ity method you use as there exist several variants for most of the 
methods (see Subheading 2), and its parameters should be clearly 
specified. Implementation details may also be important: for the 
Grad-CAM method, attribution maps can be computed at various 
levels in the network; for a perturbation method, the size and the 
nature of the perturbation greatly influence the result. The data on 
which methods are applied should also be made explicit: for a 
classification task, results may be completely different if samples 
are true positives or true negatives, or if they are taken from the 
train or test sets. 

Taking a step back from the interpretability method and espe-
cially attribution maps is fundamental as they present several limita-
tions [34]. First, there is no ground truth for such maps, which are 
usually visually assessed by authors. Comparing obtained results



with the machine learning literature is a good first step, but be 
aware that you will most of the time find a paper to support your 
findings, so we suggest to look at established clinical references. 
Second, attribution maps are usually sensitive to the interpretability 
method, its parameters (e.g., β for LRP), but also to the final scale 
used to display maps. A slight change in one of these variables may 
significantly impact the interpretation. Third, an attribution map is 
a way to measure the impact of pixels on the prediction of a given 
model, but it does not provide underlying reasons (e.g., pathologi-
cal shape) or explain potential interactions between pixels. A given 
pixel might have a low attribution when considered on its own but 
have a huge impact on the prediction when combined with another. 
Fourth, the quality of a map strongly depends on the performance 
of the associated model. Indeed, low-performance models are more 
likely to use wrong features. However, even in this case, attribution 
maps may be leveraged, e.g., to determine if the model effectively 
relies on irrelevant features (such as visual artefacts) or if there are 
biases in the data set [53]. 
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One must also be very careful when trying to establish new 
medical findings using model interpretations, as we do not always 
know how the interpretability methods react when applied to cor-
related features. Then even if a feature seems to have no interest for 
a model, this does not mean that it is not useful in the study of the 
disease (e.g., a model may not use information from the frontal 
lobe when diagnosing Alzheimer’s disease dementia, but this does 
not mean that this region is not affected by the disease). 

Finally, we suggest implementing different interpretability 
methods to obtain complementary insights from attribution 
maps. For instance, using LRP in addition to the standard back-
propagation method provides a different type of information, as 
standard back-propagation gives the sensibility of the output with 
respect to the input, while LRP shows the contribution of each 
input feature to the output. Moreover, using several metrics allows 
a quantitative comparison between them using interpretability 
metrics (see Subheading 2.7). 

4.3 Which Method 

Should I Choose? 

We conclude this section on how to choose an interpretability 
method. Some benchmarks were conducted to assess the properties 
of some interpretability methods compared to others (see Subhead-
ing 3.7). Though these are good initiatives, there are still not 
enough studies (and some of them suffer from methodological 
flaws) to draw solid conclusions. This is why we give in this section 
some practical advice to the reader to choose an interpretability 
method based on more general concepts. 

Before implementing an interpretability method, we suggest 
reviewing the following points to help you choose carefully.
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• Implementation complexity Some methods are more diffi-
cult to implement than others and may require substantial cod-
ing efforts. However, many of them have already been 
implemented in libraries or GitHub repositories (e.g., [54]), so 
we suggest looking online before trying to re-implement them. 
This is especially true for model-agnostic methods, such as 
LIME, SHAP, or perturbations, for which no modification of 
your model is required. For model-specific methods, such as 
back-propagation ones, the implementation will depend on the 
model, but if its structure is a common one (e.g., regular CNN 
with feature extraction followed by a classifier), it is also very 
likely that an adequate implementation is already available (e.g., 
Grad-CAM on CNN in [54]).

• Time cost Computation time greatly differs from one method 
to another, especially when input data is heavy. For instance, 
perturbing high dimension images is time expensive, and it 
would be much faster to use standard back-propagation.

• Method parameters The number of parameters to set varies 
between methods, and their choice may greatly influence the 
result. For instance, the patch size, the step size (distance 
between two patches), as well as the type of perturbation (e.g., 
white patches or blurry patches) must be chosen for the standard 
perturbation method, while the standard back-propagation does 
not need any parameter. Thus, without prior knowledge on the 
interpretability results, methods with no or only a few para-
meters are a good option.

• Literature Finally, our last piece of advice is to look into the 
literature to determine the methods that have commonly been 
used in your domain of study. A highly used method does not 
guarantee its quality (e.g., guided back-propagation [6]), but it 
is usually a good first try. 

To sum up, we suggest that you choose (or at least begin with) an 
interpretability method that is easy to implement, time efficient, 
with no parameters (or only a few) to tune, and commonly used. In 
the context of brain image analysis, we suggest using the standard 
back-propagation or Grad-CAM methods. Before using a method 
you do not know well, you should check that other studies did not 
show that this method is not relevant (which is the case for guided 
back-propagation or guided Grad-CAM) or that it is not equivalent 
to another method (e.g., LRP on networks with ReLU activation 
layers and gradient input). 

Regarding interpretability metrics, there is no consensus in the 
community as the field is not mature yet. General advice would be 
to use different metrics and confront them to human observers, 
taking, for example, the methodology described in [1].
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5 Conclusion 

Interpretability of machine learning models is an important topic, 
in particular in the medical field. First, this is a natural need 
expressed by clinicians who are potential users of medical decision 
support systems. Moreover, it has been shown in many occasions 
that models with high performance can actually be using irrelevant 
features. This is dangerous because it means that they are exploiting 
biases in the training data sets and thus may dramatically fail when 
applied to new data sets or deployed in clinical routine. 

Interpretability is a very active field of research and many 
approaches have been proposed. They have been extensively 
applied in neuroimaging and very often allowed highlighting clini-
cally relevant regions of the brain that were used by the model. 
However, comparative benchmarks are not entirely conclusive, and 
it is currently not clear which approach is the most adapted for a 
given aim. In other words, it is very important to keep in mind that 
the field of interpretability is not yet mature. It is not yet clear 
which are the best methods or even if the most widely used 
approaches will still be considered a standard in the near future. 

That being said, we still strongly recommend that a classifica-
tion or regression model be studied with at least one interpretability 
method. Indeed, evaluating the performance of the model is not 
sufficient in itself, and the additional use of an interpretation 
method may allow detecting biases and models that perform well 
but for bad reasons and thus would not generalize to other settings. 
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Appendices 

A Short Reminder on 

Network Training 

Procedure 

During the training phase, a neural network updates its weights to 
make a series of inputs match with their corresponding target 
labels: 

1. Forward pass The network processes the input image to com-
pute the output value.
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2. Loss computation The difference between the true labels and 
the output values is computed according to a criterion (cross-
entropy, mean squared error. . .). This difference is called the 
loss and should be as low as possible. 

3. Backward pass For each learnable parameter of the network, 
the gradients with respect to the loss are computed. 

4. Weight update Weights are updated according to the gradi-
ents and an optimizer rule (stochastic gradient descent, Adam, 
Adadelta. . .). 

As a network is a composition of functions, the gradients of the 
weights of a layer l with respect to the loss can be easily obtained 
according to the values of the gradients in the following layers. This 
way of computing gradients layer per layer is called back-
propagation. 

B Description of the 

Main Brain Disorders 

Mentioned in the 

Reviewed Studies 

This appendix aims at shortly presenting the diseases considered by 
the studies reviewed in Subheading 3. 

The majority of the studies focused on the classification of 
Alzheimer’s disease (AD), a neurodegenerative disease of the 
elderly. Its pathological hallmarks are senile plaques formed by 
amyloid-β protein and neurofibrillary tangles that are tau protein 
aggregates. Both can be measured in vivo using either PET imaging 
or CSF biomarkers. Several other biomarkers of the disease exist. In 
particular, atrophy of gray and white matter measured from T1w 
MRI is often used, even though it is not specific to AD. There is 
strong and early atrophy in the hippocampi that can be linked to the 
memory loss, even though other clinical signs are found and other 
brain areas are altered. The following diagnosis statuses are 
often used:

• AD refers to demented patients.

• CN refers to cognitively normal participants.

• MCI refers to patients in with mild cognitive impairment (they 
have an objective cognitive decline, but it is not sufficient yet to 
cause a loss of autonomy).

• Stable MCI refers to MCI patients who stayed stable during a 
defined period (often three years).

• Progressive MCI refers to MCI patients who progressed to 
Alzheimer’s disease during a defined period (often three years). 

Most of the studies analyzed T1w MRI data, except [49] where the 
patterns of amyloid-β in the brain are studied. 

Frontotemporal dementia is another neurodegenerative disease 
in which the neuronal loss dominates in the frontal and temporal 
lobes. Behavior and language are the most affected cognitive 
functions.
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Parkinson’s disease is also a neurodegenerative disease. It pri-
marily affects dopaminergic neurons in the substantia nigra. A 
commonly used neuroimaging technique to detect this loss of 
dopaminergic neurons is the SPECT, as it uses a ligand that binds 
to dopamine transporters. Patients are affected by different symp-
toms linked to motor faculties such as tremor, slowed movements, 
and gait disorder but also sleep disorder, depression, and other 
symptoms. 

Multiple sclerosis is a demyelinating disease with a neurode-
generative component affecting younger people (it begins between 
the ages of 20 and 50). It causes demyelination of the white matter 
in the brain (brain stem, basal ganglia, tracts near the ventricles), 
optic nerve, and spinal cord. This demyelination results in auto-
nomic, visual, motor, and sensory problems. 

Intracranial hemorrhage may result from a physical trauma or 
non-traumatic causes such as a ruptured aneurysm. Different sub-
types exist depending on the location of the hemorrhage. 

Autism is a spectrum of neurodevelopmental disorders affect-
ing social interaction and communication. Diagnosis is done based 
on clinical signs (behavior), and the patterns that may exist in the 
brain are not yet reliably described as they overlap with the neuro-
typical population. 

Some brain characteristics that may be related to brain disor-
ders and detected in CT scans were considered in the data set 
CQ500:

• Midline Shift is a shift of the center of the brain past the center 
of the skull.

• Mass Effect is caused by the presence of an intracranial lesion 
(e.g., a tumor) that is compressing nearby tissues.

• Calvarial Fractures are fractures of the skull. 

Finally, one study [33] learned to predict the age of cognitively 
normal patients. Such algorithm can help in diagnosing brain dis-
orders as patients will have a greater brain age than their chrono-
logical age, and then it establishes that a participant is not in the 
normal distribution. 
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A Regulatory Science Perspective on Performance 
Assessment of Machine Learning Algorithms in Imaging 

Weijie Chen, Daniel Krainak, Berkman Sahiner, and Nicholas Petrick 

Abstract 

This chapter presents a regulatory science perspective on the assessment of machine learning algorithms in 
diagnostic imaging applications. Most of the topics are generally applicable to many medical imaging 
applications, while brain disease-specific examples are provided when possible. The chapter begins with 
an overview of US FDA’s regulatory framework followed by assessment methodologies related to ML 
devices in medical imaging. Rationale, methods, and issues are discussed for the study design and data 
collection, the algorithm documentation, and the reference standard. Finally, study design and statistical 
analysis methods are overviewed for the assessment of standalone performance of ML algorithms as well as 
their impact on clinicians (i.e., reader studies). We believe that assessment methodologies and regulatory 
science play a critical role in fully realizing the great potential of ML in medical imaging, in facilitating ML 
device innovation, and in accelerating the translation of these technologies from bench to bedside to the 
benefit of patients. 

Key words Machine learning, Performance assessment, Standalone performance, Reader study, Sta-
tistical analysis plan, Regulatory science 

1 Introduction 

Machine learning (ML) technologies are being developed at an 
ever-increasing pace in a variety of medical imaging applications 
[1]. Particularly in brain imaging, the past decade has witnessed a 
spectacular growth of ML development for the diagnosis, progno-
sis, and treatment of brain disorders [2]. One of the ultimate goals 
of these developments is to translate safe and effective technologies 
to the clinic to benefit patients. Regulatory oversight plays a key 
role in this translation. The mission of the Center for Devices and 
Radiological Health (CDRH) at the US Food and Drug Adminis-
tration (US FDA) is to “assure that patients and providers have 
timely and continued access to safe, effective, and high-quality
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medical devices.”1 This chapter discusses performance assessment 
of machine learning algorithms in imaging applications from a 
regulatory science perspective. Regulatory science is the science of 
developing new tools, standards, and approaches to assess the 
safety, efficacy, quality, and performance of all FDA-regulated 
products.2
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We begin with clarifications of the scope of this chapter. First, 
following an overview of the US FDA’s regulatory framework for 
medical imaging and related ML devices, the primary topics we 
discuss are about concepts, basic principles, and methods for per-
formance assessment of ML algorithms in the arena of regulatory 
science but not regulatory policy. As such, these topics are not 
necessarily relevant to every regulatory submission. The question 
of which components should be included in a specific regulatory 
submission is a regulatory decision depending on factors such as the 
risk of the device, impact on clinical practice, complexity of the 
technology, precedents, and so on and is beyond the scope of this 
chapter. Second, the topics are selected based on our experience and 
expertise but are not intended to be comprehensive. For example, 
software engineering and cybersecurity are important aspects of 
ML devices but are beyond the scope of this chapter. Third, as 
discussed in earlier chapters of this book, ML algorithms are devel-
oped for both imaging and non-imaging modalities for treating 
brain disorders. We focus on imaging applications. Moreover, while 
this book is on brain disorders, most of the discussions in this 
chapter are applicable to ML algorithms in general imaging appli-
cations unless noted otherwise. Lastly, while the assessment meth-
ods are well established to the best of our knowledge at the time of 
writing, we acknowledge that ML techniques and assessment meth-
odologies are active areas of research and better methods may 
become available and adopted by researchers, developers, and reg-
ulatory agencies alike in the future. To give the readers a more 
specific sense of the scope of applications that are relevant to our 
discussions, we reviewed, via the American College of Radiology 
(ACR) and FDA public databases, some ML devices for brain 
disorders that were authorized by the FDA in recent years and 
summarized major scope characteristics including the imaging 
modalities, functionalities, and types of ML algorithms (see 
Table 1). 

The rest of the chapter begins with an overview of US FDA’s 
regulatory framework followed by topics on assessment methodol-
ogies related to ML devices in medical imaging. Rationale, meth-
ods, and issues are discussed for study design and data collection

1 https://www.fda.gov/about-fda/center-devices-and-radiological-health/cdrh-mission-vision-and-shared-
values 
2 https://www.fda.gov/science-research/science-and-research-special-topics/advancing-regulatory-science

https://www.fda.gov/about-fda/center-devices-and-radiological-health/cdrh-mission-vision-and-shared-values
https://www.fda.gov/about-fda/center-devices-and-radiological-health/cdrh-mission-vision-and-shared-values
https://www.fda.gov/science-research/science-and-research-special-topics/advancing-regulatory-science


(Subheading 3), algorithm documentation (Subheading 4), and 
reference standard (Subheading 5). Finally, performance assess-
ment methodologies are overviewed including the standalone per-
formance assessment of ML algorithms (Subheading 6), assessment 
of ML algorithms in the hands of clinicians (i.e., reader studies; 
Subheading 7), and general considerations for the statistical analy-
sis (Subheading 8). The relationships among these topics are illu-
strated in Fig. 1. Performance assessment of ML devices is 
necessary in both premarket and postmarket environments. Pre-
market studies are for the assessment of safety and effectiveness 
before the device is authorized for marketing by a regulatory body. 
Some premarket studies are used in the context of device develop-
ment to refine and iterate on device design. Other premarket 
studies are intended for review by regulatory bodies to help assess 
the safety and effectiveness prior to marketing authorization. Post-
market studies are for clinical use and epidemiology, maintenance, 
and modifications. The selected topics to be discussed in this chap-
ter belong to premarket performance assessment.
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Table 1 
Summary characteristics of exemplar FDA-cleared ML devices for brain disorders 

Modality CT (contrast or non-contrast), CTA, MRI, PET, SPECT 

Functionality Triage and notification (e.g., for intracranial hemorrhage); segmentation, quantification, 
and feature measurements; analysis and visualization; computer-aided diagnosis; 
denoising, enhancement; auto-contouring/segmentation of organs at risk or tumors 
for radiation therapy of head and neck tumors 

ML 
algorithms 

Hand-crafted feature extraction and computerized classifiers; deep learning neural 
networks 

CT computed tomography, CTA computed tomography angiography, MRI magnetic resonance imaging, PET positron 
emission tomography, SPECT single photon emission computed tomography. Summary based on a sampled review of 

public databases at ACR (https://models.acrdsi.org/) and FDA (https://www.fda.gov/medical-devices/software-

medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices) websites. The table 
aims to give a general overview of the scope of devices available. For specific devices that work for a certain imaging 

modality with certain functionalities, please refer to the cited databases 

2 Regulatory Framework 

CDRH Learn3 provides readers an excellent resource to better 
understand overall medical device regulation. 

2.1 Overview The US FDA classifies medical devices into three classes, Classes I, 
II, and III. The classification determines the extent of regulatory 
controls necessary to provide reasonable assurance of the safety and

3 https://www.fda.gov/training-and-continuing-education/cdrh-learn

https://models.acrdsi.org/
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/training-and-continuing-education/cdrh-learn


effectiveness of the device. The device classification tends to 
increase with increasing degree of risk, and the appropriate types 
of controls applicable to the device depend on the device classifica-
tion. There are three types of regulatory controls: general controls, 
special controls, and premarket authorization requirements. Gen-
eral controls include the basic provisions applicable to medical 
devices of the Food, Drug, and Cosmetic Act and apply to all 
medical devices. They include provisions that relate to adulteration; 
misbranding; device registration and listing; premarket notification; 
banned devices; notification, including repair, replacement, or 
refund; records and reports; restricted devices; and good 
manufacturing practices.4 Special controls apply to Class II devices 
and are published in the Code of Federal Regulations under the 
specific device type. Some examples of special controls include 
labeling, testing, design specifications, software life cycle documen-
tation activities, and usability assessments.
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Fig. 1 ML performance assessment methods in the context of US FDA’s regulatory framework 

The US FDA requirements for premarket submissions differ 
between the device classes. To receive FDA approval, sponsors of 
Class III devices, generally considered the highest risk devices, must 
demonstrate a reasonable assurance of safety and effectiveness. 
Sponsors of Class I and II device must demonstrate substantial 
equivalence between their new device and a legally marketed device 
through the premarket notification process (i.e., the 510 
[k] Program), unless the product class is exempt from premarket

4 https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices

https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices


notification. Substantial equivalence is a comparative analysis that 
includes a comparison of the intended use, technological character-
istics, and performance testing. For device classifications that 
include defined special controls (generally published in the Code 
of Federal Regulations or in an order granting a request for reclas-
sification), the sponsor must also demonstrate that they have ful-
filled all the necessary special controls as part of the premarket 
notification process and to avoid marketing an adulterated or mis-
branded device.
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The De Novo classification process is a pathway to Class I or 
Class II classification for medical devices for which general controls 
or general and special controls provide a reasonable assurance of 
safety and effectiveness, but for which there is no legally marketed 
predicate device [3]. Devices of a new type that FDA has not 
previously classified are “automatically” or “statutorily” classified 
into Class III by the FD&C Act, regardless of the level of risk they 
pose or the ability of general and special controls to assure safety 
and effectiveness. Section 513(f)(2) of the FD&C Act allows man-
ufacturers to submit a De Novo request to FDA for devices “auto-
matically” classified into Class III by operation of Section 513(f) 
(1). In essence, a De Novo is a request for classification for a novel 
device that would otherwise be classified as a Class III device. 
During review of a De Novo request, the FDA evaluates whether 
general controls or general and special controls are adequate to 
provide a reasonable assurance of safety and effectiveness for the 
identified classification of the device. 

FDA regulates products based upon the device characteristics 
(e.g., what is it? what does it do?) and the intended use of the 
device. The submission type and performance data necessary to 
obtain marketing authorization depends on the device classifica-
tion, technological characteristics, and intended use. Understand-
ing the technological characteristics is often a more straightforward 
exercise compared to the determination of the intended use of the 
product when attempting to determine the appropriate regulatory 
pathway and necessary supporting data. Intended use means the 
general purpose of the device or its function and encompasses the 
indications for use [4]. The indications for use, as defined in 
21 CFR 814.20(b)(3)(i), describes the disease or condition the 
device will diagnose, treat, prevent, cure, or mitigate, including a 
description of the patient population for which the device is 
intended. The intended use of a device is one criterion that deter-
mines whether a device can be cleared for marketing through the 
510(k) process or must be evaluated as a Class III device (premarket 
approval) or, if appropriate, a De Novo request. Section 513(i)(1) 
(E)(i) of the FD&C Act provides that the FDA’s determination of 
intended use of a device “shall be based upon the proposed label-
ing.” A device may have a variety of different indications for use and



intended uses (e.g., output a measurement for users, identify 
patients eligible for a particular treatment, estimate prognostic 
cancer risk, or predict a patient’s response to therapy). The data 
needed to support these different intended uses and indications are 
different. 
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2.2 Imaging Device 

Regulation 

A majority of medical image processing devices have been classified 
as Class II devices. Most of the software-only devices or software as 
a medical device that are intended for image processing have been 
classified under 21 CFR 892.2050 as picture archiving and com-
munications systems. On April 19, 2021, FDA updated the name of 
the regulation 21 CFR 892.2050 to “medical image management 
and processing system.” There are no published, mandatory spe-
cific special controls related to software-only devices classified 
under 21 CFR 892.2050, and therefore, the primary resource to 
understand the legal requirements for performance data associated 
with these devices is the comparative standard of substantial equiv-
alence as described in detail in the guidance document on the 510 
(k) Program [4]. In contrast, several devices more recently classified 
under the De Novo pathway have specific special controls that 
manufacturers marketing such devices must adhere to. 

Devices originally classified via the De Novo pathway often 
include special controls defined in the CFR describing require-
ments for manufacturers of these devices. Devices that may imple-
ment machine learning that include software or software-only 
devices must adhere to the special controls defined in the specific 
regulations associated with the appropriate device class. The classi-
fication with the associated special controls is published with a 
Federal Register notice and appears in the Electronic Code of 
Federal Regulations (eCFR).5 A De Novo classification, including 
any special control, is effective on the date the order letter is issued 
granting the De Novo request [3]. For the specific examples cited 
below, the De Novo submission (DEN number) is cited for classi-
fications that have not been published in CFR at the time of 
writing, and the associated order with special controls may be 
found by searching FDA’s De Novo database.6 Examples include:

• 21 CFR 870.2785 (DEN200019): Software for optical camera-
based measurement of pulse rate, heart rate, breathing rate, 
and/or respiratory rate

• 21 CFR 870.2790 (DEN200038): Hardware and software for 
optical camera-based measurement of pulse rate, heart rate, 
breathing rate, and/or respiratory rate 

5 https://www.ecfr.gov/cgi-bin/ECFR?page=browse 
6 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm

https://www.ecfr.gov/cgi-bin/ECFR?page=browse
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm
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• 21 CFR 876.1520 (DEN200055): Gastrointestinal lesion soft-
ware detection system

• 21 CFR 892.2060 (DEN170022): Radiological computer-
assisted diagnostic software for lesions suspicious of cancer

• 21 CFR 892.2070: Medical image analyzer

• 21 CFR 892.2080 (DEN170073): Radiological computer-
aided triage and notification software

• 21 CFR 892.2090 (DEN180005): Radiological computer-
assisted detection and diagnosis software

• 21 CFR 892.2100 (DEN190040): Radiological acquisition 
and/or optimization guidance system 

The special controls associated with these regulations are 
intended to mitigate the risks to health associated with these types 
of devices. As such, many of the special controls included in these 
classifications relate directly to elements associated with machine 
learning-based software devices intended for use in diagnostics. For 
example, several of the regulations include special controls related 
to the description of the image analysis algorithm (e.g., 21 CFR 
892.2060(b)(1)(i), 21 CFR 870.2785(1), 21 CFR 876.1520(5)). 
Many others specify elements of the performance testing and char-
acterization. Often included in these regulations (e.g., 21 CFR 
892.2060, 21 CFR 892.2070) are special controls that indicate 
performance must demonstrate that the device provides improved 
performance on a particular diagnostic task (e.g., detection, diag-
nosis). For new devices, these requirements generally mean FDA 
will require both standalone testing characterizing device perfor-
mance and clinical testing demonstrating diagnostic improvement 
in the intended use population. For devices implementing machine 
learning algorithms to estimate other physiologic characteristics, 
standalone and clinical testing may also be required (e.g., 21 CFR 
870.2785). In addition, these regulations may include special con-
trols related to describing the expected performance of the device. 
Requirements associated with communicating expected device per-
formance in labeling help to (a) mitigate the risks associated with 
the device and (b) communicate expectations for performance for 
similar devices to future device developers. 

CDRH is statutorily mandated to consider the least burden-
some approach to regulatory requirements or decisions. Alternative 
methods, data sources, real-world evidence, nonclinical data, and 
other means to meet regulatory requirements may be considered 
and accepted, when appropriate. FDA encourages innovative 
approaches to device design as well as mechanisms to address 
regulatory requirements, when appropriate. FDA takes a benefit–



risk approach to novel devices [5] and to devices with different 
technological characteristics [6]. 
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CDRH provides opportunities for developers to request feed-
back and meet with FDA staff to obtain FDA feedback prior to an 
intended premarket submission [7]. These interactions tend to 
focus on a particular device and questions relevant to a planned 
future regulatory submission and may include questions about 
testing protocols, proposed labeling, regulatory pathways, and 
design and performance of clinical studies and acceptance criteria. 

Device developers need to be aware of all regulatory require-
ments throughout a product’s life cycle including investigational 
device requirements (e.g., 21 CFR 812), premarket requirements, 
postmarket requirements (e.g., 21 CFR 820), and surveillance 
requirements. While this chapter focuses on the premarket and 
performance assessment of devices, we remind the reader that 
regulatory requirements throughout the device life cycle should 
be considered. 

3 Study Design and Data Collection 

This section aims at summarizing general considerations for study 
design and data collection for the assessment of ML algorithms in 
imaging. The specific topics we focus on in this section include 
study objectives, pilot and pivotal studies, and issues related to data 
collection, including dataset mismatch and bias. Other study design 
considerations, such as selection of a reference standard, selection 
of a performance metric, and data analysis plans, are discussed in 
later sections. 

3.1 Study Objectives The first consideration in study design is the objective of the study. 
A general principle is that the study design should aim at generating 
data to support what the ML algorithm claims to accomplish. The 
required data are closely related to the intended use of the device, 
including the target patient population. Important considerations 
include the significance of information provided by an ML algo-
rithm to a healthcare decision, the state of the healthcare situation 
or condition that the algorithm addresses, and how the ML algo-
rithm is intended to be integrated into the current standard of care. 
Examples of study objectives for ML algorithms include standalone 
performance characterization, standalone performance comparison 
with another algorithm or device, performance characterization of 
human users when equipped with the algorithm, and performance 
comparison of human users with and without the algorithm.
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3.2 Pilot and Pivotal 

Studies 

For the purpose of this chapter, a pivotal study is defined as a 
definitive study in which evidence is gathered to support the safety 
and effectiveness evaluation of a medical device for its intended use. 
A pivotal study is the key formal performance assessment of ML 
devices in medical imaging, and the design of a pivotal study is often 
the culmination of a significant amount of previous work. An often 
overlooked, important step toward the design of a pivotal study is a 
pilot (or exploratory) study. Pilot studies may include different 
phases, including those that demonstrate the engineering proof of 
concept, those that lead to a better understanding of the mechan-
isms involved, those that may lead to iterative improvements in 
performance, and those that yield essential information for design-
ing a pivotal study. When a pilot study involves patients, sample size 
is typically small, and data are often conveniently acquired rather 
than representative of an intended population [8]. Such pilot stud-
ies provide information about the estimates of the effect size and 
variance components that are critical for estimating the sample size 
for a pivotal study. In addition, a pilot study can uncover basic issues 
in data collection, including issues about missing or incomplete 
data and poor imaging protocols. For pivotal studies that include 
clinicians (typically radiologists or pathologists who interpret 
images when equipped with the ML algorithm), a pilot study can 
reveal poor reading protocols and poor reader training [8]. Run-
ning one or more pilot studies is therefore highly advisable prior to 
the design of a pivotal study. 

3.3 Data Collection An important prerequisite for a study that supports the claims of an 
ML algorithm is that the data collection process should allow the 
replication of the conclusions drawn from this particular study by 
independent studies in the future. In this regard, the composition 
and independence of training and test datasets and dataset repre-
sentativeness are central issues. 

3.3.1 Training and Test 

Datasets 

Training data are defined as the set of patient-related attributes (raw 
data, images, and other associated information) used for inferring a 
function between these attributes and the desired output for the 
ML algorithm. During training, investigators may explore different 
algorithm architectures for this function and fine-tune the para-
meters of a selected architecture. The algorithm designer can also 
partition this data into different sets for preliminary 
(or exploratory) performance analysis, utilizing, for example, 
cross-validation techniques [9]. Typically, these cross-validation 
results are used for further model development, model selection, 
and hyperparameter tuning. In other words, cross-validation is 
typically used as an informative step before the ML algorithm is 
finalized. In many machine learning texts, a subset of data left out



for certain parts of algorithm design (e.g., tuning hyperparameters) 
is referred to as a validation set. In this chapter, we avoid calling this 
dataset as a validation set and call it a tuning dataset because it 
contradicts with the commonly used meaning of validation as 
“checking the accuracy of” and the definition of validation in 
21 CFR 820.37 as “confirmation by examination and provision of 
objective evidence that the particular requirements for a specific 
intended use can be consistently fulfilled.” Since cross-validation 
estimates described above are typically used to modify the trained 
algorithm, they do not pertain to the finalized production version 
of the ML algorithm. 
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Test data are defined as the set of patient-related attributes that 
are used for characterizing the performance of an ML algorithm 
and performing appropriate statistical tests. For imaging ML soft-
ware, the performance is estimated by comparing either the output 
of the finalized software or the interpretation of a human observer 
who utilizes the software to a reference standard for each case and 
summarizing the results for the entire dataset using appropriate 
metrics. 

Collecting a well-characterized and representative dataset is 
resource-intensive, and therefore, most datasets in medical imaging 
are much more limited in size, compared to, for example, datasets 
in natural imaging or electronic health records. A general principle 
for dataset size is that the training dataset should be large enough 
to minimize overfitting and the test dataset should be large enough 
to provide adequate precision in testing, including adequate study 
power when hypothesis testing is involved. Multiple studies have 
shown that as the training set is gradually increased starting from a 
small size, overfitting is initially decreased dramatically, with dimin-
ishing returns as the dataset size gets larger [10, 11]. The size for 
which adding more data provides only diminishing returns depends 
on the complexity of the ML system and the complexity of the data 
space. Estimation of the test dataset size for adequate precision and 
study power is a classical problem in statistics, and pilot data is 
extremely important for this task. 

3.3.2 Independence A central principle in performance assessment is that the test dataset 
is required to be independent of the training dataset, meaning that 
the data for the cases in the test set do not depend on the data for 
the cases in the training set. It is well-known that the violation of 
this principle results in optimistically biased performance estimates 
[12]. To avoid this bias, developers typically set aside a dedicated 
test data for performance estimation aimed to be independent of 
the training dataset. There are subtle ways in which the indepen-
dence principle can be violated if the test dataset is not carefully

7 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=820.3
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selected. We discuss two such mechanisms below. The first is related 
to including data from a particular patient in both the training and 
test datasets. The second is related to performing internal valida-
tion instead of using an external validation [13] method.
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A basic mechanism that can cause a dependence between the 
training and test sets is the inclusion of data from one patient in 
both datasets. This could happen if different regions of interest, 
different image slices, or different objects from the same patients 
span both the training and test datasets. Since portions of the data 
from the same patient are expected to be correlated, this practice 
will result in a statistical dependence between the training and test 
datasets. A straightforward principle to be followed is to include 
each patient’s data exclusively in the training set or exclusively in 
the test set. 

A more subtle mechanism that can cause a dependence between 
the training and test datasets is the way the data are sampled or the 
way that one dataset is partitioned into training and test datasets. 
Internal validation, which involves partitioning a previously col-
lected sample into training and test datasets randomly or in a 
stratified way across a given attribute, may result in a dependence 
between the training and test datasets. Any sampled data, even if it 
was designed to be collected in a random manner, may not perfectly 
follow the true distribution of the target population due to finite 
sample size effects. In addition, there may be a systematic deviation 
in the feature distribution of a particular sample from the true 
distribution due to the fact that, for example, the sample may be 
collected only at a particular site or using only a particular or 
predominant image acquisition system that does not represent the 
true distribution. When such a dataset is shuffled and randomly 
partitioned into training and test datasets, knowledge about the 
distribution of the training data may provide unfair information 
about the distribution of the test dataset that would have been 
impossible to know had the training and test datasets been sampled 
independently from the true population. A practical approach to 
reduce this type of dependence is to sample the training and test 
datasets from multiple different, independent sites, a practice 
known as external validation [13]. 

ML algorithms are data-driven, and the distributions of the training 
and test data have direct implications for algorithm performance 
and its measurement. Ideally, training and test sets should be large 
and representative enough so that the collected data provides a 
good approximation to the true distribution in the target popula-
tion. As discussed above, well-characterized and annotated medical 
imaging datasets are typically limited in size. When the dataset size 
is a constraint, informativeness of a case to be selected for training

3.3.3 Represen-

tativeness



the ML algorithm for the task at hand is an additional consideration 
besides representativeness [14]. Active machine learning techni-
ques aim to proactively select training cases that can best improve 
model performance, based on informativeness, representativeness, 
or a combination of the two [15]. Active learning techniques have 
been applied to train ML algorithms applied to brain imaging 
[16, 17].
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Representativeness of the test dataset is typically desirable when 
an unbiased estimate of the ML algorithm performance assessment 
is sought for the target population. For most classification pro-
blems, representativeness within each class may be sufficient, 
which allows designers to enrich the test datasets with classes that 
have smaller prevalence in the target population. For studies that 
aim to compare two competing arms (e.g., clinicians’ image inter-
pretation with and without ML), enrichment methods that are 
based on a measurement (e.g., patient or lesion characteristics, 
risk factors), which trade the unbiased absolute performance results 
for the practical ability to compare the two competing arms with 
possible moderate biases, are often acceptable [8]. For example, if 
cases that are known to be trivial to classify (or diagnose) in both 
arms of a comparative study are excluded from the test dataset, this 
will result in a bias in the absolute performance estimates for both 
arms but may not result in a bias in the difference or change the 
ranking order of the two arms under comparison, thus allowing the 
use of a smaller test dataset and a less resource-intensive study 
design. Likewise, as discussed in Subheading 6.5, when the main 
goal is to compare the standalone performance of two algorithms to 
determine which algorithm or modification performs best, it is 
possible to perform the comparison on a smaller enriched dataset 
with a careful sampling strategy that does not result in a bias in the 
difference of the two performance estimates. 

3.3.4 Dataset Mismatch Dataset mismatch is defined as a condition where training and test 
data follow different distributions, which is popularly known as 
“dataset shift” in the ML literature [18]. We prefer using “mis-
match” because “shift” specifically refers to adding a constant value 
to each member of a dataset in probability distribution theory, 
which does not convey all types of mismatches that the term is 
intended for. Dataset mismatch can also be between test data and 
real-world deployment data (rather than test and training) or cur-
rent real-world data vs. future real-world data (e.g., due to changes 
in clinical practice). There may be many potential reasons for data-
set mismatch, with sample selection bias and non-stationary envir-
onments cited as the most important ones [19]. Storkey [20] 
grouped these mismatches into six main categories, including sam-
ple selection bias, imbalanced data, simple covariate shift, prior 
probability shift, domain shift, and source component shift. Dataset



mismatch may result in poor performance of the trained ML algo-
rithm. In addition, especially if caused by a non-stationary environ-
ment, dataset mismatch may mean that the performance assessment 
results obtained at premarket testing may no longer be valid in the 
clinical environment. A first step in mitigating the effects of dataset 
mismatch is to detect it. Several methods, including those based on 
distance measures [21] and dimensionality reduction followed by 
statistical hypothesis testing [22], have been proposed for this 
purpose. Techniques for mitigating the effect of dataset mismatch 
include importance weighting [23] and utilizing stratification, cost 
curves, or mixture models [24], among others. 
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3.4 Bias Bias is a critical factor to consider in study design and analysis for 
ML assessment, and here we intend to give an overview of sources 
of bias in ML development and assessment. Note that the general 
artificial intelligence and machine learning literature currently lacks 
a consensus on the terminology regarding bias. We consider that 
performance assessment of an ML system from a finite sample can 
be cast as a statistical estimation problem. In statistics, a biased 
estimator is one that provides estimates which are systematically 
too high or too low [25]. Paralleling this definition, we define 
statistical bias as a systematic difference between the average per-
formance estimate of an ML system tested in a specified manner and 
its true performance on the intended population. This systematic 
difference may result from flaws in any of the components of the 
assessment framework shown in Fig. 1: collection of patient data 
and the definition of a reference standard (for both algorithm 
design and testing stages), algorithm training, analysis methods, 
and algorithm deployment in the clinic. 

Note that the definition of statistical bias above includes sys-
tematically different results for different subgroups. ISO/IEC 
Draft International Standard 22,989 (artificial intelligence con-
cepts and terminology) defines bias as systematic difference in 
treatment of certain objects, people, or groups in comparison to 
others, where treatment is any kind of action, including perception, 
observation, representation, prediction, or decision. As such, sta-
tistical bias may result in the type of bias defined in the ISO/IEC 
Draft International Standard. 

We start our discussion of bias with the effect of the dataset 
representativeness, which has direct implications for ML algorithm 
performance and its measurement, as described above. When the 
dataset is not representative of the target population, this can lead 
to selection bias. For example, if all the images in the training or test 
datasets are acquired with a particular type of scanner while the 
target patient population may be scanned by many types of scan-
ners, this may lead to an ML algorithm performance estimate that is 
systematically different from that on the intended population or 
lead to different results for different subgroups. Spectrum bias,



which can be viewed as a consequence of selection bias, describes a 
systematic error in performance assessment that occurs when the 
sample of cases studied does not include a complete spectrum of 
patient and disease characteristics [26]. Imperfect reference stan-
dard bias and verification bias are two types of biases that are related 
to the reference standard (Subheading 5); the former applies to 
conditions in which the reference standard procedure is not 100% 
accurate, and the latter applies to conditions in which only subjects 
verified for presence or absence of the condition of interest by the 
reference standard are included in the training set or test set. 
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Aggregation bias and model design bias are two types of biases 
that can occur in the algorithm training stage. Aggregation bias is 
related to the information loss which occurs in the substitution of 
aggregate, or macro-level, data for micro-level data. Aggregation 
bias can lead to a model that is not optimal for any group or a model 
that is fit to the dominant population [27]. In ML architecture 
selection and algorithm training, the designer often has options for 
model design that may affect the objectives of accuracy, robustness, 
and fairness, and these objectives may have intrinsic trade-offs. 
Model design bias refers to the design choices that may amplify 
performance disparities among minority and majority data 
subgroups [28]. 

In addition to biases stemming from test dataset composition 
and the reference standard discussed above, inappropriate selection 
of the performance metric in the data analysis stage may result in a 
bias. Many metrics used for evaluation of image analysis algorithms, 
such as the mean squared error (MSE) for image noise reduction, 
do not represent the task that the ML algorithm was designed for, 
e.g., the detection of low-contrast objects in a noisy image. The use 
of an inappropriate metric may thus result in a difference between 
the test and true performance, e.g., a conclusion that the algorithm 
is helpful for its intended use when in clinical reality it is not. 

Several factors may contribute to bias after a medical ML 
system is introduced into the clinic. One of these is the bias due to 
a temporal dataset shift [29] that may cause a mismatch between the 
data distribution on which the system was developed/tested and 
the distribution to which the system is applied. Another type of 
bias, sometimes termed deployment bias [27], may be caused by the 
use of a device in a manner that was not tested as part of the 
performance assessment and hence does not conform with the 
intended use of the device, e.g., off-label use. Other types of biases 
during deployment are also possible because of the differences in 
the test and clinical environments and unanticipated issues in the 
integration of the ML system into clinical practice.
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4 Algorithm Documentation 

4.1 Why Algorithm 

Documentation Is 

Important 

Machine learning (ML) algorithms have been evolving from tradi-
tional techniques with hand-crafted features and interpretable sta-
tistical learning models to the more recent deep learning-based 
neural network models with drastically increased complexity. 
Appropriate documentation of ML algorithms is critically impor-
tant for reproducibility and transparency from a scientific point of 
view. Algorithm description with sufficient details is particularly 
important in a regulatory setting reviewed by regulators for the 
assessment of technical quality, for comparing with a legally mar-
keted device, and for the assessment of changes of the algorithm in 
future versions. 

Reproducibility is a well-known cornerstone of science; for 
scientific findings to be valid and reliable, it is fundamentally impor-
tant that the experimental procedure is reproducible, whether the 
experiments are conducted physically or in silico. ML studies for 
detection, diagnosis, or other means of characterization of brain 
disorders or other diseases are in silico experiments involving com-
plex algorithms and big data. As such, we adopt the definition of 
reproducibility from a National Academies of Sciences, Engineer-
ing, and Medicine report [30] as “obtaining consistent results 
using the same input data; computational steps, methods, and 
code; and conditions of analysis.” It has been widely recognized 
that poor documentation such as incomplete data annotation or 
specification of data processing and analysis is a primary culprit for 
poor reproducibility in many biomedical studies [31]. Lack of 
reproducibility may result in not only inconvenience or inferior 
quality but sometimes a flawed model that can bring real danger 
to patients when such models are used to tailor treatments in drug 
clinical trials, as reported by Baggerly and Coombes [32] in their 
forensic bioinformatics study on a model of gene expression signa-
tures to predict patient response to multidrug regimens. 

Appropriate documentation of algorithm design and develop-
ment is essential for the assessment of technical quality. Identifica-
tion of the various sources of bias discussed in Subheading 3.4 may 
not be possible without appropriate algorithm documentation. 
Furthermore, while there is currently no principled guidance on 
the design of deep neural network architectures, consensus on 
good practices and empirical evidence do provide basis for the 
assessment of technical soundness of an ML algorithm. For exam-
ple, the choice of loss function is closely related to the clinical task: 
mean squared error is appropriate for quantification tasks, cross-
entropy is often used for classification tasks, and so on. Moreover, 
the design and optimization of algorithms involve trial-and-error 
and ad hoc procedures to tune parameters; as such, a developer may 
introduce bias even unconsciously if the use of patient data and 
truth labels is not properly documented.



720 Weijie Chen et al.

Documentation of ML algorithms is often necessary in a regu-
latory setting and generally required by FDA under 21 CFR 820.30 
design controls. As mentioned in Subheading 2.1, comparison of 
technological characteristics of a premarket device with a legally 
marketed predicate device is one of the essential components in 
determining substantial equivalence for a 510(k) submission. 
Moreover, the ML algorithm in an FDA-authorized device is 
often updated, and appropriate algorithm documentation is crucial 
to decide if a new version has undergone major updates that would 
require a re-submission to the FDA. 

4.2 Essential 

Elements in Algorithm 

Description 

Many efforts in academia have been devoted to developing check-
lists for ML algorithm development and reporting to enhance 
transparency, improve quality, and facilitate reproducibility. A 
report from the NeurIPS 2019 Reproducibility Program [33] 
provided a checklist for general machine learning research. Norgeot 
et al. [34] presented the minimum information about clinical arti-
ficial intelligence modeling (MI-CLAIM) checklist as a tool to 
improve transparency reporting of AI algorithms in medicine. 
The journal Radiology published an editorial with a checklist for 
artificial intelligence in medical imaging (CLAIM) [35] as a guide 
for authors and reviewers. Similarly, an editorial of the journal 
Medical Physics introduced a required checklist to ensure rigorous 
and reproducible research of AI/ML in the field of medical physics 
[36]. Consensus groups also published the SPIRIT-AI (Standard 
Protocol Items: Recommendations for Interventional Trials–Artifi-
cial Intelligence) as guidelines for clinical trial protocols for inter-
ventions involving artificial intelligence [37]. Also, there are 
undergoing efforts on guidelines for diagnostic and predictive AI 
models such as the TRIPOD-ML (Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis–Machine Learning) [38] and STARD-AI (Standards 
for Reporting of Diagnostic Accuracy Studies–Artificial 
Intelligence). 

Besides the abovementioned references, the FDA has published 
a guidance document for premarket notification [510(k)] submis-
sions on computer-assisted detection devices applied to radiology 
images and radiology device data [39]. Here we provide a list of key 
elements in describing ML algorithms for medical imaging applica-
tions, which we believe are essential (but not necessarily complete) 
for understanding and technical assessment of an ML algorithm.
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• Input. 
The types of data the algorithm takes as input may include 
images and possibly non-imaging data. For input data, essential 
information includes modality (e.g., CT, MRI, clinical data), 
compatible acquisition systems (e.g., image scanner manufac-
turer and model), acquisition parameter ranges (e.g., kVp range, 
slice thickness in CT imaging), and clinical data collection pro-
tocols (e.g., use of contrast agent, MRI sequence).

• Preprocessing. 
Input images are often preprocessed such that they are in a 
suitable form or orientation for further processing. Preproces-
sing often includes data normalization, which refers to calibra-
tion or transformation of image data to that of a reference image 
(e.g., warping to the reference frame) or to certain numerical 
range, e.g., slice thickness normalization. Other examples of 
preprocessing include elimination of irrelevant structures such 
as a head holder, image size normalization, image orientation 
normalization, and so on. Sometimes an image quality checker is 
applied to exclude data with severe artifacts or insufficient qual-
ity from further processing and analyses. It is important to 
describe the specific techniques for normalization and image 
quality checking. Furthermore, it is critical to make clear how 
cases failing the quality check are handled clinically (e.g., 
re-imaging or reviewed by a physician) and account for the 
excluded cases in the performance assessment.

• Algorithm architecture. 
Algorithm architecture is the core module of a machine learning 
algorithm. In traditional ML techniques, hand-crafted features 
that are often motivated by physician’s experiences are first 
derived from medical images. A feature selection procedure can 
be applied to the initially extracted features to select the most 
useful features for the clinical task of interest. The selected 
features are then merged by a classifier into a decision variable. 
There are many choices of the classifier depending on the nature 
of the data and the purpose of the classifier: linear or quadratic 
discriminant analysis, k nearest neighbor (kNN) classifiers, arti-
ficial neural networks (ANNs), support vector machines, ran-
dom forests, etc. As such, the algorithm description typically 
includes the definition of features, the feature selection meth-
ods, and the specific classification model. Moreover, it is impor-
tant to document hyperparameters and the method with which 
these hyperparameters are determined, for example, the number 
of neighbors in the kNN method, the number of layers in 
ANNs, etc.
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Recently, deep learning neural network algorithms have 
been widely used in medical imaging applications. The NN 
architecture in this type of ML algorithms is composed of a 
large number of layers that learn to represent data at multiple 
levels of abstraction and automatically learns features from raw 
medical image data. As such, instead of sequential hand-crafted 
feature extraction, selection, and classification, automatic feature 
engineering and classification (or other types of decision-making 
such as quantification) are seamlessly integrated in one deep NN 
architecture. If a published architecture such as AlexNet, 
VGGNet, Inception V3, etc. is followed exactly, a succinct 
description is to refer to the reference. Otherwise, the architec-
ture is typically described using a diagram with details such as the 
number and type of layers, the number of nodes in each layer, 
the activation functions, the loss function, and so on. 

Sometimes hand-crafted features are combined with 
CNN-based automatic features by a traditional classifier (e.g., 
random forest) to take advantage of both the power of deep 
learning in information extraction and domain-specific exper-
tise. In this situation, architecture description includes the entire 
pipeline, both types of information as described in the above two 
paragraphs.

• Algorithm Training. 
ML algorithm training is the process of designing ML algorithm 
architecture, optimizing the parameters, and selecting the 
hyperparameters. Taking the popular deep neural networks as 
an example, the first step in training is to design an architecture 
or adopt one that has been proven successful in similar applica-
tions (see previous bullet). Parameters mainly refer to network 
weight and bias parameters for combining node outputs in one 
layer as inputs to nodes of the next layer. Hyperparameters 
include both those related to network architecture and those 
related to parameter optimization strategies. Network architec-
ture hyperparameters such as number of hidden layers and units 
can be pre-selected and fixed if an established architecture is 
adopted and/or further tuned during training. Another archi-
tecture hyperparameter that has been popularly used to avoid 
overtraining is dropout rate, which refers to the probability of a 
neuron being “dropped out” in a training step (i.e., the weights 
are not updated) but may be active in the next step. Hyperpara-
meters related to parameter optimization include learning rate, 
momentum, number of epochs, batch size, etc. 

Given a set of hyperparameters, the network parameters are 
optimized using training images and associated truth labels. The 
hyperparameters are typically tuned using a separate tuning 
dataset. See Subheading 3 for discussion of training data. 
Again, it is important to fully describe the training process and 
training data as part of the algorithm description.
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• Post-processing and Output. 
Given the output of the main ML algorithm, some post-
processing steps may be followed, for example, to transform 
the output to a more interpretable form. The final outputs of 
an ML algorithm are those that are presented to the end user 
such as a radiologist or other clinicians. They can be marks on 
the images indicating the algorithm-determined suspicious 
areas, a quantitative score indicating the algorithm-estimated 
likelihood of disease severity, and/or a binary classification indi-
cating if the lesion is benign or malignant, etc. The algorithm 
description must make clear the final algorithm outputs and how 
they are intended to be used clinically so that appropriate valida-
tion and testing studies can be conducted. 

Finally, it should be emphasized that a great description of ML 
algorithms not only provides these essential elements but also, 
more usefully, provides rationale on the algorithmic choices. Such 
rationale may include established good machine learning practices, 
evidence from similar applications, or methodological research that 
helps avoid overfitting, reduce bias, and improve generalizability. 

5 Reference Standard 

Rigorously developed, well-accepted reference standards (also 
called the “gold standard” or “ground truth”) for training and 
evaluating machine learning algorithms are essential to validating 
and characterizing the performance of machine learning algo-
rithms. The reference standard provides a definitive or quasi-
definitive characterization of the case based on information that 
may not be part of the machine learning input, such as biopsy or 
1-year follow-up for radiological imaging oncology applications 
(for an example in the regulatory setting, see8 ). The “truthing” 
procedures for the cases included in validation (especially external 
validation) should utilize the best reference standard as recognized 
by the scientific community to help ensure that the performance of 
the device is well-characterized. The truthing process is distinct 
from other aspects of evaluating ML performance as the goal is to 
determine the “correct” characterization of each case, not to evalu-
ate the device and reader performance in assessing a particular case. 

Brain disorders often represent unique challenges to establish-
ing appropriate reference standards. Generally, reference standard 
can be based on established clinical determination (including an 
independent modality recognized as a gold standard), follow-up 
clinical examination, or follow-up medical examination other than 
imaging. For brain disorders, the pathophysiology may be poorly

8 https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170022.pdf

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170022.pdf


understood, the progression of some disease may be slow making it 
difficult to reliably observe changes over time, the clinical definition 
of the condition may rely heavily on subjective assessments, or 
definitive assessments may be delayed by years (e.g., Alzheimer’s 
disease) with different syndromes mistaken for the condition of 
interest (e.g., Parkinsonian-like disorders). In other words, for 
some brain conditions, the current best available reference standard 
is based on clinical determination, and confirmation from an alter-
native method (for instance, histopathological confirmation) may 
be desirable. Furthermore, ethical and pragmatic challenges of 
obtaining neurological tissue samples that would allow for inde-
pendent pathological assessment may limit the utility of biopsy or 
tissue resection in many brain disorders.

724 Weijie Chen et al.

In limited instances, alternatives to independent confirmation 
of the case “truth,” such as interpretation by a reviewing clinician 
(s), may be considered. Especially in brain disorders where the 
diagnostic criteria may already be challenging, the importance of 
multiple reviewing clinicians using the best possible information, 
even if that requires long-term follow-up, cannot be understated. 
For some brain disorders such as chronic traumatic encephalopathy 
or Alzheimer’s disease, outstanding challenges remain as the refer-
ence standard may be best assessed by biopsy or following death 
(i.e., autopsy). Greater biological and physiological understanding 
may be needed to inform the correct diagnosis early in disorder 
development. Using machine learning techniques to assist in this 
process is tempting, but the performance will generally be limited 
by the correctness of the reference standard. In other words, how 
would we assess if the ML device is outperforming the reference 
standard as any disagreement may be considered incorrect based on 
the reference truth? 

Uncertainty in the reference standard needs to be accounted 
for in the analysis. For some machine learning devices, reference 
standard by expert assessment can be considered, depending on the 
indications for use, intended use, benefit–risk profile, and device 
outputs. This is often the case of ML algorithms used in segmenta-
tion tasks. In these limited instances, the reference standard from a 
single clinical truther remains undesirable due to potential concerns 
about bias or the overall performance of the truther (that is, they 
are not likely to be 100% accurate, especially for challenging cases). 
Therefore, multiple clinical truthers are desired. Truthing processes 
using top experts or truthing processes that weight the clinical 
truthers’ “accuracy” in the construction of the reference standards 
may also be considered (e.g., see Warfield et al. [40]). 

When the truthing process involves interpretation by a review-
ing clinician, the number of truthers; their qualifications, experi-
ence, and expertise; the instructions for the truthing process; and 
any other information should be described and documented. In 
instances where multiple truthers are involved, developer must



consider in advance how the interpretations of these various readers 
will be incorporated into the final study design and analysis. While 
combining the interpretation of all truthers into a single reference 
truth for a particular case may be appropriate in some instances, in 
other cases such as when the variability between truthers is high, 
study designs and data analysis methods that take into consider-
ation variability in the reference standard may be appropriate. For 
instance, reference standard by panel discussions may face unique 
challenges, especially when loud voices, biases, and group dynamics 
may influence the outcome. On the other hand, majority vote may 
lead to other biases such as in segmentation where only including 
voxels from the majority could lead to small areas or volumes even 
when compared to all of the participating truthers. 
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Certain practices in development of the reference standard 
should be avoided. Often developers look for reference standards 
of convenience such as a single truther observing the same input 
data, such as a CT image, as the machine learning algorithm inputs 
and providing their best judgment as the underlying “truth” of the 
case. Truthers should not be used as readers who read those images 
as part of the evaluation of device performance because that can 
introduce considerable bias to the study results. Public data with 
unclear processes for establishing the reference standard or incom-
plete case-level data (such as data without follow-up information, 
without other typically assessed test results, or incomplete demo-
graphic information) frequently raises concerns about the appro-
priateness of the reference standard in these instances. 

The reference standard should generally be based on the best 
available evidence for the case as recognized by the scientific com-
munity. The goal of the reference standard is to establish the 
“truth” for the outcome of the case. This may present challenges 
to cohorts where the amount of evidence may differ between cases. 
Requirements for the minimal amount of information available for 
a particular case to establish a reasonable “truth” should be defined 
in advance in the premarket and postmarket setting. As with overall 
device classification, expectations for rigor and certainty in the 
reference standard may increase with the device risk associated 
with misclassification or misdiagnosis. In a regulatory context, 
often more flexibility is generally permitted in the reference stan-
dard for the training data as compared to expectations of rigor in 
the reference standard for the validation data. Finally, the use of 
synthetic data is attractive as these techniques provide some oppor-
tunities for more well-characterized reference standards in some 
applications. While synthetic data presents an intriguing approach 
to addressing some challenges related to reference standards in 
brain disorders, this is a fairly new topic without significant experi-
ence within the current regulatory framework.
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6 Standalone Performance Assessment 

ML standalone performance is a measure of algorithm performance 
independent of any human interaction with the ML tool [41]. Stan-
dalone performance is the primary assessment for autonomous ML 
tools that make decisions without clinicians’ interactions but may 
be only one element of assessment for an ML algorithm used as an 
aid, in which case a clinical assessment of reader performance 
utilizing the ML may also be required, as discussed in Subheading 
7. Standalone testing is also used heavily during algorithm devel-
opment to benchmark performance and compare potential algo-
rithm modifications before a “final” version is determined. This is 
because it is often straightforward to integrate iterative testing 
within the development framework. Standalone testing spans a 
wide range of possible implementations from initial validation of 
modifications using a small dataset through large-scale evaluations 
across multiple independent sites [42] which provides a higher level 
of confidence in algorithm performance. 

Sometimes researchers assume that standalone testing is not 
important, or at least not as important, as a clinical evaluation, 
especially for ML-assist devices. However, standalone testing is 
critical even when a clinical reader study is performed because it is 
often conducted on larger and more diverse datasets allowing for 
more refined subgroup analyses and understanding of performance 
characteristics. It is also critical for assessing the robustness of an 
ML algorithm and for comparing performance across different 
algorithms. 

In the following, we describe study design, study endpoints, 
and approaches for assessing standalone performance for specific 
types of ML tools. 

6.1 Segmentation 

Assessment 

Accurate segmentation of brain structures is routinely used in many 
neurological diseases and conditions when imaging with modalities 
such as CT, MRI, and PET. As an example, quantitative analysis of 
brain MRI has been used in assessing brain disorders such as 
Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis 
(MS), cancer, and infectious and degenerative diseases 
[43]. Often brain assessment quantifying change over time requires 
the segmentation of brain tissue or anatomy. We define segmenta-
tion as the process of partitioning a brain image or image volume 
into multiple objects defined by a set of voxels unique to each 
structure or object of interest. 

There have been various methods proposed for assessing how 
well an ML algorithm characterizes objects and how one segmen-
tation algorithm compares to another. Zhang discusses three basic 
approaches to assessing segmentation algorithms in general 
[44]. This includes analytical methods, goodness methods, and



discrepancy methods [45]. Analytical methods consider the princi-
ples, requirements, utilities, and complexity of segmentation algo-
rithms but can be quite difficult to apply, especially to DL-based 
segmentation because not all algorithm properties are easily 
obtained. Goodness methods evaluate segmentation performance 
by judging the segmented images based on certain quality measures 
established according to human intuition and include measures 
such as inter-region uniformity, inter-region contrast, and region 
shape [45]. Discrepancy methods quantify the difference between 
segmented objects and a reference standard segmentation. They are 
the most common type for assessing segmentation algorithms with 
the caveat that often a ground-truth segmentation is not available. 
In this case, algorithm segmentations are then compared to human 
segmentations where the human segmentation is considered the 
reference standard. Since human segmentations of brain anatomy 
and structure can be quite variable, segmentations by multiple 
truthing readers are often collected, and an aggregated reference 
[40, 46] is used, or the agreement or interchangeability of the 
algorithm with a truthing reader is assessed. 
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The remainder of this subsection describes a few common 
segmentation metrics where we assume a hard segmentation and a 
single reference standard. A hard segmentation means a voxel is 
either part of the segmentation or not (this is in contrast to a soft or 
fuzzy segmentation which means that each voxel is assigned a 
probability of being part of the segmentation). 

An example of a 2D segmentation S and reference segmenta-
tion R is shown in Fig. 2 for image X. The false-positive (FP), true-
positive (TP), false-negative (FN), and true-negative (TN) regions 
are also shown. Taha and Hanbury provide a nice overview of 
20 segmentation metrics used for discrepancy assessment 
[47]. Please refer to this paper for more details on many segmenta-
tion assessment approaches including methods for assessing fuzzy 
segmentation algorithms [47]. We next discuss some of the dis-
crepancy assessment approaches frequently used in the literature. 

Overlap indexes assess a segmentation by how well it overlaps 
with the reference. We define some basic overlap metrics below 
using TP, TN, FP, and FN as voxel counts in the definitions.

• Voxel true-positive rate (TPR), sensitivity, recall: proportion of 
correctly segmented reference voxels. 

TPR = 
TP 

TPþ FN
• Voxel true-negative rate (TNR), specificity: proportion of cor-

rectly segmented background voxels. 

TNR = 
TN 

TNþ FP
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Fig. 2 Diagram of a segmented object (blue solid line) overlaid by the reference segmentation (red dashed 
line). The false-positive (FP) voxels (green hashed region), true-positive (TP) voxels (yellow hashed region), 
false-negative (FN) voxels (purple wave region), and true-negative (TN) voxels (gray region) are shown in the 
figure as well

• Voxel accuracy [45]: proportion of correctly segmented voxels 
(including both reference and background voxels). 

Accuracy= 
TPþ TN 

TPþ TNþ FPþ FN
• Dice similarity coefficient (DSC), F1 metric [48] 

DSC= 
2TP 

2TPþ FPþ FN 
= 

2JI 
1þ JI

• Jaccard index (JI), intersection over union (IoU) metric [49] 

JI= 
TP 

TPþ FPþ FN 
= 

DSC 
2-DSC 

The Dice coefficient (DSC) is the most widely used perfor-
mance metric for characterizing medical image volume segmenta-
tions including brain segmentations and can also be used to assess 
the reproducibility of multiple annotations [47]. The Jaccard index 
is another common assessment metric. JI and DSC are monotoni-
cally related with DSC always having a larger value than JI except at 
0 and 1 when the two are equal. However, they have different



Þ
k k

properties when averaging performance across multiple segmenta-
tions where Jaccard penalizes large segmentation errors more than 
Dice (somewhat similar to how an L2 norm penalizes larger error 
more than an L1 norm) [50]. 
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Accuracy is another commonly reported metric, but accuracy is 
often dominated by a large disparity in the number of reference and 
background voxels within an image. Accuracy can be high even for 
poor overlap in the segmentation and reference when the vast 
majority of voxels in the image are background. This can make it 
difficult to differentiate between algorithms based only on accuracy 
differences. A similar observation can be made for specificity or, 
more generally, for any segmentation metrics involving 
TN. Indeed, since most voxels are background, TN can be very 
large. Finally, the definition of the background is not always 
straightforward and can sometimes be arbitrary (for instance, if 
the background depends on the field of view of the image). 

Distance-based metrics are useful when the boundary of the 
segmentation is critical [51]. They assess the distance between the 
segmentation boundary and the reference boundary taking into 
account the spatial position of the boundary voxels [47]. Some 
common distance metrics include:

• Hausdorff distance (HD) between two voxel sets BS and BR (sets 
of boundary voxels) [47] 

HD = max (h(BS,BR), h(BR,BS)), where h BR,BSð = 
max r∈BR min s∈BS r- s

• Mahalanobis distance (MHD) between two voxel sets BS and BR. 

MHD = μBS
- μBR 

S -1 μBS
- μBR 

, where μBS 
and μBR 

are the means of the point sets and S is the common covariance 

matrix of the two sets [47] 

There are additional segmentation assessment metrics includ-
ing volume metrics, information theoretic metrics (e.g., mutual 
information), probabilistic metrics (e.g., intraclass correlation coef-
ficient [ICC]), and pair counting metrics that can also be used to 
assess the quality of a segmentation algorithm or for comparing 
multiple segmentations [47]. 

6.2 Classification 

Assessment 

Classification ML are algorithms designed to parse brain images 
and data into unique categories. Often the task is differentiating 
two groups (e.g., cancer versus non-cancer patients), but classifica-
tion can also be multiclass (e.g., differentiating astrocytoma, glio-
blastoma, and meningioma brain tumors). The outputs of an ML 
algorithm can be discrete classes (e.g., via decision tree) or a con-
tinuous or a quasi-continuous score (e.g., output of a linear classi-
fier and many DL methods) for an image. As with all ML, the 
classifier output needs to be assessed and properly interpreted, so



ML performance is understood in the correct context. Tharwat 
[52] and Hossin and Sulaiman [53] have nice summaries of classifi-
cation analysis methods. They discuss various performance metrics 
along with information on how and when each metric might be 
most effectively used in classifier assessment. 
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In the remainder of this subsection, we concentrate on binary 
classifier assessment that includes a wide range of statistical metrics 
for assessing classifier performance starting with operating point 
metrics defined directly from discrete ML outputs and moving to 
more complex metrics based on thresholding a continuous ML 
output score. 

Some basic prevalence-independent metrics (i.e., metrics that 
do not depend on the prevalence of diseased cases in the standalone 
database) are described below where TP, TN, FP, and FN are case 
counts here.

• True-positive rate (TPR), sensitivity, recall 

TPR = Se = 
TP 

TPþ FN
• True-negative rate (TNR), specificity 

TNR = Sp= 
TN 

TNþ FP 

Likelihood ratios are aggregate measures combining sensitivity 
and specificity. The positive/negative likelihood ratio is the ratio of 
the probability of a person who has the disease testing positive/ 
negative over the probability of a person who does not have the 
disease testing positive/negative. They are defined as:

• Positive likelihood ratio (LR+ ) 

LRþ = 
TPR 

1-TNR

• Negative likelihood ratio (LR-) 

LR - = 
1-TPR 
TNR 

Other operating point metrics depend on the prevalence of 
disease in the test dataset. They include:

• Positive prediction value (PPV), precision 

PPV =Precision= 
TP 

FPþ TP
• Negative prediction value (NPV) 

NPV = 
TN 

FNþ TN
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• Accuracy 

Accuracy= 
TPþ TN 

TPþ TNþ FPþ FN
• F1 score 

F 1 =2∙ 
PPV ×TPR 
PPV þ TPR 

These metrics are most appropriate when assessing ML perfor-
mance in a dataset representing the true clinical population because 
of their prevalence dependence. They must be interpreted with 
caution when applied to enriched datasets especially when extra-
polating the estimated classification performance to the clinical 
environment. 

For continuous ML scores where a final classification is based 
on applying a threshold to the output scores, there are aggregation 
measures that more completely characterize overall classifier perfor-
mance for a binary task. A common choice is receiver operating 
characteristic (ROC) analysis which characterizes performance for 
all possible operating points of the classifier. An ROC curve plots 
TPR as a function of the false-positive rate (FPR = 1-TNR) when 
the threshold on the classifier output is varied over the complete 
range of possible output scores [54–56]. An example of an ROC 
curve is shown in Fig. 3. The advantage of the ROC curve is it 
shows the benefit (i.e., TPR) as a function of all possible risk values 
(i.e., FPR) such that a much more complete understanding of the 
benefit–risk trade-off at all operating points is provided [52]. 

To facilitate statistical comparisons and to benchmark perfor-
mance, summary performance can be estimated from ROC curves 
with the most popular being the area under the ROC curve (AUC) 
and the partial AUC (PAUC area under just a portion of the ROC 
curve) [41]. However, the ROC curve should always be plotted to 
allow for a visual assessment of an individual algorithm’s perfor-
mance or to facilitate a comparison across algorithms. This allows 
the trade-off across the full range of the ROC curve to be 
visualized. 

Parametric and nonparametric statistical methods are available 
to both estimate AUC/PAUC and their uncertainties. These 
approaches allow for statistical comparisons in performance 
among multiple ML algorithms. There is substantial literature on 
statistical method for assessing and comparing ROC performance. 
A great summary of approaches can be found in a report on ROC 
by the International Commission on Radiation Units and Measure-
ments (ICRU) [57].
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Fig. 3 Plot of an ROC curve for an ML algorithm in a binary classification task. The ROC curve (blue line) shows 
the trade-off between sensitivity (TPR) and specificity (FPR) for all possible operating points. Both the AUC 
(includes both shaded regions) and the PAUC for sensitivity ≥0.8 are shown in the figure 

6.3 Abnormality 

Detection Assessment 

ML detection algorithms mark locations or regions of an image that 
may reveal abnormalities [41]. Examples of basic ML detection 
include ML-based bounding boxes or segmentations of potential 
brain lesions or markers indicating potential brain lesions in an MR 
or CT scan. Often ML detection outputs include not only localiza-
tion information but also a confidence score or class determination 
for the identified regions such that the ML includes both detection 
and classification functionalities. In the remainder of this subsec-
tion, we concentrate on assessing only detection performance with-
out addressing any other potential components of an ML 
algorithm’s output. However, we will still use the ML detection 
confidence scores, when available, to expand the range of possible 
performance metrics available for standalone assessment. 

Similar to classification metrics, there are a wide range of 
metrics available for assessing detection performance. Basic detec-
tion operating point metrics, usually based on thresholding a con-
tinuous ML score for each region, include counts of object-based 
true-positive (TP), false-positive (FP), and false-negative 
(FN) detections using the basic definitions in Subheading 6.2 
above. Note that object-based true-negative (TN) detections are



generally not estimable in ML detection because there is an infinite 
(or at least an extremely larger number) of possible TN locations 
within an image [41]. In addition, ML detection assessment is 
complicated by the need for a predefined rule (method and thresh-
old) for determining a “correct” detection based on the overlap of a 
bounding box/segmentation with a reference standard region or 
the distance from an ML marker to a reference standard object 
(e.g., distance to the centroid of a reference standard). The overlap 
metric is often based on the intersection over union (IoU) for 
bounding boxes/segmentations with a reference standard object 
and Euclidean distance for markers. However, other potential over-
lap metrics and criteria may be justifiable for various detection tasks. 
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Based on the number of TP, FP, and FN detection counts, 
some basic summary operating point metrics include the true-
positive rate (TPR) (i.e., recall) and positive predictive value 
(PPV) (i.e., precision) that are defined similarly as those in Sub-
heading 6.2 but with the unit of regions/cases instead of voxels and 
the number of FPs per case (or another appropriate unit of interest) 
since individual cases often include multiple images and abnormal-
ities of interest [41]. For example, an MR exam of the head may 
include multiple MRI sequences (e.g., T1, T2) such that it is 
possible to report ML detection performance on a per-patient, 
per-view (sequence), or per-abnormality (object) basis. The unit 
of performance should be clearly defined and justified with 
per-abnormality (or object) performance typically being reported 
for most image-based ML detection devices especially when only a 
single exam is available per patient. 

Analogous to classification tasks, aggregation metrics that more 
completely characterize overall ML detection performance are used 
when a confidence score is available for each detection. ROC 
analysis is not generally used for ML detection assessment because, 
as mentioned previously, TNs are not estimable. Therefore, alter-
nate methods have been developed including the free-response 
receiver operating characteristic (FROC) analysis. FROC accounts 
for localization and detection of an arbitrary number of abnormal-
ities within an image set [58]. FROC curves plot the fraction of 
correctly localized lesions as a function of the average number of 
FPs across the full range of confidence scores for an ML detection 
algorithm [59]. An example of FROC curve is shown in Fig. 4. 

The plot in Fig. 4 shows a nonparametric FROC curve. Para-
metric FROC methods have been developed using maximum like-
lihood methods [60–62]. Similar to ROC analysis, FROC area-
based metrics can serve as summary performance metrics, but, since 
the number of FPs in FROC are not bounded, the area under the 
curve is not limited. This complicates the use of the full area under 
the FROC curve as a summary figure of merit. Therefore, alternate 
area-based figures of merit have been developed to summarize and 
compare FROC performance curves.
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Fig. 4 Plot of an FROC curve for an ML detection algorithm. The FROC curve (blue line) shows the trade-off 
between object detection sensitivity (TPR) and the number of FPs per patient for all possible operating points. 
The full area under the FROC curve is not well defined, but a partial area may facilitate comparisons across 
algorithms. The figure shows a PAUC (shaded region) for ≤3.0 FPs/patient. However, AFROC-based summary 
metrics are more commonly used for characterizing/comparing FROC performance 

The area under the alternate FROC (AFROC) curve with a 
jackknife method (JAFROC) was developed to provide confidence 
interval estimates and facilitate statistical performance comparisons 
across algorithms [56, 61]. AFROC provides an alternative way to 
summarize FROC data where the fraction of negative images falsely 
called positive are computed based on the highest FP score for each 
image in the dataset [58]. In this way, the unlimited x-axis of FROC 
curves is now bounded at 1 as shown in Fig. 5, and the area under 
the curve is well defined. Chakraborty’s jackknife FROC 
(JAFROC) metric is the area under this AFROC calculated using 
a jackknife approach [56, 61]. 

Another common aggregate assessment for ML detection per-
formance is the precision–recall (P–R) curve (see Fig. 6) which plots 
the trade-off between precision and recall across the full range of 
ML detection algorithm confidence scores [63]. 

As a reminder, precision (PPV) is a measure of how well the ML 
detection algorithm identifies only relevant abnormalities, while 
recall (TPR) is a measure of how well the algorithm finds all 
abnormalities. A better ML detection algorithm will have a higher 
precision at a fixed recall. Therefore, a larger area under the P–R
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Fig. 5 Plot of an AFROC curve for the same ML detection algorithm given in Fig. 4. The AFROC curve (blue line) 
shows the trade-off between sensitivity (TPR) and the false patient fraction (fraction of patients with at least 
one FP) for all possible operating points. The area under the AFROC curve (shaded region) is often used to 
facilitate comparisons across object detection algorithms 

Fig. 6 Plot of a P–R curve for the same ML object detection algorithm as in Figs. 4 and 5. The P–R curve shows 
the trade-off in precision (PPV) as a function of recall (TPF). The area under the P–R curve (AUCPR) is an 
aggregate summary metric, for characterizing and comparing P–R curves across object detection algorithms



curve indicates improved performance compared to a competing 
algorithm, at least when the two P–R curves do not cross. The area 
under the P–R curve (AUCPR) is again an aggregate summary 
metric with the average precision (AP) as one estimation method 
developed in the information retrieval literature and has been used 
as a performance metric in ML Grand Challenges assessing ML 
localization algorithms [64, 65]. Nonparametric P–R curve and AP 
are commonly reported with one definition of AP given below.

736 Weijie Chen et al.

• Average precision 

AP = 
N 

n=1 

Rnþ1 -Rnð ÞP interp Rnþ1ð Þ, where P interp Rnþ1ð Þ  

= max 
R:R≥Rnþ1 

P R 

Another approach is to use an 11-point interpolation by aver-
aging the maximum precision for a set of 11 equally spaced recall 
levels [0, 0.1, 0.2, ..., 1] [63]. Parametric [66] and semi-parametric 
[67] methods for fitting the P–R curve and methods for estimating 
the AUCPR (e.g., trapezoidal estimators, interpolation estimators) 
have also been reported in the literature. 

One of the complications in assessing an ML algorithm for 
abnormality detection is the need for determining a “correct” 
detection based on either an overlap measure for a bounding 
box/segmentation output or a distance metric for a marker output. 
Since ML algorithm performance depends on the “correct” detec-
tion criterion defined by an empirically chosen overlapping or 
distance parameter, a sensitivity analysis of the standalone perfor-
mance across a range of overlap parameters is helpful to confirm 
that the performance estimate is reasonably stable or to at least 
understand how the choice of the criterion impacts performance. 
Moreover, while we have concentrated on detecting a single abnor-
mality here, the abnormality detection metric discussed above can 
be generalized to multiple-object detection problems by reporting 
overall performance or assessing performance individually for each 
type of abnormality and averaging across abnormality types. 

6.4 Triage 

Assessment 

A triage ML algorithm analyzes images for findings suggestive of a 
target clinical condition, but instead of making a diagnosis or 
detection on the image, the algorithm is limited to generating a 
notification in the reading worklist or communicating directly to a 
specialist that a patient has a potential time-sensitive condition. 
Triage ML devices are often called computer-assisted triage and 
notification (CADt) devices. CADt is designed to allow a full 
clinical review earlier in the workflow than without the ML notifi-
cation, given a true-positive (TP) finding by the algorithm. This can



benefit patients for conditions that are time critical by providing 
more timely care. For example, in cases involving suspected large 
vessel occlusion (LVO) stroke, a notification from an effective 
CADt device could allow a neuro-interventionalist to expeditiously 
treat the clot, potentially reducing some associated morbidity and 
mortality. 
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Another situation that CADt devices are useful is in a busy 
clinical environment where a large number of cases are queued 
waiting for clinician review. Instead of reading the cases in a first-
in-first-out (FIFO) fashion, the clinician can review CADt flagged 
cases before non-flagged cases, thereby reducing the waiting time 
of the diseased patients. 

In both situations described above, the sensitivity of the CADt 
for the target condition is critical so that the truly diseased patients 
benefit from earlier diagnosis and treatment. However, specificity is 
also important for the following reasons. An ML algorithm is 
unlikely to have 100% sensitivity, i.e., there are inevitably false-
negative patients in the queue. These patients may be significantly 
delayed compared with FIFO reading if the triage algorithm has a 
large false-positive rate (i.e., low specificity). Moreover, too many 
false alarms may lower the vigilance of a specialist which in turn may 
affect their performance on the true-positive patients. Therefore, 
the metric sensitivity and specificity should be used as a pair to 
assess CADt performance. In the same spirit, the overall capability 
of the ML algorithm in distinguishing between patients with the 
condition and those without can be assessed via ROC analysis and 
the area under the ROC curve. 

Despite its usefulness in evaluating a CADt device, the (sensi-
tivity, specificity) pair and ROC performance are metrics of diagno-
sis and, at best, indirect measures of the true clinical effectiveness of 
an ML triage, i.e., reduction of the waiting time for patients with 
the target time-sensitive condition. Quantitative assessment of the 
clinical effectiveness of CADt devices in accelerating the review of 
patient images with the condition of concern is an open question. 
Among the efforts we are aware of, Thompson et al. [68] are 
developing an analytical approach based on the queueing theory 
to quantify the wait-time-saving of CADt. Under a clinical work-
flow model parameterized by disease prevalence, patient arrival rate, 
radiologist service rate, and number of radiologists on-site, their 
method allows computation of the average waiting time saved for a 
truly diseased patient due to the use of the CADt device where 
CADt performance is characterized by its sensitivity and specificity 
in diagnosing the condition of interest. This approach can poten-
tially be useful in assessing the clinical effectiveness of CADt algo-
rithms but requires further development and validation. Likewise, 
alternate approaches for assessing true CADt effectiveness in a 
clinical setting should be an area of continued research.
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6.5 Utility of 

Standalone 

Performance 

Assessment 

As mentioned previously, ML standalone assessment is primarily 
used to benchmark algorithm performance and compare with other 
ML algorithms or prior versions of the same algorithm to deter-
mine a performance change. Once a standalone dataset has been 
established and referenced, and the various performance metrics 
and criteria set, standalone testing can generally be applied in an 
efficient manner. Therefore, standalone testing is an important tool 
for assessing the potential bias in an ML algorithm. When a large 
diverse standalone dataset containing a range of patients with vari-
ous demographic characteristics, a wide range of disease conditions, 
and the full range of acquisition technologies and protocols is 
available, ML performance can be estimated and compared both 
overall on the full dataset and in separate subgroups within this 
larger population to help identify where the ML may perform 
better and worse. 

The standalone testing is also a critical tool for confirming a 
potential bias or disparity when this disparity is hypothesized, 
through specifically targeting the assessment to that subgroup of 
interest. Through standalone testing, ML performance can quickly 
be evaluated on the specific subgroup to determine if concern is 
warranted. The data requirements for this type of focused sub-
group assessments may not need to be unusually large if the goal 
is to identify large disparities in performance when the ML algo-
rithm is suspected to be performing poorly. Obviously, identifying 
more nuanced differences in performance across subgroups 
requires larger datasets. 

Finally, standalone testing is a great tool for comparing ML 
algorithms. Again, it is ideal to obtain a large diverse real-world 
dataset to fully assess and benchmark an ML algorithm, but com-
parison can often be performed on much smaller enriched datasets 
where the main goal is to determine which algorithm or modifica-
tion performs best, especially in the developmental phases of an 
algorithm’s life cycle. 

6.6 Modifications 

and Continuous 

Learning 

One of the potential advantages of ML is its ability to quickly learn 
from new data such that it can remain current to changing patient 
demographics, clinical practice, and image acquisition technolo-
gies. This ability may result in large numbers of updates to an ML 
algorithm after it becomes available for clinical use. However, each 
update requires a systematic assessment. Modifications can range 
from infrequent algorithm updates all the way to continuously 
learning ML that adapts or learns from real-world experience/ 
data on a continuous basis. This presents a challenge to both ML 
developers and regulatory bodies such as the FDA. 

FDA’s traditional paradigm of regulating ML devices is not 
designed for adaptive technologies, which adapt and optimize per-
formance on a rapid timescale. With this in mind, the FDA is 
exploring a new, total product life cycle (TPLC) regulatory



approach that may potentially accommodate the rapid modification 
cycle of ML algorithms allowing for their efficient improvement 
and adaptation to the changing clinical environment while still 
providing effective safeguards that meet FDA’s statutory require-
ments to ensure safety and effectiveness. To this end, the FDA 
released a proposed regulatory framework for modifications to 
AI/ML software as a medical device (SaMD) in 2019 as a discus-
sion paper [69] requesting feedback from the public on the pro-
posed framework. The proposed TPLC approach is based on [69]:
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• The assurance of quality systems and good machine learning 
practices (GMLP).

• An initial premarket assurance of safety and effectiveness.

• A limited set of SaMD pre-specifications.

• A well-defined algorithm change protocol. 

The algorithm change protocol is defined as the specific meth-
ods that will be used to achieve and appropriately control the risks 
of the SaMD pre-specifications [69]. 

This proposed framework is still under development, but the 
FDA did provide more details on their potential approach with the 
release of the AI/ML SaMD Action Plan in January 2021. The 
Action Plan was developed in response to the stakeholder feedback 
received on the proposed framework and to support innovative 
work in the regulation of medical device software and other digital 
health technologies.9 

In response to the FDA’s proposed framework, Feng et al. have 
been working to frame an AI/ML algorithm change protocol as an 
online statistical hypothesis testing problem [70]. The goal of their 
work was to investigate how “biocreep” resulting from repeated 
testing and adoption of modifications might lead to a gradual 
deterioration in ML performance. Feng et al. were able to show 
that biocreep would regularly occur when using policies with no 
error-rate guarantees but policies that included error-rate control 
were able to control biocreep without substantially impacting the 
ability to approve beneficial modifications [70]. This was an 
in-depth study of a very limited scope of potential ML modification 
problems as indicated by Feng et al. [70], and there remains a great 
deal of work to address the challenges around other types of mod-
ifications and conditions. The scientific community, especially inter-
disciplinary teams of clinicians, statisticians, and domain experts, 
are encouraged to take on this interesting and complex ML 
problem [71]. 

9 https://www.fda.gov/media/106331/download

https://www.fda.gov/media/106331/download
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7 Clinical Performance Assessment with a Reader Study 

Simply put, a reader study for the assessment of ML algorithms is to 
put the algorithm in the hands of clinicians and study the effective-
ness of the algorithm in aiding the clinician’s decision-making. In 
this chapter, a reader study generally refers to a study in which 
readers (e.g., radiologists) review and interpret medical images for 
a specified clinical task (e.g., diagnosis) and provide objective quan-
titative interpretation such as a rating of the likelihood that a 
condition is present. This is fundamentally different from a survey 
or questionnaire for the radiologist to indicate if they “like” the 
functionalities of the ML algorithm, which is not task-specific or 
particularly subjective (i.e., “beauty test”). Moreover, reader stud-
ies for ML in medical imaging typically consist of two arms: reading 
images without the ML algorithm and with the algorithm output 
for medical decision-making, thereby enabling a comparison of the 
reader’s performance between with and without the ML aid. 

It is fundamentally important to distinguish between fixed-
reader study and random-reader study. When readers are treated 
as fixed and patient cases are treated as random samples from the 
patient population, the variability/uncertainty of the performance 
estimate (without ML or with ML) arises only from the random 
sample of patient cases. What does this mean? Let us assume we 
have a radiologist whose name is Barbara in a fixed-reader study and 
her true diagnostic performance over the entire patient population 
is AB. In one experiment, the estimate of Barbara’s diagnostic 
performance is AB with a 95% confidence interval 

(CI) LAB 
,UAB 

. This means that if the experiment were repeated 

infinite number of times, each time with Barbara reading images of 
a random sample of patients, then the average of estimates AB in 
these repeated experiments would be AB, and the true value AB 

would be within the estimated confidence intervals 95% of the time. 

In this sense, we say the performance estimate “AB LAB 
,UAB 

” of 

radiologist Barbara is generalizable to the patient population. 
Notice that this conclusion is only about Barbara but nobody else. 

On the other hand, in a random-reader study where both 
readers and cases are treated as random effects, the population 
parameter of interest A is the (average) performance of the reader 
population over the population of patients. The variability/uncer-

tainty of the performance estimate A in one experiment LA,UA 

should account for both the randomness of readers and that of 
cases—which is not a trivial task (see next paragraph for relevant 
literature). The interpretation of such estimates is that, if the 
experiments were repeated infinite number of times, each time 
with a random sample of readers reading a random sample of cases’



images, then the average of the performance estimates A in these 
repeated experiments would be A, and the population performance 
A would be within the estimated CIs 95% of the time. In this sense, 

we say the performance estimate “A LA,UA ” generalizes to both 

the reader population and the patient population, i.e., the perfor-
mance estimate represents the expected performance of a random 
reader reading a random case using a medical device (e.g., an ML 
algorithm). To distinguish from a fixed-reader study, a random-
reader study is often referred to as a multi-reader multi-case 
(MRMC) study. As a passing note, this discussion also indicates 
that it is critical to specify the intended patient population and user 
population of a device so that a study can be designed to collect data 
from those populations. 
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The statistical methodology for generalizing the performance 
of an imaging device to both the population of readers and the 
population of cases was first developed by Dorfman, Berbaum, and 
Metz (DBM) [72]. Since then, many methodologies have been 
developed for the analysis of MRMC data such as the Obuchowski 
and Rockette (OR) [73] model based on a correlated ANOVA 
model; the bootstrap method by Beiden, Wagner, and Campbell 
[74]; and the U statistic method by Gallas [75]. Relationships 
among these methods have also been investigated [76, 77]. These 
early developments of MRMC analysis methods have focused on 
the area under the ROC curve (AUC) as a performance metric; 
some of these methods (e.g., OR and U statistic methods) have 
been extended to binary performance metrics [78], and all these 
methods have been validated with simulation studies [79] 
[80]. Some of these methods also have publicly available software 
tools, such as the integrated and updated OR–DBM method10 and 
the U statistic method.11 

The most widely used MRMC study design for comparing two 
modalities (e.g., without ML versus with ML) is the fully crossed 
(FC) design, in which every reader reads every case in both mod-
alities. The advantage of pairing both readers and cases across two 
modalities is that it builds a positive correlation between the per-
formance estimates of the two modalities, thereby reducing the 
variability of the performance difference and enhancing the power 
of detecting the performance difference. This reduction of varia-
bility can be easily appreciated by a simple formula 

10 Software | Medical Image Perception Laboratory Department of Radiology (uiowa.edu): https://perception. 
lab.uiowa.edu/software-0 
11 iMRMC: Software to do multi-reader multi-case analysis of reader studies: https://github.com/DIDSR/ 
iMRMC

https://perception.lab.uiowa.edu/software-0
https://perception.lab.uiowa.edu/software-0
https://perception.lab.uiowa.edu/software-0
https://github.com/DIDSR/iMRMC
https://github.com/DIDSR/iMRMC
https://github.com/DIDSR/iMRMC
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Var A1 -A2 =Var A1 þ Var A2 -2ρ Var A1 Var A2 , 

where “Var” denotes variance; A1 and A2 are performance esti-
mates for, e.g., without ML and with ML, respectively; and ρ is the 
correlation between A1 and A2 and is positive under normal 
circumstances. Pairing cases from two modalities sometimes is not 
advised due to safety concerns, for example, if both imaging mod-
alities involve ionizing radiation to patients, imaging the patient 
twice may raise dose concerns. Fortunately, this is not generally an 
issue for the assessment of ML algorithms, and pairing cases in a 
“without ML versus with ML” comparison is feasible in many 
diagnostic situations. 

The FC design has been regarded as the most powerful design 
in the sense that it makes full use of available readers and cases in 
collection of information. However, practically the workload of a 
radiologist may be limited, and oftentimes an investigator may have 
more cases than what readers can afford to read. Moreover, as 
multi-site evaluation becomes popular for better generalizability, 
the transfer of cases among different clinical sites can be logistically 
demanding. To overcome these limitations, Obuchowski [81] 
investigated the split-plot design, where different groups of readers 
read different groups of cases. The combined reader/case group 
can still be paired across modalities to reduce the variability of 
performance difference. Figure 7 provides a visual illustration of 
the FC design and the paired split-plot (PSP) design. What might 
be surprising is that the PSP design can be more powerful than the 
FC design, as shown by Hillis et al. with empirical data [82] and 
Chen et al. with both theoretical analysis and real-world data 
[83]. This may sound like a paradox since the FC design is regarded 
as “the most powerful design,” but it is not. Referring to Fig. 7, 
suppose we have a certain number of readers and each of them can 
read the same number of cases. In the FC design, all the readers 
read the same cases (see Fig. 7, top), whereas, in the PSP design, 
readers are partitioned into two groups with each group reading the 
same number of cases from two different case sets (see Fig. 7, 
bottom). As such, the two designs involve the same amount of 
workload (i.e., number of image interpretations). However, the 
PSP design has reduced variability in performance estimates and 
performance difference estimates and hence increased statistical 
power, as proved by Chen et al. [83] because of the inclusion of 
additional cases. One way to understand this is that, with the same 
workload, reading difference cases (by half of the readers) gains 
more information than reading the same cases. This is also consis-
tent with a common statistical sense: when we have more cases, the 
variability of the “mean” measured on the cases is reduced. In 
summary, the FC design is the most powerful given the same



number of readers and cases, but the PSP design can be more 
powerful given the same number of image interpretations with a 
price of collecting extra cases [83]. 
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Fig. 7 Illustration of the fully crossed design and the paired split-plot design. The squares with grid can be 
understood as the data matrix collected in the reader study with each row representing a case, each column 
representing a reader, and each data element representing the rating of the case by the reader 

The design of an MRMC reader study involves a great deal of 
considerations including patient data collection (see Subheading 3), 
establishment of a reference standard (see Subheading 5), and many 
other aspects such as the recruitment and training of readers and



reading session design, e.g., sequential reading, where the readers 
read images with ML turned on immediately after reading without 
ML, or concurrent reading, where readers read images with ML 
turned on from the very beginning and this is typically compared 
against readers’ performance reading images without ML in a 
separate session. It is worth noting that the discussion of the 
performance testing here is generally based on ML systems that 
are intended to “aid” or interface with an expert radiologist. The 
intended use of a model may warrant additional testing considera-
tions related to human factors and human interpretability depend-
ing on how the model is integrated into the clinical workflow. 
Moreover, MRMC studies for the assessment of ML in imaging 
are often retrospective and controlled “laboratory” studies, in 
which typically only information related to the device of interest is 
presented to the readers (e.g., “image only” versus “image plus ML 
output”), whereas in real-world clinical practice, more information 
is often available to the physician, e.g., patient history, clinical tests, 
and/or other types of imaging exams. The diseased cases are often 
enriched when the natural prevalence is low in controlled labora-
tory studies. The purpose of such designs is to remove certain 
confounders and increase the statistical power to study the impact 
of the ML algorithm itself rather than the “absolute” performance 
of clinicians in the real world (as discussed in Subheading 3). 
However, consideration should still be given to ensure the study 
execution is as close to the clinical environment as possible and 
identify/mitigate potential biases, for example, the readers should 
be trained to use the ML algorithm as if they were instructed in the 
clinic. It is also important to randomize cases, readers, and reading 
sessions to minimize bias. For more details on the design of MRMC 
studies, interested readers can refer to an FDA guidance document 
[84], a consensus paper by Gallas et al. [8], as well as a tutorial 
paper by Wagner et al. [55]. 
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8 Statistical Analysis 

The statistical analysis plays a critical role in the assessment of ML 
performance but may be under-appreciated by many ML develo-
pers. For example, there are still publications that present point 
estimates of ML performance without quantification of uncertain-
ties (standard deviations, confidence intervals). Even if uncertainty 
estimates are provided, the methods of uncertainty estimation are 
sometimes unclear or even inappropriate. Another example is the 
re-use of test data. One may follow the good practice of using 
independent datasets for ML training and testing. However, if the 
test data is repeatedly used, the seemingly innocent good practice 
may introduce optimistic bias to the performance estimate or even 
lead to a spurious discovery because the repeatedly measured



performance on the test dataset may inform training of the algo-
rithm to adaptively fit the test data [85, 86]. As the quote goes, “if 
you torture the data long enough, it will confess.” The lesson is, 
without following appropriate statistical principles, ML developers 
may be led to a blind alley due to statistical pitfalls: comparisons are 
made without statistical rigor, conclusions are drawn without 
appropriate data to substantiate, and spurious findings out of over-
fitting are celebrated. Statistical practices have a major impact on 
the ability to conduct reproducible research. 
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A good practice to avoid such pitfalls is, for any performance 
assessment study—either standalone performance assessment or an 
MRMC study—to pre-specify a statistical analysis plan (SAP) with 
valid statistical methods. The word “pre-specify” is emphasized 
because post hoc analyses can inflate the experiment-wise type I 
error rate and endanger the scientific validity of an otherwise well-
designed and well-conducted study. Below we list exemplar ele-
ments in an SAP for ML development and assessment. We note that 
not all of them are necessarily applicable to a specific study. A 
specific SAP should be consistent with the study objectives, designs, 
nature of data, and statistical analysis methods. 

1. Primary hypotheses and secondary hypotheses that are consis-
tent with the primary and secondary goals of a study. This also 
necessarily involves choosing appropriate performance metrics 
(see Subheading 6 for different metrics corresponding to differ-
ent clinical tasks). For example, the primary goal of an MRMC 
study might be to show the radiologists using an ML algorithm 
perform significantly better than without using the algorithm 
in the task of distinguishing between benign and malignant 
brain tumors, and a secondary goal might be to show the 
radiologist using an ML algorithm has significantly better spec-
ificity (Sp) at a given sensitivity. Then the null (H0) and alterna-
tive (H1) primary hypotheses can be stated as 

H 0 : AUCwith ML =AUCwithout ML;H 1 

: AUCwith ML >AUCwithout ML: 

And the secondary hypotheses may be stated as 

H 0 : Spwith ML 
= Spwithout ML 

;H 1 : Spwith ML 
> Spwithout ML 

: 

2. A plan for use of patient data in various stages of ML algorithm 
development and performance assessment. As discussed in 
Subheading 3, patient data are used in both the development 
and assessment of ML algorithms. A pre-specified plan for 
appropriate use of patient data is crucial for achieving the 
goals of algorithm development and performance validation 
and controlling various sources of bias in the process.
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3. Methods for analyzing the study data to estimate the 
pre-specified performance metric, the uncertainty of the metric 
(e.g., standard deviations and confidence intervals) accounting 
for all sources of variability including reference standard as 
needed, and the test statistic for hypothesis testing. It is criti-
cally important to examine if the assumptions behind the sta-
tistical methods are appropriate for the data and, when 
necessary, use an alternative method to verify the results. 

4. Sample size determination. In a standalone performance assess-
ment study, this is to determine the number of patients to be 
included in the study such that the study data are representative 
of the intended patient population (see Subheading 3.3.3) and, 
when applicable, the study has sufficient statistical power (typi-
cally set to be >80%) to detect a significant effect (e.g., superior 
performance compared with a control). With a single source of 
variability, standard statistical methods and software tools are 
often useful for sizing a standalone performance assessment 
study. 

In an MRMC study, both the number of readers and the 
number of cases need to be determined. Sample size determi-
nation is again mainly for assuring a reasonable chance of 
success in the study planning stage. From a technical point of 
view (i.e., not taking into consideration practical issues such as 
budget), sample size is typically determined by considering 
(1) that the sample sizes are large enough to include samples 
that represent the intended patient and reader populations and 
(2) the sample sizes are sufficient to achieve a target statistical 
power in a hypothesis testing study. Due to the complexity, 
specialized software tools can be used for sizing an MRMC 
study [87], and the MRMC software tools cited in Subheading 
7 provide the sizing functionality. 

The information needed for sizing a pivotal study is often 
obtained in a pilot study, as discussed in Subheading 3. How-
ever, sometimes the pilot study is too limited to provide reliable 
information, and one may find attempting to re-size a pivotal 
study after an interim analysis of the data. Naively re-sizing the 
study based on information obtained in the same study may 
inflate the type I error rate. Huang et al. [88] developed an 
approach that allows adaptive re-sizing of an MRMC study 
with information obtained in an interim analysis such that the 
statistical power is adjusted to a target value and the type I error 
rate is retained by paying a statistical penalty in the final hypoth-
esis testing. 

5. A plan for adjusting p-values and/or confidence intervals for 
multiple comparisons or hypothesis tests. 

6. A plan for handling missing data and assessing the impact of 
missing data (e.g., missing reader data, missing follow-up data
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to confirm negative results) on the study conclusions. 
Although statistical techniques may be used to address issues 
of loss-to-follow-up and missing data, these techniques often 
employ major assumptions that cannot be fully validated for a 
particular study. Therefore, the best way to address issues of 
missing data due to loss-to-follow-up is to plan to minimize its 
occurrence during the planning and management of the clinical 
study. Nevertheless, the study protocol should pre-specify 
appropriate statistical data analysis methods, in addition to 
sensitivity analyses, for handling missing data. 

9 Summary Remarks 

In this chapter, we provided an overview of a performance assess-
ment framework for imaging-based ML algorithms. We discussed 
general considerations in study design and data collection, estab-
lishment of a reference standard, algorithm documentation, algo-
rithm standalone performance as well as clinical reader studies, and 
statistical data analysis in performance testing. We believe that these 
topics are relevant not only in the regulatory setting but also to 
reproducible science and technology development. Because patient 
data and clinical experts’ annotations are used in both the develop-
ment and assessment of ML algorithms, performance assessment 
should be considered from the very beginning of development to 
make efficient use of available data. In addition, performance assess-
ment and algorithm development (e.g., tuning, internal validation) 
are often iterative; meaningful assessment methodologies and tools 
are not only meant to make the assessment rigorous but also cost-
effective. Furthermore, performance assessment methodologies are 
also tremendously helpful to assure quality and reproducibility, 
control bias, and avoid pitfalls and blind alleys. 

Machine learning technologies are still rapidly evolving, and 
their applications in medicine and brain imaging in particular are 
expanding. It is widely recognized that ML is playing a pivotal role 
in revolutionizing medicine and promoting public health to a new 
level. Accompanying these potential developments are new research 
questions on assessment methodologies. We have touched upon 
topics in this chapter such as novel types of clinical applications 
enabled by ML and continuous learning ML. Other exciting topics 
may include improvement and assessment of robustness and gen-
eralizability of ML algorithms, synthetic data augmentation, char-
acterization of bias/fairness, and uncertainty-aware ML algorithms 
that output not only clinical conditions of interest but also “I don’t 
know,” among many others. We believe that assessment methodol-
ogies and regulatory science play a critical role in fully realizing the 
great potential of ML in medicine, in facilitating ML device innova-
tion, and in accelerating the translation of these technologies from 
bench to bedside to the benefit of patients.
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Abstract 

Recent advances in technology have made possible to quantify fine-grained individual differences at many 
levels, such as genetic, genomics, organ level, behavior, and clinical. The wealth of data becoming available 
raises great promises for research on brain disorders as well as normal brain function, to name a few, 
systematic and agnostic study of disease risk factors (e.g., genetic variants, brain regions), the use of natural 
experiments (e.g., evaluate the effect of a genetic variant in a human population), and unveiling disease 
mechanisms across several biological levels (e.g., genetics, cellular gene expression, organ structure and 
function). However, this data revolution raises many challenges such as data sharing and management, the 
need for novel analysis methods and software, storage, and computing. 

Here, we sought to provide an overview of some of the main existing human datasets, all accessible to 
researchers. Our list is far from being exhaustive, and our objective is to publicize data sharing initiatives and 
help researchers find new data sources. 

Key words Genetic, Methylation, Gene expression, Brain MRI, PET, EEG/MEG, Omics, Electronic 
health records, Wearables 

1 Aims 

We sought to provide an overview and short description of some of 
the main existing human datasets accessible to researchers. We hope 
this chapter will help publicize them as well as encourage the 
sharing of datasets for open science. As much as possible, we tried 
to provide practical aspects, such as data type, file size, sample 
demographics, study design, as well as links toward data use/trans-
fer agreements. We hope this can help researchers study larger and 
more diverse data, in order to advance scientific discovery and 
improve reproducibility. 
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This chapter does not aim to provide an exhaustive list of the 
dataset and data types currently available. In addition, the inter-
ested readers may refer to the complementary chapters that focus 
on data processing, feature extraction, and existing methods for 
their analyses. 

2 Introduction 

The availability of data used in research is one of the cornerstones of 
open science, which contributes to improving the quality, repro-
ducibility, and impact of the findings. In addition, data sharing 
increases openness and transparent and collaborative scientific prac-
tices. The global push for open science is exemplified by the recent 
publication of UNESCO guidelines [1], the engagement of many 
research institutions, and the requirements of some scientific jour-
nals to make data available upon publication. Finally, the sharing 
and re-use of data also maximizes the return on investment of the 
agencies (e.g., states, charities, associations) that fund the data 
collection. 

In light of this, our chapter aims at providing a broad (albeit 
partial) overview of some of the human datasets publicly available 
to researchers. To assist researchers and data managers, we first 
describe the different file formats and the size of the different data 
types (see Table 1). As many of these data are high-dimensional, the 
size of the data can cause storage and computational challenges, 
which need to be anticipated before download and analysis. Of 
note, some datasets cannot be downloaded or analyzed outside of 
a dedicated system/server. This is the case of the UK Biobank 
(UKB) exome and whole genome sequencing, whose sheer size 
has led to the creation of a dedicated Research Analysis Platform, 
accessible (at some cost) by UKB-approved researchers. In addi-
tion, the Swedish registry data is only accessible via national dedi-
cated servers due to the extreme sensitive nature of the data. 

This chapter breaks down into sections that focus on each data 
type, although the same dataset may be mentioned in several sec-
tions. Beyond a practical writing advantage (each author or group 
of authors contributed a section), this also reflects the fact that most 
datasets are organized around a central data type. For example, the 
ADNI (Alzheimer’s disease Neuroimaging Initiative) focuses on 
brain imaging and later included genotyping information. Another 
example is the UKB, which released genotyping data of the 500 K 
participants in 2017, is now collecting brain MRI (as well as cardiac 
and abdominal MRI, whole-body DXA, and carotid ultrasound), 
and has recently made available sequencing data. The different 
sections also discuss and present the specific data sharing tools 
and portals (e.g., LONI for brain imaging, GTEx for gene expres-
sion) or organization of the different fields (e.g., consortia in
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genetics). Every time, we have tried to include the largest dataset 
(s) available, as well as the commonly used ones, although the 
selection may be subjective and reflect the authors’ specific interests 
(e.g., age or disease groups).

Main Existing Datasets 757

All datasets are listed in a single table (see Table 2), which 
includes information about country of origin, design (e.g., cross-
sectional, longitudinal, clinical, or population sample), and age 
range of the participants. Unless specified, the datasets presented 
include male and female participants, although the proportion may 
differ depending on the recruitment strategy and disease of interest. 
In addition, the table lists (and details) the different data types that 
have been collected on the participants. We have only focused on a 
handful of data types: genetic data (including twin/family samples, 
genotyping, and exome and whole genome sequencing), genomics 
(methylation and gene expression), brain imaging (MRI and PET), 
EEG/MEG, electronic health records (hospital data and national 
registry), as well as wearable and sensor data. However, we have 
included additional columns “Other omics” and “Specificities” that 
list other types of data being collected, such as proteomics, meta-
bolomics, microRNA, single-cell sequencing, microbiome, and 
non-brain imaging. 

Our main table (see Table 2) also includes the URLs to the 
dataset websites and data transfer/agreement. From our experi-
ence, data access can take between an hour and up to a few months. 
The agreements almost always require a review of the project and to 
acknowledge the data collection team and funding sources (e.g., 
under the form of a byline, a paragraph in the acknowledgment, 
and more rarely co-authorships). Standard restrictions of use 
include that the data cannot be redistributed and that the users 
do not attempt to identify participants. Specific clauses are often 
added depending on the nature of data and the specific laws and 
regulations of the countries it originates from. 

There is a growing scientific and ethical discussion about the 
representativity of the datasets being used in research. Researchers 
should be aware of the biases present in some datasets (e.g., 
“healthy bias” in the UKB [2]), which should be taken into account 
in study design (e.g., analysis of diverse ancestry being collected in 
genetics [3]), when reporting results [2, 4] and evaluating algo-
rithms [5, 6]. Overall, our (selected) list exemplifies the need for 
datasets from under-represented countries or groups of individuals 
(e.g., disease, age, ancestry, socioeconomic status) [7, 8]. Our main 
table (see Table 2) will be accessible online, in a user-friendly, 
searchable version. Finally, we will also make this table collaborative 
(  v  i  a  G  i  t  H  u  b  h  t  t  p  s  :  //  g  i  t  h  u  b  .  c  om  /  b  a  p  t  i  s  t  e  C  D  /  
MainExistingDatasets) in order to grow this resource beyond this 
book chapter.

https://github.com/baptisteCD/MainExistingDatasets
https://github.com/baptisteCD/MainExistingDatasets
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We hope this overview could be useful to the readers wanting 
to replicate findings, maximize sample size and statistical power, 
develop and apply methods that utilize multi-level data, or even 
select the most relevant dataset to tackle a research question. We 
also hope this encourages the collection of new data shared with the 
community while ensuring interoperability with the existing 
datasets. 

3 Neuroimaging 

3.1 Magnetic 

Resonance 

Imaging (MRI) 

Brain magnetic resonance images are 3D images that measure brain 
structure (T1w, T2w, FLAIR, DWI, SWI) or function (fMRI). The 
different MRI sequences (or modalities) can characterize different 
aspects of the brain. For example, T1w and T2w offer the maximal 
contrast between tissue types (white matter, gray matter, and cere-
brospinal fluid), which can yield structural/shape/volume mea-
surements. They can also be used in conjunction with an injection 
of a contrast agent (e.g., gadolinium) for detecting and character-
izing various types of lesions. FLAIR is also useful for detecting a 
wide range of lesions (e.g., multiple sclerosis, leukoaraiosis, etc.). 
SWI focuses on the neurovascular system, while DWI allows mea-
suring the integrity of the white matter tracts. Functional MRI 
measures BOLD (blood oxygen level dependent) signal, which is 
thought to measure dynamic oxygen consumption in the different 
brain regions. Of note, fMRI consists of a series of 3D images 
acquired over time (typically 5–10 min). 

Brain MRI is available as a series of DICOM files (brain slices, 
traditional format of the MRI machines) or a single NIfTI (single 
3D image) format (see Table 1). The two formats are roughly 
equivalent, and most image processing pipelines allow both data 
sources as input. MR images are composed of voxels (3D pixel), 
and their size (e.g., 1 × 1 × 1 mm) corresponds to the image 
resolution. 

In practice, most MR images are archived and shared via 
web-based applications and more rarely using specific software 
(e.g., UKB). The two major web platforms are XNAT (eXtensible 
Neuroimaging Archive Toolkit) [9], an open-source platform 
developed by the Neuroinformatics Research Group of the 
Washington University School of Medicine (Missouri, (1, 2)), and 
IDA (Image and Data Archive) created by the Laboratory of Neu-
roImaging of the University of South California (LONI, https:// 
loni.usc.edu/). Of note, XNAT also allows to perform some image 
processing [9]. 

The neuroimaging community has developed BIDS (Brain 
Imaging Data Structure), a standard for MR image organization 
to accommodate multimodal acquisitions and facilitate processing.

https://loni.usc.edu/
https://loni.usc.edu/


In practice, few datasets come in BIDS format, and tools have been 
developed to assist with download and conversion (e.g., https:// 
clinica.run) [10]. 
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We have listed a handful of datasets (see Table 1), which is far 
from being exhaustive but aims at summarizing some of the largest 
and/or most used samples. Our selection aims at presenting diverse 
and complementary samples in terms of age range, populations, 
and country of origin. 

First, we have described three clinical elderly samples from the 
USA and Australia, with a focus on Alzheimer’s disease and cogni-
tive disorders. The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) was launched in 2004 and funded by a partnership 
between private companies, foundations, the National Institute of 
Health, and the National Institute for Aging. ADNI is a longitudi-
nal study, with data collected across 63 sites in the USA and 
Canada. To date, four phases of the study have been funded, 
which makes ADNI one of the largest clinical neuroimaging sam-
ples to study Alzheimer’s disease and cognitive impairment in 
aging. ADNI collected a wide range of clinical, neuropsychological, 
cognitive scales as well as biomarkers, in addition to multimodal 
imaging and genotyping data [11]. Sites contribute data to the 
LONI, which is automatically shared with approved researchers 
without embargo. The breadth of data available and its accessibility 
have made ADNI one of the most used neuroimaging samples, with 
more than 1000 scientific articles published to date. 

The Australian Imaging Biomarkers and Lifestyle Study of 
Ageing (AIBL) started in 2006 and has since recruited about 
1100 participants over 60 years of age, who have been followed 
over several years (see Table 1) [12]. AIBL collected data across the 
different Australian states and, similar to ADNI, consisted in an 
in-depth assessment of individual cognition, clinical status, genet-
ics, genomics, as well as multimodal brain imaging [12]. In 2010, 
AIBL partnered with ADNI to release the AIBL imaging subset and 
selected clinical data via the LONI platform. Having the same MRI 
protocols and similar fields collected, AIBL represents a great addi-
tion to the ADNI study, by boosting statistical power or allowing 
for replication. The full clinical information as well as genetics, 
genomics, and wearable data (actigraphy watches) are not available 
via the LONI and require a direct application to the Common-
wealth Scientific and Industrial Research Organisation (CSIRO) 
(see Table 1). 

The Open Access Series of Imaging Studies v3 (OASIS3) is 
another longitudinal sample comprising almost 1100 adult partici-
pants (see Table 1)  [13]. Its main focus is around aging and neuro-
logical disorders, and the application/approval process is extremely 
fast (typically a couple of days). OASIS3 is hosted on XNAT and is 
the third dataset to be made available by the Washington University 
in Saint Louis (WUSTL) Knight Alzheimer’s Disease Research

https://clinica.run
https://clinica.run


Center (ADRC), although the three datasets are not independent 
and cannot be analyzed together. Contrary to ADNI and AIBL, 
OASIS3 is a retrospective study that aggregates several research 
studies conducted by the WUSTL over the past 30 years. As a 
result, the data collected may vary from one individual to the 
next, with a variable time window between visits. In that sense, 
OASIS3 resembles data from clinical practice, with individual spe-
cific care/assessment pathways. 
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The UK Biobank (UKB) imaging study [14] is the largest brain 
imaging study to date, with around 50,000 individuals already 
imaged (target of 100,000). The imaging wave complements the 
wealth of data already collected in the previous waves (see Table 1; 
see also Subheading 5 for a description of the full dataset). Consid-
ering the sheer size of the data, the biobank shares raw and pro-
cessed images as well as structured data (measurements of regions 
of interest) [15]. Data is accessible upon request by all bona fide 
researchers, with certified profiles. Data access requires payment of 
a fee, which only aims to cover the biobank functioning costs. The 
UKB has developed proprietary tools for a secure download and 
data management (https://biobank.ndph.ox.ac.uk/showcase/ 
download.cgi). 

The Adolescent Brain Cognitive Development (ABCD) is an 
ongoing longitudinal study of younger individuals, recruited aged 
9–10 years and who will be followed over a decade [16, 17]. The 
ABCD focuses on cognition, behavior, and physical and mental 
health (e.g., substance use, autism, ADHD) of adolescents. It 
includes self- and parental rating of the adolescents as well as a 
description of the familial environment [17]. ABCD data is hosted 
on the NIMH data archive and requires obtaining and maintaining 
an NDA Data Use Certification, which requires action from a 
signing official (SO) from the researcher institution, as defined in 
the NIH eRA Commons (https://era.nih.gov/files/eRA-Com 
mons-Roles-10-2019.pdf). 

The Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) disease working groups have stemmed from 
the ENIGMA genetics project (see Subheading 5.3) to perform 
worldwide neuroimaging studies for a wide range of disorders (e.g., 
major depressive disorder [18], attention-deficit hyperactivity dis-
order [19], autism [20], post-traumatic stress disorder [21], 
obsessive–compulsive disorder [22], substance dependence [23], 
schizophrenia [24], bipolar disorder [25]) as well as traits of inter-
est (e.g., sex, healthy variation [26]); see [27] for a review. Each 
working group may conduct simultaneously several research pro-
jects, proposed and led by its members. Each site of the working 
group choses the project(s) they contribute to and performs the 
analyses. Of note, most ENIGMA working groups still rely on a 
meta-analytic framework, even if recent projects (e.g., machine 
learning) now require sharing data onto a central server. Interested

https://biobank.ndph.ox.ac.uk/showcase/download.cgi
https://biobank.ndph.ox.ac.uk/showcase/download.cgi
https://era.nih.gov/files/eRA-Commons-Roles-10-2019.pdf
https://era.nih.gov/files/eRA-Commons-Roles-10-2019.pdf


researchers can contribute new data and propose analyses or new 
image processing pipelines to the different working groups. The 
ENIGMA samples typically comprise thousands of participants 
(controls and/or cases; see Table 1), and data are inherently hetero-
geneous, each site having specific recruitment and protocols. 
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Other neuroimaging MRI datasets have focused on twins and 
siblings (see Subheading 5.1) and include the Queensland Twin 
Imaging (QTIM) study, the Queensland Twin Adolescent Brain 
Project, the Vietnam Era Twin Study of Aging (VETSA) [28], and 
the Human Connectome Project (HCP) [29] (see Subheading 5.1). 
In addition, there are many more datasets available on neurological 
disorders, which may be explored via XNAT, LONI, or the Demen-
tias Platform UK (DPUK), to name a few, PPMI (Parkinson’ 
Progression Markers Initiative) [30], MEMENTO (deterMinants 
and Evolution of AlzheiMer’s disEase aNd relaTed disOrder) [31], 
EPAD (European Prevention of Alzheimer’s Dementia) [32], and 
ABIDE (Autism Brain Imaging Data Exchange) [33, 34]. 

3.2 Positron 

Emission Tomography 

(PET–MRI) 

Positron emission tomography (PET) images are 3D images that 
highlight the concentration of a radioactive tracer administered to 
the patient. Here, we will focus on brain PET images, although 
other parts of the body may also be imaged. The different tracers 
allow to measure several aspects of brain metabolism (e.g., glucose) 
or spatial distribution of a molecule of interest (e.g., amyloid). 

PET relies on the nuclear properties of radioactive materials 
that are injected in the patient intravenously. When the radioactive 
isotope disintegrates, it emits a photon that will be detected by the 
scanner. This signal is used to find the position of the emitted 
positrons which allow us to reconstruct the concentration map of 
the molecule we are tracing [35]. 

As for MRI, PET images are available as a series of DICOM files 
or a single NIfTI format. They are composed of voxels (3D pixel), 
and their size (e.g., 1 × 1 × 1 mm) corresponds to the image 
resolution. A BIDS extension has also been developed for positron 
emission tomography, in order to standardize data organization for 
research purposes. 

PET is considered invasive due to the injection of the tracer, 
which results in very small risk of potential tissue damage. Overall, 
the quantity of radioactive isotope remains small enough to make it 
safe for most people, but this limits its widespread acquisition in 
research, especially on healthy subjects or in children. Moreover, 
PET requires to have a high-cost cyclotron to produce the radio-
tracers nearby because the half-life of the radioisotopes is typically 
short (between a few minutes to few hours). 

Several tracers are used for brain PET imaging, one of the most 
common ones being the 18 F-fluorodeoxyglucose (18 F-FDG). 
18 F-FDG concentrates in areas that consume a lot of glucose and 
will thus highlight brain metabolism. In practice, 18 F-FDG PET



images are often used to study neurodegenerative disease by reveal-
ing hypometabolism that characterizes some dementia 
[36, 37]. Other diseases such as epilepsy and multiple sclerosis 
can be studied through this modality, but since it is not part of 
clinical routine, data are rare, and we are not aware of publicly 
available datasets. 
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In whole-body PET scans, 18 F-FDG is used to detect tumors, 
which consumes a lot of glucose. However, the brain consumes a 
lot of glucose as part of its normal functioning, and brain tumors 
are not noticeable using this tracer. Instead, clinicians would use 
11 C-choline that will also accumulate in the tumor area but is not 
specifically used by the brain otherwise. In addition to glycemic 
radiotracers, oxygen-15 is also used to measure blood flow in the 
brain, which is thought to be correlated with brain activity. In 
practice, this tracer is less used than 18 F-FDG because of its very 
short half-life. Other tracers are used to show the spatial concentra-
tion of specific biomarkers: for instance, 18 F-florbetapir (AV45), 
18 F-flutemetamol (Flute), Pittsburgh compound B (PiB), and 
18 F-florbetaben (FBB) are amyloid tracers used to highlight 
ß-amyloid aggregation in the brain, which is a maker of Alzheimer’s 
disease. Finally, 11 C-5-hydroxytryptamine (5-HT) neurotransmit-
ter is used to expose the serotonergic transmitter system. 

We have made a non-exhaustive list of publicly available data-
sets containing PET scans with different tracers. Most datasets 
focused on neurodegenerative disorders and also collected brain 
MRI (see previous section). The Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) is one of the largest datasets with PET images 
for Alzheimer’s disease [11]. ADNI used F-FDG-PET as well as 
PET amyloid tracers: FBB, AV45, and PiB. The Australian Imaging 
Biomarkers and Lifestyle Study of Ageing (AIBL) only collected 
amyloid tracers of PET images: PiB, AV45, and Flute [12]. The 
Open Access Series of Imaging Studies v3 (OASIS3) includes PET 
imaging from three different tracers, PIB, AV45, and 
18 F-FDG [13]. 

In addition to those neurodegenerative datasets, PET is avail-
able in the Lundbeck Foundation Centre for Integrated Molecular 
Brain Imaging (CIMBI) database and biobank established in 2008 
in Copenhagen, Denmark [38]. CIMBI shares structural MRI, 
PET, genetic, biochemical, and clinical data from 2000 persons 
(around 1600 healthy subjects and almost 400 patients with various 
pathologies). Tracer used for PET is the 11 C-5-HT which is rele-
vant to study the serotonergic transmitter system. Applications to 
access the data can be made on their website by completing a form 
(see Table 2). 

The ChiNese brain PET Template (CNPET) dataset has been 
developed by the Medical Imaging Research Group (https:// 
biomedimg-dlut-edu.cn/), from Dalian University of Technology 
(China) [39]. The database contains 116 records of 18 F-FDG-PET

https://biomedimg-dlut-edu.cn/
https://biomedimg-dlut-edu.cn/


from healthy patients, which has been used to make a Chinese 
population-specific statistical parametric mapping (SPM, i.e., aver-
age template used for PET processing). The data used to build the 
PET brain template have been released and are available on Neuro-
Imaging Tools and Resources Collaboratory (NITRC, https:// 
www.nitrc.org/) platform. 
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4 EEG/MEG 

Electroencephalography (EEG) measures the electrical activity of 
the brain [40–42]. Signals are captured through sensors distributed 
over the scalp (noninvasive) or by directly placing the electrodes on 
the brain surface, a procedure that requires a surgical intervention 
[43]. This technique is characterized by its high temporal resolu-
tion, enabling the study of dynamic processes such as cognition or 
the diagnosis of conditions such as epilepsy. Yet, EEG signals are 
nonstationary and have a non-linear nature, which makes it difficult 
to get useful information directly in the time domain. Nonetheless, 
specific patterns can be extracted using advanced signal processing 
techniques. 

Another technique that captures brain activity is magnetoen-
cephalography (MEG). This technology maps the magnetic fields 
induced above the scalp surface. Similar to EEG, MEG provides 
high time resolution, but it is preferentially sensitive to tangential 
fields from superficial sources [44, 45]. This could be considered as 
an advantage, since magnetic fields are less sensitive to tissue con-
ductivities, facilitating source localization. However, MEG instru-
mentation is more expensive and not portable [46, 47]. 

During signal recording, undesirable potential coming from 
sources other than the brain may alter the quality of the signals. 
These artifacts should be detected and removed in order to improve 
pattern recognition. Multiple methods could be applied depending 
on the artifact to be eliminated: re-referencing with common aver-
age reference (CAR), ICA decomposition to remove other physio-
logical sources as eye movements or cardiac components, notch 
filter to get rid of power line noise, and pass-band filtering to keep 
the physiological rhythms of interest, among others [48– 
51]. Other spatial filters such as common spatial pattern (CSP) 
for channel selection or filter bank CSP (FBCSP) for band elimina-
tion are largely used in motor decoding [52, 53]. 

Other signal processing tools allow the user to extract features 
describing relevant information contained in the signals. Subse-
quently, those patterns may be used as input for a classification 
pipeline. The target features vary according to the condition 
under study. Generally, the domain of clinical diagnostics focuses 
either on event-related potentials (ERP) or on spectral content of 
the signal [54, 55]. The first refers to voltage fluctuations associated

https://www.nitrc.org/
https://www.nitrc.org/


with specific sensory stimuli (e.g., P300 wave) or task, like motor 
preparation and execution, covert mental states, or other cognitive 
processes. The amplitude, latency, and spatial location of the result-
ing waveform activity reveal the underlying mental state [56]. On 
the other side, spectral analysis refers to the computation of the 
energy distribution of the signals in the frequency domain. Most 
spectral estimates are based on Fourier transform; this is the case of 
non-parametric methods, such as Welch periodogram estimation, 
which based their computation on data windowing [57]. 
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Another approach is to study the interactions across sources 
(inferring connection between two electrodes by means of tempo-
ral dependency between the registered signals), which is known as 
functional connectivity. Multiple connectivity estimators have been 
developed to quantify this interaction [58]. Through these func-
tional interactions, complex network analysis can also be implemen-
ted, where sensors are modeled as nodes and connectivity 
interactions as links [59–61]. 

EEG and MEG are essential to evaluate several types of brain 
disorders. One of the most documented is epilepsy, based on 
seizure detection and prediction [62–64]. Other neurological con-
ditions can be characterized like Alzheimer’s disease, associated 
with changes in signal synchrony [65, 66]. Furthermore, motor 
task decoding in brain–computer interfaces (BCI) offers a 
promising tool in rehabilitation [67]. This type of data, from 
healthy to clinical cases, can be found on multiple open-access 
repositories, such as Zenodo (https://zenodo.org) or PhysioNet 
((1)), as well as via collaborative projects such as the BNCI Horizon 
2020 (http://bnci-horizon-2020.eu), which gathers a collection of 
BCI datasets (see Table 2). These repositories are also valuable in 
that they contribute to establishing harmonization procedures in 
processing and recording. All dataset-collected informed consent 
and data were anonymized to protect the participants’ privacy. 
Moreover, regulations may vary from one country to another, 
which require, for example, studies to be approved by ethics com-
mittees. Additionally, licensing (that define copyrights of the data-
set) must be considered depending on the intended use of the 
open-access datasets. 

Data come in different formats according to the acquisition 
system or the preprocessing software. The most common formats 
for EEG are .edf, .gdf, .eeg, .csv, or .mat files. For MEG, it is very 
often .fif and .bin (see Table 1). The different formats can create 
challenges when working with multiple datasets. Luckily, some 
tools have been developed to handle this problem, for example, 
FieldTrip [68] or Brainstorm [69] implemented in MATLAB, or 
the Python modules mne [70] and moabb [71]. Of note, these 
tools also contain sets of algorithms and utility functions for analysis 
and visualization.

https://zenodo.org/
http://bnci-horizon-2020.eu/
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5 Genetics 

5.1 Twin Samples Twins provide a powerful method to estimate the importance of 
genetic and environmental influences on variation in complex traits. 
Monozygotic (MZ, aka identical) twins develop from a single 
zygote and are (nearly) genetically identical. In contrast, dizygotic 
(DZ, aka fraternal) twins develop from two zygotes and are, on 
average, no more genetically related than non-twin siblings. In the 
classical twin design, the degree of similarity between MZ and DZ 
twin pairs on a measured trait reveals the importance of genetic or 
environmental influences on variation in the trait. Twin studies 
often collect several different data types, including brain MRI 
scans, assessments of cognition and behavior, self-reported mea-
sures of mental health and wellbeing, as well as biological samples 
(e.g., saliva, blood, hair, urine). Datasets derived from twin studies 
are text-based and include phenotypic data and background vari-
ables (e.g., individual and family IDs, sex, zygosity, age). Notably, 
the correlated nature of twin data (i.e., the non-independence of 
participants) should be considered during analysis as it may violate 
statistical test assumptions [72, 73]. 

Raw data is typically stored locally by the data owner, with 
de-identified data available upon request. In larger studies, data is 
stored and distributed through online repositories. Recently, the 
sharing of publicly available de-identified data with accompanying 
publications has become commonplace. 

Several extensive twin studies combine imaging, behavioral, or 
biological data (see Table 2). These studies cover the whole life span 
(STR) as well as specific age periods, for example, children/adoles-
cents (QTAB), young (QTIM, HCP-YA), middle-aged (VETSA), 
or older (OATS) adults. 

The Swedish Twin Registry (STR) was established in the late 
1950s with the primary aim to explore the effect of environmental 
factors (e.g., smoking and alcohol) on disorders [74]. Data were 
first collected through questionnaires and interviews with the twins 
and their parents. Later, the STR incorporated data from biobanks, 
clinical blood chemistry assessments, genotyping, health checkups, 
and linkages to various Swedish national population and health 
registers [74]. The STR is now one of the largest twin registers in 
the world [75] with information on more than 87,000 twin pairs 
(https://ki.se/en/research/the-swedish-twin-registry). It has 
been used extensively for the research of health and illness, includ-
ing various neurological disorders, including dementia [76], Par-
kinson’s disease [77], and motor neuron disease [78]. 

The Queensland Twin Adolescent Brain (QTAB, 2015–pres-
ent) was enabled through funding from the Australian National 
Health and Medical Research Council (NHMRC). It focuses on 
the period of late childhood/early adolescence, with brain imaging,

https://ki.se/en/research/the-swedish-twin-registry


cognition, mental health, and social behavior data collected over 
two waves (age 9–14 years at baseline, N = 427). A primary 
objective is to chart brain changes and the emergence of depressive 
symptoms throughout adolescence. Biological samples (blood, 
saliva), sleep (self-report), and motor activity measures (see 
Section 8) were also collected. Data is available from the project 
owners upon request. 
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The Queensland Twin IMaging (QTIM, 2007–2012) study, 
funded through the National Institutes of Health (NIH) and 
NHMRC, was a collaborative project between researchers from 
QIMR Berghofer Medical Research Institute, the University of 
Queensland, and the University of Southern California, Los 
Angeles. Brain imaging was collected in a large genetically informa-
tive population sample of young adults (18–30 years, N > 1200) 
for whom a range of behavioral traits, including cognitive function, 
were already characterized (as a component of the Brisbane Ado-
lescent Twin Study, QIMR Berghofer Medical Research Institute 
[79]). Notably, the dataset includes a test–retest neuroimaging 
subsample (n = 75) to estimate measurement reliability. Data is 
available from the project owners upon request. 

The Human Connectome Project Young Adult (HCP-YA, 
2010–2015) study, funded by the NIH, is based at Washington 
University, University of Minnesota, and Oxford University. Inves-
tigators spent 2 years developing state-of-the-art imaging methods 
[29] before collecting high-quality neuroimaging, behavioral, and 
genotype data in ~1200 healthy young adult twins and non-twin 
siblings (22–35 years). HCP-YA data has been used widely in twin-
based analyses, examining genetic influences on network connec-
tivity [80], white matter integrity [81], and cortical surface area/ 
thickness [82]. Open-access HCP-YA data is available from the 
Connectome Coordination Facility following registration 
(https://db.humanconnectome.org), with additional data use 
terms applicable for restricted data (e.g., family structure, age by 
year, handedness). 

The Vietnam Era Twin Study of Aging (VETSA, 2003–pres-
ent), funded by the NIH, started as a study of cognitive and brain 
aging but has since pivoted to the early identification of risk factors 
for mild cognitive impairment and Alzheimer’s disease [28]. In 
addition to neuroimaging and cognitive data, the VETSA study 
includes health, psychosocial, and neuroendocrine data collected 
across three waves (baseline mean age 56 years, follow-up waves 
every 5–6 years) [83]. VETSA data is available following registra-
tion (https://medschool.ucsd.edu/som/psychiatry/research/ 
VETSA/Researchers/Pages/default.aspx). 

The Older Australian Twins Study (OATS, 2007–present) 
[84], funded by the NHMRC and Australian Research Council, is 
a longitudinal study of genetic and environmental contributions to 
brain aging and dementia. The project includes neuroimaging and

https://db.humanconnectome.org
https://medschool.ucsd.edu/som/psychiatry/research/VETSA/Researchers/Pages/default.aspx
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cognitive data collected across four waves (baseline mean age 
71 years, follow-up waves every 2 years). OATS was expanded in 
wave 2 to include positron emission tomography (PET) scans to 
investigate the deposition of amyloid plaques in the brain. Data is 
available from the project owners upon request. 
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There is a wealth of twin studies worldwide in addition to those 
mentioned here (see [85] for an overview). Foremost is the Nether-
lands Twin Registry [86], a substantial data resource with dedicated 
projects investigating neuropsychological, biomarker, and behav-
ioral traits. In addition, several extensive family/pedigree imaging 
studies exist, including the Genetics of Brain Structure and Func-
tion study [87] and the Diabetes Heart Study-Mind Cohort 
[88]. Further, the previously mentioned ABCD study [89] includes 
embedded twin subsamples. 

Twin datasets have been used to estimate the heritability (the 
proportion of observed variance in a phenotype attributed to 
genetic variance) of phenotypes derived through machine learning, 
such as brain aging [90–92] and brain network connectivity 
[93]. Further, machine learning models have been trained to dis-
criminate between MZ and DZ twins based on dynamic functional 
connectivity [94] and psychological measures [95]. In addition, 
machine learning has been used to predict co-twin pairs based on 
functional connectivity data [96]. 

5.2 Molecular 

Genetics 

The UK Biobank (UKB) is one of the largest population-based 
cohorts, comprising nearly half a million adult participants (aged 
over 40 years at the time of recruitment), recruited across over 
20 assessment centers in the UK. The UKB resource is accessible 
to the research community through application (https://www. 
ukbiobank.ac.uk/enable-your-research/apply-for-access) and, as 
of the end of 2021, counted more than 28,000 registered approved 
researchers worldwide. In 2021, UKB launched a cloud-based 
Research Analysis Platform (RAP), which provides computational 
tools for data visualization and analysis, thereby aiming to democ-
ratize access for researchers lacking such infrastructure. The asso-
ciated fees for using the UKB resource include the yearly tier-based 
access fees, depending on the type of data accessed, as well as the 
cost of running the analyses and storing the generated data, while 
the storage of the UKB dataset itself is provided free of charge. 
Certain emerging datasets (e.g., whole exome and genome 
sequences) will be only available for analysis through the platform, 
both due the enormous size and tighter regulation around those 
datasets. Upon publication, researchers are required to return their 
results, including the methodology and any essential derived data 
fields, back to the UKB, which are subsequently incorporated into 
the resource in order to promote reproducible research. 

5.2.1 The UK Biobank

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
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The cohort is deeply phenotyped with thousands of traits 
measured across multiple assessments. The initial assessment visit 
took place from 2006 to 2010, where ~502,000 participants con-
sented to participate (each keeping the right to withdraw their 
consent and be removed from the study at any time), completed 
the interview, filled questionnaires, underwent multiple measure-
ments, and donated blood urine and saliva samples (see https:// 
biobank.ndph.ox.ac.uk/showcase/ukb/docs/Reception.pdf). 
The first repeat assessment was conducted in 2012–2013 and 
included approximately 120,000 participants. Next, the partici-
pants were invited to attend the imaging visits: the initial (2014+) 
and the first repeat imaging visit (2019+). So far, 50,000 initial 
imaging visits have been conducted, with a target to image 100,000 
participants (10,000 repeat). The imaging data includes brain 
[14, 97], heart [98], and abdominal MRI scans [99], with both 
bulk images and image-derived measures available for analysis, as 
well as retinal OCT images, whole body MRI, and carotid ultra-
sound [100]. Finally, follow-up information from the linked health 
and medical records is regularly collected and updated in the 
resource, including data for COVID-19 research. The showcase 
of the available anonymous summary information is available at 
https://biobank.ndph.ox.ac.uk/showcase/. 

The interim release of the genotyping data comprised 
~150,000 samples and was released in 2015, followed by the full 
release of 488,000 genotypes in the middle of 2017. The available 
genotype data included variant calls from UK BiLEVE and UK 
Biobank Axiom arrays (autosomes, sex chromosomes, and mito-
chondrial DNA) as well as phased haplotype values and imputation 
to a combined panel of Haplotype Reference Consortium (HRC) 
and the merged UK10K and 1000 Genomes phase 3 reference 
panels [101], also known as v2 release. Subsequently, the v2 impu-
tation was replaced by imputation to HRC and UK10K haplotype 
resource only (v3), after a problem was discovered for the set 
imputed to UK10K + 1000 Genomes panel (https://biobank. 
ndph.ox.ac.uk/showcase/label.cgi?id=100319). The genotypes of 
approximately 3% of the participants remained not assayed due to 
DNA processing issues. To note, ~50,000 individuals included in 
the interim genotype release were involved in the UK Biobank 
Lung Exome Variant Evaluation (UK BiLEVE) project, and their 
genotypes were assayed on a different but very closely related array 
than the rest of the participants (https://biobank.ctsu.ox.ac.uk/ 
crystal/ukb/docs/genotyping_qc.pdf). The UK BiLEVE focused 
on genetics of respiratory health, and the participants were selected 
based on lung function and smoking behavior [102]. 

Whole exome sequencing (WES) and whole genome sequenc-
ing (WGS) have been funded through the collaboration between 
the UK Biobank and biotechnology companies Regeneron and 
GlaxoSmithKline (GSK). The first UKB release of WES data

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/Reception.pdf
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included 50,000 participants, prioritized based on the availability of 
MRI data, baseline measurements, and linked hospital and primary 
care records and enriched in patients diagnosed with asthma 
[103]. Recently (November 2021), the new data release included 
N = 200,000 WGS and N = 450,000 WES [104]. WGS for the 
remaining participants is currently underway. For all the past and 
future timelines, see https://biobank.ctsu.ox.ac.uk/showcase/ 
exinfo.cgi?src=timelines_all. 
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Most of the UKB participants reported their ethnic back-
ground as White British/Irish or any other white background 
(~94%), which was coherent with the observed genetic ancestries 
[101]. For example, the ancestries identified from genetic markers 
showed a predominant European ancestry (N ~ 464,000), followed 
by South Asian (~12,000), African (~9000), and East Asian ances-
try (~2500) [105]. As a population-based cohort, the UKB mostly 
comprises unrelated participants. While the pedigree information 
was not collected as a part of assessment, the genetic analysis has 
identified approximately 100,000 pairs of close relatives (third 
degree or closer, including 22,000 sibling pairs and 6000 parent– 
offspring pairs) [101]. This amount of relatedness is, however, 
larger than expected for a random sample from a population and 
reflects a participation bias toward the relatives of the participants. 
Moreover, the UKB sample is, on average, healthier, more 
educated, and less deprived than the general UK population [2]. 

5.3 Genetic 

Consortia 

The Enhancing NeuroImaging Genetics through Meta-Analysis 
(ENIGMA) consortium was formed in 2009 with the goal of 
conducting large-scale neuroimaging genetic studies of human 
brain structure, function, and disease [27]. Currently, more than 
2000 scientists from 400 institutions around the world with neu-
roimaging (including structural and functional MRI) and electro-
encephalography (EEG) data have joined the consortium and 
formed 50 working groups that focus on different psychiatric and 
neurological disorders as well as healthy variation, method devel-
opment, and genomics [27]. 

5.3.1 ENIGMA 

Consortium 

To date, the ENIGMA Genetics Working Group (for an over-
view, see [106]) have conducted genome-wide association meta-
analyses for hippocampal and intracranial volume [107–109], sub-
cortical volume [110, 111], and cortical surface area and thickness 
[112]. The ENIGMA Genetics Working Group provides research-
ers imaging and genetic protocols to enable each group to conduct 
their own association analyses before contributing summary statis-
tics to the meta-analysis. While these genome-wide association 
studies have focused on structural phenotypes and the analysis of 
common single nucleotide polymorphisms (SNPs), the ENIGMA 
EEG Working Group have recently conducted a genome-wide 
association meta-analysis for oscillatory brain activity [113], and 
the ENIGMA Copy Number Variant (CNV) Working Group,

https://biobank.ctsu.ox.ac.uk/showcase/exinfo.cgi?src=timelines_all
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which formed in 2015, is currently investigating the impact of rare 
CNVs beyond the 22q11.2 locus on cognitive, neurodevelopmen-
tal, and neuropsychiatric traits [114]. 
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The sample sizes of the ENIGMA Genetics and CNV Working 
Groups continuously increase as new cohorts with MRI and genetic 
data join the consortium. As of 2020, the CNV Working Group 
sample comprises of 38 ENIGMA cohorts [114], while the latest 
Genetics Working Group genome-wide association meta-analysis 
[112] consisted of a discovery sample of 49 ENIGMA cohorts and 
the UK Biobank (N = 33,992 individuals of European ancestry), a 
replication sample of 2 European ancestry cohorts (N = 14,729 
participants), and 8 ENIGMA cohorts of non-European ancestry 
(N = 2994 participants). This meta-analysis identified 
199 genome-wide significant variants that were associated with 
either the surface area or thickness of the whole human cortex 
and 34 cortical regions with known functional specializations. 
They also found evidence that the genetic variants that influence 
brain structure also influence brain function, such as general cogni-
tive function, Parkinson’s disease, depression, neuroticism, 
ADHD, and insomnia [112]. 

Importantly, all imaging, EEG, and genetic (imputation and 
association analysis) protocols are freely available from the 
ENIGMA website (http://enigma.ini.usc.edu/). However, to 
access the summary statistics for each published genome-wide asso-
ciation meta-analysis, researchers need to complete an online Data 
Access Request Form (http://enigma.ini.usc.edu/research/down 
load-enigma-gwas-results/). If a researcher wants to propose new 
genetic analyses that cannot be conducted with these publicly 
available summary statistics, they need to become a member of 
ENIGMA. Researchers can join the consortium by 
(a) contributing a cohort with MRI and genetic data, 
(b) collaborating with another research group that does have 
MRI and genetic data, or (c) contributing their expertise in geno-
mic or methodological areas that are inadequately addressed by 
other consortium members. Of note, since storage of the MRI 
and genetic data is not centralized, each ENIGMA cohort can 
choose to contribute or not to new proposed analyses. 

5.3.2 The Psychiatric 

Genomics 

Consortium (PGC) 

The Psychiatric Genomics Consortium (PGC) began in 2007. The 
central idea of the PGC is to use a global cooperative network to 
advance genetic discovery in psychiatric disorders in order to iden-
tify biologically, clinically, and therapeutically meaningful insights. 
To date, the PGC is one of the largest, most innovative, and 
productive consortia in the history of psychiatry. The Consortium 
now consists of workgroups on 11 major psychiatric disorders, a 
Cross-Disorder Workgroup, and a Copy-Number Variant Work-
group. In addition, the PGC provides centralized support to the 
PGC researchers with a Statistical Analysis Group, Data Access

http://enigma.ini.usc.edu/
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Committee, and Dissemination and Outreach Committee. To 
increase ancestral diversity, the Consortium established the Cross-
Population Workgroup in 2017 for outreach and developing/ 
deploying trans-ancestry analysis methods [115]. The Consortium 
outreach expands ancestry diversity by adding non-European cases 
and controls. The PGC continues to unify the field and attract 
outstanding scientists to its central mission (800+ investigators 
from 150+ institutions in 40+ countries). PGC work has led to 
320 papers, many in high-profile journals (Nature 3, Cell 5, Science 
2, Nat Genet 27, Nat Neurosci 9, Mol Psych 37, Biol Psych 
25, JAMA Psych 12). The full results from all PGC papers are freely 
available, and the findings have fueled analyses by non-PGC inves-
tigators (sample sizes and findings for eight major psychiatric dis-
orders are summarized in Fig. 1) 

782 Baptiste Couvy-Duchesne et al.

Fig. 1 PGC discoveries over time 

Computation and data warehousing for the PGC are 
non-trivial. The PGC uses the Netherlands “LISA” computing 
cluster. LISA compute cluster in Amsterdam which is used for 
most analyses (occasional analyses are done on other clusters, but 
90% of PGC computation is done on LISA). The core software is 
the RICOPILI data analytic pipeline [116]. This pipeline has 
explicit written protocols for uploading data to the cluster in the 
Netherlands that one uses for quality control, imputation, analysis, 
meta-analysis, and bioinformatics. The actual mega-analyses are 
conducted by PGC analysts under the direction of a senior statisti-
cal geneticist, geneticist, or highly experienced analyst.
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The PGC has a proven commitment to open-source, rapid 
progress science. All PGC results are made freely available as soon 
as a primary paper is accepted (GWAS summary statistics available at 
https://www.med.unc.edu/pgc/download-results/). The research-
ers can obtain access to the individual-level data either through 
controlled-access repositories (e.g., the Database of Genotypes and 
Phenotypes, dbGaP, or the European Genome-phenome Archive) 
or via the PGC streamlined process for secondary data analyses 
(https://www.med.unc.edu/pgc/shared-methods/data-access-por 
tal/) [117]. 

PGC analyses have always been characterized by exceptional 
rigor and transparency. PGC analysts will enhance this by publish-
ing markdown notebooks for all papers on the PGC GitHub site 
(https://github.com/psychiatric-genomics-consortium) to enable 
precise reproduction of all analyses (containing code, documenta-
tion of QC decisions, analyses, etc.). 

5.4 Exome and 

Whole Genome 

Sequencing: Trans-

Omics for Precision 

Medicine (TOPMed) 

The Trans-Omics for Precision Medicine (TOPMed) program, 
sponsored by the National Institutes of Health (NIH) National 
Heart, Lung, and Blood Institute (https://topmed.nhlbi.nih. 
gov), is part of a broader Precision Medicine Initiative, which 
aims to provide disease treatments tailored to an individual’s 
unique genes and environment. TOPMed contributes to this Ini-
tiative through the integration of whole genome sequencing 
(WGS) and other omics data. The initial phases of the program 
focused on whole genome sequencing of individuals with rich 
phenotypic data and diverse backgrounds. The WGS of the 
TOPMed samples was performed over multiple studies, years, and 
sequencing centers [118, 119]. Available data are processed peri-
odically to produce genotype data “freezes.” Individual-level data is 
accessible to researchers with an approved dbGaP data access 
request (https://topmed.nhlbi.nih.gov/data-sets), via Google 
and Amazon cloud services. More information about data availabil-
ity and how to access it can be found on the dataset page (https:// 
topmed.nhlbi.nih.gov/data-sets). 

As of September 2021, TOPMed consists of ~180 K partici-
pants from >85 different studies with varying designs. Prospective 
cohorts provide large numbers of disease risk factors, subclinical 
disease measures, and incident disease cases; case-control studies 
provide improved power to detect rare variant effects. Most of the 
TOPMed studies focus on HLBS (heart, lung, blood, and sleep) 
phenotypes, which leads to 62 K (~35%) participants with heart 
phenotype, 50 K (~28%) with lung data, 19 K (~11%) with blood, 
4 K (~2%) with sleep, and 43 K (~24%) for multi-phenotype cohort 
studies. TOPMed participants’ diversity is assessed using a combi-
nation of self-identified or ascriptive race/ethnicity categories and 
observed genetics. Currently, 60% of the 180 K sequenced
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participants are of non-European ancestry (i.e., 29% African ances-
try, 19% Hispanic/Latino, 8% Asian ancestry, 4% other/multiple/ 
unknown). 
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Whole genome sequencing is performed by several sequencing 
centers to a median depth of 30× using DNA from blood, PCR-free 
library construction, and Illumina HiSeq X technology (https:// 
topmed.nhlbi.nih.gov/group/sequencing-centers). Randomly 
selected samples from freeze 8 were used for whole exome 
sequence using Illumina v4 HiSeq 2500 at an average 36.4× 
depth. A trained machine learning algorithm with known variants 
and Mendelian inconsistent variants is applied by the Informatics 
Research Centre for joint genotype calling across all samples to 
produce genotype data “freezes” (https://topmed.nhlbi.nih.gov/ 
group/irc). In TOPMed data freeze 8 (N ~ 180 K) (https:// 
topmed.nhlbi.nih.gov/data-sets), variant discovery identified 
811 million single nucleotide variants and 66 million short inser-
tion/deletion variants. In the latest data freeze 9 (https://topmed. 
nhlbi.nih.gov/data-sets), variant discovery was initially made on 
~206 K samples including data from Centers for Common Disease 
Genomics (CCDG). This data was re-subset to ~158,470 
TOPMed samples plus 2504 from 1000 Genomes samples were 
used for variant re-discovery. Then, a total of 781 million single 
nucleotide variants and 62 million short insertion/deletion variants 
were identified and passed variant quality controls. These variant 
counts in freeze 9 are slightly smaller than that of freeze 8 due to 
monomorphic sites in TOPMed samples. A series of data freezes is 
being made available to the scientific community as genotypes and 
phenotypes via dbGaP (https://www.ncbi.nlm.nih.gov/gap/); 
read alignments are available via the Sequence Read Archive 
(SRA) and variant summary information via the Bravo variant 
server (https://bravo.sph.umich.edu/freeze8/hg38/) and 
dbSNP (https://www.ncbi.nlm.nih.gov/snp/). 

TOPMed studies provide unique opportunities for exploring 
the contributions of rare and noncoding sequence variants to phe-
notypic variation. For instance, [119] used 53,831 samples from 
freeze 5 (https://topmed.nhlbi.nih.gov/data-sets) to investigate 
the role of rare variants into mutational processes and recent 
human evolutionary history. The recent TOPMed freeze 8 were 
used (together with WGS from the UK Biobank) to assess effect 
size of casual variants for gene expression using 72 K African 
American and �298 K European American [120]. Similarly, a 
large set of multi-ethnic samples from freeze 5, 8, and 9 were 
used to develop comprehensive tools such as the STAAR and 
SCANG pipelines, which are used to identify noncoding rare var-
iants [121] and to build predictive models for protein abundances 
[122] and discovery of causal genetic variants for different pheno-
types [123, 124]. Overall, the Trans-Omics for Precision Medicine 
(TOPMed) program has the potential to help in improving
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diagnosis, treatment, and prevention of major diseases by adding 
WGS and other “omics” data to existing studies with deep 
phenotyping. 
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6 Genomics 

6.1 Methylation DNA methylation (DNAm) is a covalent molecular modification by 
which methyl groups (CH3) are added to the DNA. In 
vertebrates—and eukaryotes in general—the most common meth-
ylation modification occurs at the fifth carbon of the pyrimidine 
ring (5mC) at cytosine–guanine dinucleotides (CpG). Most bulk 
genomic methylation patterns are stable across cell types and 
throughout life, changing only in localized contexts, for example, 
due to disease-associated processes. 

There are numerous ways of measuring DNAm at a genome-
wide level, with bisulfite conversion-based methods being the most 
popular in the field of epidemiological epigenetics. These methods 
consist of bisulfite-induced modifications of genomic DNA, which 
results in unmodified cytosine nucleotides being converted to 
uracil, while 5mC remain unaffected. Of all these bisulfite 
conversion-based technologies—including sequencing-based 
methods—hybridization arrays are the most widely used, primarily 
due to their low cost and high-throughput nature. 

The current Illumina Infinium® HumanMethylation450 
(or 450 K) and Illumina Infinium® HumanMethylation850 (or E-
PIC) arrays assess around 450,000 and 850,000 methylation sites 
across the genome, respectively, covering 96% of the CpG islands 
(i.e., genomic regions with high CpG frequency), 92% of the CpG 
islands’ shores [125, 126] (<2 kb flanking CpG Islands), and 86% 
of the CpG islands’ shelves (<2 kb flanking outward from a CpG 
shore), which have been shown to be more dynamic than CpG 
islands [127]. Although most current studies have used the 450 K 
array [128], the EPIC array covers >90% of the 450 K sites plus 
additional CpG sites in the enhancer regions identified by the 
ENCODE and FANTOM5 projects [129]. 

After probe hybridization and extension steps, the array is 
scanned, and the intensities of the unmethylated and methylated 
bead types are measured. DNAm values are then represented by the 
ratio of the intensity of the methylated bead type to the combined 
locus intensity. These are known as beta (β) values and are continu-
ous variables between 0 and 1 (Equation 1), although a value of 1 is 
impossible to achieve in practice, due to the addition of a stabilizing 
α offset (to handle low-intensity signals):
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Equation 1 DNA methylation β values as measured by the 
Illumina Infinium® methylation arrays M = methylated inten-
sity, U = unmethylated intensity, α = arbitrary offset to handle 
signals with low readings (usually 100) 

β= 
M 

M þ U þ α ð1Þ 

These raw intensities are then stored in binary IDAT files (one 
for each of the red and green channels). The bulk of each file 
consists of four fields: the ID of each bead type on the array, the 
mean and standard deviation of their intensities, and the number of 
beads of each type, generated per sample. This raw data format 
allows for flexible use, including differing preprocessing strategies 
[130]. However, these files are usually not readily available in public 
repositories (e.g., Gene Expression Omnibus [131] or GEO), due 
to their large size. For example, a compressed .tar file of IDATs for a 
sample size of around 700 individuals, measured with EPIC arrays, 
is about 10 Gb. Instead, researchers usually upload the processed 
DNAm β values (following normalization) as compressed .txt or . 
csv files with columns representing samples and rows the measured 
loci. This can be a problem for reproducibility, as different research 
groups tend to prefer their own preprocessing or normalization 
methods—and there are many [132]! On this note, there has been a 
recent push in the field, for standardization of DNAm array pre-
processing pipelines, including the user-friendly Meffil 
pipeline [133]. 

Reproducibility and interpretation of DNAm studies are sub-
ject to additional factors outside of data processing methods. For 
comparison, genetic data is (mostly) germline determined and can 
be assumed to be randomly assigned with respect to characteristics 
of individuals. Thus, a case-control (or cross-sectional) design has 
an inference of association through causality and can convey infor-
mation of liability to disease. This contrasts with DNAm data which 
is a reversible process influenced by a large range of biological, 
technical, and environmental factors (e.g., medication and compli-
cations of the disease itself) and is thus more susceptible to spurious 
cryptic association or reverse causation [134, 135]. DNAm studies 
will therefore benefit from longitudinal designs, both for biomarker 
discovery and mechanistic insights [134, 136]. 

Reed et al. [137] provide one good example of this. Briefly, the 
authors generated a DNAm score for body mass index (BMI) 
within the ARIES subsample of the Avon Longitudinal Study of 
Parents and Children birth cohort (ALSPAC), using effect sizes of 
135 CpG sites from a published meta-analysis of DNAm and BMI 
[138]. Using multiple time points for matched mothers and chil-
dren using linear and cross-lagged models to explore the causal 
relationship between phenotypic BMI and the DNAm scores, they



found a strong linear association within time points [137]. How-
ever, when testing for temporal associations, DNAm scores at 
earlier time points showed no association with future BMI, indicat-
ing that a DNAm score generated from a reference cross-sectional 
study performs better as a biomarker of extant BMI, but poorly as a 
predictor for future BMI. 
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In Table 2, we have compiled a list of the largest and/or most 
used DNAm array datasets—including the Genetics of DNA Meth-
ylation Consortium (goDMC), an international collaboration of 
human epidemiological studies that comprises >30,000 study par-
ticipants with genetic and DNAm array data [139]. These samples 
are usually integrated in larger genetic/epidemiological studies, 
except for perhaps the NIH Roadmap Epigenomics Mapping Con-
sortium [140], which was launched with the goal of producing a 
public resource of human epigenomic data to catalyze basic biology 
and disease-oriented research, and the BLUEPRINT project 
[141, 142], which aims to generate at least 100 reference epigen-
omes of distinct types of hematopoietic cells from healthy indivi-
duals and of their malignant leukemic counterparts. Lastly, in 
contrast to genetic data, the de-identified DNAm data—either 
raw or preprocessed—is typically open access in public repositories 
such as GEO [131], or dbGAP [143], or the web portals provided 
by the respective projects. However, access to accompanying phe-
notypic data may require additional approval by the managing 
committees of each individual project. 

6.2 Gene Expression 

Data: GTEx 

Launched in 2010, the Genotype-Tissue Expression (GTEx) proj-
ect is an ongoing effort that aims to characterize the genetic deter-
minants of tissue-specific gene expression [144]. It is a resource 
database available to the scientific community, which is comprised 
of multi-tissue RNA sequencing (RNA-seq: gene expression) and 
whole genome sequence (WGS) data collected in 17,382 samples 
across 54 tissue types from 948 postmortem donors (version 
8 release). Sample size per tissue ranges from n = 4 in kidney 
(medulla) to n = 803 in skeletal muscle. The majority of donors 
are of European ancestry (84.6%) and male (67.1%) with ages 
ranging from 20–70 years old. The primary cause of death for 
donors 20–39 years old was traumatic injury (46.4%) and heart 
disease for donors 60–70 years (40.9%). 

Data is constantly being added to the database using sample 
data from the GTEx Biobank. For example, recent efforts have 
focused on gene expression profiling at the single-cell level to 
achieve a higher resolution understanding of tissue-specific gene 
expression and within tissue heterogeneity. As a result, single-cell 
RNA-seq (scRNA-seq) data was generated in 8 tissues from 
25 archived, frozen tissue samples collected on 16 donors. Further, 
the Developmental Genotype-Tissue Expression (dGTEx) project 
(https://dgtex.org/) is a relatively new extension of GTEx that was

https://dgtex.org/


launched in 2021 that aims to understand the role of gene expres-
sion at four developmental time points: postnatal (0–2 years of 
age), early childhood (2–8 years of age), pre-pubertal 
(8–12.5 years of age), and post-pubertal (12.5–18 years of age). 
It is expected that molecular profiling (including WGS, bulk 
RNA-seq, and, for a subset of samples, scRNA-seq) will be per-
formed on 120 relatively healthy donors (approximately 30 donors 
per age group) in 30 tissues. Data from this study would provide, 
for example, a baseline for gene expression patterns in normal 
development for comparison against individuals with disease. 

GTEx provides extensive documentation on sample collection, 
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laboratory protocols, quality control and standardization, and ana-
lytical methods on their website (https://gtexportal.org/home/). 
This allows for replication of their protocols and procedures in 
other cohorts to aid in study design and for researchers to further 
interrogate the GTEx data to answer more specific scientific ques-
tions. Processed individual-level gene expression data is made freely 
available on the GTEx website for download, while controlled 
access to individual-level raw genotype and RNA sequencing data 
are available on the AnVIL repository following approval via the 
National Center for Biotechnology Information’s database of Gen-
otypes and Phenotypes (dbGAP, dbGaP accession phs000424), a 
data archive website that stores and distributes data and results 
investigating the relationship between genotype and phenotype 
(https://www.ncbi.nlm.nih.gov/gap/). Clinical data collected for 
each donor is categorized into donor-level (demographics, media-
tion use, medical history, laboratory test results, death circum-
stances, etc.) and sample-level (tissue type, ischemic time, batch 
ID, etc.) data and is also available through dbGAP. 

Over the many years, data from the GTEx project has provided 
unprecedented insight into the role genetic variation plays in reg-
ulating gene expression and its contribution to complex trait and 
disease variation in the population. The latest version 8 release from 
GTEx comes with a comprehensive catalogue of variants associated 
with gene expression, or eQTLs (expression quantitative trait loci), 
across 49 tissues or cell lines (derived from 15,201 samples and 
838 donors) (GTEx Consortium, 2020). This analysis has demon-
strated that gene expression is a highly heritable trait, with millions 
of genetic variants affecting the expression of thousands of genes 
across the genome. These pairwise gene variant associations can be 
classified as either cis- or  trans-eQTLs, which describes proximal 
(i.e., within a predefined window of the target gene) or distal (i.e., 
beyond the predefined window or on a different chromosome from 
the target gene) genetic control, respectively. Indeed, it has been 
shown that 94.7% of all protein-coding genes have at least one cis-
eQTL. In addition, 43% of genetic variants (minor allele fre-
quency > 1%) have been found to affect gene expression in at 
least one tissue, and the majority of cis-eQTLs appear to be shared

https://gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/gap/
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across the sexes and ancestries (GTEx Consortium, 2020). Rela-
tively few trans-eQTLs have been identified due to limitations in 
sample sizes; however, these typically affect gene expression in one 
or very few tissues, with about a third of trans-eQTLs mediated by 
cis-eQTLs [144]. Importantly, GTEx provides full eQTL summary 
statistics for download and an interactive portal (https:// 
gtexportal.org/home/) for quick searches. As most trait-associated 
loci identified in genome-wide association studies (GWAS) are in 
noncoding regions of the genome, the eQTL data generated by 
GTEx has been leveraged to provide insight into the genetic and 
molecular mechanisms that underlie complex traits and diseases. 
Indeed, GWAS trait-associated variants are enriched for cis-eQTLs, 
and genetic variants that affect multiple genes in multiple tissues are 
found to also affect many complex traits (GTEx Consortium, 
2020). This indicates that cis-eQTLs have a high degree of pleiot-
ropy and exert their effect on complex traits and diseases by reg-
ulating proximal gene expression. 

In addition to the comprehensive catalogue of multi-tissue 
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eQTLs to understand gene regulation, additional flagship GTEx 
studies include understanding sex-biased gene expression across 
tissues [145], functional rare genetic variation [146], cell type-
specific gene regulation [147], and predictors of telomere length 
across tissues [148]. 

The extensive publicly available data generated by the GTEx 
project is a valuable resource to the scientific community and will 
allow for further data interrogation for many years to come. 

7.1 Clinical Data 

Warehouse: Example 

from the Parisian 

Hospitals (APHP) 

Clinical data warehouses (CDW) gather electronic health records 
(EHR), which can gather demographic data, results from biological 
tests, prescribed medications, and images acquired in clinical rou-
tine, sometimes for millions of patients from multiple sites. CDW 
can allow for large-scale epidemiological studies, but they may also 
be used to train and/or validate machine learning (ML) and deep 
learning (DL) algorithms in a clinical context. For example, several 
computer-aided diagnosis tools have been developed for the classi-
fication of neurodegenerative diseases. One of their main limita-
tions is that they are typically trained and validated using research 
data or on a limited number of clinical images [149–154]. It is still 
unclear how these algorithms would perform on large clinical 
dataset, which would include participants with multiple diagnoses 
and more generally heterogeneous data (e.g., multiple scanners, 
hospitals, populations). 

One of the first CDW in France was launched in 2017 by the 
AP-HP (Assistance Publique – Hôpitaux de Paris), which gathers 
most of the Parisian hospitals [155]. They obtained the

https://gtexportal.org/home/
https://gtexportal.org/home/


authorization of the CNIL (Commission Nationale de l’informa-
tique et des Libertés, the French regulatory body for data collection 
and management) to share data for research purposes. The aim is to 
develop decision support algorithms, to support clinical trials, and 
to promote multicenter studies. The AP-HP CDW keeps patients 
updated about the different research projects through a portal 
(as authorized by CNIL), but, according to French regulation, 
active consent was not required as these data were acquired as 
part of the routine clinical care of the patients. 

Accessing the data is possible with the following procedure. A 
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detailed project must be submitted to the Scientific and Ethics 
Board of the AP-HP. If the project holders are external to the 
AP-HP, they have to sign a contract with the Clinical Research 
and Innovation Board (Direction de la Recherche Clinique et de 
l’Innovation). Once the project is approved, data are extracted and 
pseudo-anonymized by the research team of the AP-HP. Data are 
then made available in a specific workstation via the Big Data 
Platform, which is internal to the AP-HP. The Big Data Platform 
supports several research environments (e.g., JupyterLab 
Environment, R, MATLAB) and provides computational power 
(CPUs and GPUs) to analyze the data. 

An example of the research possible using such CDW is the 
APPRIMAGE project, led by the ARAMIS team at the Paris Brain 
Institute. The project was approved by the Scientific and Ethics 
Board of the AP-HP in 2018. It aims to develop or validate algo-
rithms that predict neurodegenerative diseases from structural 
brain MRI, using a very large-scale clinical dataset. The dataset 
provided by the AP-HP gathers all T1w brain MRI of patients 
aged more than 18 years old, collected since 1980. It therefore 
consists of around 130,000 patients and 200,000 MRI which were 
made available via the Big Data Platform of the AP-HP. Of note, 
clinical data was available for only 30% of the imaged participants 
(>30,000 patients) as it relies on the ORBIS Clinical Information 
System (Agfa HealthCare), installed more recently in the hospitals. 
The sheer size of the data poses obvious computational challenges, 
but other difficulties include harmonizing clinical reports collected 
in the different hospitals or handling the general heterogeneity of 
the data (e.g., hospitals, acquisition software, populations). To 
tackle this issue, we have developed a pipeline for the quality 
control of the MR images [156]. 

7.2 Swedish National 

Registries 

In Sweden, a unique 10-digit personal identification number has 
been assigned to each individual at birth or migration since 1947, 
which allows linkages across different Swedish population and 
health registers with almost 100% coverage [157]. The Swedish 
Total Population Register (TPR) was established in 1968 and is 
maintained by Statistics Sweden to obtain data on major life events, 
such as birth, vital status, migration, and civil status [158]. TPR is a



key source to provide basic information in medical and social 
research in Sweden. The Swedish Population and Housing Cen-
suses (1960–1990) and the Swedish Longitudinal Integrated Data-
base for Health Insurance and Labour Market Studies (Swedish 
acronym LISA) (since 1990) provide information on demographic 
and socioeconomic status for the Swedish population, including 
the highest attained educational level and household income 
[159]. The Swedish Multi-Generation Register (MGR) provides 
information on familial links for individuals born since 1932 
onward in Sweden [160], which makes it possible to perform family 
studies to investigate familial risk of different health outcomes and 
control for familial confounding when needed. 

The Swedish National Patient Register (NPR) is a valuable 
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source for medical research, which has since 1964 collected data 
on inpatient care (nationwide coverage since 1987) and outpatient 
care (more than 85% of the entire country since 2001) [161]. Diag-
noses are according to the Swedish revisions of the International 
Classification of Disease codes (ICD codes). The positive predictive 
value of the diagnoses is high, ranging from 85% to 95%, in NPR 
[161]. NPR has been used in studies of different diseases including 
many neurological disorders such as Alzheimer’s disease [162], 
Parkinson’s disease [163], and amyotrophic lateral sclerosis 
[164]. The Swedish Cancer Register (SCR) has been used exten-
sively in Swedish cancer research, especially cancer epidemiology. 
SCR was established in 1958 and includes data on all newly diag-
nosed malignant and benign tumors, including different kinds of 
brain tumors [165, 166]. The Swedish Medical Birth Register 
(MBR) was established in 1973 and contains information on almost 
all deliveries (from prenatal to postnatal) in Sweden [167]. MBR 
has contributed mainly to the reproductive epidemiologic research 
in Sweden and has also been used in epidemiological studies of 
diseases later in life including different neurological disorders 
[168, 169]. The Swedish Causes of Death Register (CDR) includes 
information on virtually all deaths in Sweden since 1952 [170] and 
has been used to identify various causes of death in medical 
research, including deaths due to neurological disorders 
[171]. The Swedish Prescribed Drug Register (PDR) was founded 
in July 2005 and provides information on all prescription drugs 
dispensed from pharmacies in Sweden [172, 173]. PDR has been 
used to study patterns of use as well as consequences of medication 
use, including memantine [174] and dopaminergic anti-Parkinson 
drug [175]. 

In addition to these general health registers, there are also 
hundreds of disease quality registers that are used for patient care 
and research in Sweden. For instance, the Swedish Dementia Reg-
istry (SDR) was established in 2007 to achieve high quality of 
diagnostics and care for patients with dementia [176]. The Swedish 
Neuro-Register (SNR) was founded in 2001 (web-based since



2004, originally named as the Swedish Multiple Sclerosis Quality 
Registry) with the primary aim to improve care of patients with 
different neurological disorders including multiple sclerosis, Par-
kinson’s disease, severe neurovascular headache, myasthenia gravis, 
narcolepsy, epilepsy, inflammatory polyneuropathy, as well as amyo-
trophic lateral sclerosis in Sweden [177, 178]. The Swedish Stroke 
Register is one of the world’s largest stroke registers, which was 
established in 1994 and has included data from almost all hospitals 
that admit acute stroke patients in Sweden [179]. 

In Sweden, individual-level data in public registers are strictly 
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protected by several laws, including the Ethics Review Act, the 
General Data Protection Regulation (GDPR), and the Public 
Access to Information and Secrecy Act (OSL). The Swedish Ethical 
Review Authority (Etikprövningsmyndigheten in Swedish) assesses 
projects according to the Ethics Review Act and requires a Swedish 
responsible person (Forskningshuvudman in Swedish) for the 
research. In addition to ethical approval, the Statistics Sweden 
(SCB) and the National Board of Health and Welfare (Socialstyr-
elsen in Swedish) also need to make an assessment according to 
GDPR and OSL, to determine whether individual-level data can be 
made available for potential research purposes. It generally takes 
around 1–6 months from contact person assignment to delivery of 
microdata in the SCB (www.scb.se/en/services/ordering-data-
and-statistics/ordering-microdata/) and around 3–6 months to 
process applications for individual-level data in the Socialstyrelsen 
(www.socialstyrelsen.se/en/statistics-and-data/statistics/). 
According to standard legal provisions and procedures, the SCB 
and Socialstyrelsen only provide data to researchers working in 
Sweden, and researchers in other countries need to cooperate 
with Swedish colleagues to apply for the data. 

According to the General Data Protection Regulation 
(GDPR), online access (e.g., through virtual machines) or transfer 
of individual-level data is allowed in countries of the European 
Union (EU) or European Economic Area (EEA), after proper 
legal agreements. Online access or transfer of individual-level data 
to an external partner in a third country outside EU/EEA is also 
permitted, if the third country has been approved by the European 
Commission and the external partner signs and complies with legal 
agreements that include requirements for how data must be pro-
tected, including Data Transfer Agreement (DTA), Data Proces-
sing Agreement (DPA), Material Transfer Agreement (MTA), as 
well as Research Collaboration Agreements.

http://www.scb.se/en/services/ordering-data-and-statistics/ordering-microdata/
http://www.scb.se/en/services/ordering-data-and-statistics/ordering-microdata/
http://www.socialstyrelsen.se/en/statistics-and-data/statistics/
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8 Smartphone and Sensors 

Smartphones and sensors allow for the unobtrusive collection of 
behavioral and physiological data. For instance, smartphones are 
commonly used in ecological momentary assessment (EMA) stud-
ies [180], resulting in continuous, real-time assessment of partici-
pant behavior, symptoms, and experiences. In addition, the built-in 
microphone and touchscreen of smartphones/tablets can record 
speech and motor movement. Recent advances in smartwatch tech-
nology has enabled many commercial devices (e.g., Fitbit, Garmin, 
Apple) to track physiological metrics (e.g., heart rate variability, 
pulse oximetry, temperature) in addition to traditional physical 
activity data (e.g., step count, Global Positioning System, exercise 
tracking). Sensors are also commonly used to collect data without 
requiring participant interaction. Wearable sensor devices (e.g., 
wrist-worn accelerometers) can collect data on sleep, activity, and 
physiology without burdening participants or influencing their 
behavior. Datasets derived from smartphone and sensor studies 
are typically text-based, though raw data may be proprietary. The 
analysis of smartphone and sensor data typically requires complex 
algorithms/machine learning approaches due to the complexity of 
data collected (in the frequency of hundreds of observations per 
second, from many different sensors collecting data simulta-
neously). Raw data is typically stored locally by the data owner, 
with de-identified data available upon request. In more extensive 
studies, data is stored and distributed through online repositories. 

Several studies have collected real-world behavioral and physi-
ological data using smartphone and sensor devices (see Table 2), 
including community twin studies (BATS, QTAB), large-scale bio-
medical databases (UK Biobank), and studies focusing on specific 
disorders (mPower). 

The Brisbane Adolescent Twin Study (BATS) and the Queens-
land Twin Adolescent Brain (QTAB) projects are twin studies 
sourced from the Queensland Twin Registry (QTwin). The BATS 
project, enabled through funding from the NHMRC, was a longi-
tudinal study of adolescent twins, which collected accelerometry 
data over three waves between 2014 and 2018 (ages 12, 14, and 
16 years). The Queensland Twin Adolescent Brain study (QTAB, 
2015–present), previously discussed in Subheading 5.1, collected 
accelerometry data over two waves (age 9–14 years at baseline). In 
both studies, participants wore a wrist-mounted accelerometry 
recording device for 2 weeks (day and night, removed only for 
bathing) and completed a daily sleep diary. Raw accelerometry 
data were processed and consolidated with sleep diary data to 
produce sleep onset, wake, and sleep duration estimates. The 
BATS and QTAB datasets include behavioral and psychological 
measures (e.g., assessments of cognition and behavior, self-



reported mental health and well-being) for further investigation of 
accelerometry measures. BATS and QTAB data is available from the 
project owners upon request. 
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The UK Biobank, previously discussed in Subheading 5.2, 
collected accelerometry data in 100,000 participants between 
2013 and 2016. Participants wore a wrist-mounted activity moni-
tor to capture physical activity and sleep patterns for 7 days. Since 
2018, repeat measures have been collected for a subset of partici-
pants every quarter to examine seasonal influences on measure-
ments. Data is available in raw (measured every 5 s) and average 
(by day and hour) acceleration formats. The deep phenotyping of 
the UK Biobank has allowed for accelerometry-based measures to 
be examined alongside several other measures, including brain 
structure [181], mood disorders [182], and Alzheimer’s disease 
[183]. UK Biobank data is available online following registration 
(https://bbams.ndph.ox.ac.uk/ams/). 

The mPower study (2015–present), sponsored by Sage Bionet-
works with funding from the Robert Wood Johnson Foundation, 
aims to establish the baseline variability of real-world activity mea-
surements of individuals with Parkinson’s disease. Data is collected 
through an iPhone application, with minimal interruption to the 
daily life of participants. The initial data release (collected over 
6 months) included health survey and sensor-based activity (e.g., 
gait and balance) data for ~8000 participants (with ~1000 self-
identified as having a professional diagnosis of Parkinson’s disease). 
In addition, approximately 900 participants contributed at least five 
separate days’ worth of data. mPower data is accessible through the 
data sharing service Synapse (https://www.synapse.org/mpower). 

A recent review [184] provides an overview of studies using 
smartphones to monitor symptoms of Parkinson’s disease and 
in-depth descriptions of the methodology involved in these types 
of studies. Additionally, studies have used smartphone-based EMA 
to detect or treat mood disorders (see [185] for a review). Further, 
the Mobile Motor Activity Research Consortium for Health 
(MMARCH; http://mmarch.org/) is a collaborative international 
network working to standardize the analysis of actigraphy data in 
studies investigating motor activity, mood, and related disorders. 

Machine learning approaches have been widely applied to data 
collected from smartphone and sensor devices, most notably in 
studies of Parkinson’s disease. For example [186], used machine 
learning classifiers applied to accelerometry data from the UK 
Biobank to classify individuals with Parkinson’s disease with an 
area under the curve of 0.85 (based on gait and low movement 
data). Another study [187] used data from the mPower study to 
detect dopaminergic medication response by applying machine 
learning techniques to the tapping task performance (measured 
via the mPower smartphone application) of Parkinson’s disease 
patients before and after medication. Further, classifiers have been

https://bbams.ndph.ox.ac.uk/ams/
https://www.synapse.org/mpower
http://mmarch.org/


used to detect states of deep brain stimulation (i.e., distinguishing 
between “On” and “Off” settings) in Parkinson’s disease patients 
using accelerometer and gyroscope signals from smartphones 
[188]. Machine learning approaches have also shown promise for 
other disorders. For instance, machine learning algorithms within a 
smartphone application have helped identify individuals with 
obstructive sleep apnea, using actigraphy, body position assess-
ment, and audio recordings [189]. Lastly, some developed a pipe-
line for personalized modeling of depressed mood (based on EMA) 
and smartwatch-derived sleep and physical activity measures [190]. 
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Abstract 

Dementia denotes the condition that affects people suffering from cognitive and behavioral impairments 
due to brain damage. Common causes of dementia include Alzheimer’s disease, vascular dementia, or 
frontotemporal dementia, among others. The onset of these pathologies often occurs at least a decade 
before any clinical symptoms are perceived. Several biomarkers have been developed to gain a better insight 
into disease progression, both in the prodromal and the symptomatic phases. Those markers are commonly 
derived from genetic information, biofluid, medical images, or clinical and cognitive assessments. Informa-
tion is nowadays also captured using smart devices to further understand how patients are affected. In the 
last two to three decades, the research community has made a great effort to capture and share for research a 
large amount of data from many sources. As a result, many approaches using machine learning have been 
proposed in the scientific literature. Those include dedicated tools for data harmonization, extraction of 
biomarkers that act as disease progression proxy, classification tools, or creation of focused modeling tools 
that mimic and help predict disease progression. To date, however, very few methods have been translated 
to clinical care, and many challenges still need addressing. 

Key words Dementia, Alzheimer’s disease, Cognitive impairment, Machine learning, Data harmoni-
zation, Biomarkers, Imaging, Classification, Disease progression modeling 

1 Introduction 

Dementia is a progressive condition which affects over 55 million 
people worldwide, with nearly 10 million new cases every year 
[1]. The term “dementia” indicates not a single disease, but rather 
a spectrum of different conditions with different clinical pheno-
types, which can be caused by a multitude of pathologies that cause 
changes in the structure and chemistry of the brain. While the most 
common cause of dementia-related symptoms is a neurodegenera-
tive disease, other causes do exist (e.g., chronic inflammatory dis-
ease, alcoholism. . .). The exact pathological cascade of events which 
causes the development of symptoms is still unknown, but overall it
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is thought that a combination of genetic and environmental factors 
results in the abnormal accumulation of misfolded, toxic proteins in 
the brain, which then triggers both chemical imbalance and neuro-
nal loss in the brain (a process called atrophy), ultimately leading to 
the hallmark clinical symptoms that eventually impair the daily 
functioning of affected individuals. An important distinction to 
make is between the concept of “dementia” as a collection of 
clinical syndromes and as qualitative and quantitative clinical 
expressions of the disease, and “disease” as the underlying patho-
physiological processes of the syndromes.
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Thanks to the increased insight into disease pathophysiology, 
there has been a revision of the clinical diagnostic criteria, moving 
from considering the observable clinical signs and symptoms and 
implying a close and consistent correspondence between clinical 
symptoms and the underlying pathology, to including biomarkers 
of the underlying disease state in the clinical diagnosis. For exam-
ple, the 1984 NINCDS-ADRDA1 criteria were the benchmark for 
a clinical diagnosis of Alzheimer’s disease, which was defined as “a 
progressive, dementing disorder, usually of middle or late life” 
[2]. These criteria were revised in 2011 [3], to include biomarkers 
to support the clinical diagnosis and to account for the “pre-
dementia” stages and the slow pathological changes occurring 
over many years before the manifestation of clinical symptoms [4]. 

Despite different pathological origins, many forms of dementia 
can have similar symptoms, which typically include memory loss, 
language difficulties, disorientation, and behavioral changes. How-
ever, at an individual level, the symptoms can vary with regard to 
their nature, presentation, rate of progression, and severity. Such 
heterogeneity between and within forms of dementia is typically 
related to the area (or areas) of the brain affected by the underlying 
pathology and by the etiological cause of the disease itself. 

1.1 Alzheimer’s 

Disease (AD) 

AD is the most common form of dementia, accounting for 60–65% 
of all cases. It typically presents in individuals aged 65 or older, with 
the initial and most prominent cognitive deficits being memory 
loss, with additional cognitive impairments in the language, visuo-
spatial, and executive functions [3]. The distinguishing feature of 
AD is the buildup of amyloid-β plaques and neurofibrillary tangles 
of tau proteins. The amyloid plaques tend to be diffuse throughout 
the brain, while tau pathology tends to start in the mediotemporal 
lobe, and in particular in the hippocampus and entorhinal cortex, 
and spread to prefrontal and temporoparietal cortex in the moder-
ate stages of the disease. There are numerous genetic factors that 
have different levels of risk and prevalence in the population. The

1 National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related 
Disorders Association.



greatest risk comes from the nearly fully penetrant autosomal dom-
inant mutations in the amyloid precursor protein (APP), presenilin 
1 (PSEN1), or presenilin 2 (PSEN2) genes. However, the preva-
lence of these mutations is extremely low, comprising less than 0.5% 
of all AD cases. The age at onset of autosomal dominant AD is 
relatively similar between generations [5] and within individual 
mutations [6], typically resulting in an early-onset form of AD 
(below the age of 60 years). The most prominent risk factor gene 
in terms of both hazard and prevalence is apolipoprotein E 
(APOE). Carriers of a single copy (roughly 25% of the population) 
of the E4 allele are roughly two to three times more likely to develop 
AD [7], and they tend to have an earlier age of disease onset. 
Homozygotic E4 carriers represent 2–3% of the general population, 
with a dose-dependent increase in risk. There have been some 
suggestions that carrying an E2 form of APOE can infer some 
protection to individuals compared to the most common E3 allele 
[7, 8].

Machine Learning in ADRD 809

Besides the typical presentations of AD in which episodic mem-
ory deficits are prominent, there are other variants with atypical 
presentations. Posterior cortical atrophy (PCA) [9] is characterized 
by visual and spatial impairments, but memory and language abil-
ities are preserved in the early stages, with atrophy localized in the 
parietal and occipital lobe. Logopenic variant of the primary pro-
gressive aphasia (lvPPA), also called logopenic progressive aphasia 
(LPA), is characterized by impairments in the language domain 
(i.e., word-finding difficulty, impaired repetition of sentences and 
phrases) and atrophy in the left temporoparietal junction 
[10]. Despite presenting with different symptoms and neuroana-
tomical features, both PCA and lvPPA typically share the same 
forms of pathology, amyloid plaques, and neurofibrillary tangles, 
with the typical forms of AD. Besides these pathological hallmarks, 
accumulation of the TAR DNA-binding protein 43 (TDP-43) [11] 
is another form of pathology often observed in AD, particularly in 
cases with older onset of symptoms, resulting in increased rates of 
atrophy. The limbic-predominant age-related TDP-43 encephalop-
athy dementia (LATE) is a related condition found in older elderly 
adults (above 80 years of age), presenting with a slow progression 
of amnestic symptoms and hippocampal sclerosis. 

1.2 Vascular 

Dementia (VaD) 

As the second most common form of dementia (accounting for 
10–15% of all dementia cases), VaD is an umbrella term for a 
number of syndromes due to a clear primary cause: the decreased 
blood flow due to damage in the blood supply (large or small 
vessels), which leads to brain tissue damage. The vascular origin is 
clearly seen on magnetic resonance imaging (MRI) as the presence 
of extensive periventricular white matter lesions, or multiple 
lacunes in the basal ganglia and/or white matter [12]. Symptoms 
tend to accumulate in a step-wise fashion, rather than gradually



worsening, and they greatly vary based on which vessel is involved: 
ranging from memory loss, and difficulties in executive functions, 
to language and motor impairments. Different syndromes include 
multi-infarct dementia (or vascular cognitive impairment), when a 
series of small strokes damage multiple areas of the brain, typically 
in the cortex; strategic infarct dementia, when symptoms are caused 
by a focal ischemic lesion; subcortical vascular dementia 
(or subcortical leukoencephalopathy), caused by occlusions in 
small vessels, resulting in multiple lacunes in the subcortical struc-
tures; and mixed dementia, when symptoms of both vascular 
dementia and AD are present. 

810 Marc Modat et al.

Generally, strategic infarct dementia and multi-infarct dementia 
involving the cortex are due to occlusion in one of the major 
cerebral arteries, and therefore the insult in the brain usually results 
in a large area affected; they have a definable time of onset and 
specific deficits related to the region affected. When the occlusion 
involves small vessels, the dementia symptoms have a more insidi-
ous onset and less defined deficits in the executive function domain. 

Risk factors typically include age, hypertension, high choles-
terol, obesity, smoking, and other cardiovascular diseases (family 
history of stroke, heart disease, or diabetes). Mutations in the 
Notch3 gene have been associated to the cerebral autosomal domi-
nant arteriopathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL), which is a genetic disorder showing recurrent 
stroke, resulting in lacunar infarcts [13]. 

1.3 Frontotemporal 

Dementia (FTD) 

FTD describes a very heterogeneous group of neurodegenerative 
disorders with multiple genetic and pathological causes. However, 
there is sufficient overlap in terms of both clinical (behavioral 
and/or language symptoms) and anatomical presentation (frontal 
and temporal lobe atrophy and hypometabolism) that the condi-
tions are commonly considered together as one group. While 
representing 5–10% of all dementia cases, the FTD disorders con-
stitute a more common cause of early onset dementia, approxi-
mately equal in frequency to AD in people under the age of 65. 
The only confirmed risk factors are genetic, and about a 30–50% of 
cases are due to an autosomal dominant mutation, primarily found 
in the microtubule-associated protein tau (MAPT), progranulin 
(GRN), or chromosome 9 open reading frame 72 (C9orf72) 
genes [14]. The age at onset is extremely variable within and 
between genetic forms, including within families, and therefore 
hard to predict [15]. 

Clinically, behavioral variant FTD (bvFTD) is the most com-
mon presentation, with impaired social conduct and personality 
changes, often misdiagnosed as psychiatric illness at the onset 
[16]. It could be caused by tau, TDP-43, or fused-in-sarcoma 
pathology [17, 18] and associated with extremely variable pattern



1.4 Dementia with

Lewy Bodies (DLB)

of atrophy between patients, with a predominant involvement of 
the frontal and temporal cortex (often asymmetrical), but also 
insula, anterior cingulate, and subcortical structures [19–21]. 
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Less frequently, patients present with progressive decline in 
speech and language functions, a collection of disorders and var-
iants referred to as primary progressive aphasia, PPA. There are 
multiple variants of PPA, with different language deficits and 
brain regions involved. These are semantic variant (svPPA), with a 
breakdown of semantic memory, and associated atrophy in the left 
antero-inferior temporal lobe [22, 23]; non-fluent variant 
(nfvPPA), characterized by agrammatism and speech apraxia, and 
associated atrophy in the left inferior frontal, superior temporal, 
and insular cortex [22]; and lvPPA, though as mentioned previ-
ously is more often linked with AD pathology [10]. 

Around 15% of people on the FTD spectrum can also develop 
motor features consistent with either amyotrophic lateral sclerosis 
(ALS) (or motor neurone disease, MND) or parkinsonism (includ-
ing progressive supranuclear palsy, PSP, or corticobasal syndrome, 
CBS) [24]. 

There is a distinct differential brain involvement across the 
genetic forms of FTD, evident up to 15 years before the estimated 
symptoms onset [25, 26]: MAPT mutations cause focal symmetric 
atrophy in the anterior temporal and orbitofrontal cortex, includ-
ing hippocampus and amygdala; GRN mutations usually cause 
asymmetric atrophy in the temporal, inferior frontal, and inferior 
parietal lobes and striatum; while C9orf72 repeated expansions 
showed wider symmetric atrophy, predominantly involving the 
dorsolateral and medial frontal and orbitofrontal cortex, as well as 
the thalamus and cerebellum [25, 27, 28]. Despite these common 
patterns, there is still large variability even within the same genetic 
group, potentially due to the specific mutations, clinical presenta-
tions, or genetic and environmental factors [29, 30]. 

Around 10–15% of dementia cases have a diagnosis of DLB 
[31]. Symptoms tend to have an insidious onset, usually at the 
age of 65 years or older, and disease duration has an average of 
5 to 8 years from diagnosis, but it can range from 2 to 20 years. 
Symptoms change greatly from person to person but typically 
include fluctuating cognition, pronounced alterations in attention, 
alertness and executive functions, visual hallucinations, and motor 
features of parkinsonism. Early signs also include rapid eye move-
ment (REM) sleep behavior disorder, while memory and hippo-
campal volume are relatively preserved in the initial stages, but they 
become impaired later during the course of the disease. Alongside 
relatively preserved mediotemporal lobe volumes, typical biomar-
kers are reduced dopamine transporter (DAT) uptake in the basal 
ganglia on single-photon emission computed tomography 
(SPECT) or positron emission tomography (PET) imaging, and 
polysomnographic recordings, showing REM sleep without atonia.



812 Marc Modat et al.

DLB is considered a sporadic disease; however, mutations in 
genes encoding α-synuclein (SNCA) and β-synuclein (SNCB) pro-
teins have been associated with DLB [32]. 

Pathologically, DLB is characterized by the presence of α-synu-
clein proteins which abnormally aggregate in the brain to form 
Lewy bodies. 

Lewy bodies are also found in the brain of individuals affected 
by Parkinson’s disease and Parkinson’s disease dementia (PDD). 
DLB and PDD are often difficult to distinguish, and the “1-year 
rule” is used for differential diagnosis: if the parkinsonian motor 
symptoms are experienced for a year or more before the onset of the 
cognitive impairments, then the condition of PDD is diagnosed, 
while if the cognitive problems start before or within 1 year after 
the movement difficulties, then a diagnosis of DLB is likely to be 
given. 

Box 1: Different Diseases Causing Dementia 
Dementia is not a disease but a spectrum of disorders defined 
by different pathologies, the most common being the 
following.

• Alzheimer’s disease is the most prevalent, with hallmark 
pathologies of amyloid-β and neurofibrillary tau tangles. 
Memory is the most common symptom, but there are visual, 
language, and behavioral variants.

• Vascular dementia is caused by various types of vascular 
insults.

• Frontotemporal dementia is more common in those with 
younger ages of onset and is more associated with behavioral 
and language forms.

• Dementia with Lewy bodies (DLB) shares pathology with 
parkinsonian disorders and often has visual fluctuations and 
hallucinations as symptoms. 

2 Features and Markers of Dementia 

As previously mentioned, the most prevalent forms of dementia are 
multi-factorial processes that typically occur over a very long time 
period, from the silent buildup of pathology through to the onset 
and progression of the clinical syndrome. As such, there will be 
numerous types of assessment that can help identify individuals at 
risk, underlying pathology burden, and severity of the disease. 
These range from classic clinical workups, cognitive assessments 
of memory and other brain functions, fluid-based biomarkers, and



medical imaging-based assessments. The utility and sensitivity of 
these investigations will highly depend on the stage of the disease 
that the patient is experiencing. 
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2.1 Genetic Markers Despite the numerous forms of pathology that can ultimately lead 
to dementia, many genetic risk factors have been identified for AD 
and related disorders; the overall heritability of AD has been char-
acterized to be between 60 and 80% [33]. This risk of heritability 
however is spread out over a wide range of locations that vary in 
terms of prevalence and impact. Identifying genetic risk factors and 
the associated pathways that these genes are involved in have led to 
a better understanding of various forms of dementia [34]. 

As mentioned in Subheading 1, the genetic variants with the 
strongest penetrance are the autosomal dominant forms of demen-
tia. What these rare autosomal dominant forms provide is an oppor-
tunity to study a “purer” form of dementia, as the age of disease 
onset tends to be in the 30s through 50s, when there should be a far 
lower likelihood of commodities. It also provides a chance to study 
pre-symptomatic changes in individuals who are nearly certain to 
become affected by the disease. Thus, these cohorts are an ideal 
population for clinical trials of new therapies, in part to prove that 
the target engagement is successful and whether it provides any 
evidence that supports the underlying hypothesis around the dis-
ease start and spread. 

Outside of the autosomal dominant mutations, the gene most 
linked with risk for AD is APOE. There is not an equivalent gene in 
terms of risk and prevalence to APOE yet discovered for other 
forms of dementia, in part because these forms of dementia are 
rarer and it is thus more difficult to include the number of subjects 
needed for a well-powered GWAS (genome-wide association 
study). However, there are some suggestions, such as the TREM2 
variant in FTD [35]. 

Rather than trying to identify single target genes and their 
associated risks, many researchers have looked to generate a poly-
genic risk score, i.e., a sum of the risks conferred by each associated 
variant across the genome. Polygenic risk scores (PRS) have been 
developed for multiple diseases to better account for the amalga-
mated risk that the entire genetic profile provides [36]. For AD, 
however, APOE confers a far greater risk to individuals, with the 
PRS scores able to slightly improve predictive accuracy and explain 
additional risks beyond APOE [37, 38]. 

2.2 Clinical and 

Cognitive Assessment 

Given that various forms of dementia have historically been defined 
by their clinical phenotype, and that clinical and cognitive assess-
ments tend to be the cheapest and most widely available, they often 
are paramount in terms of initial diagnostic workup of an individ-
ual, as well as their subsequent patient management.
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Clinical vital signs, such as blood pressure [39, 40] and body 
mass index (BMI) [41], may suggest causes of cognitive 
impairment other than a neurodegenerative disorder or indications 
of an at-risk profile that would result in a more aggressive disease. 
The Clinical Dementia Rating (CDR) [42] is a semi-structured 
interview that examines several aspects of physical and mental 
well-being which is summarized under six subdomains. For each 
subdomain, a score of 0 (no impairment), 0.5 (mild/questionable 
impairment), 1, 2, or 3 is given. Both the sum of these subdomains, 
referred to as the CDR Sum of Boxes (CDR-SB), and a global 
summary score are often used, with CDR-SB now commonly 
used as a primary endpoint in trials. Other clinical workups may 
help identify non-memory symptoms that would not be picked up 
via cognitive assessments, such as anxiety, depression, and quality of 
daily activities. 

Cognitive assessments look at numerous domains of brain 
function, including executive function, language, visuospatial func-
tions, and behavior. However, given that memory is the most 
common primary complaint from individuals with AD, assessments 
of various aspects of an individual’s memory is one of the most 
important and typically included in both clinical and research set-
tings. Numerous tests have been developed and validated for use in 
the clinic as well, and they often serve as a primary outcome 
measure in clinical trials of subjects with mild to moderate 
AD. Standard clinical and cognitive assessments include the Mini 
Mental State Exam (MMSE) [43], the Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale (ADAS-COG) [44], and the Mon-
treal Cognitive Assessment (MoCA) [45]. 

While cheap and readily available, these assessments do come 
with some disadvantages. These are often pencil and paper tests 
which are administered and scored by a trained rater. As such, there 
is a level of subjectivity in many of these assessments that tend to 
result in high variability. Often these tests repeat the same questions 
and tasks over and over again, which leads to practice effects. It also 
is often difficult to build these assessments such that their dynamic 
range can simultaneously cover both the early subtle signs of 
dementia pre-symptomatically and the full decline once the indivi-
duals have experienced symptoms. This results in some tests having 
substantial ceiling effects (i.e., being easy enough that there is 
limited distinction between healthy individuals and those experien-
cing the subtle initial symptoms) and floor effects (i.e., the tests are 
so difficult that many with a cognitive impairment cannot perform 
them). There are also the cultural and lingual artifacts that may 
produce bias when translating one of these tests over from one 
language to another. As a result, there is a trend to formulate 
cognitive assessments in a more objective, computational format 
to reduce issues around subjectivity, language differences, and 
learning effects. They may reduce the variability compared to



standard paper and pen tests, which may be of key benefit in 
assessing therapeutic effects in clinical trials [46, 47]. This includes 
multiple trials of the test run during a single assessment and collec-
tion of dense information about the task in addition to more 
summary metrics as number of items correct or mean reaction 
time. The rich set of detailed, repeated measures is ideal for further 
exploration with machine learning algorithms. 
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2.3 Biofluid 

Assessments 

The most widely studied fluid-based biomarkers in AD and related 
disorders come from samples of cerebrospinal fluid extracted from 
an individual’s spine. Measures of primary AD-related pathology 
(Aβ1-42, tau, p-tau) can be obtained from these samples, as well as 
peripheral information on downstream mechanisms, such as neu-
roinflammation, synaptic dysfunction, and neuronal injury 
[48]. Fluid-based biomarkers are very effective in terms of being a 
“state” biomarker, i.e., whether an individual has a normal or 
abnormal level. They are often much cheaper than imaging assess-
ments in providing this status and thus are more likely to be used 
for screening of individuals at risk for dementia. At the same time, 
their ability to track change in the disease over time is currently 
limited. They are in general more noisy measurements, likely due to 
a number of factors including consistency of extraction, storage, 
and analysis methods [49]. Even when these have been held 
extremely consistent, their variability is still much higher in terms 
of measurement of change over time compared to cognitive and 
imaging measures [50]. Despite the procedure being very safe and 
continuing to improve, there is still a set of individuals who will not 
wish to participate in studies involving these assessments. A far less 
invasive and cheaper procedure is to extract similar measures from 
the plasma. While plasma-based biomarkers have been actively 
pursued for a lengthy time, it is only very recently that they have 
produced the level of accuracy and precision needed to compete in 
terms of performance to other established measurements 
[51, 52]. There have been plasma-based assessments of amyloid-
β, different tau isoforms, and nonspecific markers of neurodegen-
eration (such as levels of the neurofilament light chain, NfL) which 
show promise for detecting changes in the preclinical stage of 
AD [53]. 

2.4 Imaging 

Dementia 

The primary use of brain imaging in clinical settings is to exclude 
non-neurodegenerative causes, such as normal pressure hydroceph-
alus, tumors, and chronic hemorrhages, together with absence of 
atrophy, all features that can be visualized on T1-weighted MRI or 
computerized tomography (CT) scans. Nevertheless, three-
dimensional tomographic medical imaging modalities, particularly 
PET and MR imaging, provide high-precision measurements of 
spatiotemporal patterns of disease burden that have proven 
extremely valuable for research and also currently contribute to 
the positive diagnosis.
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These modalities have been employed primarily in clinical 
research settings, where longer advanced imaging protocols and 
novel radiotracers can be implemented. Due to costs, time, and 
availability of imaging resources, they have been slow to translate to 
the clinical setting itself, but they are beginning to make impact 
there as well. 

2.4.1 Imaging Primary 

Pathology 

Radiotracers that preferentially bind to the primary pathologies 
associated with AD allow the detection and tracking of the slow 
progressive buildup of the amyloid plaques and neurofibrillary 
tangles, which can occur decades before the onset of symptoms 
[54, 55]. The original amyloid tracer was 11 C Pittsburgh Com-
pound B [PIB], and it identified individuals who were amyloid 
positive but showed no symptoms [56]. These individuals tended 
to progress to mild cognitive impairment and subsequently AD at 
much higher rates than those who were amyloid negative 
[57]. Since the introduction of PIB, there have been numerous 
18 F tracers which have been developed and approved for use in 
humans [58, 59]. As 18 F-based tracers have a longer half-life than 
11 C, it has enabled a much larger group of research centers access to 
this technology. Tracers specifically related to tau-based pathology 
have come much later. The most widely used has been flortaucipir, 
with second-generation tracers now available that have overcome 
some of the challenges of imaging with the early tau tracers 
[60]. Findings from tau PET studies suggest that the landmark 
postmortem staging of tau pathology seeding and spread according 
to Braak [61] is the most common spatiotemporal pattern observed 
in individuals [62, 63]. However, other subtypes of different dis-
tributions have been observed [64, 65]. Elevated tau PET uptake 
often happens much later than elevation of amyloid PET [66], 
especially in autosomal dominant cases of AD [67, 68]. Tau PET 
is also far more strongly linked regionally with subsequent evidence 
of neurodegeneration, while amyloid PET tends to elevate in a 
similar manner across multiple regions at the same time [69]. Exam-
ples of amyloid and tau PET images from both patients with various 
forms of AD and controls can be seen in Fig. 1. Despite many forms 
of FTD being some form of tauopathy, the available PET tracers 
have been primarily optimized to the specific form of tau pathology 
that is primarily observed in AD, namely, the mix of 3-Repeat/4-
Repeat species observed in neurofibrillary tangles. Since there are 
many different forms of tau pathology within FTD, the level of tau 
PET uptake in these individuals is varied [70–72]. In other forms of 
dementia, amyloid PET can be used to rule out AD pathology if an 
individual with symptoms has an amyloid negative scan2 and tau

2 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm.

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm


PET has now been approved to estimate the density and distribu-
tion of neurofibrillary tangles in individuals.3
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Fig. 1 Example amyloid (left column) and tau (right column) PET scans from controls and patients with different 
forms of dementia (AD and PCA). PET images are presented as standardized uptake value ratio (SUVR) images, 
where the amyloid PET have been normalized to subcortical WM, an area of high nonspecific binding (mainly in 
myelin) for both healthy controls and patients with Alzheimer’s disease. The tau PET images have been 
normalized to inferior cerebellar gray matter. While amyloid PET tends to show diffuse cortical uptake across 
the brain, tau PET tends to be more focal in the areas where neurodegeneration is occurring 

2.4.2 Imaging 

Neurodegeneration 

As the pathology continues to build over time during the 
pre-symptomatic period, it often leads to an insidious process of 
neuronal dysfunction and ultimately to degeneration in all forms of 
dementia. This is evidenced by atrophy visible in the structural 
T1-weighted MRI scans (Fig. 2) and decreased metabolism on 
fluorodeoxyglucose (FDG)-PET (Fig. 3). These forms of imaging 
start to be altered around the time when tau pathology is present 
and then provide close tracking with disease severity as symptoms 
become apparent. These modalities often tend to be the most 
widely available of imaging techniques within research settings, 
with MRI tending to be less costly than PET. Structural imaging, 
due to its high resolution (1 mm), signal-to-noise ratio, and con-
trast between tissues, lends itself to high-precision measurements of 
change over time. The spatial pattern of the neurodegeneration, 
whether it is hypometabolism or atrophy, can provide useful infor-
mation for differential diagnosis between different dementia [73– 
75]. Parallel to neurodegeneration, changes in the white matter of 
individuals with dementia also show evidence of disease-related

3 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212123s000lbl.pdf.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212123s000lbl.pdf


insult. White matter lesions, suggestive of damage due to vascular
insult/insufficiency or demyelination, are visible as hypointensities
on T1-weighted imaging, while they present as hyperintense on
other forms of structural MRI imaging known as T2-weighted or
fluid attenuated inversion recovery (FLAIR) (Fig. ). Other forms
of changes in the WM observed in dementia include microbleeds,

4
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Fig. 2 Example T1-weighted MRI scans from a healthy control and individuals 
with different variants of Alzheimer’s disease. For each variant, atrophy can be 
observed in areas of cortical GM which are known to cause the cognitive deficits 
typically linked to the clinical phenotype (see white arrows)



lacunes, and perivascular spaces [76]. Whether these are separate 
processes or linked to the underlying disease cascade is actively 
being researched [77, 78]. There is evidence that they contribute 
equally and additively in individuals where no obvious impairment 
is present. In addition, individuals with heavy white matter burden 
tend to have more aggressive forms of the disease than those with 
limited or no signal of change in the white matter.
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Fig. 3 Example FDG PET scans from a healthy control and multiple variants of 
Alzheimer’s disease. For each variant, hypometabolism (denoted by cooler 
colors) observed in areas of cortical GM which are known to cause the 
cognitive deficits typically linked to the clinical phenotype. Red arrows have 
been added to highlight focal areas of hypometabolism in each variant 

Advanced forms of MRI acquisitions are leading to better 
understanding of the diseases at different scales, from inferences 
made of the underlying tissue microstructure to how these forms of 
dementia disrupt the natural networks of the brain. Diffusion-



weighted imaging (DWI) provides measurements of both the mag-
nitude and direction of the movement of water within a voxel. In 
white matter, the tissue consists of long fiber bundles that restrict 
the motion primarily along the direction of the fibers. In the cases 
of dementia, the integrity of these white matter bundles, whether 
through demyelination or some other form of neuronal dysfunc-
tion, tends to be less restrictive of water crossing boundaries, 
suggesting loss of microstructural integrity [79–82]. 
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Fig. 4 Example T1-weighted (left column) and FLAIR (right column) images of minimal, moderate, and 
prevalent lesions in the white matter, often referred to as white matter hyperintensities (WMH), as they 
appear bright on FLAIR acquisitions. These lesions also often show up hypointense on T1-weighted scans, but 
FLAIR tends to be more sensitive and provide more contrast, particularly around deep gray matter areas
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On a larger scale, connected brain networks can be identified 
with these techniques, either by tracing the diffusion profiles from 
one gray matter region to another using diffusion weighted imag-
ing or by observing correlating patterns of deoxygenation of hemo-
globin in the brain regions using functional MRI (fMRI) as a proxy 
for brain activity. These networks can become disrupted, primarily 
in regard to within network communication [83]. The direction of 
this disruption may depend on the stage of the disease. There is 
more evidence that the later stages of disease cause reduced con-
nectivity and a disconnection from key seed regions to other areas. 
However, there may be an earlier stage where subjects compensate 
for increased pathology burden with hyperconnectivity [84, 85]. 

2.5 Advances in 

Novel Biomarkers 

Novel assessments and biomarkers for all forms of dementia are 
highly active areas of research, from new fluid-based biomarkers to 
better computerized psychometric batteries to new imaging tracers 
and MR sequences to track additional aspects of the disease. While 
big data for machine learning in dementia has often meant assessing 
a large number of individuals, each with a small handful of mea-
sures, there are new forms of data collection that provide a rich set 
of data on single individuals. This could include not only the new 
epigenetic markers like single-cell RNA sequencing [86, 87] but 
also wearable devices that produce lots of data about individuals’ 
daily activities and spatial navigation. 

3 Challenges for Machine Learning 

Researchers are nowadays focusing on two main aspects when it 
comes to AD and other forms of dementia. First, they aim to gain a 
better understanding of the disease process, including why indivi-
duals with similar underlying primary pathology result in different 
areas of the brain being affected, and thus have different clinical 
presentations. This is currently being investigated using many 
approaches ranging from molecular biology studies in wet labs to 
large epidemiological studies involving several thousands of parti-
cipants. Second, they are developing tools to better assist clinicians 
with treatment management at the level of an individual. This 
includes, for example, the design of effective computational pipe-
lines dedicated to patient diagnosis and prognosis. 

Any research relying on machine learning methodologies must 
address the specific challenges presented by the disease. The first 
challenge comes from the large variability of diseases that makes it 
difficult to differentiate them, especially in the early stages. Addi-
tionally, mixed dementia, where patients have several diseases, is 
quite common. Indeed, the AD phenotype often coexists with 
vascular dementia or DLB. To partially address this issue, data 
from individuals with autosomal dominant forms of these diseases



are collected by international multicenter studies, as they often have 
earlier onset and usually “purer” forms of the disease. The Domi-
nantly Inherited Alzheimer Network (DIAN)4 and the Genetic 
Frontotemporal Dementia Initiative (GENFI)5 are two studies 
collecting data from patients and relatives with familial AD and 
genetic FTD, respectively. While these studies have many benefits 
(see Subheading 2.1), there can be substantial differences between 
the genetic and the more widespread sporadic forms of these dis-
eases, the most notable being younger disease onset and fewer 
comorbidities. Thus, there is a crucial need for ML methods that 
can disentangle the full complexity of sporadic forms of dementia. 
Finally, the variability comes not only from the presentation of the 
disease and comorbidities but also from the age at which the disease 
starts and the pace at which it progresses. 
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The second challenge is related to the duration of the disease, 
which often spans two decades and includes a yearslong prodromal 
phase. This makes it difficult to acquire data from individual 
patients that cover the full disease duration, especially as it is 
extremely challenging to identify with certainty who will develop 
the disease in the general population. While the previously men-
tioned studies of autosomal dominant forms of dementia can 
address this issue, it is not yet clear how much their findings can 
be translated to the far more common sporadic forms of these 
diseases. The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI)6 is a large multicenter study that focuses on the acquisition 
of data from elderly individuals, consisting of those that are cogni-
tively normal, those labeled as having mild cognitive impairment 
(MCI), and individuals diagnosed with probable AD [88]. These 
individuals are followed over several years, providing extremely 
valuable information for researchers. UK Biobank7 is another rele-
vant initiative, as it aims to acquire in-depth phenotyping of half a 
million UK participants. Due to the large prevalence of AD and 
other related diseases in the population, it is anticipated that many 
individuals are in the pre-symptomatic phase of the diseases. 

As aforementioned in the previous section, many markers of 
dementia are used to track the diseases, some being more relevant 
than others at specific times in the illness progression. For example, 
while amyloid PET-derived imaging biomarkers are valuable in the 
early stages of the disease, they are unable to quantify the progres-
sion toward the final stages. On the opposite end, clinical assess-
ments, while being ineffective prior to symptomatic onset, enable 
monitoring of symptomatic evolution over time. This is a challenge

4 https://dian.wustl.edu/. 
5 https://www.genfi.org/. 
6 https://adni.loni.usc.edu. 
7 https://www.ukbiobank.ac.uk.

https://dian.wustl.edu/
https://www.genfi.org/
https://adni.loni.usc.edu
https://www.ukbiobank.ac.uk


as it requires to use the most relevant marker for the correct stage. 
In practice, this often leads to the use of complex models to handle 
large amount of multimodal data (imaging, clinical, genetic, demo-
graphic, . . .). Additionally, each marker often suffers from its own 
variability, which can be intra-patient, inter-patient, and inter-
center. For example, clinical assessments potentially differ based 
on the rater. MRI acquisitions will differ due to pulse sequence 
properties or scanner characteristics, as well as normal physiological 
variance such as hydration and caffeine intake, among others.
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4 Machine Learning Developments 

Machine learning has been used in multiple applications related to 
Alzheimer’s disease and related dementia. As mentioned in the 
above section, dementia research has leveraged worldwide, multi-
center studies in order to obtain enough data to characterize early 
changes and heterogeneity within the disease process. This has, in 
turn, propelled the development of dementia-focused ML applica-
tions. In this section, we review four main tasks in which extensive 
ML research has been performed. 

Biomarker extraction from imaging data was originally done 
with manual assessments, which were time-consuming and subject 
to high inter-rater variability. Machine learning approaches that 
recreate these measurements with reduced time and variability 
have been a large effort that has served not only ADRD but many 
neurological disorders and neurodegenerative diseases. Given the 
numerous measurements that are now available on the datasets and 
the different aspects of the phenotype that they reflect, disease 
classification and prediction techniques have been used to identify 
consistent multivariate signatures between both healthy and disease 
groups, for differential diagnosis and for predicting the future state 
of patients. Disease progression models have been developed to 
determine the ordering of how markers go from normal to abnor-
mal and to reconstruct the trajectories followed by these biomar-
kers, leading to advances in disease understanding and 
prognostication. Data harmonization to characterize variation 
caused by changes in scanning equipment and software across 
sites must be accounted for in order to obtain more accurate 
estimates of the biological changes. 

4.1 Machine 

Learning-Derived 

Biomarkers 

The largest area of machine learning research in relation to Alzhei-
mer’s disease and related disorders is to extract measurements from 
the different datasets. These biomarkers tend to reflect an aspect of 
function or integrity of the individual that will gain a better under-
standing of a disease. Changes in these biomarkers from normal 
values to abnormal provide a proxy for disease progression. Note 
that most of this research can usually be useful for other brain 
disorders.
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Medical imaging provides valuable insights into an individual’s 
brain and is key to noninvasively assessing phenotypes due to the 
neurodegeneration process. Structural imaging, especially 
T1-weighted MRI, is commonly acquired in neurodegenerative 
studies as it enables quantifying key information such as atrophy 
in particular brain regions and thinning of the cortex or localized 
brain lesions. These features are often used as imaging biomarkers 
of disease progression, and many approaches relying on machine 
learning have been developed to extract them in the last three 
decades. 

Brain segmentation and parcellation relate respectively to the 
classification of voxel into tissue types (e.g., gray matter, white 
matter, CSF) and the delineation of identified brain regions (e.g., 
whole brain, hippocampus, . . .). 

The most popular open-source implementation (FSL8 [89], 
SPM9 [90]) for tissue segmentation relied on Gaussian mixture 
model optimized using expectation maximization [91, 92]. They 
enable to classify voxels based on their intensity but as well to 
accommodate with intensity inhomogeneity as well as noise via 
explicit modeling of the intensity bias field [91] and the use of 
Markov random field regularization, respectively [92]. With the 
advance of deep learning in the last decade, many techniques 
using convolutional neural networks have been proposed. Kumar 
et al. presented a U-Net based approach achieving close to 90% 
average Dice score coefficient on the segmentation for gray matter, 
white matter, and CSF on their dataset [93]. 

Classical approaches for brain parcellation rely on the concept 
of segmentation propagation and label fusion. In short, a set of 
template images, consisting of original images and associated labels, 
are aligned through medical image registration to a new image. The 
template labels are then warped into the shape of the new image’s 
brain and fused into a consensus segmentation. Popular approaches 
are HAMMER10 [94], FreeSurfer11 [95], or Geodesic Information 
Flows (GIF) [96], among others. Using neural networks, de 
Brébisson et al. proposed a dedicated architecture concurrently 
using 2D and 3D patches and used iteratively to refine their results 
[97]. More recently, FastSurfer [98] was introduced, which is a 
deep learning-based method that aims to reproduce FreeSurfer’s 
results while considerably reducing processing time. While it is 
rapidly attracting users, further validation is needed to ensure that

8 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. 
9 https://www.fil.ion.ucl.ac.uk/spm/. 
10 https://www.nitrc.org/projects/hammer/. 
11 https://surfer.nmr.mgh.harvard.edu/.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.fil.ion.ucl.ac.uk/spm/
https://www.nitrc.org/projects/hammer/
https://surfer.nmr.mgh.harvard.edu/


it is as robust as FreeSurfer across all disease types and severities. 
Finally, a current trend is to train from vast amounts of synthetic 
data with the hope of easing generalization to other sequences 
and/or resolutions. This is, for example, the approach taken in 
SynthSeg [99].
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Other approaches have been proposed to segment individual 
regions of the brain that are particularly relevant to the study of 
dementia. For example, hippocampal segmentation has been an 
active area of research, with many studies including extensive vali-
dation in AD [100–104]. In the past years, the focus has turned to 
the segmentation of hippocampal subfields rather than the whole 
hippocampus [105, 106]. In particular, Manjon et al. used a U-Net 
approach combined with a deep supervision approach for training 
where their loss function optimizes segmentation accuracy at dif-
ferent image scales [107]. 

The identification of abnormalities (in particular those of vas-
cular origin) is also a key step in the study of dementia and particu-
larly for differential diagnosis. These abnormalities include hyper-
or hypo-intensity lesions, micro-bleeds, perivascular spaces, or 
lacunes. Various approaches to segment T2/FLAIR white matter 
hyperintensities have been proposed (see [108] for a comparison of 
seven of them), while there have been fewer works on micro-bleeds 
or lacunes. Sudre et al. proposed a Gaussian mixture model 
approach with automated detection of classes number to accurately 
segment brain tissue classes, as well as abnormalities [109]. More 
recently, deep learning approaches have also been developed. For 
example, Boutinaud et al. used a U-Net, which parameters were 
pre-trained using an autoencoder, to automatically segment peri-
vascular spaces from T1-weighted MRI scans [110]. Wu et al. also 
used a U-Net architecture for segmentation hyperintensities from 
T1-weighted and FLAIR MR images [111]. 

4.2 Disease 

Classification and 

Prediction 

Machine learning is a powerful tool when it comes to disease 
diagnosis and prognosis. As a result, many approaches have been 
proposed for disease classifications, to identify the current stage of a 
disease within an individual or to predict their future state (e.g., 
transition to dementia in patients with MCI). 

For over a decade, dozens (if not hundreds) of papers have 
proposed classification techniques to distinguish patients diagnosed 
with AD versus age-matched controls (e.g., [112–119]) or patients 
suffering from mild cognitive impairment who are staying stable in 
time versus those who will progress to a diagnosis of AD (e.g., 
[115, 117–124]). The latter task can contribute to prognosis 
which, when it comes to dementia-related diseases, often consists 
of classifying patients who are likely going to convert from mild 
cognitive impairment to symptomatic AD within a given time



interval, typically 3 years,12 from those who are going to stay stable. 
Several literature reviews on dementia classification and prediction 
have been published [125–130]. In particular, recent reviews by Jo 
et al. [126] and Ansart et al. [130] have covered the topic of 
prognosis. 
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The proposed methodologies have been extremely varied not 
only in terms of ML algorithms but also of input modalities and 
extracted features. Initial ML methods often used support vector 
machines (e.g., [112, 114]), while subsequent works used more 
recent techniques such as random forest [117] and Gaussian pro-
cesses [121, 131]. Many recent works have used deep learning 
classification techniques [127, 129]. However, so far, deep learning 
has not outperformed classical ML for AD classification and pre-
diction [129, 130, 132]. Furthermore, a review on convolutional 
neural networks for AD diagnosis from T1-weighted MRI [129] 
has identified that more than half of these deep learning studies may 
have been contaminated by data leakage, which is particularly wor-
risome. In terms of features, some studies use the whole brain as 
input, either using directly the raw image or computing voxel-wise 
(or vertex-wise when considering the cortical surface) measures 
[125]. Others parcellate the brain into regions of interest, within 
which features are computed. In particular, researchers have com-
bined segmentation approaches with disease classification techni-
ques. This has the advantage of limiting the search space of the 
machine learning approach via the use of prior knowledge. For 
example, Coupe et al. used a patch-based approach to classify voxels 
from the hippocampus as it is known to be a vulnerable structure in 
patients with dementia [116]. The input modalities have also been 
extremely varied. While earlier works often focused on 
T1-weighted MRI only [112–114], subsequent studies have 
included other imaging modalities, in particular FDG-PET 
[121, 123] Other researchers have combined tailored features 
extracted from images and non-images features such as fluid bio-
markers [121], cognitive tests [124, 133], APOE genotype [121], 
or genome-wide genotyping data [134, 135]. Through deep 
learning, researchers are avoiding the need to craft features and 
can use traditional deep learning approaches to directly infer disease 
status from raw data: imaging or non-imaging. However, to date, 
there has been less interest in this area than in biomarker extraction, 
and thus fewer innovative solutions have been proposed. Popular 
architectures include conventional neural network, autoencoder, 
and recurrent neural networks, among others [127]. Training stra-
tegies mostly relied on supervised approaches, where some groups 
have relied on pre-trained networks to compensate for relatively

12 While 3 years is certainly a relevant time frame to provide useful information to patients and relatives, it is likely 
that the focus of research on such time frame was largely driven by the typical follow-up which is available for most 
patients in large publicly available databases such as ADNI.



small training databases. However, as mentioned above, it has not 
been demonstrated so far that deep learning outperforms conven-
tional ML for dementia classification.
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A large portion of the literature has relied on the ADNI data-
base. While having such a rich and large database has propelled the 
development of algorithms, one can wonder if the proposed 
method will generalize well to other datasets, a problem which 
has less often been addressed. Another worrisome aspect is that 
many of the papers based on ADNI are difficult to reproduce 
because they lack a description of the subjects used and because 
the code is not often available [136]. They are also difficult to 
compare. In particular, since different preprocessing tools are 
used, it is often difficult to know whether improvements in perfor-
mance come from the innovation in ML or from the preprocessing. 
Standardized datasets have been created in ADNI [137] to address 
the former issue. Whenever possible, one of these datasets should 
be used, or authors should provide a list of subjects/scans included 
in the study for the purpose of reproducibility. 

Researchers have organized challenges that can provide an 
objective comparison of algorithms. One can cite in particular the 
CADDementia challenge for classification [138] and the TAD-
POLE challenge for prognosis [132]. Such challenges provide 
very important and useful information on the respective merits of 
different approaches. However, more challenges, in particular 
using more diverse data, would be needed. 

To a lesser extent, differential diagnosis has also been 
addressed. Earlier works focused on classifying patients diagnosed 
with AD versus patients diagnosed with frontotemporal dementia 
[112, 139]. More recent studies have considered classifying 
between various types of dementia [140, 141]. 

Overall, there has been considerable research in AD classification 
and prediction. The easiest task, which is the classification of patients 
diagnosed with AD versus normal controls, can be considered as 
solved with accuracy typically above 90%, at least when using data 
which quality is comparable to that of research studies. However, this 
task has little clinical utility. For the more interesting task of predic-
tion progression to AD in MCI patients, the performance has 
increased over the years, with AUC now above 80% [130]. Interest-
ingly, it has been shown that studies which include cognitive tests and 
FDG-PET tend to have better results than those using T1-weighted 
MRI only [130]. It is particularly noteworthy that cognitive tests 
tend to be overlooked, given that they are relatively cheap to perform 
and widely available. This probably reflects the fact that much of these 
works have arisen in the medical image computing community. 
Finally, other tasks are still short of becoming clinically useful, such 
as the development of a multi-pathology differential diagnostic clas-
sifier. This is possibly due to the lack of tailored methodologies 
leveraging all available information. This will be further discussed in 
the conclusions of this chapter.
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4.3 Disease 

Progression Modeling 

Following the release of a hypothetical model of disease progres-
sion by Jack et al. [142], researchers have tried to create data-driven 
models that would accurately describe the various components of 
the underlying disease process. These so-called disease progression 
models have been developed to understand the ordering of pheno-
typic events (such as a marker becoming abnormal), to model the 
variability of ordering or trajectories within a population and to be 
able to distinguish between different disease subtypes. The reader 
may refer to Chap. 17 for a detailed description of the methodology 
underlying data-driven disease progression models. Event-based 
models (EBM) [143] have been created to learn from a curated 
population and across different modalities the different hidden 
states of a disease. EBMs are able to order all input features from 
the one that will most likely become abnormal first to the one that 
becomes abnormal last [143]. The application of EBM in dementia 
has been very successful, including studies in familial AD 
[143, 144], sporadic AD [145, 146], posterior cortical atrophy 
[147], and genetic FTD [148]. An extended approach called Sub-
type and Stage Inference (SuStaIn) was developed by Young et al., 
which incorporates clustering to characterize disease subtypes. In 
particular, it allowed uncovering the symptomatic profiles of differ-
ent variants of genetic FTD as well as AD subtypes [29]. EBMs 
have the advantage of being applicable to cross-sectional data but 
only provide an ordering of events with no temporal scale as to 
when they become abnormal. In most EBMs, there is also an 
assumption of a monotonic biomarker trajectory, an assumption 
which has been questioned in the early stages of AD [149]. Other 
works have leveraged longitudinal data to build continuous trajec-
tories. Jedynak et al. used a disease progression model to derive a 
progression score on a linear scale for every individual in AD 
[150]. Schiratti et al. proposed a general nonlinear mixed effects 
model that can handle not only scalar biomarker data but also 
images or shapes [151]. Applied to AD, the approach uncovered 
trajectories of progression for different variables, including cogni-
tive tests, PET-derived hypometabolism, and local hippocampal 
atrophy [152]. In 2021, Wijeratne and Alexander proposed an 
approach that can, using longitudinal data, infer both discrete 
event ordering (as in EBMs) and continuous trajectories 
[153]. Lastly, Abi Nader et al. proposed SimulAD, which enables 
the setup of in silico interventional trial, where patient prognosis 
can be assessed against several possible therapies (drug type or 
timing of intervention) [154]. 

4.4 Data 

Harmonization 

Data heterogeneity inducing bias arises from many sources, includ-
ing differences in acquisition protocols, acquisition devices, or 
populations under study. This is true in large multicenter studies 
such as ADNI, DIAN, and GENFI. However, such research studies 
use harmonized protocols for data acquisition and perform strict



quality control. It becomes even worse when one is using clinical 
routine data which is not acquired with harmonized protocols and 
can be of extremely varied quality. 
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Data heterogeneity may have various impacts on ML algo-
rithms. For example, for any classification task, one wants to ensure 
the model focuses on the diseases’ features rather than on any 
differences caused by the acquisition sites. The ability to harmonize 
data from any origin is also critical to translate any analytical tool in 
clinical practice where acquisition protocols are rarely standardized. 

This is especially true for imaging biomarkers where scans often 
contain so-called scanner signatures. As a result, images are often 
preprocessed prior to being used with machine learning algorithms. 
The preprocessing steps involve intensity normalization in the 
shape of image filtering, for denoising, or intensity histogram nor-
malization. For example, Erus et al. [155] proposed a framework to 
achieve consistent segmentation of brain structures across multiple 
sites. Their approach relies on the creation of site-specific atlases 
while ensuring consistency between all available atlases. Their eval-
uation shows that they reduce the variability associated with sites on 
volumetric measurements, key to track the process of brain atrophy, 
derived from structural images. Another example is the work of Jog 
et al. [156], who used image synthesis via contrast learning to 
harmonize images acquired with different pulse sequences. The 
Removal of Artificial Voxel Effect by Linear regression (RAVEL) 
approach by Fortin et al. [157] is another exemplar application of 
data harmonization. It consists of a voxel-wise intensity normaliza-
tion technique, where they apply singular value decomposition 
(SVD) of the control voxels to estimate factors of unwanted varia-
tion. The control voxels are those unaffected by the pathology, such 
as those in the cerebrospinal fluid (CSF). The unwanted factors are 
then estimated using linear regression for every voxel of the brain, 
and the residuals are taken as the RAVEL-corrected intensities. This 
model has then been further extended [158] to include the model-
ing of site-specific scaling factors on summary measures derived 
from the images. Using empirical Bayes to improve the estimation 
of the site, this model can be used to correct several imaging 
modalities while associating relevant clinical and demographic 
information. It was originally developed to correct gene expression 
microarray data [159], being later extended to correct DTI maps 
[158], cortical thickness measurements [160], or structural MRI 
[161]. Additional extensions include longitudinal data [162], site 
effects due to covariance [163], and a generalized additive model in 
order to handle nonlinear trajectories over the life span 
[164]. Prado et al. [165] proposed Dementia ConnEEGtom to 
harmonize neurophysiological data. They propose a whole analyti-
cal pipeline involving many steps, including denoising, artifact 
removal, and spatial normalization, to promote a standardized



processing of EEG data, thereby enabling their use in machine 
learning while minimizing the bias that could be induced by varia-
bility in data handling across sites. 
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Acquired clinical scales also need to be standardized and har-
monized between centers, especially when used jointly in a single 
machine learning approach. Costa et al. [166] provide recommen-
dations on how this should be achieved and which scales should be 
acquired for the neuropsychological assessment in neurodegenera-
tive diseases. Even when using the same scales across different 
multicenter studies, it is important to understand that the prove-
nance and contextual information of each study must be consid-
ered, since that might introduce bias in the training of the 
models [167]. 

5 What Is Next? 

This chapter has illustrated that dementia is a complex, multifacto-
rial, heterogeneous set of pathologies and syndromes, sometimes 
occurring in parallel. As a result, a wide variety of clinical, genetic, 
cognitive, imaging, and biofluid data have been collected to char-
acterize these disease processes over a large number of different 
cohorts, from both those individuals suffering from various forms 
of dementia, as well as those at risk of developing a form of demen-
tia due to their genetic/environmental/pathophysiological risk 
profile. Despite the wealth of data on dementia that is available to 
machine learning researchers, there are still limitations, both in 
terms of the data available and in the current thinking about how 
to apply machine learning, that must be addressed in order for 
machine learning to reach its true potential in terms of making an 
impact on these conditions. Key to this validation will be open 
science initiatives that allow for reproducibility and replication of 
results, so that the value can be demonstrated in independent 
cohorts. 

Careful thought must be given to how to incorporate the 
myriad different data types that are available to researchers. Despite 
the wealth of multimodality information and big data available, 
much of the machine learning-based research in dementia has 
only considered a subset of the available information. This is the 
case even within a single community such as the imaging one where 
each modality or pulse sequence is most often analyzed individually. 
Machine learning approaches are however able to extract highly 
nonlinear information, which should enable the development of 
truly multi-data frameworks able to capture the complexity of the 
diseases. At the same time, when multiple features across different 
data acquisition domains are combined into a single analysis, par-
ticularly in those individuals who already show evidence of 
impairment, there is a higher likelihood of missing or corrupted



information. The simplest solution to the problem of missing data, 
and often the most implemented, is to perform complete case 
analyses, discarding any observations where any of the variables 
are missing. This practice results in the time donated by patients, 
carers, and volunteers willing to support research efforts through 
extensive and often onerous data collection being squandered and 
the full potential of the resulting data not being realized. While it is 
common to have 30% of data being discarded in some large studies, 
we could benefit hugely from further research in this direction. 
Multiple imputation techniques could be used to address this 
issue and ensure all available data can be used. 
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A related question is how to address the limitations of cross-
sectional snapshots of data in a decades-long disease process and 
how best to use relatively short-term follow-up data. While infer-
ence on cross-sectional measures would be ideal in terms of 
providing information expediently to a patient, there are many 
confounds and covariates that can contribute to added variability, 
making classification tasks, particularly in the early stages of the 
disease, less accurate. Longitudinal data, particularly in imaging 
modalities, tends to reduce the influence of these confounds, and 
the within-subject change can be more sensitive to identifying the 
prognosis of individual trajectories. However, requiring longitudi-
nal data for a classification task is undesirable for patients, who 
would be provided with no information until they come back for 
additional testing in a year or two. Thus, machine learning 
approaches could investigate whether a hybrid approach might be 
more powerful: triaging first with the cross-sectional data and only 
requiring longitudinal data in cases where inference cannot be 
made at the baseline assessment with a high degree of confidence. 

A second challenge is to extend machine learning approaches to 
datasets that are more reflective of standard clinical settings. This 
refers not only to the type of data that is collected but also to the 
conditions under which the data is collected and to the populations 
within which data is acquired. Clinical research studies conducted 
at research institutions often include advanced data acquisitions 
that are costly and time-consuming, making them intractable for 
translation into wider communities and developing countries. 
There is thus a mismatch between the quality of the data acquired 
in research settings compared to the data acquired in day-to-day 
clinical environments. For example, only a subset of the patients 
suspected of having dementia undergo medical imaging and from 
this subset only a fraction of these individuals are offered MRI 
scans. In the majority of cases, CT are acquired, and they are mostly 
used to rule out other causes for impairment, such as space-
occupying lesions. As a result, a large amount of CT scans are 
collected, and they could potentially be an important resource to 
develop computer-assisted tools able to reach a larger population 
[168]. Even when the same data type is acquired in clinical and



research settings, there can be a considerable mismatch in terms of 
data quality and homogeneity. For instance, clinical routine MRI is 
of extremely variable quality and usually acquired using 
non-harmonized protocols. Similarly, with the current democrati-
zation of wearable and smartphone collection data which is prime 
to be processed with machine learning, there are opportunities to 
develop novel frameworks assisting patients, carers, and clini-
cians.13,14 Another aspect of this challenge to improve widespread 
translation is that clinical research studies typically involve a dispro-
portionate amount of affluent Caucasian individuals of European 
descent, meaning that we do not yet have enough data to fully 
quantify the heterogeneity that is observed in other ethnic groups. 
While large-scale cohort studies are looking to address this issue, 
focusing on assembling appropriate testing and training sets to 
represent the diversity of the population will be an important 
element for improving machine learning performance in the future. 
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Effective partnerships with the clinicians who are using the data 
are another key challenge in terms of incorporating machine 
learning in a wider clinical setting [169, 170]. Clinicians must 
believe in the added value that novel machine learning approaches 
can provide in order to incorporate them as part of their clinical 
workup and decision-making. One approach to achieving this 
buy-in from clinicians is a push toward “explainable AI,” such 
that the results from machine learning algorithms make intuitive 
sense and that the clinician can better understand how the algo-
rithm came to that decision. While there are certainly concerns 
around the opaqueness of some algorithms that could lead to over-
fitting or spurious results, an insistence on explainable AI may also 
restrict the development of better algorithms that can provide more 
value, and in some cases, it may result in reducing a complex 
multivariate pattern down to a summary measure that can be 
understood, throwing away valuable information in the process. 
What is likely more important is that best practices are followed in 
terms of training, testing, model development, and validation of 
the algorithm such that clinicians may not necessarily understand 
how the algorithm achieved a specific result but that they are 
convinced by the evidence of the value it provides. 

The final, and likely most significant, challenge is how best to 
characterize heterogeneity and mixed pathology. Classification of 
well-characterized cohorts of clear cases of AD and normal controls 
provides little benefit, in particular given the rise of accurate and 
increasingly cheaper and accessible plasma tests. Dementia covers a 
wide range of symptoms caused by a myriad of pathologies and 
etiologies occurring in a decades-long process, and correctly

13 https://edon-initiative.org. 
14 https://www.ftdtalk.org/research/our-projects/digital/.

https://edon-initiative.org
https://www.ftdtalk.org/research/our-projects/digital/


identifying the underlying disease will be critical for treatment plans 
as disease-modifying therapies become available. There is a natural 
inclination to thus subdivide and characterize a number of distinct 
and discrete disorders, which has led to a focus on machine learning 
algorithms to aid in tasks of differential diagnosis. However, there 
are often no clear boundaries between the phenotypic profiles of 
these disorders, and mixed pathologies are common. Therefore, 
there should be a shift in machine learning away from classifying 
between normal aging and a single disease or differential diagnosis 
task with the goal of dichotomizing between two or more disorders 
but rather a probabilistic framework that allows for multiple pathol-
ogies to coexist. With the advance of big data analysis, access to 
clinical care data, and innovative machine learning, all is in place for 
this shift to be achieved.
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6 Conclusion 

Dementia of all forms is going to be one of the biggest global 
health challenges around the globe over the coming decades. 
Improving the ability to characterize the disease at an early stage 
and providing an accurate prognosis that allows doctors to provide 
effective treatment plans and individuals to make informed deci-
sions about how to manage their affairs are going to be critical in 
order to reduce the distress and burden experienced by people 
suffering from these diseases and their families. Machine learning 
will need to play a key role in achieving these targets. 
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Faouzi J, Koval I, Louis M, Thibeau-Sutre E, 
Wen J, Wild A, Burgos N, Dormont D, 
Colliot O, Durrleman S (2021) Predicting 
the progression of mild cognitive impairment 
using machine learning: a systematic, quanti-
tative and critical review. Med Image Anal 67: 
101848.  https://doi.org/https://doi.  
org/10.1016/j.media.2020.101848 

131. Canas LS, Sudre CH, De Vita E, Nihat A, 
Mok TH, Slattery CF, Paterson RW, Foulkes 
AJ, Hyare H, Cardoso MJ, Thornton J, 
Schott JM, Barkhof F, Collinge J, 
Ourselin S, Mead S, Modat M (2019) Prion 
disease diagnosis using subject-specific imag-
ing biomarkers within a multi-kernel Gaussian 
process. NeuroImage Clin 24:102051. 
https://doi.org/https://doi.org/10.1016/ 
j.nicl.2019.102051 

132. Marinescu RV, Bron EE, Oxtoby NP, Young 
AL, Toga AW, Weiner MW, Barkhof F, Fox 
NC, Golland P, Klein S, et al (2020) Predict-
ing Alzheimer’s disease progression: results 
from the TADPOLE Challenge. Alzheimer’s 
& Dementia 16:e039538 

133. Samper-Gonzalez J, Burgos N, Bottani S, 
Habert MO, Evgeniou T, Epelbaum S, Col-
liot O (2019) Reproducible evaluation of 
methods for predicting progression to Alzhei-
mer’s disease from clinical and neuroimaging 
data. In: Medical imaging 2019: image pro-
cessing, vol 10949, pp 221–233 

134. Wang H, Nie F, Huang H, Risacher SL, Say-
kin AJ, Shen L (2012) Identifying disease 

sensitive and quantitative trait-relevant bio-
markers from multidimensional heteroge-
neous imaging genetics data via sparse 
multimodal multitask learning. Bioinformat-
ics 28(12):i127–i136 

135. Peng J, An L, Zhu X, Jin Y, Shen D (2016) 
Structured sparse kernel learning for imaging 
genetics based Alzheimer’s disease 
diagnosis. In: International conference on 
medical image computing and computer-
assisted intervention MICCAI, pp 70–78 
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Machine Learning for Parkinson’s Disease and Related
Disorders
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Abstract

Parkinson’s disease is a complex heterogeneous neurodegenerative disorder characterized by the loss of
dopamine neurons in the basal ganglia, resulting in many motor and non-motor symptoms. Although there
is no cure to date, the dopamine replacement therapy can improve motor symptoms and the quality of life of
the patients. The cardinal symptoms of this disorder are tremor, bradykinesia, and rigidity, referred to as
parkinsonism. Other related disorders, such as dementia with Lewy bodies, multiple system atrophy, and
progressive supranuclear palsy, share similar motor symptoms although they have different pathophysiology
and are less responsive to the dopamine replacement therapy. Machine learning can be of great utility to
better understand Parkinson’s disease and related disorders and to improve patient care. Many challenges
are still open, including early accurate diagnosis, differential diagnosis, better understanding of the pathol-
ogies, symptom detection and quantification, individual disease progression prediction, and personalized
therapies. In this chapter, we review research works on Parkinson’s disease and related disorders using
machine learning.

Key words Clinical decision support, Deep learning, Disease understanding, Machine learning,
Multiple system atrophy, Parkinson’s disease, Parkinsonian syndromes, Parkinsonism, Precision medi-
cine, Progressive supranuclear palsy

1 Introduction

Parkinson’s disease (PD) is the second most frequent neurodegen-
erative after Alzheimer’s disease, affecting more than six million
individuals worldwide, a prevalence which is expected to double
with the next 10 years [1]. It is characterized by the progressive
degeneration of dopaminergic neurons in the substantia nigra
associated with intracellular inclusions called Lewy bodies. These
Lewy bodies are composed of protein aggregates enriched in
α-synuclein. Age is the greatest risk factor, but both environmental
and genetic risk factors have been associated with PD. For instance,
exposure to pesticides is a well-recognized risk factor for PD,
whereas caffeine intake and smoking have been demonstrated to
be protective [2]. Although commonly sporadic, rare genetic forms
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of the disease have been described. More than 20 loci and asso-
ciated genes have been identified to be responsible for autosomal
dominant or recessive forms of the disease, and more than
90 genetic risk factors have been associated with sporadic PD
[3]. Although rare, genetic forms of the disease have brought
important insights on the causes and pathological mechanisms of
PD [4]. Among them, aggregation and spreading of misfolded
α-synuclein, the protein enriched in Lewy bodies, is supposed to
play a key role in the pathophysiology of the disease.
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The loss of dopamine innervation of the basal ganglia network
in the brain leads to the cardinal motor symptoms of the disease
(parkinsonism): rest tremor, akinesia, and rigidity [2]. However,
the spreading of the synucleinopathy (aggregation of α-synuclein
protein) and neuronal loss outside the dopaminergic pathway is
associated with other non-motor symptoms like anosmia, sleep
disorders, dysautonomia, and progressive cognitive decline. Some
of these symptoms, particularly anosmia, constipation, and sleep
disorders, can precede the motor phase during a long prodromal
phase [5].

There is no cure for PD. The therapeutic strategy relies on the
dopamine replacement therapy by levodopa or dopamine agonists,
which alleviate motor symptoms. However, the dopamine replace-
ment therapy does not change the course of the disease, the pro-
gression being hampered by motor complications (motor
fluctuations and abnormal movement called dyskinesia), related
both to the progression of the neuronal loss and to pre- and post-
synaptic plasticity induced by the treatment. In addition, the dopa-
mine replacement therapy has no benefit on non-motor symptoms
not related to the loss of dopaminergic neurons.

PD is the most frequent synucleinopathy. Other neurodegen-
erative diseases share some clinical and pathophysiological features
of PD. Multiple system atrophy (MSA) is a rare disease associated
with parkinsonism with low response to levodopa, early dysauto-
nomia, and/or cerebellar symptoms [6]. The synucleinopathy
affects the substantia nigra, but also the striatum and the cerebel-
lum, and Lewy bodies are also observed in glial cells. There are two
variants of MSA: the parkinsonian variant (MSA-P) characterized
by parkinsonism and the cerebellar variant (MSA-C) characterized
by gait ataxia with cerebellar dysarthria. Dementia with Lewy bod-
ies (DLB), the second most common neurodegenerative dementia
after Alzheimer’s disease, is characterized by early cognitive decline,
hallucinations, and levodopa-responsive motor symptoms
[7]. However, whether DLB and PD with dementia are really two
distinct entities is still a matter of debate. There are also other rare
atypical parkinsonism syndromes, not related to a synucleinopathy.
Progressive supranuclear palsy (PSP) is a tauopathy (aggregation of
tau protein) characterized by a nonresponsive, axial predominant
parkinsonism, early falls, supranuclear gaze palsy, and a frontal



syndrome [8]. The cortico-basal degeneration (CBD) is also a
tauopathy with asymmetric parkinsonism with dystonia and cogni-
tive dysfunction. Table 1 summarizes the characteristics of all these
disorders.
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Considering the complexity of these disorders, the lack of
reliable biomarkers, and the overlapping clinical presentation at
the early stage, there is a need for more advanced approaches to
support differential diagnosis. In addition, the pathophysiology of
these disorders results from the complex interplay of multiple
mechanisms. One current challenge is to stratify patients according
to specific mechanisms and predict individual progression profile in
order to move toward a more personalized medicine. Machine
learning consists in extracting information from data by computer
programs without providing explicit rules on what to extract, in the
sense that machines learn by themselves which information to
extract. Given the complexity of Parkinson’s disease and its related
disorders, there still exist many challenges and open questions for
which machine learning could help increase knowledge on these
disorders, in particular diagnosis, disease understanding, and preci-
sion medicine, and create better clinical decision support systems.
Table 2 summarizes the potential benefits of machine learning for
Parkinson’s disease and related disorders.

The rest of this chapter is organized as follows. We first present
research works on the diagnosis of Parkinson’s disease and the
differential diagnosis between parkinsonian syndromes, including
disease understanding (Subheading 2). We then focus on the detec-
tion and quantification of motor and non-motor symptoms in
Parkinson’s disease (Subheading 3). Disease progression in Parkin-
son’s disease, with the prediction of individual progression trajec-
tories, is presented in Subheading 4. We then describe research on
the monitoring and adjustment of treatment in Parkinson’s disease
and discuss the limitations of machine learning in terms of causality
(Subheading 5). Finally, we conclude on the existing literature
and discuss open questions and research works (Subheading 6).
Table 3 summarizes the studies described in this chapter.

2 Diagnosis

Having an automated model being able to accurately diagnose one
or several diseases has not only a concrete utility in clinical routine,
but interpreting the decision process of the model may also help
better understand these diseases. To assist diagnosis, two different
classification tasks are usually considered: (i) being able to differen-
tiate PD patients from healthy controls (HC) and (ii) being able to
differentiate several parkinsonian syndromes from each other.
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Table 2
Summary of the potential benefits of machine learning for Parkinson’s disease and related disorders

Disease stage Potential benefits

Early PD diagnosis Better clinical decision support systems
Higher performance than current diagnostic criteria
Better management and improved quality of life
Potential preventive therapeutic strategies

Differential diagnosis Better clinical decision support systems
Higher performance than current diagnostic criteria
Better management and improved quality of life

Symptom detection and
quantification

More frequent, more robust assessment of symptoms with automatic
analysis of sensor data

Better management and improved quality of life

Disease progression Identification of disease subtypes
Prediction of future symptoms
Treatment adjustment for potential prevention

Treatment adjustment Better clinical decision support systems
Personalized therapy
Prevention of adverse events
Better management and improved quality of life

2.1 Parkinson’s

Disease Diagnosis

Compared to Healthy

Subjects

Given the much larger prevalence of Parkinson’s disease compared
to the atypical parkinsonian syndromes, gathering data from PD
patients and HC is naturally easier, especially easy-to-collect data
from sensors compared to clinical, imaging, or genetic data.

Digital technologies including wearable sensors, smartphone
applications, and smart algorithms receive a strongly increasing
interest and begin to move toward medical applications, particu-
larly in PD [9]. Two main types of sensor data are usually consid-
ered: voice data and motion data. Given that the cardinal symptoms
of PD are motor, motion data is natural, but speech also involves
motor muscles. Dysarthria, which is a motor speech disorder in
which the muscles involved in producing speech are damaged,
paralyzed, or weakened, is a symptom of PD.

2.1.1 PD Diagnosis Using

Motion Data

Several types of sensors have been investigated to collect motion
data depending on the movements of interest.

Wahid and colleagues [10] investigated the discrimination
between PD patients and healthy controls using gait data collected
during self-selected walking. They extracted spatial-temporal fea-
tures, such as stride length, stance time, swing time, and step
length, from the signals and investigated different strategies of
data normalization using dimensionless equations and multiple
regression and different machine learning algorithms such as
naive Bayes (NB), k-nearest neighbors (kNN), support vector
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machines (SVM), and random forests (RF). They obtained the best
predictive performance with the random forest trained on features
normalized using multiple regression.

858 Johann Faouzi et al.

Mirelman and colleagues [11] also investigated gait and mobil-
ity measures that are indicative of PD and PD stages. They gathered
data from sensors adhered to the participant’s lower back, bilateral
ankles, and wrists, during short walks, and extracted gait features.
They investigated several strategies to perform feature selection and
use a random under-sampling boosting classification algorithm to
tackle class imbalance. When comparing PD patients with mild PD
severity (Hoehn and Yahr stage 1) to healthy controls, they
obtained good discriminative performance (84% sensitivity, 80%
specificity). Most discriminative features were extracted from the
upper limb sensors, with the remaining features extracted from the
trunk sensor, while the lower limb sensors did not contribute to
discrimination accuracy.

Kostikis and colleagues [12] investigated upper limb tremor
using a smartphone-based tool. Signals from the phone’s acceler-
ometer and gyroscope were computed, from which features were
extracted. They trained several machine learning algorithms,
including random forest, naive Bayes, logistic regression (LR),
and support vector machine, using these features as input and
obtained the highest discriminative performance between PD
patients and HC with the random forest model.

Kotsavasiloglou and colleagues [13] investigated the use of a
pen-and-tablet device to study the differences in hand movement
and muscle coordination between PD patients and HC. Data con-
sisted of the trajectory of the pen’s tip and on the pad’s surface from
drawings of simple horizontal lines, from which they extracted
features. They investigated several machine learning algorithms,
such as logistic regression, support vector machine, and random
forest, and used nested cross-validation to perform feature selec-
tion. They obtained the highest discriminative performance with
the naive Bayes model.

2.1.2 PD Diagnosis Using

Voice Data

Voice data is usually recorded from high-quality microphones or
from smartphones during specific vocal tasks focused on character-
istics such as phonation and speech. Features are then extracted
from the corresponding signals and used as input to machine
learning classification algorithms.

Amato and colleagues [14] analyzed specific phonetic groups in
native Italian speakers, extracted several spectral moments from the
signals, and trained a SVM algorithm on these extracted features to
distinguish PD patients from HC. They first worked on a public
data set called Italian Parkinson’s Voice and Speech,1 with data

https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech


recorded in ideal publications, and obtained great performance on
the validation and test sets. They then merged this public data set
with a data set that they collected, with data being recorded in more
realistic, suboptimal conditions, and obtained good but lower per-
formance on the validation and test sets of this merged data set.
Experiments with training on one single data set and validation on
the other data set were not performed, but it would have been
interesting to estimate how well a trained model could generalize
on other data sets with data being recorded in different conditions.

optimistic results [18].
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Jeancolas and colleagues [15] investigated the early diagnosis
of PD and possible gender differences in voice data. They used a
pre-trained deep neural network focused on speaker recognition
system to extract features and obtained a higher performance than
with a standard multidimensional Gaussian mixture model,
although the increase was more important among men than
women. They also investigated the impact of the quality of the
recordings (using either a high-quality microphone or a telephone)
and obtained the same conclusions in both cases.

In another study, Jeancolas and colleagues [16] investigated
the differentiation between early PD patients and patients with
idiopathic rapid eye movement sleep behavior disorders (iRBD),
which are important risk factors to develop PD in the near future.
They extracted features related to prosody, phonation, speech flu-
ency, and rhythm abilities from speech recordings. They once again
obtained a higher predictive performance among men than women
in the PD vs HC classification tasked and a better discriminative
power for this classification task than for the iRBD vs HC one,
suggesting that discriminating iRBD patients from HC using voice
data is a much harder task, but it is also probably a most useful one
in practice.

Quan and colleagues [17] investigated the extraction of global
static features (from the whole signals) and local dynamic features
(using a sliding window on the signals) from voice data during
articulation tasks. They trained standard machine learning classifi-
cation algorithms, such as decision trees (DT), k-nearest neighbors,
naive Bayes, and support vector machines, using the static features,
while they trained a recurrent neural network, more specifically a
bidirectional long short-term memory (LSTM), on the dynamic
features and obtained a higher predictive performance with the
deep learning approach.

Although many studies reported high predictive performances,
some results must be taken with caution. Indeed, a recent study
reported methodological issues in several studies, including record-
wise cross-validation instead of subject-wise cross-validation, high
imbalance in ages between PD patients and HC, and performance
metrics computed on the validation folds of k-fold cross-validation
and not on an independent test set, which may lead to overly
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2.1.3 PD Diagnosis Using

Imaging Data

The diagnosis of PD remains based on its clinical presentation
[19]. Imaging of dopaminergic terminals loss can be assessed
using nuclear imaging, but it is not recommended in clinical rou-
tine and does not differentiate PD from other related disorders
associated with dopamine neuron loss [20]. Standard brain mag-
netic resonance imaging (MRI) is normal in PD. However, several
newmarkers have been recently been investigated in several studies,
with mixed results.

Adeli and colleagues [21] investigated the use of T1-weighted
anatomical MRI data to differentiate PD patients from HC. They
developed a joint feature-sample selection algorithm in order to
select an optimal subset of both features and samples from a train-
ing set, and a robust classification framework that performs denois-
ing of the selected features and samples then learns a classification
model. They analyzed data from 374 PD patients and 169HC from
the Parkinson’s Progression Markers Initiative2 (PPMI) cohort and
included white matter, gray matter, and cerebrospinal fluid mea-
surements from 98 regions of interest. The combination of the
proposed feature selection/extraction method and classifier
achieved the highest predictive accuracy (0.819), being significantly
better than almost every other combination of a feature selection/
extraction method and a classification algorithm.

Solana-Lavalle and Rosas-Romero [22] investigated the use of
voxel-based morphometry features extracted from T1-weighted
anatomical MRI to perform a PD vs HC classification task. Their
pipeline consisted of five stages: (i) identification of regions of
interest using voxel-based morphometry, (ii) analysis of these
regions for PD detection, (iii) feature extraction based on first-
and second-order statistics, (iv) feature selection based on principal
component analysis, and (v) classification with tenfold cross-
validation based on seven different algorithms (including
k-nearest neighbors, support vector machine, random forest,
naive Bayes, and logistic regression). They obtained excellent pre-
dictive performance for both male and female genders and for both
1.5 T and 3 T MRI scans (accuracy scores ranging from 0.93 to
0.99 for the best classification algorithms). However, cross-
validation was performed very late in their pipeline (after the feature
subset selection), which could lead to biased models and overly
optimistic predictive performances.

Mudali and colleagues [23] investigated another modality,
[18F]-fluorodeoxyglucose positron emission tomography
(FDG-PET), to compare 20 PD patients and 18 HC. They applied
the subprofile model/principal component analysis method to
extract features from the images. They considered a DT algorithm
and used leave-one-out cross-validation to evaluate the predictive

2 https://www.ppmi-info.org

https://www.ppmi-info.org


performance of the models. They obtained really low predictive
performance (50% sensitivity, 45% specificity), close to chance level.
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Overall, it is unclear if machine learning applied to anatomical
MRI or FDG-PET can bring added value for the diagnosis of
PD. However, advanced MRI sequences have the potential to
bring much more valuable information [24].

2.2 Differential

Diagnosis

The PD vs HC binary classification task has limited utility as, even
at the early stage of PD, patients have clinical symptoms strongly
suggesting that they suffer from a movement disorder and thus are
not healthy subjects. However, the accurate early diagnosis of
parkinsonian syndromes is difficult but needed due to the different
pathologies and thus the different care. Although one study inves-
tigated the differential diagnosis using sensor-based gait analysis
[25], most studies investigated it using imaging data, particularly
diffusion MRI.

Huppertz and colleagues [26] investigated the differential
diagnosis with data from a relatively large cohort (73 HC,
204 PD, 106 PSP, 20 MSA-C, and 60 MSA-P). Using atlas-based
volumetry of brain MRI data, they extracted volumes in several
regions of interest and trained and evaluated a linear SVM algo-
rithm using leave-one-out cross-validation. They obtained good
predictive performance in most binary classification tasks and
showed that midbrain, basal ganglia, and cerebellar peduncles
were the most relevant regions.

A landmark study on this topic was published in 2019 by
Archer and colleagues [27], with diffusion-weighted MRI data
being collected for 1002 subjects from 17 MRI centers in Austria,
Germany, and the USA. They extracted 60 free-water and 60 free-
water-corrected fractional anisotropy values from diffusion-
weighted MRI data, and the other features consisted of the third
part of the Movement Disorder Society-Sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III), sex,
and age. They trained several SVM models and showed that the
model trained usingMDS-UPDRS III (with sex and age also, for all
the models) performed poorly in most classification tasks, whereas
the model trained using DWI features had much higher predictive
performance (particularly for the MSA vs PSP task), and adding
MDS-UPDRS III to this model did not improve the performance.

More recently, Chougar and colleagues [28] investigated the
replication of such differential diagnosis models in clinical practice
on different MRI systems. Using MRI data from 119 PD, 51 PSP,
35 MSA-P, 23 MSA-C, and 94 HC, split into a training cohort
(n = 179) and a replication cohort (n = 143), they extracted
volumes and diffusion tensor imaging (DTI) features (fractional
anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity)
in 13 regions of interest. They investigated two feature normaliza-
tion strategies (one based on the data of all subjects in the training



set and one based on the data of HC for each MRI system to tackle
the different feature distributions, in particular for DTI features,
because of the use of different MRI systems) and four standard
machine learning algorithms, including logistic regression, support
vector machines, and random forest. They obtained high perfor-
mances in the replication cohort for many binary classification tasks
(PD vs PSP, PD vs MSA-C, PSP vs MSA-C, PD vs atypical parkin-
sonism), but lower performances for other classification tasks
involving MSA-P patients (PD vs MSA-P, MSA-C vs MSA-P).
They showed that adding DTI features did not improve perfor-
mance compared to using volumes only and that the usual normali-
zation strategy worked best in this case.
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Shinde and colleagues [29] investigated the automatic extrac-
tion of contrast ratios of the substantia nigra pars compacta from
neuromelanin-sensitive MRI using a convolutional neural network.
Based on the class activation maps, they identified that the left side
of substantia nigra pars compacta played a more important role in
the decision of the model compared to the right side, in agreement
with the concept of asymmetry in PD.

A recent study [30] investigated the use of positron emission
tomography of the translocator protein, expressed by glial cells, and
extracted normalized standardized uptake value images and nor-
malized total distribution volume images. Using a linear discrimi-
nant analysis algorithmwith leave-one-subject-out cross-validation,
they obtained great discriminative power between MSA and PD
patients, with better performance with normalized total distribu-
tion volume images.

2.3 Disease

Understanding

Rather than focusing on the diagnosis of Parkinson’s disease itself,
several studies were more focused on interpreting the trained
machine learning models in order to better understand the
mechanisms of Parkinson’s disease.

Khawaldeh and colleagues [31] investigated the task-related
modulation of local field potentials of the subthalamic nucleus
before and during voluntary upper and lower limb movements in
18 consecutive Parkinson’s disease patients undergoing deep brain
stimulation (DBS) surgery of the subthalamic nucleus in order to
improve motor symptoms. Using a naive Bayes classification algo-
rithm, they obtained chance-level performance at rest, but much
higher performance during the pre-cue, pre-movement onset, and
post-movement onset tasks. They showed that the presence of
bursts of local field potential activity in the alpha and, even more
so, in the beta frequency band significantly compromised the pre-
diction of the limb to be moved, concluding that low-frequency
bursts restrict the capacity of the basal ganglia system to encode
physiologically relevant information about intended actions.
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Poston and colleagues [32] investigated brain mechanisms that
allow some PD patients with severe dopamine neuron loss to
remain cognitively normal. Using functional MRI data from PD
patients without cognitive impairment and from HC collected
during a working memory task, they trained a support vector
machine classifier and identified robust differences in putamen
activation patterns, providing novel evidence that PD patients
maintain normal cognitive performance through compensatory
hyperactivation of the putamen.

Trezzi and colleagues [33] investigated cerebrospinal fluid bio-
markers, and more precisely the metabolome, in early-stage
PD. The logistic regression model trained on such data provided
good discriminative power, and the most associated biomarkers
were mannose, threonic acid, and fructose. These biomarkers
were associated with antioxidative stress response, glycation, and
inflammation and may help better understand PD pathogenesis.

Vanneste and colleagues [34] investigated thalamocortical dys-
rhythmia, which is a model proposed to explain divergent neuro-
logical disorders and is characterized by a common oscillatory
pattern in which resting-state alpha activity is replaced by cross-
frequency coupling of low- and high-frequency oscillations. The
trained support vector machine model identified specific brain
regions that provided good discriminative power between PD
patients and HC, including subgenual anterior cingulate cortex,
posterior cingulate cortex, parahippocampus, dorsal anterior cin-
gulate cortex, and motor cortex. Another model also identified
brain areas that are common to the pathology of Parkinson’s dis-
ease, pain, tinnitus, and depression, including dorsal anterior cin-
gulate cortex and parahippocampal area.

3 Symptom Detection and Quantification

Given the complexity and heterogeneity of Parkinson’s disease,
prompt accurate assessment of symptoms is needed. A detailed
scale, called the Movement Disorder Society-Sponsored revision
of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[35], is currently the gold standard to assess motor (and
non-motor) features of PD patients by movement disorder specia-
lists. The scale is divided into four sections. The first two sections
allow for assessing the non-motor and motor activities of daily
living, respectively, while the third section consists of a motor
exam, and the fourth section allows for assessing motor
complications.

Nonetheless, the MDS-UPDRS has several limitations. First, it
requires time (30–45 minutes for the full scale) and a trained
movement disorder specialist to fill it, limiting its use during clinical
routine visits. Second, part of subjectivity from a human evaluation,



and thus variance in the MDS-UPDRS scores, cannot be excluded,
with a recent study suggesting that MDS-UPDRS scores contain a
substantial amount of variance [36]. Moreover, other scales are
typically used to more precisely assess non-motor symptoms such
as depression, anxiety, and cognition. Finally, scales are addressed
during a visit at the hospital and may not reflect the symptoms in a
more ecological setting, at home, during the daily life of the
patient. Automatic detection and quantification of symptoms
using machine learning may help tackle these limitations, and sev-
eral studies investigated this topic. In the remaining of this section,
we group these studies based on the symptoms investigated.
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3.1 Freezing of Gait Freezing of gait (FOG) is a common motor symptom and is asso-
ciated with life-threatening accidents such as falls. Prompt identifi-
cation or prediction of freezing of gait episodes is thus needed.

Ahlrichs and colleagues [37] investigated freezing of gait in
20 PD patients (8 with FOG, 12 without FOG), split into a training
set (15 patients) and a test set (5 patients). They collected sensor
(accelerometer, gyroscope, and magnetometer) data during
scripted activities (e.g., walking around the apartment, carrying a
full glass of water from the kitchen to another room) and
non-scripted activities (e.g., answering the phone). Two recording
sessions were considered, one in “OFF” motor state and one in
“ON” motor state, and the data was labeled by experienced clin-
icians based on the corresponding video recordings. The task was a
binary classification task (FOG vs no FOG) for each window. They
extracted sub-signals from the whole signals using a sliding window
and then extracted features and in the time and frequency domains
for each sub-signal. They trained two SVM algorithms (one with a
linear kernel, one with a Gaussian kernel) and obtained high and
better results with the linear kernel.

Aich and colleagues [38] gathered sensor data for 36 PD
patients with FOG and 15 PD patients without FOG from 2 wear-
able triaxial accelerometers during clinical experiments. They
extracted features, such step time, stride time, step length, stride
length, and walking speed, from the signals. They trained several
classic machine learning classification algorithms (SVM, kNN, DT,
NB) and obtained good predictive performances with all of them,
although the SVMmodel had the highest mean accuracy on the test
sets of the cross-validation procedure.

Borzı̀ and colleagues [39] collected data from 2 inertial sensors
placed on each shin of the 11 PD patients during the “timed up and
go” test in order to investigate FOG and pre-FOG detection. They
extracted features in the time and frequency domains and trained
decision tree algorithms. They obtained great predictive perfor-
mance to detect FOG episodes, but lower performance to predict
pre-FOG episodes, with the performance decreasing even more as
the window length increased.



Machine Learning for Parkinson’s Disease and Related Disorders 865

Dvorani and colleagues [40] were interested in detecting foot
motion phases using a shoe-placed inertial sensor in order to detect
FOG episodes. They extracted ten features, including stride length,
maximum gait velocity, and step duration, from each motion phase
and trained a SVM algorithm to detect FOG episodes. They
obtained great performance when using features from the current
and two preceding motion phases, but lower performance when
using only features from the two preceding motion phases, high-
lighting the higher difficulty to predict FOG episodes in advance.
Shalin and colleagues [41] reached the same conclusion using
plantar pressure data and a long short-term memory neural
network.

3.2 Bradykinesia and

Tremor

Bradykinesia and tremor are two other motor symptoms that are
frequently investigated for automatic assessment.

Park and colleagues [42] investigated automated rating for
resting tremor and bradykinesia from video clips of resting tremor
and finger tapping of the bilateral upper limbs. They extracted
several features from the video clips, including resting tremor
amplitude and finger tapping speed, amplitude, and fatigue, using
a pre-trained deep learning model. These features were used as
input of a SVM algorithm to predict the corresponding scores
from the MDS-UPDRS scale. For resting tremors, the automated
approach had excellent reliability range with the gold standard
rating and higher performance than that of non-trained human
rater. For finger tapping, the automated approach had good reli-
ability range with the gold standard rating and similar performance
than that of non-trained human rater.

Kim and colleagues [43] performed a study in which they
investigated tremor severity using three-dimensional acceleration
and gyroscope data obtained from wearable device. They investi-
gated a convolutional neural network to automatically extract fea-
tures and perform classification, compared to extracting defined
features from the time and frequency domains and training stan-
dard machine learning algorithms (random forest, naive Bayes,
linear regression, support vector machines) using these features.
They obtained better higher predictive performance with the deep
learning approach than the standard machine learning approach.
Eskofier and colleagues [44] obtained similar results using inertial
measurement units collected during motor tasks.

3.3 Cognition Cognitive impairment is frequent in PD, with the point prevalence
of PD dementia being around 30% and the cumulative prevalence
for patients surviving more than 10 years being at least 75%
[45]. Due to its high negative impact on the quality of life of PD
patients and their caregivers, it is important to identify and quantify
cognitive impairment. Several scales to assess cognition already



exist, such as the Mini-Mental State Examination and the Montreal
Cognitive Assessment, but automatic assessment of cognition
could be helpful.
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Abós and colleagues [46] investigated discriminating cognitive
status in PD through functional connectomics. Using resting-state
functional MRI data, they extracted features consisting of
connection-wise pattern of functional connectivity. They per-
formed feature selection using randomized logistic regression
with leave-one-out cross-validation and then trained a SVM algo-
rithm. They obtained good discriminative performance between
PD patients with mild cognitive impairment and with no cognitive
impairment, but could not report significant connectivity reduc-
tions between both groups.

Betrouni and colleagues [47] investigated the use of electro-
encephalograms to automatically assess their cognitive status. A
cluster analysis of the neuropsychological assessments of 118 PD
patients revealed 5 cognition clusters. They extracted quantitative
features from the electroencephalograms and performed feature
selection based on Pearson correlation tests. They trained two
machine learning algorithms (kNN and SVM), using a fivefold
cross-validation procedure that was repeated five times, and
obtained good similar predictive performances for the five-class
classification task with both models.

Garcı́a and colleagues [48] investigated cognitive decline using
dysarthric symptoms. They extracted prosodic, articulatory, and
phonemic identifiability features from speech signals recorded dur-
ing the reading of two narratives. Using a SVM algorithm and
nested cross-validation, they obtained correct discriminative per-
formance (area under the receiver operating characteristics curve of
0.76), with the highest performance being obtained using phone-
mic identifiability features.

Morales and colleagues [49] investigated the classification of
PD patients with no cognitive impairment (n = 16), with mild
cognitive impairment (n = 15), and with dementia (n = 14).
They trained several variants of the naive Bayes algorithm and
1 SVM algorithm on 112 MRI features consisting of volumes of
subcortical structures and thickness of cortical parcels and obtained
good discriminative performance in the 3 binary classification tasks,
the lower performance corresponding to the differentiation
between PD patients with no cognitive impairment with mild
cognitive impairment. The most important features involved the
following brain regions: left cerebral cortex, left caudate, left ento-
rhinal, right inferior left hippocampus, and brainstem.

A recent study [50] also investigated MRI data, more specifi-
cally quantitative susceptibility mapping images parcellated into
20 regions of interest, for the early detection of cognitive
impairment in PD. Using tree-based ensemble machine learning
algorithms, such as random forest and extreme gradient boosting,



they obtained acceptable predictive performance and showed that
the features corresponding to the caudate nucleus were important
for classification and also inversely correlated with Montreal Cog-
nitive Assessment scores.
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3.4 Other Symptoms Although less prevalent in the literature, studies also investigated
other PD symptoms such as falls and motor severity.

An early study by Hannink and colleagues [51] was performed
to investigate gait parameter extraction from sensor data using
convolutional neural networks. Using 3d-accelerometer and
3d-gyroscope data from 99 geriatric patients, the objective was to
predict the stride length and width, the foot angle, and the heal and
toe contact times. They investigated two approaches to tackle this
multi-output regression task, either training a single convolutional
neural network to predict the five outcomes or training a convolu-
tional neural network for each outcome, and obtained better per-
formance on an independent test set with the latter approach.
Although the considered population was not parkinsonian, the
prevalence of gait symptoms in this population and the obtained
results might be relevant to better understand gait in this popula-
tion. Lu and colleagues [52] investigated gait in PD, as measured
by MDS-UPDRS item 3.10, which does not include freezing of
gait. They collected video recordings of MDS-UPDRS exams from
55 participants which were scored by 3 different trained movement
disorder neurologists, and the ground truth score was defined
using majority voting among the 3 raters. They performed skeleton
extraction from the videos and trained a convolutional neural net-
work, with regularization using rater confusion estimation to tackle
noise in labels, to predict gait severity. They obtained correct per-
formance on the test set (72% accuracy with majority voting, 84%
accuracy with the model predicting at least one of the raters’
scores).

Gao and colleagues [53] investigated falls in two data sets
independently collected at two different sites. Using clinical scores
as input, they trained several classic machine learning classification
algorithms to differentiate fallers from non-fallers. They obtained
acceptable predictive performance in both data sets when training
and evaluating (using cross-validation) a model in each data set
independently. They also showed that the predictive performance
was lower when training the model on one data set and evaluating it
on the other data set, which is not surprising, but it is important to
have this possible issue in mind when a model is not evaluated on a
different cohort.
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4 Disease Progression

Given the complexity and heterogeneity of Parkinson’s, prediction
of disease progression with individual trajectories is challenging.
Two subtypes of PD, one with more postural instability and gait
difficulty and the other one with more tremor symptoms, are
already known. Nonetheless, there are other motor symptoms in
PD, and many PD symptoms are non-motor; thus, deeper knowl-
edge is required to understand disease progression.

4.1 Disease

Subtypes

Several studies focused on the identification of more specific disease
subtypes than the two aforementioned well-known ones character-
ized by postural instability and gait difficulty for one and tremor-
predominant for the other.

Severson and colleagues [54] worked on the development of a
statistical progression model of Parkinson’s disease accounting for
intra-individual and inter-individual variability, as well as medica-
tion effects. They built a contrastive latent variable model followed
by a personalized input-output hidden Markov model to define
disease states and assessed the clinical significance of the states on
seven key motor or cognitive outcomes (mild cognitive
impairment, dementia, dyskinesia, presence of motor fluctuations,
functional impairment from motor fluctuations, Hoehn and Yahr
score, and death). They identified eight disease states that were
primarily differentiated by functional impairment, tremor, bradyki-
nesia, and neuropsychiatric measures. The terminal state had the
highest prevalence of key clinical outcomes, including almost every
recorded instance of dementia. The discovered states were
non-sequential, with overlapping disease progression trajectories,
supporting the use of non-deterministic disease progression mod-
els, and suggesting that static subtype assignment might be ineffec-
tive at capturing the full spectrum of PD progression.

Salmanpour and colleagues [55] performed a longitudinal clus-
tering analysis and prediction PD progression. They extracted
almost a thousand features, including motor, non-motor, and
radiomics features. They performed a cross-sectional clustering
analysis and identified three distinct progression trajectories, with
two trajectories being characterized by disease escalation and the
other trajectory by disease stability. They also investigated the
prediction of progression trajectories from early stage (baseline
and year 1) data and obtained the highest predictive performance
with a probabilistic neural network.

4.2 Prediction of

Future Motor and Non-

motor Symptoms

Prediction of future symptoms and individual disease trajectories
was the main focus of several studies.

Oxtoby and colleagues [56] aimed at estimating the sequence
of clinical and neurodegeneration events, and variability in this



sequence, using data-driven disease progression modelling, with a
focus on PD patients with higher risk of developing dementia
(defined as PD patients being diagnosed at age 65 or later). They
analyzed baseline visit data from two separate cohorts: a local
discovery cohort (100 PD patients and 33 HC) and a replication
cohort (PPMI study, 350 PD patients and 127 HC). They consid-
ered 42 features, including 8 clinical/cognitive measures, 6 vision
measures, 4 retinal measures, 8 regional measures of cortical thick-
ness, 4 measures of white matter neurodegeneration in the sub-
stantia nigra, and 12 regional measures of brain iron content. They
trained event-based models that incorporate non-parametric mix-
ture modelling using ten fivefold cross-validation procedures to
estimate the robustness of the models. The authors showed that
Parkinson’s progression in patients at higher risk of developing
dementia starts with classic prodromal features of PD (sleep and
olfactory disorders), followed by early deficits in visual abilities and
increased brain iron content, followed later by a less certain order-
ing of neurodegeneration in the substantia nigra and cortex, neu-
ropsychological cognitive deficits, retinal thinning in dopamine
layers, and further visual deficits. Their results support the growing
piece of evidence that visual processing specifically is affected early
in PD patients with high risk of developing dementia.
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Latourelle and colleagues [57] investigated the development of
predictive models of motor progression using longitudinal clinical,
molecular, and genetic data. More specifically, the objective was to
predict the annual rate of changes in combined scores from the
second and third parts of the MDS-UPDRS. The trained model
showed strong performance in the training cohort (using fivefold
cross-validation) and lower but still significant performance in an
independent replication cohort. The most relevant features
included baseline MDS-UPDRS motor score, sex, and age, as
well as a novel PD-specific epistatic interaction. Genetic variation
was the most useful prediction of motor progression, and baseline
CSF biomarkers had a lower but still significant effect on predicting
motor progression. They also performed simulations with the
trained model and concluded that incorporating the predicted
rates of motor progression into the final models of treatment effect
reduced the variability in the study outcome, allowing significant
differences to be detected at sample sizes up to 20% smaller than in
naive trials.

Ahmadi Rastegar and colleagues [58] investigated the predic-
tion of longitudinal clinical outcomes after 2-year follow-up from
baseline and 1-year follow-up data. They also measured 27 inflam-
matory cytokines and chemokines in serum at baseline and after
1 year to investigate cytokine stability. Training random forest
algorithms, the best prediction models were for motor symptom
severity scales (Hoehn and Yahr stage and MDS-UPDRS III total
score), and several inflammatory cytokine and chemokine features



were among the most relevant features to predict Hoehn and Yahr
stage and MDS-UPDRS III total score, giving evidence that
peripheral cytokines may have utility for aiding prediction of PD
progression using machine learning models.
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Amara and colleagues [59] investigated the prediction of future
incidents of excessive daytime sleepiness. They trained a random
survival forest using 33 baseline variables, including anxiety, depres-
sion, rapid eye movement sleep, cognitive scores, α-synuclein,
p-tau, t-tau, and ApoE ε4 status. The performance of the model
was only marginally better than random guess, but the strongest
predictive features were p-tau and t-tau.

Couronné and colleagues [60] performed longitudinal data
analysis to predict patient-specific trajectories. They proposed to
use a generative mixed effect model that considers the progression
trajectories as curves on a Riemannian manifold and that can handle
missing values. They applied their model to PD progression with
joint modelling of two features (MDS-UPDRS III total score and
striatal binding ration in right caudate). Interpretation of the model
revealed that patients with later onset progress significantly faster
and that α-synuclein mean level was correlated with PD onset.

Faouzi and colleagues [61] investigated the prediction of
future impulse control disorders (psychiatric disorders character-
ized by the inability to resist an urge or an impulse and which
include a wide range of types including compulsive shopping,
internet addiction, and hypersexuality, for instance) in Parkinson’s
disease. The objective of their study was to predict the presence or
absence of these disorders at the next clinical visit of a given patient.
Using clinical and genetic data, they trained several machine
learning models on a training cohort and evaluated the models on
the training cohort (using cross-validation) and on an independent
replication cohort. They showed that a recurrent neural network
model achieved significantly better performance than a trivial
model (predicting the status at the next visit with the status at the
most recent visit), but the increase in performance was too small to
be deemed clinically relevant. Nevertheless, this proof-of-concept
study highlights the potential of machine learning for such
prediction.

5 Treatment Adjustment and Adverse Event Prevention

Being able to predict future adverse events in Parkinson’s disease is
useful, but being able to prevent them would be even more useful.
Parkinson’s disease is one of the few neurodegenerative diseases
where current therapies can greatly improve the quality of life of the
patients, but these therapies also have adverse effects. Providing
personalized adapted therapies to every patient is of high
importance.
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Machine learning allows for unveiling complex correlations or
patterns from data. However, correlation does not imply causality:
if two variables are correlated, one variable does not necessarily
cause an effect on the other. Therefore, standard machine learning
is not always well adapted to draw conclusions for personalized
therapies. Ultimately, clinical trials with a specific hypothesis tested
are the best solution to draw causality effect conclusions. Nonethe-
less, several machine learning approaches can investigate causality
effects. Causal inference, that is, being able to discover which
variables have which impacts on which other variables, is an open
research topic in machine learning, but usually requires a lot of
data, limiting its use in Parkinson’s disease. Nonetheless, explor-
atory studies suggesting potential options for personalized thera-
pies and adverse event prevention have been published.

5.1 Dopamine

Replacement Therapy

Dopamine replacement therapy, as a way to compensate the loss of
dopamine neurons in the brain, is the most common therapy due to
its efficacy and simplicity (drug intake). Nonetheless, it also comes
with adverse effects and long-term motor complications such as
motor fluctuations (worsening or reappearance of motor symptoms
before the next drug intake) and dyskinesia (involuntary muscle
movements) [62].

Yang and colleagues [63] investigated the utility of amplitude
of low-frequency fluctuation computed from functional MRI data
of 38 PD patients in order to predict individual patient’s response
to levodopa treatment. They applied principal component analysis
to perform dimensionality reduction and trained gradient tree
boosting algorithms to discriminate between moderate and supe-
rior responders to levodopa treatment. Treatment efficacy was
defined based on motor symptom improvement from the state of
medication off to medication on, as assessed by MDS-UPDRS III
total score. They obtained great discriminative performance
between both groups, even though no significant difference in
clinical data was observed between both groups. The mainly con-
tributed regions for both models included the bilateral primary
motor cortex, the occipital cortex, the cerebellum, and the basal
ganglia. These results suggest the potential utility of amplitude of
low-frequency fluctuation as promising predictive markers of dopa-
minergic therapy response in PD patients.

Kim and colleagues [64] investigated the use of reinforcement
learning to predict optimal treatment for reducing motor symp-
toms. They derived clinically relevant disease states and an optimal
combination of medications for each of them by using policy itera-
tion of the Markov decision process. Their model achieved a lower
level of motor symptom severity scores than what clinicians did,
whereas the clinicians’ medication rules were more consistent than
their model. Their model followed the clinician’s medication rules
in most cases but also suggested some changes, which leads to the



difference in lowering symptom severity. This proof of concept
showed the potential utility of reinforcement learning to derive
optimal treatment strategies.
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5.2 Deep Brain

Stimulation

Deep brain stimulation is a neurosurgical procedure that uses
implanted electrodes and electrical stimulation and has proven
efficacy in advanced Parkinson’s disease by decreasing motor fluc-
tuations and dyskinesia and improving quality of life [65]. The
most commonly stimulated region is the subthalamic nucleus, but
the globus pallidus is sometimes preferred. Although DBS usually
greatly improves the motor symptoms, it also has downsides, such
as requiring personalized parameters and potential adverse events
such as postoperative cognitive decline.

Boutet and colleagues [66] investigated the prediction of opti-
mal deep brain stimulation parameters from functional MRI data.
They extracted blood-oxygen-level-dependent (BOLD) signals in
16 motor and non-motor regions of interest for 67 PD patients,
from which 62 underwent DBS of the subthalamic nucleus and
5 underwent DBS of the globus pallidus. They trained a linear
discriminant analysis algorithm on normalized BOLD changes
using fivefold cross-validation and obtained great performance in
classifying optimal vs non-optimal parameter settings, although the
performance was lower on two additional (a priori clinically opti-
mized and in stimulation-naive patients) unseen data sets.

Geraedts and colleagues [67] also investigated deep brain stim-
ulation in the context of cognitive function, as a downside of DBS
for PD is the potential deterioration of cognition postoperatively.
They extracted features from electroencephalograms, trained ran-
dom forest algorithms using tenfold cross-validation, and obtained
great discrimination between PD patients with the best and worst
cognitive performances. However, it should be noted that they only
included the best and worst cognitive performers (n = 20 per
group from 112 PD patients), making the classification task proba-
bly much easier than if it was performed on the 112 PD patients,
thus requiring their model to be evaluated on PD patients indepen-
dently on their cognitive performance. Nonetheless, their results
suggest the potential utility of electroencephalography for cogni-
tive profiling in DBS.

5.3 Others Phokaewvarangkul and colleagues [68] explored the effect of elec-
trical muscle stimulation as an adjunctive treatment for resting
tremor during “ON” period, with machine learning used to predict
the optimal stimulation level that will yield the longest period of
tremor reduction or tremor reset time. They used sensor data from
a glove incorporating a three-axis gyroscope to measure tremor
signals. The stimulation levels were discretized into five ordinary
classes, with the objective to predict the accurate class from the
sensor data. They observed a significant reduction in tremor



parameters during stimulation. The best performing machine
learning model was a LSTM neural network in comparison to
classic algorithms such as logistic regression, support vector
machine, and random forest. The high predictive performance of
the LSTMmodel confirmed the potential utility of electrical muscle
stimulation for the reduction of resting tremors in PD.
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Panyakaew and colleagues [69] investigated the identification
of modifiable risk factors of falls. The input data consisted of clinical
demographics, medications, and balanced confidence scaled by the
16-item Activities-Specific Balance Confidence (ABC-16) scale,
from 305 PD patients (99 fallers, 58 recurrent fallers, and
148 non-fallers). They trained two gradient tree boosting algo-
rithms using sevenfold cross-validation. They obtained good pre-
dictive performance at differentiating fallers from non-fallers, the
most relevant features being item 7 (sweeping the floor), item
5 (reaching on tiptoes), and item 12 (walking in a crowded mall)
from the ABC-16 scale, followed by disease stage and duration.
They obtained even better performance at differentiating recurrent
fallers from non-fallers, the most relevant features being items
12, 5, and 10 (walking across a parking lot) from the ABC-16
scale, followed by disease stage and current age.

6 Conclusion

Many research works on Parkinson’s disease and related disorders
using machine learning have been published in the literature, inves-
tigating diagnosis, symptom severity, disease progression, and per-
sonalized therapies. These studies provide new insights to better
understand these neurodegenerative disorders.

However, many questions and challenges are still open. The
early-stage, and even more so the prodromal-stage, classification of
Parkinson’s disease is still very challenging. The early differential
diagnosis of parkinsonian syndromes is another topic for which
higher performance is needed at an early stage. More highly perso-
nalized therapies are also needed to better improve the quality of
life of the PD patients. All the research works on these topics also
need to be evaluated in non-research environments in order to be
translated to the clinics.

Right usage of machine learning is required to try to answer
these questions and challenges. The most commonmethodological
issues are usually related to the cross-validation procedure used,
which can lead to biased, overly optimistic, reported predictive
performance. Nonetheless, our anecdotal experience after
performing this literature review is that these issues are less and
less frequent over time. Nonetheless, many studies use small data
sets and leave-one-out cross-validation, which provides an unbiased
estimation of the predictive performance, but with high variance.



The few studies that investigated replicating their results in another
independent data set all reported (much) lower predictive perfor-
mance, highlighting the critical need of replication. Using artificial
intelligence algorithms also rises ethical and legal issues regarding
the collection, processing, storage, and reuse of potentially sensitive
patient data, particularly coming from sensor-based digital data
[9]. These aspects will have to be taken into consideration when
transferring results obtained from clinical research to clinical
routine use.
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To conclude, the use of machine learning has allowed research-
ers to better understand Parkinson’s disease and related disorders
and suggested potential to better diagnose these disorders as well as
to provide better care for the patients, but more research works and
replication studies are required to translate these results into the
clinics through clinical decision support systems.
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D et al (2022) Voice characteristics from
isolated rapid eye movement sleep behavior
disorder to early Parkinson’s disease. Parkin-
sonism Relat Disord 95:86–91

17. Quan C, Ren K, Luo Z (2021) A deep learning
based method for Parkinson’s disease detection
using dynamic features of speech. IEEE Access
9:10239–10252

18. Ozbolt AS, Moro-Velazquez L, Lina I et al
(2022) Things to consider when automatically
detecting Parkinson’s disease using the phona-
tion of sustained vowels: analysis of methodo-
logical issues. Appl Sci 12:991

19. Berg D, Adler CH, Bloem BR et al (2018)
Movement disorder society criteria for clini-
cally established early Parkinson’s disease.
Mov Disord 33:1643–1646

20. de la Fuente-Fernández R (2012) Role of
DaTSCAN and clinical diagnosis in Parkinson
disease. Neurology 78:696–701

21. Adeli E, Shi F, An L et al (2016) Joint feature-
sample selection and robust diagnosis of Par-
kinson’s disease from MRI data. NeuroImage
141:206–219

22. Solana-Lavalle G, Rosas-Romero R (2021)
Classification of PPMI MRI scans with voxel-
based morphometry and machine learning to
assist in the diagnosis of Parkinson’s disease.
Comput Methods Prog Biomed 198:105793

23. Mudali D, Teune LK, Renken RJ et al (2015)
Classification of parkinsonian syndromes from
FDG-PET brain data using decision trees with
SSM/PCA features. Comput Math Methods
Med 2015:136921

24. Mitchell T, Lehéricy S, Chiu SY et al (2021)
Emerging neuroimaging biomarkers across dis-
ease stage in Parkinson disease: a review. JAMA
Neurol 78:1262–1272

25. Gaßner H, Raccagni C, Eskofier BM et al
(2019) The diagnostic scope of sensor-based
gait analysis in atypical parkinsonism: further
observations. Front Neurol 10:5
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Abstract 

Epilepsy is a prevalent chronic condition affecting about 50 million people worldwide. A third of patients 
suffer from seizures unresponsive to medication. Uncontrolled seizures damage the brain, are associated 
with cognitive decline, and have negative impact on well-being. For these patients, the surgical resection of 
the brain region that gives rise to seizures is the most effective treatment. In this context, due to its 
unmatched spatial resolution and whole-brain coverage, magnetic resonance imaging (MRI) plays a central 
role in detecting lesions. The last decade has witnessed an increasing use of machine learning applied to 
multimodal MRI, which has allowed the design of tools for computer-aided diagnosis and prognosis. In this 
chapter, we focus on automated algorithms for the detection of epileptogenic lesions and imaging-derived 
prognostic markers, including response to anti-seizure medication, postsurgical seizure outcome, and 
cognitive reserves. We also highlight advantages and limitations of these approaches and discuss future 
directions toward person-centered care. 

Key words Epilepsy, Focal cortical dysplasia, Temporal lobe epilepsy 

1 Introduction 

Epilepsy is a prevalent chronic condition affecting about 50 million 
people worldwide. Seizures are generally defined as transient symp-
toms and signs due to excessive neuronal activity; based on these 
manifestations, they can be classified as focal or generalized. Various 
etiologies have been associated with epilepsy, including structural, 
genetic, infectious, metabolic, and immune. Frequent structural 
pathologies include traumatic brain injury, tumors, vascular mal-
formations, stroke, and developmental disorders. A third of 
patients suffer from seizures unresponsive to medication 
[1]. Drug-resistant seizures damage the brain [2] and are associated 
with high risks for socioeconomic difficulties, cognitive decline, and 
mortality [3]. The main forms of drug-resistant focal epilepsy are 
related to focal cortical dysplasia (FCD), a structural brain develop-
mental malformation, and mesiotemporal lobe sclerosis, a
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histopathological lesion that combines various degrees of neuronal 
loss and gliosis in the hippocampus and adjacent cortices. To date, 
the most effective treatment has been the surgical resection of these 
structural lesions. In this context, magnetic resonance imaging 
(MRI) has been instrumental in the pre-surgical evaluation, as it 
can reliably detect these anomalies due to its unmatched spatial 
resolution and whole-brain coverage. Indeed, localizing a struc-
tural lesion on MRI is the strongest predictor of favorable seizure 
outcome after surgery [4–6]. Yet, challenges remain. Large num-
bers of patients have subtle lesions undetected on routine MRI. In 
these patients, referred to as “MRI-negative,” the surgical outcome 
is poorer compared to those in whom a structural lesion is identified 
[7]. Moreover, even in carefully selected patients, about 30% may 
continue having seizures after surgery. These shortcomings have 
motivated the development of advanced analytic techniques for the 
discovery of diagnostic and prognostic biomarkers, which serve as 
input to machine learning. MRI quantitation holds promise to 
match or exceed the evaluation by human experts. In this chapter, 
we will describe algorithms for the detection of epileptogenic 
lesions, prediction of clinical outcomes, and identification of disease 
subtypes in drug-resistant focal epilepsy. We will highlight their 
advantages and limitations and discuss future directions toward 
personalized care.

880 Hyo Min Lee et al.

2 Lesion Mapping 

In epilepsy, identifying a structural lesion on MRI is crucial for 
successful surgery [5]. Advances in MRI acquisition technology, 
specifically high (3T) and ultrahigh (7T) field imaging combined 
with multiple phased array head coils, have permitted precise lesion 
characterization. Machine learning holds great promise for exceed-
ing human performance [8]. Indeed, application on structural MRI 
data has enabled increasingly reliable detection of epileptogenic 
lesions, including those overlooked on routine radiological exami-
nation. Automated lesion detection is generally performed by 
supervised classifiers that are trained to learn the distributions and 
inter-relations between MRI features that distinguish lesional from 
non-lesional tissue, leveraging this knowledge to classify a given 
tissue type in previously unseen patients. 

2.1 Mapping 

Hippocampal Sclerosis 

in Temporal Lobe 

Epilepsy 

Temporal lobe epilepsy (TLE), the most common focal syndrome 
in adults, is pathologically defined by varying degrees of neuronal 
loss and gliosis in the hippocampus and adjacent structures [9]. On 
MRI, marked hippocampal sclerosis (HS) appears as atrophy and 
signal hyperintensity, generally more severe ipsilateral to the seizure 
focus. Accurate identification of hippocampal atrophy as a marker 
of HS is crucial for deciding the side of surgery. While volumetry



has been one of the first computational analyses applied to TLE 
[10–15], the need for accurate localization of pathology has moti-
vated a move from whole-structure volumetry to surface-based 
approaches allowing a precise mapping of anomalies along the 
hippocampal axis. In this context, 3D surface-based shape models 
permit localizing regional morphological differences that may not 
be readily identifiable [16]. Surface modeling based on spherical 
harmonics [17] has been particularly performant [18]. Following 
this method, hippocampal labels are processed using a series of 
spherical harmonics with increasing degree of complexity to param-
etrize their surface boundary. Anatomical intersubject correspon-
dence is guaranteed by aligning the surfaces of each individual to 
the centroid and the longitudinal axis of the first-order ellipsoid of 
the mean surface template derived from controls and patients. 
Computing the Jacobian determinants of the surface displacement 
vectors allows quantifying localized areas of atrophy [18, 19]. Over-
all, surface-based methods have proven superior to their volumetric 
counterparts not only in terms of segmentation performance [20] 
but also in predicting clinical outcomes as well as mapping disease 
progression [21, 22]. Applying clustering to surface-based mor-
phometry of the hippocampus, amygdala, and entorhinal cortex, a 
clinically homogeneous cohort of drug-resistant TLE patients with 
a unilateral seizure focus could be segregated into classes with 
distinct MRI and histopathological signatures [23]. Extending 
this methodology by extracting features along the medial surface 
of hippocampal subfields has allowed to further probe the laminar 
integrity of this structure [24, 25]. 
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Manual hippocampal volumetry is time-prohibitive and prone 
to rater bias. These challenges, together with increasing demand to 
study larger patient cohorts, have motivated the shift toward auto-
mated segmentation, setting the basis for large-scale clinical use. 
Initial methods for whole hippocampal segmentation used a single 
template or deformable models constrained by shape priors 
obtained from neurotypical individuals [26–29]. More recent 
approaches rely on multiple templates and label fusion; by selecting 
a subset of atlases from a template library which best fit the struc-
ture to segment, thereby accounting for intersubject variability, 
these approaches have provided increased performance [30– 
32]. In epilepsy, SurfMulti achieved identical performance in TLE 
(Dice: 86.9%) and healthy controls (87.5%), outperforming the 
widely used FreeSurfer, even in the presence of prevalent atypical 
hippocampal morphology (i.e., maldevelopment or malrotation) 
and significant atrophy [20]. Advances in MR acquisition hardware 
and sequence technology, which enable submillimetric resolution 
and improved signal-to-noise ratio, have facilitated accurate identi-
fication of hippocampal subfields or subregions, including the den-
tate gyrus, subiculum, and the cornu ammonis (CA1–4) regions



[33]. Several methods have been developed for MRI-based subfield 
segmentation [19, 34–38], providing an average Dice of 88%, with 
fast inference times. Among them, the SurfPatch subfield segmen-
tation algorithm, operating on T1-weighted MRI, combines mul-
tiple templates, parametric surfaces, and patch-based sampling for 
compact representation of shape, texture, and intensity [38]. Surf-
Patch showed high segmentation accuracy (Dice >0.82 for all 
subfields) and robustness to the size of template library and image 
resolution (millimetric and sub-millimetric) while demonstrating 
utility for reliable TLE lateralization (93% accuracy). 
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Brain segmentation may serve as the basis to extract features 
used to train classifiers for predictions. An SVM-based classifier 
using volumetric features derived from whole-brain T1-weighted 
images was able to classify and lateralize TLE [39]. However, 
regions identifying TLE groups were primarily located outside the 
mesiotemporal lobe, making such design impractical for previously 
unseen cases and difficult to interpret in MRI-negative patients. 
Overall, while high lateralization performance (>90%) may be 
achieved in MRI-positive patients, the yield in MRI-negative TLE 
remains at less than 20% when using features derived from 
T1-weighted images [40, 41]. On the other hand, classifiers 
operating on FLAIR [42] and double inversion recovery [43] 
have shown 70% lateralization in MRI-negative patients. Yet, stud-
ies have been rather limited in sample size and have lacked histo-
logical verification or long-term measures of seizure outcome after 
surgery; moreover, absence of validation in independent datasets 
has precluded assessment of generalizability. To tackle these short-
comings, our group recently designed an automated surface-based 
linear discriminant classifier trained on T1- and FLAIR-derived 
laminar features of HS (Fig. 1)  [44]. As HS is typically character-
ized by T1-weighted hypointensity and T2-weighted hyperinten-
sity, the synthetic contrast FLAIR/T1 maximized their combined 
contributions to detect the full pathology spectrum. The classifier 
accurately lateralized the focus in 85% of patients with 
MRI-negative but histologically verified HS. Notably, similar high 
performance was achieved in two independent validation cohorts, 
thereby establishing generalizability across cohorts, scanners, and 
parameters. Such validated classifiers set the basis for broad clinical 
translation. 

Recently, the widespread adoption of deep learning in medical 
imaging has promoted a resurgence in volumetric segmentation 
methods. Unlike contemporary algorithms, deep learning does 
not require the data to be extensively preprocessed, thus eliminat-
ing the need to build template libraries. More specifically, the ability 
of convolutional neural networks to learn salient features from 
multimodal data in the course of the training process rather than 
using hand-crafted features has enabled them to outperform



traditional approaches, with Dice overlap indices exceeding 90% in 
both healthy [44–46] and atrophic [47] hippocampi. Deep 
learning applications for seizure focus lateralization have insofar 
been limited. One study showed that deep learning classifiers per-
formed similar or worse than SVM-based classifiers [48]; this work, 
however, explored only a singular set of hyperparameters using 
pre-defined features for the neural networks, thereby missing the 
opportunity to exploit hierarchical feature learning, one of the most 
distinctive characteristics of deep learning. 

Machine Learning in Neuroimaging of Epilepsy 883

B. Representative MRI-negative Patient 
T1-weighted MRI T2-weighted MRI FLAIR/T1 

Patient 1 
(RTLE) 

Patient 2 
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Patient N 
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(LTLE) 
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MRI-derived 
Features 
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-5 +50 

0 

LTLE RTLE 

Fig. 1 Automated lateralization of hippocampal sclerosis. (a). In the training phase, an optimal region of 
interest is defined for each modality to systematically sample features (T1-derived volume, T2-weighted 
intensity, and FLAIR/T1 intensity) across individuals. To this purpose, in each patient paired t-tests compare 
corresponding vertices of the left and right subfields, z-scored with respect to healthy controls. The resulting 
group-level asymmetry t-map is then thresholded from 0 to the highest value and binarized; for each 
threshold, the binarized t-map is overlaid on the asymmetry map of each individual to compute the average 
across subfields. Then a linear discriminant classifier is trained for each threshold, and the model yielding the 
highest lateralization accuracy (in this example LDA model 3) is used to test the classifier. (b). Lateralization 
prediction in a patient with MRI-negative left TLE. Coronal sections are shown together with the automatically 
generated asymmetry maps for columnar volume, T2-weighted, and FLAIR/T1 intensities. On each map, 
dotted line corresponds to the level of the coronal MRI section and the optimal ROI obtained during training is 
outlined in black
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2.2 Automated 

Detection of Focal 

Cortical Dysplasia 

On MRI, focal cortical dysplasia (FCD) presents with a visibility 
spectrum encompassing variable degrees of gray matter (GM) and 
white matter (WM) changes that can challenge visual identification. 
Indeed, recent series indicate that up to 33% of FCD Type II, the 
most common surgically amenable developmental malformation, 
present with “unremarkable” routine MRI, even though typical 
features are ultimately identified in the histopathology of the 
resected tissue [49–51]. These so-called “MRI-negative” FCDs 
represent a major diagnostic challenge. Indeed, to define the epi-
leptogenic area, patients undergo long and costly hospitalizations 
for EEG monitoring with intracerebral electrodes, a procedure that 
carries risks similar to surgery itself [52, 53]. Moreover, patients 
without MRI evidence for FCD are less likely to undergo surgery 
and consistently show worse seizure control compared to those 
with visible lesions [4, 54, 55]. This clinical difficulty has motivated 
the development of computer-aided methods aimed at optimizing 
detection in vivo. Such techniques provide distinct information 
through quantitative assessment without the cost of additional 
scanning time. 

Early methods opted for voxel-based methods to quantify 
group-level structural abnormalities related to MRI-visible dyspla-
sias by thresholding GM concentration (e.g., >1 SD relative to the 
mean in healthy controls). While such methods are sensitive (87– 
100%) in detecting conspicuous malformations, they fail to identify 
two-thirds of subtle, MRI-negative lesions [56–59]. To counter 
the relative lack of specificity, our group introduced an original 
approach to integrate key voxel-wise textures and morphological 
modeling (i.e., cortical thickening, blurring of the GM-WM junc-
tion, and intensity alterations) derived from T1-weighted images 
into a composite map [60, 61]. The clinical value of this computer-
aided visual identification was supported by its 88% sensitivity and 
95% specificity, vastly outperforming conventional MRI. An alter-
native method quantifies blurring as voxels that belong neither to 
GM or WM [62]. Integrating morphological operators with 
higher-order image texture features invisible to the human eye 
into a fully automated classifier provided a sensitivity of 80% 
[63, 64]. In contrast to voxel-based methods, surface-based mor-
phometry offers an anatomically plausible quantification of struc-
tural integrity that preserves cortical topology. Surface-based 
modeling of cortical thickness, folding complexity, and sulcal 
depth, together with intra- and subcortical mapping of MRI inten-
sities and textures, allow for a more sensitive description of FCD 
pathology. Over the last decade, several such algorithms have been 
developed, with detection rates up to 83% [65–71]. The addition of 
FLAIR has contributed to further increase in sensitivity, particularly 
for the detection of smaller lesions [66]. Notably, an integration of 
surface-based methods into clinical workflow would be contingent 
to careful verification of preprocessing steps, including manual



corrections of tissue segmentation and surface extraction to obtain 
high-fidelity FCD features. Without such careful and intensive data 
preprocessing and inspection, the performance is rather poor, as 
demonstrated by a recent multicenter study in which the sensitivity 
was below 70% with a specificity close to chance level even in MRI 
visible lesions [72]. 
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Despite efforts dedicated to the development of increasingly 
sophisticated detection algorithms, some pitfalls are to be consid-
ered. Algorithms have not been systematically validated with histo-
logically verified lesions or independent datasets. Many have not 
been tested or fail in MRI-negative cases. In general, detection 
algorithms have assumed structural anomalies to be homogeneous 
across lesions and patients, a notion challenged by recent histo-
pathological [73, 74] and genetic [75] data. Moreover, they rely on 
limited number of features designed by human experts based on 
their knowledge, which may not capture the full pathological com-
plexity. Importantly, the deterministic nature of these algorithms 
does not permit risk assessment, a necessity for integration into 
clinical diagnostic systems. Currently, benchmark automated detec-
tion fails in 20–40% of patients, particularly those with subtle FCD, 
and suffers from high false-positive rates. Relative to conventional 
methods, in recent years, deep neural networks have shown high 
sensitivity at detection across various diseases [see 76, 77, for 
review]. Specifically, convolutional neural networks learn abstract 
concepts from high-dimensional data alleviating the challenging 
task of handcrafting features [78]. To date, a few studies have 
used deep learning for FCD detection [79–81]. However, their 
clinical description has been scarce or absent, and the information 
on how lesions were labeled for the training as well as histological 
validation was not provided. Notably, while their performance was 
reasonably high in MRI-positive cohorts (range: 85–92%; no 
MRI-negative cases identified) using either T1-weighted or 
T2-weighted FLAIR images, sample sizes were limited to 10–40 
and sourced from a single center. Deep learning requires large 
corpus of expertly labeled annotations (ground truth) to train and 
optimize the network, both cost- and time-consuming endeavors, 
resulting in suboptimal cohort sizes. To overcome this challenge, 
our group leveraged a patch-based augmentation that extracts 
several hundreds of overlapping patches from a single subject, 
thereby scaling up the data without the requirement of an imprac-
tically large cohort [82]. This deep learning algorithm relied on 
clinically available T1- and T2-weighted FLAIR MRI of a large 
cohort of patients with histologically validated lesions, collated 
across multiple tertiary epilepsy centers (Fig. 2). Notably, operating 
on 3D voxel space (i.e., in true volumetric domain) allowed asses-
sing the spatial neighborhood of the lesion, whereas prior surface-
based methods have considered each vertex location independently. 
This convolutional neural network classifier yields the highest



performance to date with a sensitivity of 93% using a leave-one-site-
out cross-validation and 83% when tested on an independent 
cohort while maintaining a high specificity of 89% both in healthy 
and disease controls. Importantly, deep learning detected 
MRI-negative FCD with 85% sensitivity, thus offering a consider-
able gain over standard radiological assessment. Results were gen-
eralizable across cohorts with variable age, hardware, and sequence 
parameters. Using Bayesian uncertainty estimation that enables risk 
stratification [83, 84], our predictions were stratified according to 
the confidence to be truly lesional. In 73% of cases, the FCD was 
among the top five clusters with the highest confidence to be 
lesional; in half of them, it ranked the highest. Ranking putative 
lesional clusters in each patient based on confidence helps the 
examiner to gauge the significance of all findings. In other words,
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Fig. 2 Automated FCD detection using deep learning. (a). The training and testing workflow. In this cascaded 
system, the output of the convolutional neural network 1 (CNN-1) serves as an input to CNN-2. CNN-1 
maximizes the detection of lesional voxels; CNN-2 reduces the number of misclassified voxels, removing false 
positives (FPs) while maintaining optimal sensitivity. The training procedure (dashed arrows) operating on 
T1-weighted and FLAIR extracts 3D patches from lesional and non-lesional tissue to yield tCNN-1 (trained 
model 1) and tCNN-2 with optimized weights (vertical dashed-dotted arrows). These models are then used for 
subject-level inference. For each unseen subject, the inference pipeline (solid arrows) uses tCNN-1 and 
generates a mean (μdropout) of 20 predictions (forward passes); the mean map is then thresholded voxel-wise 
to discard improbable lesion candidates μdropout> 0.1). The resulting binary mask serves to sample the input 
patches for the tCNN-2. A mean probability and uncertainty maps are obtained by collating 50 predictions; 
uncertainty is transformed into confidence. The sampling strategy (identical for training and inference) is only 
illustrated for testing. (b). Sagittal sections show the native T1-weighted MRI superimposed with the lesion 
probability map. The bar plot shows the probability of the lesion (purple) and false-positive (FP, blue) clusters 
sorted by their rank; the superimposed line indicates the degree of confidence for each cluster. In this 
example, the lesion (cluster 1 in purple) has both the highest probability and confidence



by pairing predictions with risk stratification, this classifier may 
assist clinicians to adjust hypotheses relative to other tests, thus 
increasing diagnostic confidence. Taken together, such character-
istics and performance promise great potential for broad clinical 
translation.
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3 Prediction of Clinical Outcomes 

While science investigating the neurobiology of epilepsy has been 
growing rapidly, translating knowledge into clinical practice has 
been limited. Specifically, individualized predictions of drug resis-
tance, surgical outcome, and cognitive dysfunction have been 
attempted with limited success [85]. For example, early investiga-
tions that aimed to predict anti-seizure medication response used 
machine learning on genomic data (viz., single nucleotide poly-
morphisms) and showed limited generalizability with inconsistent 
performance across studies [86–88]. Similarly, other models 
trained on electro-clinical and demographic features of thousands 
of patients [89–92] achieved high sensitivity (>90%) but unaccept-
ably low specificity (<25%). Importantly, no external validation was 
performed on independent cohorts. The prediction of seizure out-
come after surgery has been extensively explored in TLE patients. 
Some of the early investigations relied on clinical [93] and neuro-
psychological features [94], achieving high performance, but in 
limited samples of less than 20 patients. Given the increasing con-
ceptualization of TLE as a system-level disorder, numerous studies 
have tested the hypothesis that structural and functional alterations 
beyond the mesial temporal lobe may contribute to negative seizure 
outcome [95, 96]. For instance, WM microstructural features 
derived from diffusion tensor imaging have shown to achieve high 
sensitivity (70–86%) but modest specificity (65–70%) 
[97, 98]. Other studies have relied on connectivity features for 
prediction; these include nodal hubness of the thalamus and 
whole-brain distance-based measures of functional connectivity, 
which achieve an accuracy at about 75% but modest specificity 
(ranging from 35 to 62%) [99, 100]. Conversely, while topological 
features of structural connectome have generally shown high pre-
dictive value for favorable postsurgical outcome, with an area under 
the receiver operating characteristics of 0.88, specificity for predic-
tion of seizure relapse is low (29–54%) [101, 102]. Overall, the lack 
of large-scale external validation and relatively low specificity of 
these models need to be addressed to establish their generalizability 
and potential clinical use.
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3.1 Disease 

Biotyping: Leveraging 

Individual Variability to 

Optimize Predictions 

To date, most neuroimaging studies of epilepsy have been based on 
“one-size-fits-all” group-level analytical approaches. While such 
study designs can isolate reliable and consistent average group-
level differences, they merely decipher the common patterns with-
out modeling the inter-individual variations along the disease spec-
trum [103]. Conversely, the conceptualization of epilepsy as a 
heterogeneous disorder and explicit modeling of inter-individual 
phenotypic variations may be exploited to predict individual-
specific clinical outcomes [104]. 

Over the past decades, FCD characterization has been driven 
by histology, with the primary objective to establish subtype-
specific imaging signatures [105]. Although histological grading 
is a well-defined framework, the current approach is based on 
descriptive criteria that do not consider the severity of each feature, 
thereby limiting neurobiological understanding. The ability to per-
form in vivo patient stratification is gaining relevance due to the 
emergence of minimally invasive surgical procedures that do not 
provide specimens for histological examination [106]. From a neu-
robiological standpoint, whether FCD IIB (dysmorphic neurons 
and balloon cells) and IIA (dysmorphic neurons only) subtypes 
represent etiologically distinct entities, or a spectrum is a matter 
of debate. Recent studies have shown significant cellular variability, 
with anomalies that may vary across lesions within the same subtype 
[73]. Moreover, multiple subtypes may coexist within the same 
FCD, with the most severe phenotype determining the final diag-
nosis [74]. Furthermore, recent studies have identified regulatory 
genes of the mTOR pathway that cause FCD via somatic muta-
tions, revealing a genetic continuum not linked to discrete FCD 
subtypes [75]. Hence, assessing the intra- and inter-lesional varia-
bility on MRI may offer a novel basis to advance our understanding 
of FCD neurobiology and improve lesion detection. Leveraging 
hierarchical clustering to model connectivity from FCD tissue to 
the rest of the cortex demonstrated that network dysfunction can 
dissociate patients with excellent from those with suboptimal post-
surgical seizure outcomes [107]. Another recent work applying 
consensus clustering to multi-contrast 3T MRI uncovered FCD 
tissue classes with distinct structural profiles, variably expressed 
within and across patients [108]. Importantly, these classes had 
differential histopathological embeddings, and their clinical utility 
was supported by gain in performance of a lesion detection algo-
rithm trained on class-informed data compared to class-naı̈ve 
paradigm. 

In TLE, histopathological reports have shown substantial varia-
bility in the distribution and severity of mesiotemporal lobe sclero-
sis between patients [109, 110]. A modern approach combining 
quantitative histology and unsupervised machine learning identi-
fied histological subtypes with differential severity and regional 
signatures [111]. Motivated by these findings, recent studies have



exploited inter-individual variability of imaging or cognitive phe-
notypes to optimize predictions of clinical outcomes. The first 
attempts were based on categorical models, which provided sub-
types of patients with a given phenotype. Clustering applied to 
surface-based morphometry uncovered four TLE subtypes having 
distinct subregional patterns of mesiotemporal atrophy [23]. These 
four subtypes differed with respect to histopathology and postsur-
gical seizure outcome. Classifiers operating on class membership 
accurately predicted surgical outcome in >90% of patients, out-
performing learners trained on conventional MRI volumetry. In 
the context of cognition, unsupervised techniques have identified 
phenotypes, such as language and memory impairment associated 
with distinct patterns of WM microstructural damage [112] and 
connectome disorganization [113]. 
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Compared to categorical models such as clustering, dimen-
sional approaches allow a more in-depth conceptualization of 
inter-individual variability by uncovering axes of pathology that 
are co-expressed within and between individuals. In other words, 
such approaches allow patients to express multiple disease factors to 
varying degrees rather than assigning subjects to a single subtype. 
Applying latent Dirichlet allocation, an unsupervised technique 
derived from topic modeling, to multimodal MRI features of hip-
pocampal and whole-brain GM and WM pathology, a recent study 
uncovered dimensions of heterogeneity (or disease factors) in TLE 
that were not expressed in healthy controls and only minimally in 
patients with frontal lobe epilepsy, supporting specificity (Figs. 3 
and 4) [114]. Importantly, classifiers trained on the patients’ factor 
composition predicted response to anti-seizure medications (76% 
accuracy) and surgery (88%) as well as cognitive scores for verbal 
IQ, memory, and sequential motor tapping, outperforming lear-
ners trained on group-level data [114]. In translational terms, 
assessing inter-individual variability through dimensional modeling 
mines clinically relevant disease characteristics that would otherwise 
be missed. 

4 Conclusion and Future Perspectives 

Machine learning applied to MRI has successfully uncovered meso-
scopic structural and functional biomarkers predictive of clinical 
outcomes. Overall, the most significant impact has been the devel-
opment of lesion detection algorithms that have transformed 
MRI-negative into MRI-positive, thus offering the life-changing 
benefits of epilepsy surgery to more patients. More recently, bio-
typing techniques exploiting intra- and intersubject variability have 
permitted to further optimize the prediction of outcomes. Inte-
grating such approaches with other domains such as genomics



promises to elucidate molecular mechanisms that drive MRI phe-
notypes, offering novel avenues to study disease processes 
[115, 116]. 
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Fig. 3 Latent disease factors in TLE. Multimodal MRI (T1w, FLAIR, T1w/FLAIR, diffusion-derived FA, and MD) is 
combined with surface-based analysis to model the main features of TLE pathology (atrophy, gliosis, 
demyelination, and microstructural damage), which are z-scored with respect to the analogous vertices of 
healthy controls’ ipsi- and contralateral to the seizure focus. Latent Dirichlet allocation uncovered four latent 
relations (viz., disease factors) from these features (expressed as posterior probability) and quantified their 
co-expression (ranging from 0 to 1) as shown in the patients’ factor composition matrix. On the color scale 
below, the disease factor maps higher probability (darker red) and signifies a greater contribution of a given 
feature to the factor, namely, the disease load (pFDR <0.05) 

Notwithstanding its diagnostic capabilities, machine learning is 
still viewed by some as a “black box,” possibly due to the increasing 
complexity of the predictive models, particularly those relying on 
deep learning [117]. In this regard, increased model interpretabil-
ity may prevent biases and reduce the risk of incorrect clinical 
inferences. It is, therefore, crucial to understand how the model 
arrived at a particular decision. For large-scale neural networks, this 
may be achieved by visualizing on a map the features learned in the 
course of training. Besides transparency, significant obstacles to 
clinical adoption are privacy and ethics. These concerns have been 
circumvented so far through single site designs or multi-
institutional training aggregating data in a single center. While the 
latter allows addressing model generalizability through physical 
access to independent datasets, federated learning may provide 
decentralized collaborations without data sharing [30]. As the



data corpus diversifies and expands to include more edge cases, 
performance and confidence of future classifiers will inevitably 
improve. Ultimately, clinical translation of complex techniques 
into practice is contingent to continued efforts in education of 
clinicians combined with increased accessibility to source codes 
and algorithms. 
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Fig. 4 Latent disease factors in TLE. Drug response, seizure outcome, verbal IQ, memory index, and motor 
index are more accurately predicted when using latent disease factors than when relying on conventional 
group-level features (pFDR <0.001). Data points indicate mean balanced accuracy for categorical data (drug-
response, seizure outcome) and Pearson correlation coefficients for numerical data (cognitive scores) 
evaluated based on 100 repetitions of tenfold cross-validation 
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Chapter 28 

Machine Learning in Multiple Sclerosis 

Bas Jasperse and Frederik Barkhof 

Abstract 

Multiple sclerosis (MS) is characterized by inflammatory activity and neurodegeneration, leading to the 
accumulation of damage to the central nervous system resulting in the accumulation of disability. MRI 
depicts an important part of the pathology of this disease and therefore plays a key part in diagnosis and 
disease monitoring. Still, major challenges exist with regard to the differential diagnosis, adequate moni-
toring of disease progression, quantification of CNS damage, and prediction of disease progression. 
Machine learning techniques have been employed in an attempt to overcome these challenges. This chapter 
aims to give an overview of how machine learning techniques are employed in MS with applications for 
diagnostic classification, lesion segmentation, improved visualization of relevant brain pathology, charac-
terization of neurodegeneration, and prognostic subtyping. 

Key words Multiple sclerosis, Machine learning, Artificial intelligence, Deep learning, Neuroimaging 

1 Introduction to MS 

Multiple sclerosis (MS) is a neuroinflammatory disease of the cen-
tral nervous system (CNS) affecting women more than men, usu-
ally starting in young adulthood with a prevalence of >100 per 
100,000 individuals in the Western world and rising [1]. 

1.1 Disease 

Characteristics 

The most striking feature is the appearance of focal inflammatory 
lesions in the CNS visible on MR imaging of the brain (Fig. 1) 
and/or spinal cord that may give rise to partially reversible loss of 
motor, sensory, and cognitive function depending on lesion loca-
tion and the magnitude of damage to local nerve tissue. As the 
disease and resulting damage to the central nervous system accu-
mulate, irreversible disability progresses over time. Although 
tempting, not all of the accumulated disability can be explained 
by focal inflammatory lesions [2]. Diffuse neurodegeneration in the 
CNS is another histopathological feature deemed responsible for 
gradually accumulating disability, especially in the later stages of the 
disease. This neurodegeneration is thought to result from a process
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that is partially separate from focal inflammation and can be visua-
lized as initially subtle progressive brain atrophy on conventional 
MRI (Fig. 1) or by advanced MRI techniques that measure brain 
tissue integrity.
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Fig. 1 PD-weighted MR images (top row) showing the occurrence of MS typical T2/PD hyperintense lesions 
over time. T1-weighted images (bottom row) showing enlargement of sulci and ventricles over time consistent 
with brain atrophy and hypointensity of multiple lesions due to local tissue loss. (Figure kindly provided by 
Dr. Alex Rovira (Hospital Universitari Vall d’Hebron, Barcelona)) 

Fig. 2 MS subtypes based on the development of disability over time 

Based on the clinical course, MS is categorized in three main 
subtypes (Fig. 2). The most common subtype is relapsing remitting 
MS (RRMS), characterized by relapsing and remitting bouts of 
symptoms and limited disability. The RRMS subtype gradually 
transitions into the secondary progressive subtype (SPMS), char-
acterized by gradually accumulating disability. Primary progressive 
MS (PPMS) is characterized by the gradual accumulation of dis-
ability from disease onset and is a common subtype in (male) 
patients with an older age at onset.
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1.2 Treatment of MS Suppression of CNS inflammation is the main target of treatment 
and has greatly improved over the past three decades. The earlier 
treatments are mainly based on molecules that suppress the CNS 
inflammatory response by interfering with cell signaling molecules 
that regulate the immune response (immunomodulation). 

Interferon was the first immunomodulatory molecule to be 
approved for the treatment of RRMS in the last decade of the 
previous century, reducing relapse rate with approximately 30% as 
well as reducing the occurrence of inflammatory lesions on MRI 
[3, 4]. Other immunomodulatory molecules with similar efficacy 
have been developed and approved for the treatment of RRMS 
since the beginning of this century and include glatiramer acetate, 
dimethyl fumarate, and teriflunomide [5, 6]. These therapies are 
mostly well-tolerated with a low risk of serious adverse events. 

Newer treatments are generally based on monoclonal antibo-
dies that can directly block receptors on immune cells (immuno-
suppressive), disabling them to cause inflammation in the CNS, and 
include fingolimod, alemtuzumab, ocrelizumab, natalizumab, and 
siponimod [7–11]. These treatments are generally more effective 
than aforementioned immunomodulatory treatments with a reduc-
tion of the number of relapses with 50–80% and a more effective 
reduction of new active lesions on MRI. The downside of the latter 
treatments is the increased occurrence of more serious adverse 
events that include cardiovascular disease, autoimmune disease, 
and especially progressive multifocal leukoencephalopathy (PML). 
PML is caused by an infection of the CNS with the JC virus and the 
most dramatic and potentially lethal adverse event associated with 
the use of natalizumab, fingolimod, and, in very rare cases, 
dimethyl fumarate. Although comparatively less effective, the 
“immunomodulatory” treatments are recommended as “first-
line” treatments due to their more favorable profile with regard to 
serious adverse events. 

The quest for more effective and tolerable MS treatments that 
are also effective in patients with progressive MS is ongoing. New 
treatments that are currently being evaluated include vidofludimus 
calcium/IMU-838 [12], a dihydroorotate dehydrogenase inhibi-
tor that attenuates pro-inflammatory cytokine release by B- and 
T-cells, and tolebrutinib, an inhibitor of the enzyme “Bruton’s 
tyrosine kinase” that drives CNS inflammation [13]. 

1.3 Diagnosis of MS Proof of dissemination of inflammatory activity within the CNS in 
time and space is the underlying principle for diagnosing MS. This 
follows the successive bouts of focal inflammation in different parts 
of the CNS unique to the disease. Initially, these two criteria were 
fulfilled based on clinical course, in which at least two separate 
episodes of clinical disability (dissemination in time) related to 
separate locations in the CNS (dissemination in space) needed to 
be proven [14]. A first or multiple episodes of symptoms/signs



related to one location in the CNS is referred to as a clinically 
isolated syndrome (CIS). When a second episode occurs related 
to another location of the CNS, clinically definite MS (CDMS) can 
be diagnosed. Using this clinical diagnostic scheme, a definite 
diagnosis of MS could take years to be made and would take too 
long in the current era of effective treatment that need to be 
considered at an early stage of the disease. This has led to the 
incorporation of brain MRI findings in the diagnostic criteria fol-
lowing the same principles [15, 16]. In the diagnostic setting, the 
MR imaging protocol should at least include a FLAIR and T2 
sequence of the brain to adequately detect and locate inflammatory 
lesions and a T1-weighted sequence of the brain after intravenous 
gadolinium contrast administration to detect active inflammatory 
lesions exhibiting leakage of contrast material into the local brain 
parenchyma. A T1 without contrast and DWI sequences of the 
brain is usually included for differential diagnostic purposes. T2-/ 
PD-weighted and post-contrast T1-weighted sequences of the spi-
nal cord are optional, when brain imaging is insufficient to make the 
diagnosis [17]. See Table 1 for an overview of the most frequently 
used MRI sequences for the diagnosis and monitoring of MS. 
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To fulfill the MRI criterion for dissemination in space, multiple 
inflammatory lesions should be demonstrated on brain or spinal 
cord MRI in two out of four typical CNS locations (i.e., juxta-/ 
intra-cortical, periventricular, infratentorial, spinal cord). The dis-
semination in time criterion is fulfilled by demonstrating one or 
more new lesions on subsequent MRI scans and/or the simulta-
neous presence of lesions that do and do not enhance after gado-
linium administration on any single scan. Further refinement of the 
diagnostic criteria has made it possible to make a diagnosis within 
3–12 months of symptom onset for the vast majority cases with 
typical MS [18, 19]. 

1.4 Disease 

Monitoring 

Disease progression is monitored by self-reporting of 
MS-associated symptoms, neurological assessment for 
MS-associated signs, and the detection of new lesions on MRI of 
the brain and/or spinal cord. Routine brain MRI is usually acquired 
each year and includes T2/PD and FLAIR sequences for the detec-
tion of new lesions. A DWI sequence of the brain is included to 
differentiate potential PML from MS lesions depending on the 
initiated treatment. More frequent MR imaging, T1-weighted 
post-contrast brain sequences, and imaging of the spinal cord are 
optional depending on clinical signs and symptoms and timing of 
treatment initiation [17]. See Table 1 for an overview of MRI 
sequences that are typically acquired for the monitoring of disease 
activity.
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Table 1 
Brief overview of sequences that are typically used in clinical practice for the diagnosis and 
monitoring of MS 

Diagnosis/purpose Monitoring/purpose 

Brain MRI 

Ax T1 (<3 mm 2D or 3D) Optional 
Detection of T1 hypointense lesions 

Optional 
Detection of T1 hypointense 

lesions 

Ax T2 and PD (<3 mm) Recommended 
Detection and localization of lesions 
(dissemination in space) 

Recommended 
Detection of new lesions 

FLAIR 
(preferably 3D with FS) 

Recommended 
Detection and localization of lesions 
(dissemination in space) 

Recommended 
Detection of new lesions 

Ax T1 after contrast 
(<3 mm  2D or 3D)  

Recommended 
Detection of (in)active inflammation 
(dissemination in time) 

Optional 
Detection of new active 

inflammation 

DIR Optional 
Improve detection of (juxta)cortical 
lesions 

Optional 
Detection of new lesions 

Ax DWI Optional 
Characterization of lesions 
(differential diagnosis) 

Optional 
Differentiation of MS versus PML 

lesions 

Optic nerve MRI 

Ax/cor T2 FS or STIR 
(≤3 mm) 

Optional 
Detection of optic neuritis 

Not required 

Ax/cor T1 after contrast 
(≤3 mm) 

Optional 
Detection of active optic neuritis 

Not required 

Spinal cord MRI 

Sag T2 and PD (≤3 mm) Optional 
Detection of spinal cord lesions 
(dissemination in space) 

Optional 
Detection of new spinal cord 

lesions 

Sag T1 after contrast 
(≤3 mm) 

Optional 
Detection of active inflammation 
(dissemination in time) 

Optional 
Detection of new active 

inflammation 

For a detailed description see the 2021 MAGNIMS recommendations [17]. (Note: local preferences may vary) 
Ax axial orientation, Sag sagittal orientation, Cor coronal orientation, FS fat suppression, DWI diffusion-weighted 
imaging, PML progressive multifocal leukoencephalopathy 

1.5 Advanced MR 

Imaging Techniques 

More advanced MRI techniques, like magnetic transfer ratio 
(MTR), diffusion tensor imaging (DTI), and resting state func-
tional MRI (rsFMRI), are generally not used for the diagnosis and 
monitoring of MS patients in clinical practice as clinically relevant 
changes are hard to determine due to considerable biological and



technical (inter-/intra-scanner or inter-/intra-sequence) variability. 
These advanced sequences have been successfully used in controlled 
research settings to gain knowledge on the functional and struc-
tural dynamics of the MS disease process. MTR and DTI are mainly 
used to quantify microstructural integrity by measuring spin relax-
ation times and diffusion of protons within, in general, white 
matter tracts respectively. RsFMRI uses the BOLD effect to mea-
sure functional brain activity in the resting brain and/or in relation 
to specific tasks. 
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2 Machine Learning to Aid in the Differential Diagnosis of MS 

Although the current diagnostic criteria are highly accurate and 
efficient in most cases of suspected MS, diagnostic challenges arise 
when atypical clinical and/or radiological findings occur that may 
represent other diseases that mimic multiple sclerosis. To aid in 
these diagnostic challenges, machine learning techniques have 
been employed in an attempt to distinguish MS from other 
diseases. 

2.1 Differentiation of 

MS from Neuromyelitis 

Optica Spectrum 

Disorder 

Neuromyelitis optica spectrum disorder (NMOSD) has previously 
been considered a variant of multiple sclerosis due to similarities in 
clinical presentation and presence of inflammatory lesions in the 
optic nerve, the spinal cord, and, especially in later stages, the brain. 
NMOSD has only recently been identified as a separate disease 
entity [20], especially with the identification of elevated antibodies 
against aquaporin-4, a water channel involved in water homeostasis 
in the CNS, and antibodies against myelin oligodendrocyte glyco-
protein (MOG), a constituent of the normal myelin sheath. 
Although the clinical and radiological differences are known, the 
differential diagnosis remains a challenge due to the considerable 
overlap with MS. 

Various machine learning models have been developed to dif-
ferentiate between MS and NMOSD using decision trees based on 
expert findings of MRI of the orbits, brain, and spine [21], random 
forest analysis on radiomic features of brain lesions [22], CNN on 
brain MR images [23, 24], and LASSO binary logistic regression 
on the combination of radiomic features from spinal cord scans and 
clinical variables [25]. Performance of these models had AUCs 
varying between 0.712 and 0.935. 

2.2 Differentiating 

MS from Other 

Diseases 

A variety of other inflammatory autoimmune diseases and vascular 
diseases can present with similar brain MRI findings as MS. These 
diseases are usually easier to distinguish from MS using clinical 
variables such as age and disease course. However, MRI findings 
of the brain and spinal cord can still pose a challenge for radiologists 
who are not experienced with these pathologies.
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Using support vector machine analysis on MRI-based radiomic 
features of brain lesions, Luo et al. created a model able to distin-
guish brain lesions in RRMS from systemic lupus erythematosus 
patient with an AUC of 0.967 [26]. 

In a broader effort, Rauschecker et al. [27] have created a 
machine learning model to provide a neuroradiological differential 
diagnosis for a range of brain diseases including MS. In their 
approach, they first detected and segmented brain lesions from 
brain MRI scans using a U-Net-based deep learning algorithm. 
They subsequently extracted 18 location-, spatial-, and signal-
based quantitative imaging features using multiple pulse 
sequences from the segmented lesions. A Bayesian classifier was 
then used to combine these 18 image features with 5 clinical 
features for the prediction of the underlying brain disease. This 
classifier was able to make an accurate top three differential diag-
nosis in 91% of cases, with a similar performance as specialized 
academic neuroradiologists (86%, P = 0.20). More interestingly, 
this classifier outperformed neuroradiology fellows (77%, 
P = 0.003), general radiologists (57%, P < 0.001), and radiology 
residents (56%, P < 0.001). However, the datasets used were 
small (total N = 86 for training and N = 92 for testing, with 
N typically around 5 for each diagnostic class), and the perfor-
mance for MS and related disorders like migraine was less 
favorable. 

2.3 Future 

Considerations 

Taken together, these studies show that machine learning has the 
capability to assist in the differential diagnosis of MS and can be 
especially helpful for radiologists that are not specialized in 
neuroradiology. 

Most of the aforementioned ML models that could aid in 
differential diagnosis have focused on the differentiation between 
MS and NMOSD. Although interesting from a scientific point of 
view, this distinction is not the only diagnostic challenge from a 
clinical point of view. The main challenge for radiologists that are 
not experienced with these disease entities is the distinction 
between demyelinating lesions due to MS and vascular lesions and 
should be the focus of future studies. 

Generalizability to the general population and MRI scanners 
is clearly the most important hurdle before these models can be 
introduced in clinical practice. In addition, these studies are gen-
erally limited to a small subset of differential diagnoses, which 
could lead to tunnel vision when relying on these tools in clinical 
practice.
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3 Machine Learning for Lesion Segmentation and Quantification 

Although lesions do not fully relate to the accumulation of clinical 
disability over time [2], lesion volume is still regarded as an impor-
tant outcome measure in MS research and clinical trials, requiring 
accurate lesion segmentation. Manual lesion segmentation on MR 
images is highly labor-intensive and time-consuming, for which 
automated segmentation is an obvious solution, especially for 3D 
scans. Over the years, many (semi-)automated lesion segmentation 
techniques have been developed, including semi-automated seed 
growing and unsupervised K-means clustering techniques. In the 
recent years, convolutional neural networks have been shown to 
work particularly well in lesion segmentation tasks [28]. 

3.1 Cross-Sectional 

Lesion Segmentation 

A large number of ML-based models have been developed that 
provide cross-sectional automated lesion segmentation in MS 
[29–38] using a variety of ML architecture designs. Critical evalua-
tion and comparison of these large and increasing number of lesion 
segmentation methods is necessary to determine the best 
performing methods and their added value to existing methods 
using large test datasets made available in various challenges 
organized by the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI http://www.miccai.org/) 
and the International Symposium on Biomedical Imaging (ISBI, 
https://biomedicalimaging.org/) [28, 39]. Previous MS lesion 
segmentation challenges showed that segmentation algorithms 
could attain an average Dice score of 0.59 and an average surface 
distance of 0.91 for the segmentation of cross-sectional images in 
the MICCAI 2016 challenge [28] and an average Dice score of 
0.670 and average symmetric surface distance of 2.16 for the 
segmentation of longitudinal MR images in the ISBI 2015 chal-
lenge [39]. Most of these algorithms required multiple input 
sequences, including T1, T2, PD, and/or FLAIR sequences, 
whereas only three algorithms required a single FLAIR sequence 
as input. 

Besides segmentation performance, these methods need to be 
validated in real-world scenario with subjects scanned on MRI 
machines different from the original training dataset. To achieve 
this, some level of adjustment/optimization prior to implementa-
tion on a given dataset is generally needed. Weeda et al. [40] have 
compared methods with and without local optimization for cross-
sectional segmentation of MS lesions using several freely available 
tools including LST [33], NicMSlesions [41], and BIANCA [31] 
(Fig. 3). Optimization to the local dataset improved performance 
for all these methods, while retraining with manually labelled rep-
resentative MR images provided the best performance.

http://www.miccai.org/
https://biomedicalimaging.org/
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Fig. 3 Output examples of four lesion segmentation algorithms and manual segmentation overlaid over FLAIR 
images of the brain. (Figure adapted from Weeda et al. [40], reprinted with permission from Elsevier) 

3.2 Detection of New 

MS Lesions 

The detection of new lesions longitudinally is a highly important 
clinical monitoring task to demonstrate new inflammatory activity 
in the CNS that may prompt initiation or change of treatment for 
an individual MS patient. This requires tedious and time-
consuming visual comparison of FLAIR images, especially in 
patients with a high number of confluent lesions. Initially, the aim 
of any treatment was to have no evidence of disease activity 
(NEDA). This proved to be unrealistic, as a low number of new 
lesions over time could be observed in patients treated with various 
treatment modalities [42]. Additional studies have shown that 
long-term clinical disability does not increase with two or less new 
lesions within 1 year and no contrast-enhancing lesions (minimal 
evidence of disease activity (MEDA)). 

Various machine learning models have been created to detect 
new MS lesions on subsequent MR images based on fusion or 
subtraction of subsequent segmentation maps [33, 43–48]  o  
end-to-end training of a combined registration and segmentation 
network on serial MRI scans [48]. Evaluation of these and new 
machine learning tools are expected following the recent MICCAI 
challenge (https://portal.fli-iam.irisa.fr/msseg-2/).

https://portal.fli-iam.irisa.fr/msseg-2/
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A recent study has compared the number of new lesions 
detected by visual assessment (highest sensitivity/accuracy: 
69/67), automated assessment (highest sensitivity/accuracy: 
84/64), and visual verification of the automated assessments (sen-
sitivity/accuracy: 86/NA) on a single-center cohort of 100 MS 
patients [49]. The automated methods detected a higher number 
of new MS lesions than visual assessment. Visual verification of 
automated assessments revealed a high number of false positive 
new lesions when using automated assessments only and a high 
number of false negative new MS lesions with only visual assess-
ments. Evidently, automated tools for new lesion detection require 
further development before they can be implemented in clinical 
practice without supervision. More importantly, this study showed 
that visually supervised automated methods are currently able to 
improve the detection of new MS lesions in current clinical practice. 
This would warrant clinical implementation, provided that the 
clinical tool allows swift and efficient visual supervision and correc-
tion and has a reasonable tradeoff between false negative and false 
positive rates erring slightly to the false positive side. 

3.3 Clinical 

Implementation of ML 

Tools for Lesion 

Segmentation and 

Detection 

Commercial image analysis packages meant for implementation in 
clinical care have incorporated automated lesion segmentation 
algorithms to provide cross-sectional and longitudinal assessments 
of lesion volume rather than (new) lesion counts. Although this 
may provide more precise monitoring of the patient’s overall lesion 
burden, the utility of these tools should be critically evaluated on at 
least the following points: (1) knowledge of the robustness of the 
lesion segmentation algorithm to inter-scanner variability and vari-
ous MR artifacts; (2) proven clinically relevant cut-off points of the 
provided measurements that are related to relevant future disability 
progression; and (3) implementation of a mandatory visual check of 
provided lesion counts and volumes. 

4 Machine Learning to Improve Detection of Tissue Properties from Conventional 
MRI Sequences 

MR imaging is the modality of choice for the diagnosis and moni-
toring of MS patients in clinical trials and daily clinical practice, due 
to its availability. Scan protocols in daily clinical practice are usually 
limited to the most essential conventional sequences to limit bur-
den on patients and to limit financial cost. Machine learning can be 
employed to enhance these conventional sequences to visualize 
initially inconspicuous relevant tissue properties.
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4.1 Synthetic DIR 

Sequences 

Cortical lesions are an important part of MS pathology, specific to 
the disease, associated with disease progression [50, 51] and have 
recently been included in the radiological diagnostic criteria 
[52]. These cortical lesions are generally inconspicuous on com-
monly used FLAIR and T2-/PD-weighted MR images. The dou-
ble inversion recovery MRI sequence (DIR) is uniquely capable of 
visualizing these cortical lesions by combined suppression of the 
MR signal from cerebrospinal fluid and white matter [53]. DIR 
sequences are generally not used in daily clinical practice or clinical 
trials due to the long acquisition time and lack of availability on 
most MR systems. Models based on generative adversarial networks 
have been trained to generate synthetic DIR images from conven-
tional and routinely acquired T1, T2, and FLAIR images [54] and 
T1 and PD/T2 [55]. These synthetic DIR images were able to 
improve the detection of juxtacortical lesions (12.3 ± 10.8 vs 
7.2 ± 5.6, P < 0.001) [54] and cortical lesions (N = 626 vs 696) 
[56] compared to conventional MRI sequences. Although not as 
sensitive as the original DIR images, synthetic DIR images are 
sensitive enough to improve diagnosis and prognostication in rou-
tine clinical setting. 

4.2 Prediction of 

Contrast-Enhancing 

Lesions 

Besides a very low risk of nephrogenic systemic fibrosis [57], 
gadolinium-based contrast agents are generally safe when used for 
imaging purposes. However, gadolinium is known to accumulate in 
the brain after repeated IV gadolinium administrations. Although 
no adverse effects have been demonstrated to date, this is a cause 
for concern in the medical community as the long-term effects are 
still unknown. Because of this, prediction of the presence of active 
inflammatory contrast-enhancing lesions without the use of con-
trast agents is desirable. Using a large multicenter dataset, Narayana 
et al. have developed a deep learning model capable of predicting 
contrast-enhancing lesions using T1, T2, and FLAIR images with 
sensitivity and specificity of 78% and 73%, respectively, for patient-
wise detection of enhancement using fivefold cross-validation [58]. 

4.3 Visualization of 

Tissue Myelin Content 

from MR Images 

Demyelination is one of the pathological hallmarks of MS that 
cannot be directly quantified by MR imaging. In vivo quantification 
can be useful for monitoring inflicted damage by inflammation and 
the efficacy of myelin repair mechanisms. PET imaging is capable of 
visualizing and quantifying myelin using the radiotracer [(11)C] 
PIB [59], but is not generally available, expensive, and invasive. A 
recent study has used [(11)C]PIB PET images from MS patients to 
train a CF-SAGAN-based model to successfully predict myelin 
content changes from MTR, DTI, T2, and T1 MRI sequences 
[60] (Fig. 4).
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Fig. 4 Examples of lesional myelin content changes showing T1-weighted images (left column), the predicted 
change in myelin content by the MR-based model proposed by Wei et al. (middle column), and the ground truth 
change in myelin content based on [(11)C]PIB PET imaging (right column). Demyelinating (red) and remye-
linating (in blue) voxels are indicated on top of the lesion mask (white). (Figure adapted from Wei et al. [60], 
reprinted with permission from Elsevier) 

5 Machine Learning to Characterize Neurodegeneration in MS 

In daily clinical practice, treatment changes in the course of the 
disease are mainly based on new inflammatory/demyelinating 
activity visible as new or enhancing lesions on brain MRI scans. In 
contrast, the partially unrelated but clinically relevant neurodegen-
erative aspect of the MS disease process is generally



underappreciated in monitoring and treatment decisions. The rea-
son for this is the absence of simple, reliable, and easily interpretable 
measures that reflect the degree of neurodegeneration in individual 
patients. 
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Overall brain volume measured on MR images is currently the 
most important tool to quantify neurodegeneration in 
MS. However, brain volume measurements have not been imple-
mented in routine clinical care as universal clinically relevant cut-off 
points for brain volume loss have not been identified due to con-
siderable technical, biological, and, specifically, age-related 
variations [61]. 

5.1 Brain Age 

Determination from 

MR Images 

Neurodegenerative processes are known to change the macroscopic 
structure of the brain with increasing age. Similar brain structure 
changes are observed as a result of various neurodegenerative brain 
diseases, including MS. Such MS-related atrophic changes occur at 
a faster pace as would be expected in normal aging individuals. This 
has given rise to the “brain age” paradigm, in which accelerated 
aging of the brain is considered as a marker of MS-related neuro-
degeneration [62]. Machine learning models based on large popu-
lations of healthy aging individuals have been developed to 
determine biological brain age from T1-weighted MR images of 
the brain [63–65]. Subtraction of this predicted brain age from the 
actual calendar age results in the brain-predicted age difference 
(brain-PAD) or brain age gap (BAG) as an indicator of premature 
aging of the brain. Key advantages of brain-PAD/BAG over brain 
volume measurement are that these measures incorporate image 
characteristics across the entire brain (not only the segmented brain 
tissue as in brain volume measurement), provide an intuitive easily 
interpretable metric, are more robust to acquisition-related image 
variations, and, most importantly, are specific for the individual 
patient by inherently adjusting for age. Initial studies on brain age 
in MS found that the estimated brain age is between 4 and 6 years 
higher than chronological age in comparison to healthy controls 
and that a higher relative brain age is associated with a higher 
degree of disability [65, 66]. A large retrospective multicenter 
study of brain age in MS showed that brain age is approximately 
10 years higher than chronological age in MS, is increased in MS 
compared to HC, predicts current as well as future disability, and is 
mainly driven by brain atrophy [67] (Fig. 5). Recent developments 
in brain age models were made to reliably predict brain age using 
FLAIR sequences instead of the usual T1-weighted sequences 
(Colman et al., 2021; ISMRM 2022), ensuring flexible implemen-
tation in retrospective research settings and general clinical practice. 
Further studies are needed to further elucidate changes in brain age 
over time, the relationship of brain age with a wider range of 
measures of cognitive and physical disability, the influence of non-
MS-related factors on brain age, the pathological substrate of brain



age in MS, and the effect of treatment on brain age. In the future, 
these brain age models may provide a useful clinical tool to quantify 
and monitor neurodegeneration in routine clinical care of MS 
patients. 
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Fig. 5 Examples of increasing differences between brain-predicted age and chronological age (brain-PAD) in a 
healthy control, three RRMS onset patients with increasing disease durations, and a PPMS patient with a very 
high brain-PAD with relatively short time since diagnosis. (Figure adapted from Cole et al. [67], CC BY 4.0) 

5.2 Evolution of 

Brain Atrophy Over 

Time 

Although overall progressive WM and GM atrophy is a well-known 
feature of MS, less is known on the evolution of atrophy in different 
brain regions over time. Event-based modelling [68, 69] has been 
used to elucidate the sequence in which GM atrophy affects various 
brain structures in repeated MRIs of 1417 subjects including 
healthy controls and all subtypes of MS [70, 71]. The posterior 
cingulate cortex and precuneus were the first regions to become 
atrophic, followed by the middle cingulate cortex, brainstem, and 
thalamus in patients with clinically isolated syndrome and relapse-
onset MS. A similar pattern of sequential atrophy was found in 
PPMS with the involvement of the thalamus, cuneus, precuneus, 
and pallidum, followed by the brainstem and posterior cingulate 
cortex. Patients were then categorized according to the event stage 
defined by their individual atrophy pattern. Using a linear mixed 
effect model, progression of event stages was found to be related to 
the rate of disability progression proving that these atrophy stages 
represent clinically relevant GM pathology. 

6 Machine Learning to Predict Disease Progression 

The efficacy in reducing inflammatory activity, and thus preventing 
disability, varies across treatments and is generally speaking 
inversely related to side effects. Choosing the treatment with the



right tradeoff between efficacy and side effects is challenging as the 
disability accumulation over time can vary greatly among patients. 
Demographic variables, presence of oligoclonal bands, and the 
number of, especially infratentorial, T2 lesions at baseline brain 
MRI are known to be predictive of future disability progression 
and the likelihood of clinical relapse in the future [72]. Still, predic-
tion of future disease progression remains a challenge in daily 
clinical practice especially when these risk factors are not unequivo-
cally present. Several definitions of disease progression exist and 
include demonstration of short-term inflammatory activity (predic-
tion of time to next relapse or progression from CIS to CDMS), 
changes in disability status using standardized clinical evaluations 
(EDSS progression or time to a certain clinical threshold), or 
progression from RRMS to SPMS. 
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6.1 Prediction of 

Disease Progression 

ML techniques have successfully created models to predict worsen-
ing of disability based on CNN-based analysis of lesion maps, MR 
images, and age at baseline [73] and by combining clinical disability 
status and MRI-derived lesion volume and brain atrophy using 
SVM classifiers [74]. The latter study showed that the predictive 
properties of the SVM model improved when adding changes in 
MRI measurements over the first year. 

A number of studies have successfully predicted a second 
relapse or conversion from CIS to CDMS by analyzing clinical 
and demographic data, lesion-specific quantitative geometric fea-
tures, and gray matter-to-whole brain volume ratios using support 
vector machines [75]; clinical characteristics as well as global and 
local measures of GM/WM volume, lesion volume, and cortical 
thickness using support vector machines in combination with 
recursive feature elimination [76]; and lesion shape features derived 
from computer-assisted manual segmentation using a random for-
est classifier [77]. Pareto et al. created a model based on regional 
gray matter volume and T1 hypointensities obtained from the 
baseline T1-weighted MR images, but were not able to accurately 
predict conversion from CIS to CDMS [78]. 

6.2 Stratification of 

Patients at Risk of 

Disease Progression 

Although the aforementioned models provide valuable insights 
into the predictive properties of clinical and radiological variables, 
the value to individual patients in daily clinical practice is still 
limited. An important downside of these models is the assumption 
that the predictive properties of baseline variables are monotonous 
among patients, whereas these predictive properties may well vary 
over time and between patients. Recent studies have applied the 
SuStaIn model [79] to identify MS subtypes based on clinical and 
radiological variables with the underlying assumption that these 
variables evolve over time. Using this technique on MRI-derived 
GM volumes in various brain regions, white matter volume, total 
brain lesion volume, and T1/T2 ratio within brain structures of



6322 MS patients, Eshaghi et al. were able to define “cortex-led,”
“normal-appearing white matter-led,” and “lesion-led MS” sub-
types in the earliest stages of the disease [ , ] (Fig. ). Further
analysis in the validation dataset (N = 3068) revealed that the
lesion-led subtype had a significantly higher risk of disability pro-
gression, relapse rate, and treatment response in the following
24 weeks compared to the other two subtypes. Similar findings
were made in a separate study on 425 MS patients analyzing GW
matter volume in various brain regions, and T2 lesion volume using
SuStaIn revealed a subtype characterized by early deep GM atrophy
and lesion appearance and a subtype characterized by early cortical
GM volume loss that were consistent over time [ ]. The subtype
with early deep GM atrophy was associated with earlier disability
progression and cognitive impairment compared to the subtype
with earlier cortical volume loss. Taken together, these studies
show that SuStaIn modelling can reveal previously unknown sub-
types ofMS that are biologically and clinically relevant. The SuStaIn
models can be used to stratify individual patients and therefore has
the potential for implementation in daily clinical practice after
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Fig. 6 Evolution of MRI abnormalities in each of the three MRI-based subtypes revealed by the SuStaIn 
analysis by Eshaghi et al. For each subtype, the left two columns depict the probability of regional brain 
atrophy, and the right column depicts the probability of lesion occurrence in the various stages of MRI 
abnormality progression. (Figure adapted from Eshaghi et al. [81], CC BY 4.0)



adaptation of the model to include robust measurements that can 
be derived from MRI scans acquired in daily clinical practice.
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7 Concluding Remarks 

As covered in this chapter, ML techniques provide new insights and 
possibilities with regard to differential diagnosis, lesion segmenta-
tion and quantification, enhanced detection of relevant pathology 
on MRI, characterization of neurodegeneration, and prediction of 
disease progression in MS. In general, challenges still exist with 
regard to generalizability to the general population, robustness 
across images acquired from different MRI scanners, and validation 
that the ML technique provides biologically and clinically relevant 
information. Implementation of various ML tools in clinical prac-
tice is ongoing, but should provide insight in their robustness 
across scanners, clearly defined clinically relevant cut-off points for 
each provided outcome, and an efficient interface that allows the 
user to check the quality of the analyses when appropriate. 
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Machine Learning for Cerebrovascular Disorders 

Yannan Yu and David Yen-Ting Chen 

Abstract 

Cerebrovascular disease refers to a group of conditions that affect blood flow and the blood vessels in the 
brain. It is one of the leading causes of mortality and disability worldwide, imposing a significant socioeco-
nomic burden to society. Research on cerebrovascular diseases has been rapidly progressing leading to 
improvement in the diagnosis and management of patients nowadays. Machine learning holds many 
promises for further improving clinical care of these disorders. In this chapter, we will briefly introduce 
general information regarding cerebrovascular disorders and summarize some of the most promising fields 
in which machine learning shall be valuable to improve research and patient care. More specifically, we will 
cover the following cerebrovascular disorders: stroke (both ischemic and hemorrhagic), cerebral micro-
bleeds, cerebral vascular malformations, intracranial aneurysms, and cerebral small vessel disease (white 
matter hyperintensities, lacunes, perivascular spaces). 

Key words Cerebrovascular disorders, Machine learning, Stroke, Cerebral microbleeds, Cerebral 
vascular malformations, Intracranial aneurysms, Cerebral small vessel disease, White matter hyperin-
tensities, Lacunes, Perivascular spaces 

1 Introduction 

Cerebrovascular disorders are a group of conditions that affect 
blood vessels in the brain and cerebral blood circulation. Stroke is 
the most common presentation of cerebrovascular disorders. The 
majority of strokes are ischemic, caused by decreased blood flow to 
the brain leading to damage of brain tissue and neurologic dysfunc-
tion. Less common are hemorrhagic strokes, caused by blood 
extravasation out of cerebral blood vessels into the brain tissue itself 
(intracranial hemorrhage) or in spaces surrounding brain tissue 
(subarachnoid and subdural hemorrhage). Hemorrhagic strokes 
can lead to catastrophic injury due to increased intracranial pres-
sure, decreased brain tissue perfusion, and damaged normal brain 
tissue. In 2019, there were 6.6 million deaths attributable to cere-
brovascular disease worldwide; three million individuals died of 
ischemic stroke, 2.9 million died of intracerebral hemorrhage, and 
0.4 million died of subarachnoid hemorrhage [1]. Stroke is the
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second leading cause of death, accounting for 11.6% of all deaths 
globally, and the third leading cause of death and disability com-
bined, contributing to 143 million disability-adjusted life years 
[2]. Cerebral small vessel disease encompasses a spectrum of dis-
orders affecting the brain’s small perforating arterioles, capillaries, 
and venules. It has a wide range of clinical manifestations, causing 
approximately 25% of strokes and contributing to approximately 
45% of dementia cases [3]. Cerebral small vessel disease is highly 
prevalent in the elderly population, affecting from 5% of people at 
age 50 to almost 100% of people older than 90 years [3]. Intracra-
nial aneurysms (IA) are due to ballooning in a blood vessel in the 
brain; if aneurysms rupture, they can lead to catastrophic subarach-
noid hemorrhage with a mortality rate of 23–51% [4, 5] and 
permanent disability in 30–40% [4, 6]. Arteriovenous malforma-
tions (AVM) are due to a tangle of blood vessels in the brain that 
bypass normal brain tissue; AVMs can cause hemorrhage and 
seizures.
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Cerebrovascular disorders are commonly diagnosed with imag-
ing studies, and the treatment of some cerebrovascular disorders is 
based on imaging guidance. Common imaging modalities include 
computed tomography (CT), magnetic resonance imaging (MRI), 
and digital subtraction angiography (DSA). CT provides a rapid 
exam of brain tissue and brain vessels; some of the CT protocols will 
be mentioned in this chapter including non-contrast CT, CT angi-
ography (CTA), and CT perfusion (CTP). Non-contrast CT is the 
exam of choice for diagnosing intracranial hemorrhage and also the 
exam of choice for initial triaging of ischemic stroke. However, 
ischemic stroke presentation on non-contrast CT depends mostly 
on stroke age, ranging from no change or subtle changes in 0–6  h  
to obvious hypoattenuation after 24 h. Post-contrast CT, depend-
ing on the detailed protocol, can highlight the vascular structures 
known as CTA often used in diagnose artery occlusion in ischemic 
stroke, IA, or AVM. Post-contrast CT can also calculate brain blood 
perfusion status known as CTP, commonly used in ischemic stroke 
triaging. MRI has various sequences that give tissue a particular 
appearance for medical diagnosis. Some of the sequences that will 
be mentioned in this chapter include the following. Diffusion-
weighted imaging (DWI) measures water molecule movement 
restriction and is very sensitive to injured tissue in stroke. 
Perfusion-weighted imaging (PWI) and arterial spin labeling 
(ASL) both measure brain perfusion, but PWI requires contrast 
injection, while ASL does not. They are often used in ischemic 
stroke. Gradient-recalled echo (GRE) and susceptibility-weighted 
images (SWI) are both sensitive to iron and calcium deposition and 
used in blood product detection and can be used for detecting 
hemorrhage and small vessel disease. T2-weighted fluid-attenuated 
inversion recovery (FLAIR) is commonly used to detect stroke 
lesions >6 h and small vessel disease. For CT perfusion and MR



perfusion, quantitative perfusion maps can be calculated to estimate 
the blood perfusion status, common ones including cerebral blood 
flow (CBF), cerebral blood volume (CBV), time-to-maximum of 
residue function (Tmax), and mean transit time (MTT). DSA is a 
fluoroscopic technique (similar to X-ray) to visualize vasculature, 
which is used for the diagnosis and treatment of IA, ischemic stroke 
artery occlusions, and some AVMs. 
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Machine learning holds the promise of optimizing cerebrovas-
cular disorder care, with the potential ability to improve or acceler-
ate diagnosis and provide prognostication utilizing both clinical 
and imaging data. 

2 Ischemic Stroke 

Approximately 87% strokes are ischemic and 13% are hemorrhagic 
[1]. Ischemic stroke is due to reduced or absent blood supply to 
part of the brain, typically due to an occlusion or stenosis of a 
cerebral artery, leading to localized brain tissue damage and loss 
of neurological function. Ischemic damage to the brain is strongly 
time-dependent [7]. The only recommended treatments available 
to treat or mitigate damage due to ischemic stroke are IV throm-
bolysis within 4.5 h of symptom onset and endovascular throm-
bectomy within 24 h of symptom onset; these treatments are only 
approved for specific subsets of stroke patients [8]. Acute stroke 
therapies work to recanalize an occluded cerebral blood vessel and 
restore blood flow to ischemic or hypoperfused brain tissue, specif-
ically via intravenous medication that can break up the occlusion 
(thrombolysis) or mechanical removal of the occlusion within the 
culprit artery (endovascular thrombectomy). Because clinical pro-
tocols are time-sensitive and standardized, timely diagnosis of 
ischemic stroke and rapid initiation of treatment are crucial steps 
in clinical practice [7]. Therefore, there is great potential for 
machine learning-based algorithms in acute ischemic stroke care. 
Figure 1 is a general example of how stroke is typically diagnosed 
and treated in the clinical setting. 

In this section, we review studies that investigated machine 
learning application in large vessel occlusion (LVO) diagnosis, 
stroke onset time evaluation, stroke lesion segmentation, stroke 
outcome, and complication prediction. Common imaging modal-
ities in acute stroke were computed tomography (CT) and mag-
netic resonance imaging (MRI) for stroke diagnosis and triaging 
and digital subtraction angiography (DSA) for both stroke diagno-
sis and treatment. Examples of those imaging modalities are 
demonstrated in Figs. 2 and 3.
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Fig. 1 General pathway of stroke diagnosis and treatment. Solid line represents general practice; dashed line 
represents optional pathway. EMS emergency medical service, CT computed tomography, MRI magnetic 
resonance imaging 

2.1 Diagnosing Large 

Vessel Occlusion (LVO) 

Large vessel occlusions are defined as blockages of the proximal 
intracranial arteries, accounting for approximately 24–46% of acute 
ischemic strokes [9]. Diagnosing an LVO is an important step of 
stroke diagnosis and treatment considerations; patients with LVO 
are potential candidates for endovascular thrombectomy, which is 
the most effective treatment available to recanalize an occluded 
artery [8, 10, 11]. Endovascular thrombectomy is a highly 
specialized procedure, and the personnel and equipment needed 
for thrombectomy are not widely available. Patients often need to 
be transferred from the hospital where they are initially evaluated to
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Fig. 2 Common CT scans used in acute stroke. This example case showed left-sided stroke (on the right side 
of the image) with occlusion of the middle cerebral artery (M1 segment). The NCCT had only very subtle 
changes, and the CT perfusion showed large perfusion deficit (asymmetrically low measures in CBF and 
asymmetrically high measures on Tmax and MTT) and small irreversible tissue injury. Penumbra/core 
mismatch is the volume ratio between prolonged Tmax area and decreased CBF area; the summary image 
from RAPID software showed mismatch ratio of 99.5 mL/3.6 mL. CTA showed middle cerebral artery main 
trunk (M1 segment) occlusion. The DSA image showed recanalization of the artery occlusion after throm-
bectomy. NCCT non-contrast computed tomography, CBV cerebral blood volume, CBF cerebral blood flow, 
Tmax time to maximum of the tissue residue function, MTT mean transit time, CTA computed tomography 
angiography, DSA digital subtraction angiography



a comprehensive stroke center with specialists who perform throm-
bectomy. Non-specialized hospitals must have the ability to reach
the initial diagnosis of LVO-related stroke and arrange urgent
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Fig. 3 Common MRI sequences used in acute stroke. This example case showed left-sided stroke (on the right 
side of the image) with occlusion of a middle cerebral artery branch (M2 segment, inferior division). The 
DSC-PWI and ASL showed the perfusion deficit (asymmetrically low measures in CBF and asymmetrically high 
measures on Tmax and MTT), which was much greater than the irreversible tissue injury on DWI, with a 
mismatch ratio of 2.9. GRE did not show blooming effect (a common finding of acute intra-arterial thrombus), 
MRA showed a left-sided large vessel occlusion (M2 segment, white arrow), and T2-FLAIR taken 24 h after the 
stroke showed injured brain tissue after the stroke (white arrows). DSC-PWI dynamic susceptibility contrast 
perfusion-weighted imaging. ASL arterial spin labeling, CBV cerebral blood volume, CBF cerebral blood 
flow, Tmax: time to maximum of the tissue residue function, MTT mean transit time, DWI diffusion-weighted 
imaging, ADC apparent diffusion coefficient, GRE gradient-recalled echo sequence, MRA magnetic resonance 
angiography, T2-FLAIR T2-weighted fluid-attenuated inversion recovery



transfer to a comprehensive stroke center. During initial triage, 
automatic detection of LVO may accelerate the acute stroke proto-
col and patient transfer [12].
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CT angiography (CTA) is the image modality of choice for 
rapid, non-invasive diagnosis of a large vessel occlusion. Several 
studies have used machine learning to demonstrate the feasibility 
to identify LVO on CTA. Viz.ai developed a commercial method of 
LVO detection that was achieved by a two-step analysis of CTA 
vessel segmentation via a 3D U-Net and large vessel classification 
via comparison of endpoint length and Hounsfield unit 
(a standardized unit for CT image pixel) value in MCA branch 
segmentation. Yahav-Dovrat et al. [13] reported the performance 
of this system in a prospective cohort of 404 stroke protocol CTAs. 
Seventy-two of the 404 stroke protocol CTAs had an LVO, and the 
software showed a sensitivity of 82%, a positive predictive value of 
64%, and a negative predictive value of 96%. The relatively low 
sensitivity and positive predictive value may limit the clinical utility 
of the reported model, as the screening process of acute ischemic 
stroke requires high sensitivity. Stib et al. [14] trained convolu-
tional neural networks (CNNs) with maximal intensity projection 
(MIP) images of multiphase CTA from 270 patients with LVO and 
270 without LVO. The authors then tested the model in a balanced 
dataset of 62 patients, which showed a sensitivity of 100% and 
specificity of 77% by using all phases in multi-phase CTA, exceeding 
the performance of single-phase CTA with a sensitivity of 77% and 
specificity of 71%. To note, a non-deep learning-based commercial 
method from RAPID showed excellent sensitivity and specificity 
(above 95%) in an independent validation cohort [15]. These auto-
mated technologies have already become integrated into the clinical 
practice of many stroke systems of care, and further refinement of 
algorithm for center-specific population may improve the clinical 
performance. 

LVO can also be detected from non-angiographic images, 
specifically non-contrast CT, which is more widely available than 
CTA. CTA requires intravenous contrast injection, which is typi-
cally not given to patients with kidney failure and/or an allergy to 
iodinated contrast. You et al. [16, 17] reported a XGBoost model 
trained with 200 cases’ clinical data and non-contrast CT image 
features extracted from the bottleneck of U-Net; the model showed 
a sensitivity of 95.3% and specificity of 68.4% in 100 test cases. 
Olive-Gadea et al. [18] reported a DenseNet and decision tree-
based prediction model to diagnose LVO from non-contrast CT 
images, showing a sensitivity of 83.1% and specificity of 85.1%, 
which exceeded the performance of a National Institutes of Health 
(NIH) stroke scale-based model. 

Digital subtracted angiography (DSA) is an invasive diagnostic 
method for LVO used to guide interventional neuroradiologists 
treating the vascular occlusion. Thrombectomy treatment is



performed under the guidance of DSA to retrieve the thrombus 
causing occlusion. However, reading DSA images requires highly 
specialized training in interventional neuroradiology, and a real-
time evaluation of treatment effect during the thrombectomy pro-
cedure is often required. Thrombolysis in cerebral infarction 
(TICI) scale is an evaluation on DSA for stroke treatment effect 
after thrombectomy procedure. Previous studies reported that the 
inter-reader agreement of TICI was low [19, 20]. Machine learning 
on DSA studies is challenging because the DSA contains 2D pro-
jection images from a 3D vasculature which are sensitive to the 
position of the X-ray detector plane, as well as temporal informa-
tion that makes the data more similar to a video. When reading the 
DSA images, radiologists focus on the anatomical difference com-
pared to the normal atlas, the speed of contrast filling into the 
arteries, the extent of contrast filling into the capillary system, and 
the contrast drainage from the veins. 
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Ueda et al. [21] collected DSA images with and without mis-
registration artifact and applied U-Net and convolutional patch 
generative adversarial network architecture as generator and dis-
criminator networks to predict non-misregistered DSA from mis-
registered DSA. Zhang et al. [22] proposed a U-Net to track and 
segment the brain vessels from DSA, which could be the first step 
for building a diagnostic tool. As DSA is a 2D image with temporal 
information, studies used different strategies to blend these features 
into a neural network. Bhurwani et al. [23] proposed an ensembled 
convolutional neural network for post-thrombectomy DSA images 
and predict the reperfusion status. They achieved a sensitivity of 
90% and specificity of 74% on diagnosing reperfusion after throm-
bectomy. Su et al. [24] proposed a curated algorithm including 
phase classification, motion correction, and perfusion segmentation 
to achieve final TICI scoring using ResNet-18. They achieved an 
agreement of 90% between the algorithm and human reader. To 
note, human-to-human agreement was 89%. Researchers from the 
same group [25] also designed a sophisticated network for spatial 
and temporal feature extraction and predict perforation, a compli-
cation from thrombectomy procedure. The model predicted perfo-
ration with precision of 0.83 and recall of 0.70, a performance 
similar to that of human expert readers. 

In addition to classifying LVO on imaging, studies also showed 
it is feasible to predict LVO based on clinical evaluation, which 
could prepare the emergency medical services (EMS) for direct 
transport to comprehensive stroke centers [26–30]. Chen et al. 
[27] trained ANN models using tenfold cross-validation on 
600 patients with 1:1 ratio of LVO and non-LVO using patients’ 
NIHSS breakdown score, demographics, medical history, and risk 
factors as input. The ANN models reached sensitivity of 0.807 and 
specificity of 0.833. Wang et al. [26] from the same group then 
trained 8 machine learning models on 15,365 patients and test on



4215 patients using their NIHSS, demographics, medical history, 
and risk factors as input. They showed random forest model per-
formed the best with an AUC of 0.831, sensitivity of 0.721, and 
specificity of 0.827. 
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2.2 Predicting Stroke 

Onset Time 

In 14–27% of strokes, the symptom onset time is not known [31– 
33]. For those patients, identifying the likely onset time is crucial 
for proper treatment. Indeed, it is key to know if one is still within 
the treatment window for intravenous thrombolysis (within 4.5 h) 
or endovascular therapy (within 6 h if presence of LVO plus no 
extensive lesion on non-contrast CTor 24 h if presence of LVO and 
target mismatch on perfusion imaging). MRI plays a key role in 
estimating the duration of stroke. Studies have shown that fluid-
attenuated inversion recovery (FLAIR) usually detects ischemic 
lesion after 3–6 h of stroke onset [34, 35], in contrast to 
diffusion-weighted imaging (DWI), which detects ischemic lesions 
within minutes of stroke. Therefore, the “mismatch” between 
FLAIR and DWI may be used as a clock for determining stroke 
onset time [36]. Lee et al. [37] captured 89 vector features from 
DWI and FLAIR imaging and trained machine learning models 
including logistic regression, support vector machine, and random 
forest to classify if the stroke onset is within 4.5 h. They found the 
machine learning models were more sensitive (75.8% vs 48.5%, 
p = 0.01) but less specific (82.6% vs 91.3%, p = 0.15) compared 
to human readers. Similar results were also achieved by other 
research groups [38]. Perfusion MRI has not been studied in the 
past for determining the stroke onset time. Ho et al. [39, 40] 
extracted deep features using an autoencoder from perfusion MRI 
to classify whether stroke onset time was within 4.5 h (the current 
time window for intravenous tissue plasminogen activator [tPA]). 
Using input DWI, apparent diffusion coefficient (ADC), FLAIR, 
and perfusion-weighted images, they achieved a ROC AUC of 
0.765. This approach outperformed DWI-FLAIR-based machine 
learning methods (AUC of 0.669) and clinical methods (AUC of 
0.58) in the same dataset. The use of imaging to determine the time 
of stroke onset may increase the number of patients eligible for 
time-limited stroke treatments, such as intravenous 
thrombolysis [31]. 

2.3 Stroke Lesion 

Segmentation 

Non-contrast-enhanced CT scan is the most common initial imag-
ing obtained for stroke patients. Therefore, CT datasets are usually 
much more common and larger than MRI datasets. However, it is 
generally more challenging to diagnose early stroke or predict final 
stroke lesions on CT than MRI, as changes on CT related to early 
hyperacute phase (<6 h) of ischemic stroke are very subtle, includ-
ing loss of gray and white matter differentiation, hypoattenuation 
of deep nuclei, and cortical hypodensity with associated parenchy-
mal swelling and gyral effacement. The Alberta Stroke Program



Early CT Score (ASPECTS) is a scoring system that assesses stroke 
lesion presence based on early hyperacute phase changes on 
non-contrast CT image; scores range from 0 to 10, with 0 repre-
senting extensive ischemic damage and 10 representing no evidence 
of ischemia [41]. Current guidelines recommend reperfusion treat-
ment for those with high ASPECTS [8], meaning less injured 
tissue, but ongoing research and trials are investigating the benefit 
of treating low ASPECTS stroke patients [42]. DWI/ADC is the 
most common and accurate MRI sequence to identify early stroke 
lesions (using a threshold of ADC ≤ 620 × 10-6 mm2 /s). In 
addition, automated segmentation on MRI/CT would benefit 
acute treatment decisions as well as enable researchers to conduct 
clinical research on a much larger scale. 
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Many studies have showed the use of machine learning for 
stroke lesion segmentation on acute to subacute CTs and MRIs 
[43–57]. Kuang et al. [58] trained a random forest classifier on 
non-contrast CT images from 157 stroke patients to predict the 
ASPECTS score on MRI scanned within 1 h after the CT image and 
tested on 100 patients. They achieved a sensitivity of 66.2% and 
specificity of 91.8% in 100 × 10 ASPECTS regions and sensitivity of 
97.8% and specificity of 80% in classifying ASPECT >4 and ≤4. Qiu 
et al. [57] from the same group used the same dataset to segment 
the early stroke lesion on non-contrast CT images using MRI as 
ground truth. They proposed a random forest algorithm with 
sophisticated feature engineering of distance feature, atlas encoded 
lesion location feature, and U-Net generated probability map of 
lesions from a separate dataset as input. They showed good corre-
lation between predicted stroke lesion volume and ground truth 
(r = 0.76) and mean volume difference of 11 mL. Two commercial 
software programs for automatic ASPECTS scoring (e-ASPECTS, 
Brainomix, and Rapid ASPECTS, iSchemaView) are available and 
reported to be not inferior or even more accurate than clinicians 
[59–64]. 

The Ischemic Stroke Lesion Segmentation (ISLES) 2015 chal-
lenge provided training and testing data for subacute stroke lesion 
segmentation using MRI sequences including DWI and FLAIR. In 
this challenge, the highest performance for lesion segmentation was 
achieved by a 3D CNN with Dice score coefficient (DSC) of 0.57 
[45]. Chen et al. [43] developed a two-step method to segment 
stroke lesions from DWI, reaching a DSC of 0.67. The first step was 
using an encoder-decoder CNN to propose a lesion segmentation, 
with a second step CNN which took patches of original DW images 
and previous output at multiple scales as input and classified the 
proposed segmentation as true or false. Other studies reached 
similar results (DSC 0.64–0.76) with 2D and 3D encoder-decoder 
CNNs [47–50]. The ISLES 2018 challenge provided training and 
testing data for acute stroke CT perfusion imaging to predict 
irreversibly injured tissue defined on DWI [65]. The top team



used a 3D multi-scale U-Net with atrous convolution algorithm 
and achieved an average DSC and an average absolute volume 
difference of 0.51 and 10.2 mL, respectively [66]. Other studies 
also reached similar results but were less accurate than the top 
performing team (DSC 0.44–0.49) [67, 68]. 
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The aforementioned methods require manual labeling of stroke 
lesions on many images to serve as training, which is expensive and 
limits the scale of medical image deep learning research. For this 
reason, Zhao et al. [52] explored semi-supervised algorithms 
(a combination of K-means clustering and CNN) in a weakly 
labeled stroke segmentation dataset using acute DWI and ADC, 
reaching a mean DSC of 0.64. Federau et al. [53] explored 3D 
U-Net segmentation using a dataset augmented with synthetic 
stroke lesions on DWI, achieving a DSC of 0.72. More recently, 
Zhang et al. [51] utilized a feature pyramidal network [69] and a 
U-Net with multi-plane (axial, sagittal, and coronal planes) DWI to 
perform lesion segmentation, which achieved a DSC of 0.62. As 
radiologists usually interpret MRI by looking at different 
sequences, neural networks that take different imaging sequences 
as input and “fuse” their information are an important research 
direction to improve the diagnosis. 

Winzeck et al. [55] proposed to train an ensemble of CNNs 
instead of individual CNNs. The authors adopted the CNN struc-
ture from the highest performance model in ISLES 2015 challenge. 
They found that an ensemble of five 3D CNNs segmented the DWI 
lesion from ADC, DWI, and B0 images more accurately than 
individual CNNs (median DSC 0.82 vs 0.79). Wu et al. [44], 
from the same group, trained the ensemble of CNNs with a 
multi-center, multi-vendor dataset with ADC, DWI, and B0 data 
and found that it performed better than models trained with a 
single-center dataset, with a median DSC of 0.86 (IQR 
0.79–0.89). Although the model performance cannot be directly 
compared between papers as they all used different test datasets, 
this chapter has reported the highest DSC in stroke lesion segmen-
tation so far. 

2.4 Predicting Stroke 

Lesions in the Future 

As compared to the stroke lesion segmentation on a single-time 
point imaging, segmenting a final lesion or hemorrhagic transfor-
mation on follow-up images using baseline CT/MRI is a way to 
predict patient clinical and radiographic outcome in the future. In 
particular, methods that can predict individual response to treat-
ment (e.g., predicting the future outcomes in the presence and 
absence of treatment) can be useful to determine whether the 
treatment would benefit to this individual. 

The ISLES challenges from 2016 and 2017 were focused on 
stroke lesion prediction from initial MRIs, including diffusion and 
perfusion imaging [70]. Compared to human inter-reader agree-
ment of DSC of 0.58, the best performing model, using an



encoder-decoder CNN, achieved a DSC of 0.32 [70]. Using data 
from this challenge, Pinto et al. [71] proposed an encoder-decoder 
CNN combined with 2D gated recurrent unit layers [72], with the 
TICI score fused at the end to generate lesion predictions based on 
different TICI scores. The model had a similar DSC of 0.35. 
Nielsen et al. [73] used a CNN to predict the final stroke lesion 
using baseline DWI and MR perfusion and reported an ROC AUC 
of 0.88. They also found CNNs trained with either treatment or no 
treatment predicted different stroke lesions, suggesting a role to 
use such models to explore differential outcomes with therapy. Ho 
et al. [74] proposed a CNN model to predict lesions directly from 
PWI source images (i.e., rather than from the parameter maps 
created by post-processing software), which reached a similar 
ROC AUC of 0.871. Yu et al. [75] showed that an attention-
gated U-Net model could predict final stroke lesions at 2–7 days 
from baseline MR perfusion and diffusion images regardless of 
reperfusion status with a median DSC of 0.53 and ROC AUC of 
0.92. In a separate study aimed at providing more accurate penum-
bra and ischemic core information, Yu et al. [76] pre-trained an 
attention-gated U-Net model with DWI and MR perfusion maps in 
patients with partial reperfusion or unknown reperfusion and then 
fine-tuned this pre-trained model with minimal reperfusers to pre-
dict penumbra and major reperfusers to predict ischemic core. The 
model achieved a median DSC of 0.60 for penumbra and 0.57 for 
ischemic core, exceeding the performance of the automated pen-
umbra and ischemic core segmentation from state-of-the-art soft-
ware. In a slightly different approach, Wang et al. [77] used a CNN 
to identify penumbral tissue (as defined by the Tmax perfusion 
parameter from contrast PWI) on non-contrast arterial spin label-
ing (ASL) with an ROC AUC of 0.958 which provided similar 
stroke triaging in 92% of cases without the need to inject a contrast 
agent. 
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It is more challenging to predict the final stroke lesion from CT 
image as the markers are not correlated with tissue injury as well as 
DWI. Robben et al. [78] proposed a CNN with parallel inputs from 
source CT perfusion images and clinical metadata, which achieved a 
mean DSC of 0.48. An ablation study was also performed, which 
showed in addition to image information, time from imaging to 
treatment also influenced the model prediction. Amador et al. [79] 
applied temporal CNN to predict the final lesion from the baseline 
CT perfusion source image, which achieved a DSC of 0.33. Kuang 
et al. [80] trained a random forest model from 67 patients’ CT 
perfusion maps and clinical data and tested in 137 patients. They 
found the model reached a median volumetric difference of -
3.2 mL and DSC of 0.388 and the model was significantly more 
accurate than thresholding methods (Tmax thresholding and CBF 
thresholding), although the reperfusion status of those patients 
were heterogeneous.
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2.5 Predict 

Hemorrhagic 

Transformation 

Hemorrhagic transformation is a potential complication of stroke 
treatment. Large hemorrhagic transformation can be lethal. Pre-
dicting hemorrhagic transformation after reperfusion therapy has 
been investigated in the past using statistical methods. To improve 
the prediction, Yu et al. [81, 82] proposed a long short-term 
memory network (LSTM) to predict the segmentation of hemor-
rhagic transformation lesion identified by gradient-recalled echo 
(GRE) sequence performed at 24 h after stroke onset, using base-
line MR perfusion as input. The model demonstrated an ROC 
AUC of 0.894, which was higher than a previous SVM approach 
(ROC AUC of 0.837). Jiang et al. [83] included multi-parametric 
MRI and clinical data to predict the presence of hemorrhagic 
transformation. The image sequences were separately fed in to 
inception V3 architecture and connected with clinical data at the 
fully connected layers. The model achieved a high AUC of 0.932 
and an accuracy of 0.873 in binary classification of hemorrhagic 
transformation. 

2.6 Predicting Stroke 

Clinical Outcomes 

Compared to predicting future stroke lesions on images, clinical 
outcome prediction is more difficult for several reasons. The most 
common scoring system, the modified Rankin score (mRS), is 
nonlinear and subjective, and the unit of analysis is each patient 
rather than each voxel (Table 1). The majority of the previously 
published studies used non-imaging data as input to predict clinical 
outcomes using simple statistical or more complex machine 
learning models [84–89]. However, images may provide more 
information such as the spatial location of infarct and hemorrhage 
and the presence of brain atrophy. Osama et al. [90] proposed a 
parallel multi-parametric feature-embedded Siamese neural net-
work [91] to classify 3-month mRS from 0 to 4 using the MRI 
perfusion maps and clinical data from the ISLES 2017 challenge. 
This model achieved an average accuracy of 37% on each class using 
leave-one-out cross-validation testing. Nishi et al. [92] proposed a 
U-Net with DWI as input and stroke lesion segmentation as out-
put. Then the bottleneck features of the U-Net were extracted to 
predict whether the 3-month mRS would be greater than 2, a 
common metric of good clinical outcome. This method achieved 
a ROC AUC of 0.81, exceeding the performance of ASPECTS 
Score (ROC AUC of 0.63) and ischemic core volume models 
(ROC AUC of 0.64). These studies show promise that automated 
imaging analysis might be helpful in the prediction of clinical out-
comes, but further study into these complex and ambitious predic-
tions is needed.
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Table 1 
Modified Rankin scale 

0 No symptoms at all 

1 No significant disability despite symptoms; able to carry out all usual duties and activities 

2 Slight disability; unable to carry out all previous activities, but able to look after own affairs without 
assistance 

3 Moderate disability; requiring some help, but able to walk without assistance 

4 Moderately severe disability; unable to walk without assistance and unable to attend to own bodily 
needs without assistance 

5 Severe disability; bedridden, incontinent, and requiring constant nursing care and attention 

6 Dead 

2.7 Predicting 

Cerebral Blood Flow 

(CBF) and 

Cerebrovascular 

Reserve (CVR) 

Sometimes, it is useful to obtain more accurate images of biomar-
kers that drive stroke severity, such as CBF. The current CBF gold 
standard, O-15 water positron emission tomography (PET), is 
much less accessible than MRI or CT given its strict requirement 
for radiotracer production within the facility and exposure to radia-
tion. ASL, a non-invasive MRI sequence measuring CBF without 
the use of intravenous contrast, allows repeat examination and 
limits any potential adverse effects from contrast or radiotracer 
agent. Although ASL has been improved over the last decades, it 
has low sensitivity, frequently underestimates CBF in areas with 
delayed collateral flow, and is prone to a range of artifacts. Guo 
et al. investigated whether a U-Net CNN can produce PET-like 
CBF maps from ASL and structural images [93]. Compared to the 
ASL CBF, the synthetic PET CBF map derived from the ASL and 
structural MRI scans had a significantly higher structural similarity 
index (0.854 ± 0.036 vs 0.743 ± 0.045). By training on both 
normal subjects and patients with cerebrovascular disease, they 
showed similar good performance to predict a PET CBF map 
regardless of disease status. 

CVR is measured by calculating relative CBF change (rΔCBF) 
before and after a vasodilating drug. Patients with low CVR are at 
higher risk of future stroke, and the identification of these patients 
may be helpful in the initiation of preventative treatments, such as 
aggressive medical therapy, carotid endarterectomy, or carotid stent 
placement [94]. Acetazolamide, a carbonic anhydride inhibitor, is 
typically used as a vasodilator to measure CVR. It is generally safe, 
but it is contraindicated in patients with sulfa allergies or severe 
kidney and liver diseases. Some patients may present with stroke-
like symptoms during the test. These symptoms, although transient 
and rare, may unsettle patients and medical staff. 

To further simplify the measurement of CVR, Chen et al. [95] 
investigated the feasibility of a drug-free CVR measurement using a



U-Net CNN based on the work of Guo et al. [93]. The study also 
investigated several input combinations (MRI + PET vs MRI only) 
to determine whether baseline O-15 PET CBF information is 
required. Using a ground truth of O-15 PET rΔCBF in a cohort 
of Moyamoya disease patients (a condition with chronic narrowing 
of brain arteries leading to increased stroke risk), they showed that 
using the baseline MRI alone resulted in better performance at 
predicting regions with compromised CVR than the current clinical 
method using ASL before and after acetazolamide injection. Such a 
method may find use in estimating CVR from routine MRI scans 
acquired as part of clinical practice, obviating the need for either 
PET or acetazolamide. 
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3 Hemorrhagic Stroke or Intracranial Hemorrhage 

Hemorrhagic stroke, also known as intracranial hemorrhage, 
accounts for approximately 13% of all strokes. Hemorrhagic stroke 
was found to have similar total death (three million yearly) and 
disability (69 million disability-adjusted life year) than ischemic 
stroke, although the incidence of ischemic stroke was twice as 
great [96]. Hemorrhagic stroke is commonly diagnosed through 
non-contrast CT or MRI (GRE or SWI are particularly sensitive to 
hemorrhage). Important considerations on the diagnosis and tria-
ging include the presence, location, volume, and expansion of the 
hemorrhage. Chilamkurthy et al. [97] trained a ResNet with a large 
dataset of 300,000 CT scans to detect critical findings on CT 
including hemorrhage. The model was tested on 500 CT scans 
with high AUCs for detecting hemorrhage. However, the perfor-
mance was not as good as expert radiologists. Lee et al. [98] 
proposed an ImageNet pre-trained deep CNN that was further 
trained on 904 CT cases of acute intracranial hemorrhage to detect 
hemorrhage and classify the 5 subtypes of hemorrhage. They tested 
in independent test datasets with about 400 cases and found the 
model achieved similar performance to expert radiologists with a 
sensitivity of 92–98% and specificity of 95%. In addition, the 
researchers attempted to explain this CNN model using the atten-
tion map, which showed that the model had a similar process that 
mimics the radiologists’ workflow. Kuo et al. [99] trained a CNN 
with over 4000 head CT scans to classify and segment intracranial 
hemorrhages. They showed the model achieved an AUC of 0.991 
on 200-case independent test set, with good performance in case 
with very small and subtle hemorrhagic lesions. 

Machine learning has also been applied to diagnose the etiol-
ogy of intracranial hemorrhage, examples including microbleeds, 
vascular malformation, and intracranial aneurysms. These topics are 
reviewed in separate sections.
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4 Cerebral Vascular Malformation 

Cerebral vascular malformations occur in 0.1–4.0% of the general 
population. Arteriovenous malformations (AVMs) are the most 
dangerous cerebral vascular malformation and can cause hemor-
rhage, seizures, headaches, and focal neurologic deficits. 

Identifying intraparenchymal hemorrhage caused by AVMs on 
non-contrast-enhanced CT could be useful in triaging patients to 
appropriate treatment. Zhang et al. [100] selected radiomic fea-
tures from 11 filter-based feature selection methods and applied 
multiple supervised machine learning algorithms to classify the 
intraparenchymal hemorrhage as AVM-related or other etiology. 
The best model was AdaBoost classifier, which achieved an AUC of 
0.957, a sensitivity of 88.9%, and a specificity of 93.7% in the 
test set. 

Stereotactic radiosurgery is most successful when used to treat 
small AVMs (diameter <3 cm) or in deep and eloquent areas that 
would engender great neurologic risk with attempted resection. Its 
performance relies on the accuracy of delineating the target AVM, 
since partial volume irradiation may result in obliteration failure 
and remained symptoms. Recently, Wang et al. [101] proposed a 
three-dimensional V-Net to automatically segment the AVMs on 
contrast CT images to guide stereotactic radiosurgery. They com-
pared the V-Net model performance with human readers and 
achieved an average DSC of 0.85 and an average volume error of 
0.076 mL among 80 patients. 

Adverse radiation effects after stereotactic radiosurgery include 
cyst formation which may require surgical intervention and 
radiation-induced changes which may lead to permanent neurolog-
ical deficits in 1–3% of the patients. Deep AVMs (located in the 
thalamus, basal ganglia, and brainstem), large AVMs, large radia-
tion treatment volume, and repeated radiosurgery are risk factors to 
develop neurologic deficits after radiosurgery. Lee et al. [102] 
proposed an unsupervised classification with fuzzy c-means cluster-
ing to analyze the AVM nidus on T2-weighted MRI and analyzed 
the association between brain parenchyma component near the 
nidus and radiation-induced changes. The model automatically 
segmented nidus, brain parenchyma, and cerebrospinal fluid com-
ponents in the radiation-exposed region. Compared with manual 
segmentation, the proposed algorithm achieved a DSC of 0.795. 
The automatically segmented brain parenchyma was associated 
with radiation-induced changes.
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5 Intracranial Aneurysms 

Intracranial aneurysms (IAs) have a prevalence of 3.2% in the 
general population [103, 104]. IA rupture accounts for 80–90% 
of spontaneous subarachnoid hemorrhages [5, 105], which is usu-
ally a catastrophic event, with a mortality rate of 23–51% [4, 5] and 
permanent disability in 30–40% [4, 6]. Survivors often suffer from 
long-term neuropsychological deficits and decreased quality of life. 
Although DSA is the gold standard to diagnose an aneurysm, 
unruptured IAs can be detected with non-invasive imaging techni-
ques such as MR angiography (MRA) or CT angiography (CTA). 
Early diagnosis of IAs can benefit from clinical management which 
may prevent their rupture [106, 107]. However, there are two 
unmet clinical needs for IA: diagnosis and management. 

5.1 Difficulty in 

Aneurysm Detection 

Because of the small size of IAs and the complexity of intracranial 
vessels, aneurysm detection can be time-consuming and requires 
subspecialty training. It renders two challenges. First, there is a 
suboptimal inter-observer agreement (kappa = 0.67–0.73) in the 
detection of IA from CTA and MRA [108]. The interpretation may 
vary depending on the level of expertise. Therefore, the sensitivity 
of detecting IA in CTA and MRA can range from 60% for a resident 
to 80% for a neuroradiologist [109]. Second, there is a high false-
negative rate in detecting small aneurysms with diameter less than 
5 mm. It has been reported that the sensitivity of detecting IAs of 
less than 5 mm is 57–70% [108, 110] for CTA and 35–58% for 
MRA [109, 110]. In comparison, the sensitivity of detecting IAs 
larger than 5 mm is 94% and 86% for CTA and MRA. Given all the 
difficulties mentioned above, there is a clinical need to have high-
performance computer-assisted diagnosis (CAD) tools to aid in 
detection, increase efficiency, and reduce disagreement among 
observers which may potentially improve the clinical care of 
patients. 

5.1.1 AI Algorithm for 

Intracranial Aneurysm 

Detection 

There have been several studies showing that CAD program can 
automatically detect IA in MRA or CTA. The conventional CAD 
systems, based on manually designed imaging features, such as 
vessel curvature, thresholding, or a region-growing algorithm, 
have shown good performance in detecting IA [111, 112]. How-
ever, these conventional methods were developed on very small 
datasets and had to be modified manually when applied to new 
images. New deep learning-based methods directly learn the most 
predictive features from a large dataset of labeled images. They have 
better performance and greater generalizability than conventional 
methods. Deep learning has also been used for IA detection in 
MRA and CTA, and several studies have shown decent results 
[113–116].
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The diagnostic accuracy of models using various imaging mod-
alities has been studied. Digital subtraction angiography (DSA), an 
invasive vascular imaging procedure, is the gold standard to diag-
nose an aneurysm. Zeng et al. [117] applied 2D CNN on 3D DSA 
by concatenating five consecutive rotational angles of the DSA 
image patch as model input. The model reached an accuracy of 
99%. Duan et al. [118] performed a similar task but on 2D DSA. It 
is more difficult due to less identifiable features in the 2D projection 
image, especially the differentiation between the vessel overlaps and 
an aneurysm. They proposed a two-stage detection system: First, 
the neural network localized the target region on the DSA using 
feature pyramid network. Second, the anchor box of aneurysm and 
vessel overlaps was generated by dual input of anterior-posterior 
view and lateral view into another feature pyramid network. The 
model reached an AUC of 93.5%. 

MRA and CTA offer non-invasive diagnosis of intracranial 
aneurysms. Nakao et al. [113] and Sichtermann et al. [119] showed 
the feasibility of using CNN for aneurysm detection on time-of-
flight (TOF) MRA. More recently, Ueda et al. [114] trained a 
ResNet-18 model to detect aneurysms on using 683 TOF MRAs. 
The model was tested on both internal data and external data with 
sensitivity and specificity above 90%. Park et al. [115] proposed a 
3D CNN with a encoder-decoder structure to segment the intra-
cranial aneurysms from CT angiography. Similar to U-Net, the 
model contains skip connections to transmit output directly from 
the encoder to the decoder. The encoder was pre-trained using 
videos labeled with human actions. The model was trained, vali-
dated, and tested using 611, 92, and 115 CTAs. Augmenting 
physicians with artificial intelligence-produced segmentation 
resulted in improvement in sensitivity, accuracy, and interrater 
agreement when compared with no augmentation. Faron et al. 
[120] showed similar results in 3D TOF MRA with a smaller 
dataset. 

5.2 Difficulties in 

Aneurysm Risk 

Evaluation 

Once an IA is detected in imaging study, clinicians must determine 
how to manage an unruptured IA. Overall, IAs have a low annual 
rupture risk of 0.95% [121]. Current treatments to prevent IA 
rupture include open neurosurgical clipping or endovascular embo-
lization; both have a relatively high peri-operative risk of stroke and 
death (3–10%) [122]. Therefore, the management of unruptured 
aneurysm remains controversial [123]. Currently, the decision on 
whether to intervene is mainly based on aneurysm size. If an IA is 
larger than 5 mm in diameter in the anterior cerebral circulation or 
larger than 7 mm in the posterior circulation, surgical treatment is 
considered [123]. If an IA is smaller than these thresholds, follow-
up observation with serial imaging is typically pursued 
[124]. Change in size of an IA during the follow-up period is a 
warning sign of impending rupture and often leads to surgical or



endovascular treatment. However, IA rupture depends on multiple 
factors in addition to size, including aneurysm shape and location as 
well as hemodynamics of the aneurysm, blood pressure, and mental 
and physical stress of the patient [121, 125]. It is not optimal to 
make the decision to intervene solely on size criteria, given risk of 
rupture is multifactorial. Moreover, follow-up serial imaging takes 
time, and rupture may occur during the observation period [126– 
128]. 
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5.2.1 AI-Based 

Aneurysm Risk Prediction 

Model 

A more comprehensive morphological evaluation of IA would be 
optimal; it ideally would include data on aneurysm shape, geome-
try, presence of a daughter sac, volume, and comparison of IA 
morphology across serial scans. Deep learning-based methods 
have the potential to automatically perform precise IA segmenta-
tion and provide efficient tools for the morphological evaluation of 
IA. Furthermore, machine learning methods can take high-
dimensional, cross-domain inputs and directly learn from the 
labeled data to construct sophisticated prediction models. Feature 
ranks derived from the machine learning model could provide (? 
information) on individual factors that can influence model 
prediction. 

Several studies have attempted to segment aneurysms using 
deep learning [129, 130]. Podgorsak et al. [130] used a CNN 
with encoder and decoder architecture to segment aneurysms on 
DSA, achieving a DSC above 0.9 for intracranial aneurysms. 

Optimization of treatment decisions for unruptured small 
aneurysms [and patients with multiple aneurysms] is needed. Stud-
ies have applied machine learning algorithms to predict the out-
comes of unruptured aneurysms [131–137]. Liu et al. [132] used 
morphologic features derived from DSA and machine learning 
models to predict if an aneurysm was unstable (defined as rupture 
within 1 month), aneurysm growth, and symptomatic aneurysms. 
They found that aneurysms with a diameter between 4 and 8 mm 
and irregular morphology indicate the aneurysm instability with an 
area under curve (AUC) of 0.85 in a separate test set. Similarly, Kim 
et al. [133] used CNN on small aneurysms based upon rotational 
DSA and showed that the model had better performance on the 
prediction of aneurysm rupture than human predictions. 

Tanioka et al. used machine learning-based methods with mor-
phological and hemodynamic parameters as inputs to achieve rela-
tively high accuracy (71.2–78.3%) in predicting rupture status of IA 
[138]. They found projection ratio, irregular shape, and size ratio 
were important for the discrimination of ruptured aneurysms. Shi 
et al. further included clinical data to morphologic and hemody-
namic information, to construct a machine learning model to pre-
dict IA rupture and reported areas under the curve of 
0.88–0.91 [139].
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After aneurysm rupture, predicting common complications of 
aneurysmal subarachnoid hemorrhage such as vasospasm, delayed 
cerebral ischemia, and functional outcome could help guide patient 
care. Kim et al. [140] used clinical factors and morphological 
features of an aneurysm to predict vasospasm after IA rupture 
with a random forest regressor. The model achieved an accuracy 
rate of 0.855 (AUC of 0.88). Ramos et al. [141] used clinical and 
CT image features to predict delayed cerebral ischemia using mul-
tiple machine learning algorithms. The best model reached an AUC 
of 0.74. Similarly, Rubbert et al. [142] used clinical and imaging 
features to predict 6-month dichotomized modified Rankin scale 
using random forest, with an accuracy of 71%. 

6 Cerebral Small Vessel Disease 

Cerebral small vessel disease (cSVD) encompasses a spectrum of 
disorders affecting the brain’s small perforating arterioles, capil-
laries, and probably venules [143], which cause various focal and 
global brain lesions that can be detected on pathological examina-
tion and brain imaging [144]. cSVD has a wide range of clinical 
manifestations. Although many affected patients may remain 
asymptomatic, cSVD may herald patients at risk for acute ischemic 
stroke or intracerebral hemorrhage; it can also present as an insidi-
ous clinical course associated with progressive cognitive decline, 
development of mood disorders, and gait disturbance 
[145]. cSVD causes about one-fourth of all acute ischemic strokes 
and is a major risk factor for hemorrhagic strokes [146–148]. It is 
the most common cause of vascular dementia and mixed dementia, 
which often occurs with Alzheimer’s disease, and contributes to 
about one-half of all dementias worldwide, thus causing a massive 
health burden [146, 149, 150]. 

6.1 Imaging Features 

of cSVD 

Neuroimaging plays a pivotal role in the diagnosis and evaluation of 
cSVD [143]. According to the STandards for ReportIng Vascular 
changes on nEuroimaging (STRIVE), the imaging features of 
cSVD include recent small subcortical infarcts, white matter hyper-
intensities (WMH) of presumed vascular origin, lacunes, enlarged 
perivascular spaces (PVS), and cerebral microbleeds (CMBs) 
(Fig. 4)  [144]. These imaging findings, either individually or in 
combination, are associated with cognitive impairment, dementia, 
depression, mobility problems, increased risk of stroke, and worse 
outcomes after stroke [146, 151–153]. The quantification of cSVD 
imaging features is important for disease severity evaluation and 
clinical prognostication [154, 155]. However, these lesions are 
generally small and widespread in the brain, rendering manual 
inspection and segmentation laborious and prone to error. Machine 
learning algorithms have great potential in the automatic



quantification of the cSVD imaging features. A “total cSVD score” 
of the brain could be calculated by combining all pertinent features 
and may better represent the disease status and burden of cSVD. 
Such applications could help with disease diagnosis, treatment, 
monitoring, and prognostication in patients with cSVD. 
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Fig. 4 MR imaging features for cerebral small vessel disease. (Upper) Clinical images (upper) and illustrations 
(middle) of MRI features for cerebral small vessel disease, with a summary of imaging characteristics (lower) 
for individual features. DWI, diffusion-weighted imaging. FLAIR, fluid-attenuated inversion recovery. SWI, 
susceptibility-weighted imaging. ", increased signal. #, decreased signal. $, iso-intense signal. (The figure is 
reproduced based on reference Wardlaw et al. [145]) 

We will review current machine learning applications for the 
detection and quantification of cSVD imaging features, including 
WMH, CMB, lacune, and PVS, as well as the total burden of cSVD. 

6.2 White Matter 

Hyperintensity 

Segmentation 

WMH of presumed vascular origin, characterized by hyperintense 
lesions on fluid-attenuated inversion recovery (FLAIR) MRI within 
the white matter, is one of the main features of cSVD [144]. These 
abnormalities play a key role in normal aging, dementia, and stroke. 
Large longitudinal population-based studies have confirmed a 
dose-dependent relationship between WMH volume and clinical 
outcome, making its measurement of clinical interest [156]. The 
Fazekas visual rating scale is the most widely used method to assess 
WMH burden in the clinical setting; it is a four-grade scale rating 
the size and confluence of WMH lesions in periventricular and deep 
white matter (Fig. 5)  [157]. However, the Fazekas scale has high



intra- and inter-subject variability [158], significant ceiling/floor 
effects [159], and poor sensitivity to clinical group differences 
[160], leading to inconsistencies in WMH research. 
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Fig. 5 The Fazekas visual rating scale for white matter hyperintensity. A four-grade scale depending on the 
size and confluence of lesions is given in the periventricular (upper) and deep white matter (lower) regions, 
respectively 

Segmentation and quantification of WMH lesion volume are 
needed. Before the emergence of deep learning techniques, many 
automatic WMH segmentation methods were proposed, including 
supervised methods, e.g., k-nearest neighbors [161], support vec-
tor machine [162], Bayesian method based on signal intensity and 
spatial information [162] or multi-contrast image [163], combined 
morphological segmentation and adaptive boosting classifier [164], 
and artificial neural network [165], and unsupervised method, e.g., 
histogram analysis [166], fuzzy classification algorithm [167, 168], 
Gaussian mixture model [169], and hidden Markov random field 
model [170]. However, these methods were generally limited to 
specific imaging modalities and patient characteristics (e.g., age, 
clinical presentation) and used different metrics for analysis, making 
it hard to compare methods to one another [171].
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Fig. 6 Example of white matter hyperintensity (WMH) segmentation and quantification. (a) The original T2 
FLAIR image. (b) Automatic WMH segmentation (pink areas) and volume quantification can be achieved by 
deep learning algorithm which provides a more precise estimation of WMH burden in the brain than the 
Fazekas scale. WMH white matter hyperintensity 

6.2.1 Deep Learning-

Based Methods for WMH 

Segmentation 

The WMH Segmentation Challenge at the Medical Image Com-
puting and Computer Assisted Intervention Society (MICCAI) 
2017 (https://wmh.isi.uu.nl/) provided a standardized assessment 
of automatic methods for WMH segmentation. The multi-center/ 
multi-scanner dataset comprised images from patients with various 
degrees of age-related degenerative and vascular pathologies. The 
training dataset included 60 images from 3 scanners, with manual 
WMH segmentation by 2 experts as the ground truth. The testing 
dataset included 110 images obtained from 5 MR scanners, includ-
ing data from 2 scanners not used in the training set, to evaluate the 
generalizability of segmentation methods on untested (?) scanners. 
Five evaluation metrics, including DSC, modified Hausdorff dis-
tance, volume difference, sensitivity, and F1 for detecting individual 
lesion, were used to rank the methods. Among the 20 participants, 
all the top 10 participants applied deep learning methods 
[172]. The top-ranking methods performed similarly or better 
than the two independent human observers, who did not serve as 
the raters of the ground truth, suggesting the potential of auto-
matic methods to replace human raters (Fig. 6). Li et al. [173], the 
winner, achieved a DSC of 0.8 and a recall of 0.84 by utilizing an 
ensemble of three fully convolutional neural networks similar to 
U-Net with different initializations. Of note, they removed the

https://wmh.isi.uu.nl/


WMH prediction in the first and last 1/8 slices, where false-positive 
prediction frequently occurred, as a post-processing method. 
Andermatt et al. [174], in second place, utilized a network based 
on multi-dimensional gated recurrent units (GRU), trained on 3D 
patches, to achieve a DSC of 0.78 and a recall of 0.83. Ghafoorian 
et al. [175], in third place, constructed a multi-scale 2D CNN, 
trained in tenfolds and selecting the three best performing check-
points on the training data, to achieve a DSC of 0.77, a recall of 
0.73, and the highest F1 score of 0.78. Valverde et al. [176], in 
fourth, constructed a cascade framework of three 3D CNNs, with 
the first model to identify candidate lesion voxels, the second to 
reduce false-positive detections, and the third to perform final 
WMH segmentation. Overall, challenge results indicate that 
ensemble methods and strategies for false-positive reduction, 
including selective sampling WMH mimics, removing slices prone 
to false positives, and adding false-positive reduction model, are 
advantageous. The top-ranking models generally had very few false 
positives in normal areas that are hyperintense on FLAIR but are 
not WMH (e.g., the septum pellucidum), a fault of many lower-
ranking methods. Although the top-four ranking models remained 
to be the leaders in the inter-scanner robustness ranking, some 
higher-ranking, deep learning-based methods performed worse in 
inter-scanner robustness than the lower-ranking, rule-based meth-
ods, suggesting data-driven approaches sometimes may not gener-
alize well to unseen scanners. 
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The WMH Segmentation Challenge remains open for new and 
updated submissions. Zhang et al. [177] designed a dual-path 
U-Net segmentation model that used an attention mechanism to 
combine FLAIR sequences and a brain atlas (for location informa-
tion) inputs to achieve higher performance than the previously 
mentioned methods. Park et al. [178] proposed a U-Net with 
multi-scale highlighting foregrounds, which was designed to 
improve the detection of the WMH voxels with partial volume 
effects, and achieved a record high of DSC (0.81) and F1 score 
(0.79). 

Although deep learning methods are gaining popularity and 
have shown great performance in the WMH Segmentation Chal-
lenge, a recent systemic review [179] of automatic WMH segmen-
tation methods developed from 2015 to July 2020 showed no 
evidence to favor deep learning methods in clinical research over 
the k-NN algorithm [180, 181], linear regression [182, 183], or 
unsupervised methods (e.g., fuzzy c-means algorithm [184, 185], 
Gaussian mixture model [186], statistical definition [187]), in 
terms of spatial agreement with reference segmentations (i.e., 
DSC). Non-deep learning methods, such as k-NN and linear 
regression methods, have the advantage of simplicity, can be easier 
to train, and may be less susceptible to overfitting when dealing



with a limited amount of training data. Future research requires 
high-quality large-sized open data and code availability to over-
come bias in study design and ground truth generation in order 
to fully compare and validate these methods [188]. 

Machine Learning for Cerebrovascular Disorders 945

6.3 Cerebral 

Microbleed (CMB) 

Detection 

CMBs are radiological manifestations of cerebral small vessel dis-
ease, usually defined as small (≤10 mm) areas of signal void on 
T2�-weighted gradient-recalled echo (GRE) or susceptibility-
weighted images (SWI). CMBs are frequently seen in patients 
with spontaneous intracranial hemorrhage [189] or cognitive 
impairment [189] and are associated with a higher risk of hemor-
rhage after IV thrombolysis or therapeutic anticoagulation 
[190, 191]. CMBs are highly associated with underlying uncon-
trolled hypertension (particularly when located in deep and/or 
posterior fossa structures) [192] and/or cerebral amyloid angio-
pathy (especially when seen in cortical locations) [193]. Detecting 
CMBs can be clinically important to assess the benefits and risks in 
treatment planning for stroke patients. 

Greenberg et al. [189] published a detailed field guide to CMB 
detection. The small size of CMBs and the existence of several 
CMB mimics (e.g., small veins, calcifications, cavernous malforma-
tions, iron deposition in deep nucleus, and flow voids) lead to 
limited inter-observer agreement, long scan interpretation time, 
and increased error rate by manual inspection, especially for 
patients with heavy CMB load. 

Automatic CMB detection methods might improve the effi-
ciency and accuracy of CMB identification. Radiomic-based and 
traditional machine learning automatic detection methods have 
been investigated. Van den Heuvel et al. [194] used morphological 
features based on the dark and spherical nature of CMBs and 
random forest classifier to achieve a sensitivity of 89.1% and 25.9 
false positives per subject on CMB detection. Several studies have 
applied deep learning models to improve CMB detection [195– 
198]. Dou et al. [198] utilized a two-step cascade framework, first 
with a 3D fully convolutional network for the screening of CMB 
candidates, followed by a 3D CNN discriminator for the exclusion 
of CMB mimics, to achieve a sensitivity of 93.16%, precision of 
44.31%, and 2.74 false positives per subject for the detection of 
CMB on SWI. Liu et al. [196] used a two-stage 3D CNN architec-
ture, while adding phase images to SWI as model inputs. The phase 
images enabled the differentiation of diamagnetic calcifications 
from paramagnetic CMB, which is not a distinction radiologists 
can make solely on SWI. Their model successfully reduced false-
positive detection and achieved a sensitivity of 95.8%, precision of 
70.9%, and 1.6 false positives per subject. Rashid et al. further 
added quantitative susceptibility mapping (QSM) to SWI as inputs 
to construct a multi-class U-Net CNN method to differentiate 
CMBs and non-hemorrhage iron deposits, which was not



achievable with SWI and phase images [197]. The multi-class 
model reached a sensitivity of 84% and a precision of 59% for 
CMB detection and a sensitivity of 75% and a precision of 75% for 
iron deposit detection. 
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6.4 Lacune Lesion 

Detection 

Lacunes of presumed vascular origin are sequelae of chronic small 
subcortical infarcts or hemorrhages located in deep gray and white 
matter in the territory of a perforating arteriole [144]. They are 
associated with an increased risk of stroke, dementia, and gait 
impairment [143, 144]. In neuroimaging, lacunes appear as 
round or ovoid, subcortical, fluid-filled cavities, measuring between 
3 and 15 mm, typically showing a surrounding hyperintense gliotic 
rim on T2 FLAIR images [144]. Longitudinal spatial mapping 
studies show new WMH forming around small subcortical infarcts 
[199] and new lacunes forming at the margin of WMH [200], 
suggesting a strong association and vicinity between the two types 
of lesions. Therefore, automatic applications that can not only 
segment WMH but also detect lacunes are desired. However, few 
studies have proposed automatic methods for lacune detection. 
Uchiyama et al. [201] developed an algorithm that first used 
top-hat transformation and multiple-phase binarization techniques 
to detect potential candidates of lacune and then used rule-based 
schemes and a support vector machine to eliminate the false posi-
tives to achieve a sensitivity of 96.8% with 0.76 false positive per 
slice. Wang et al. [169] applied a multi-step algorithm to detect 
WMH, cortical infarcts, and lacunes. The steps included extraction 
of brain tissue, segmentation of hyperintense lesions from brain 
tissue using Gaussian mixture model, separation of WMH and 
cortical infarct based on anatomical location and morphological 
operation, and segmentation of lacunes based on location and 
intensity threshold. They achieved a sensitivity of 83.3% with 0.06 
false positives per subject for lacune detection. Ghafoorian et al. 
[202] used a two-stage deep learning method, which included a 
fully convolutional neural network for candidate detection and a 
3D multi-scale location-aware CNN for false-positive reduction. 
The method achieved a sensitivity of 97.4% with 0.13 false positives 
per slice. 

6.5 Perivascular 

Space Quantification 

Perivascular spaces (PVS), also known as Virchow-Robin spaces, are 
extensions of extracerebral fluid spaces that surround the 
penetrating vessels of the brain [144]. They were recently recog-
nized as parts of the glymphatic system, which is a brain-wide 
perivascular fluid transport system responsible for the clearance of 
waste in the brain [203]. Normal PVS are not typically seen on 
conventional MRI, while enlarged PVS are associated with progres-
sion of subcortical infarcts, WMH, CMBs, and cognitive decline 
and are considered a biomarker for cSVD [204]. In neuroimaging, 
PVS appear as round or ovoid cavities with diameters less than



3 mm and demonstrate signal intensity identical to that of CSF. 
They are typically located in the inferior basal ganglia, centrum 
semiovale, and midbrain. PVS may look similar to lacunes on 
MRI. However, PVS do not have a surrounding gliotic rim and 
appear more elongated when imaged parallel to the course of the 
penetrating vessel. The severity of PVS can be graded by a widely 
used visual rating scale according to Charidimou et al., which is a 
four-point grade based on the total number of PVS (0, no PVS; 
1 [mild], 1–10 PVS; 2 [moderate], 11–20 PVS; 3 [moderate to 
severe], 21–40 PVS; 4 [severe], > 40 PVS) in the basal ganglia and 
centrum semiovale [205]. Given the small size and the large num-
ber of PVS, it is extremely laborious and time-consuming to per-
form manual counting or segmentation of PVS, which may explain 
the scarcity of studies about automatic methods for PVS quantifi-
cation in the literature. Park et al. [206] proposed a supervised 
method to perform automatic PVS segmentation method based on 
manually derived PVS masks on 7 T MR images. They extracted 
Haar-like features, which are often used in object recognition, from 
regions of interest determined by brain and vascular structure and 
used a random forest classifier to achieve a DSC of 0.73, sensitivity 
of 69%, and positive predictive value of 80%. Ballerini et al. [207] 
propose a PVS segmentation technique based on the 3D Frangi 
filtering. Because of the lack of ground truth of PVS segmentation 
mask, they alternatively optimized and evaluated the method by 
using ordered logit models and visual rating scales. The method 
achieved a Spearman’s correlation coefficient of 0.74 (p < 0.001) 
between segmentation-based PVS burden and visual rating scale. 
Dubost et al. [208] used 3D convolutional neural network regres-
sion to predict visual rating scale and achieved an intraclass correla-
tion coefficient of 0.75–0.88 between visual and automated scales, 
which was even higher than the inter-observer agreement among 
human raters. 
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6.6 Total Small 

Vessel Disease Burden 

cSVD is considered a dynamic, whole brain disorder with a wide 
spectrum of clinical presentations and diffuse imaging manifesta-
tions in the brain while sharing common microvascular pathologies 
[209]. A multifactorial approach that combines all imaging features 
may better represent the burden and disease status of cSVD. Several 
visual scoring systems of total cSVD burden have been introduced 
[154, 205]. Staals et al. [154] proposed a four-point score in which 
one point is given in the presence of each of the cSVD imaging 
feature: (1) more than one lacune, (2) more than one microbleed, 
(3) moderate to severe (more than 11) PVS in basal ganglia, and 
(4) periventricular WMH Fazekas score of 3 and/or deep WMH 
Fazekas score of 2–3. Although these semiquantitative scoring 
systems are pragmatic and simple for clinical use, they have several 
limitations. First, they may not be sensitive enough to represent the 
severity of the disease, as the accumulation of cSVD burden forms a



continuum, rather than several ordinal scores. Second, visual scor-
ing may be subjective and laborious for raters, especially for WMH 
and PVS evaluation. Third, existing scoring doesn’t account for 
lesion location, but anatomical location is a known key factor for 
cognitive impairment [210]. The automatic methods for different 
cSVD imaging features described in the previous sections can offer 
quantitative measurements of the cSVD burden in the whole brain 
and are well suited to overcome these limitations. Several studies 
have shown great potential for computer-generated total cSVD 
burden in the assessment of cSVD patients. Duan et al. [211] 
developed a multiple CNN-based system that can accurately seg-
ment subcortical infarcts, CMBs, WMHs, and lacunes 4.4 s per 
subject. Dickie et al. [212] used a voxel-based Gaussian mixture 
model cluster analysis on multi-contrast MR images to estimate 
overall WMH, lacunes, CMBs, and atrophy into a “brain health 
index”; they showed the brain health index has a stronger associa-
tion with cognitive outcome than WMH volume and visual cSVD 
score. Jokinen et al. [213] used automated atlas- and CNN-based 
segmentation methods to yield volumetric measures of WMHs, 
lacunes, PVS, cortical infarcts, and brain atrophy to show that the 
combined measure of all markers was a more powerful predictor of 
cognitive and functional outcomes than any individual measure 
alone. 
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Fig. 7 AI applications for cerebral small vessel disease (cSVD). AI algorithms have great potential to perform 
automatic quantification of individual cSVD imaging features. By combining these burdens, a “total cSVD 
burden” could be quantified, which might facilitate the clinical assessment, treatment monitoring, and 
outcome prediction in patients with cSVD
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Overall, previous studies have shown great potential of machine 
learning algorithms to perform automatic segmentation or detec-
tion of cSVD imaging features. By combining the measurement of 
each cSVD feature, a “total cSVD burden” can be quantified, which 
might be used to facilitate clinical assessment, treatment monitor-
ing, and outcome prediction in patients with cSVD (Fig. 7). 

7 Conclusion 

In conclusion, machine learning algorithms show great potential in 
improving clinical diagnosis and care for cerebrovascular disorders. 
ML performance varies by study and dataset, but in many cases 
already exceeds the current clinical state-of-the-art [?measures]. 
There is a need for more large cohort validation studies, and the 
development of standard test sets for comparing different algo-
rithms would enable fairer comparison between methods. In addi-
tion, more real-world experience is necessary to understand the role 
of machine learning in improving the diagnosis and care of cere-
brovascular disorders. 
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The Role of Artificial Intelligence in Neuro-oncology 
Imaging 
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and Daniel S. Chow 

Abstract 

Diagnostic imaging is widely used to assess, characterize, and monitor brain tumors. However, there remain 
several challenges in each of these categories due to the heterogeneous nature of these tumors. This may 
include variations in tumor biology that relate to variable degrees of cellular proliferation, invasion, and 
necrosis that in turn have different imaging manifestations. These variations have created challenges for 
tumor assessment, including segmentation, surveillance, and molecular characterizations. Although several 
rule-based approaches have been implemented that relates to tumor size and appearance, these methods 
inherently distill the rich amount of tumor imaging data into a limited number of variables. Approaches in 
artificial intelligence, machine learning, and deep learning have been increasingly leveraged to computer 
vision tasks, including tumor imaging, given their effectiveness for solving image-based challenges. This 
objective of this chapter is to summarize some of these advances in the field of tumor imaging. 

Key words Brain tumors, Radiogenomics, Tumor segmentation, Response Assessment in Neuro-
Oncology (RANO), Response Evaluation Criteria in Solid Tumors (RECIST) 

1 Introduction 

With the recent emergence of artificial intelligence in neuroimag-
ing, there is great interest in harnessing the power of new compu-
tational approaches that are inherently quantitative to 
non-invasively measure and classify features of brain tumors on 
routine and advanced magnetic resonance imaging (MRIs). Artifi-
cial intelligence (AI), including both machine learning (ML) and 
deep learning (DL), has the potential to automatically detect pat-
terns in images that remain elusive to the eye of a neuroimager and 
to surpass human-level performance in the prediction of glioma 
genetics, treatment response, and long-term outcome. Theoreti-
cally, these features of AI may enable clinicians to provide greater 
value to the patient by allowing for expedited and more tailored 
treatments. This chapter will provide a brief review of primary brain
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tumor epidemiology with emphasis on gliomas, evaluate present 
challenges in brain tumor imaging, and describe potential applica-
tions for AI.
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2 Brain Tumor Epidemiology 

Primary central nervous system (CNS) tumors are a rare form of 
cancer, with an incidence rate in adults estimated to be 23.8 per 
100,000 persons [1] (see Box 1) [2]. However, while these tumors 
are rare, they constitute a significant fraction of cancer morbidity 
and mortality. Within the United States, approximately 10 per 
100,000 are diagnosed with a primary brain tumor each year, and 
6 to 7 per 100,000 are diagnosed with a primary malignant brain 
tumor [3]. Brain cancer incidence is the highest in Europe 
(age-standardized incidence rate [ASR]: 5.5 per 100,000 persons) 
and North America (ASR: 5.3 per 100,000 persons), along with 
Australia and Western Asia [3, 4]. With regard to tumor types, 
astrocytomas and gliomas are the second most common malignant 
brain tumor in adults following metastasis, and gliomas represent 
approximately 30% of brain tumors and 80% of all primary malig-
nant brain tumors [4]. Gliomas vary in histology from potentially 
surgically curable grade 1 tumors (e.g., pilocytic astrocytoma) to 
aggressive grade 4 tumors (e.g., glioblastoma, GBM) with a high 
risk of recurrence and/or progression [5]. Accurately classifying 
and characterizing tumors is vital to diagnosing tumors and pro-
ducing precise prognostication. 

Cancer mortality is dependent on subtype and staging, and 
survival time after diagnosis varies greatly by grade [6, 7]. Gliomas 
are classified and graded based on histological and molecular mar-
kers [6, 7]. GBM is a subtype of glioma which arises from normal 
glial cells and consists of a group of genetically and phenotypically 
heterogeneous tumors [7, 8]. GBM is the most common primary 
CNS tumor in adults, with an incidence of 3.2 per 100,000 adults 
each year in Europe and America [9]. The incidence increases 
significantly with age, with a mean age of diagnosis at 64 for 
primary GBM and a peak incidence of 15.2 cases per 100,000 
between the ages of 75 and 84 [9]. GBM occurrence has been 
associated with several genetic diseases, including tuberous sclero-
sis, neurofibromatosis type I, and Li-Fraumeni syndrome; however, 
less than 20% of patients with GBM have a strong family history of 
cancer, and the only well-established environmental risk factor is 
exposure to ionizing radiation [10]. GBM has the poorest overall 
survival among gliomas, with 0.05–4.7% patient survival after 
5 years of diagnosis in the United States from 1995 to 2010 (95% 
CI 4.4–5.0) [4, 11]. Overall, mortality and prognosis vary tremen-
dously depending on grade and subtype, and methods to more 
accurately predict these factors would help improve treatment and 
outcomes.
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Box 1 Main Primary Central Nervous System Tumors 

Malignant 

Astrocytomas 20–25% 

Oligodendrogliomas 1–2% 

Ependymal tumors <2% 

Other 8% 

Non-malignant 

Meningiomas 37% 

Pituitary 16% 

Nerve sheath 8% 

Other 7% 

GBM remains one of the most lethal malignant solid tumors. 
The 1-year overall survival of newly diagnosed GBM is 17–30% 
with a 5-year survival rate of less than 5% [6]. Surgical resection 
followed by chemotherapy and radiotherapy remains the corner-
stone treatment choice for GBM. However, the response to che-
motherapy is variable, and nearly all patients suffer from recurrent 
disease [4]. Additionally, these tumors most frequently arise within 
the frontal lobe, leading to both cognitive and motor disabilities 
that result in loss of independence in many patients. Increasingly, 
molecular markers are being used for glioma classification and 
characterization. Mutations such as IDH1 can be a strong predictor 
of favorable prognosis and can assist in distinguishing among gli-
oma subtypes [12]. Characterizing certain genetic features such as 
IDH1 status can aid in more accurate diagnoses and 
prognostication. 

3 Present Challenges with Brain Tumor Imaging 

3.1 Segmentation While there have been significant advances in neuro-oncology 
imaging, there remain several challenges in providing accurate 
measurements of brain tumors. For example, a present limitation 
is that commonly used techniques to monitor tumor size use 
unidimensional and bidimensional manual measurements. While 
this may work for solid tumors that have a more spherical shape, 
the postsurgical cavity and tumors themselves of neuro-oncology 
patients tend to be highly irregular in shape, which increases the 
difficulty in obtaining accurate measurements. This stems from the 
fact that GBMs themselves and their recurrence commonly



demonstrate eccentric and nodular growth. For patients, such 
inconsistencies and potential inaccuracies may result in classifying 
effective treatments as ineffective or vice versa (Fig. 1). Ultimately, 
this challenge heightens the importance for the need for reliable 
and reproducible techniques for tumor size measurements. 
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Fig. 1 Head tilt affecting designation. Patient with glioblastoma after resection. Simulation of tilting the 
patient’s head up results in progression of disease (a) while in routine positioning demonstrates stable disease 
(b), and tilting downward results in partial response (c) 

3.2 Surveillance In addition to tumor segmentation, radiographic assessment has 
served as an essential tool to monitor patients with brain tumors 
and has played an important role in clinical trials. Historically, 
increases and decreases in tumor size using gadolinium contrast-
enhanced sequences have served as imaging markers for progres-
sion and treatment response, respectively [13, 14]. However, there 
are limitations of relying solely on contrast enhancement for asses-
sing disease status. Specifically, treatment-related increases in 
enhancement were observed to mimic progression with increasing 
frequency following the introduction of standard of care therapy of 
radiation and temozolomide (TMZ) [15]. This tumor pseudopro-
gression (psPD) is observed in 20–60% of patients who have under-
gone radiotherapy with TMZ and defined as increases in edema and 
contrast enhancement on MRI with or without clinical deteriora-
tion that subsequently stabilizes or resolves (Fig. 2)  [15–17]. Addi-
tionally, the incidence has been reported to be as high as 90% in 
patients that have increased sensitivity to TMZ, identified with 
methylation status of the methyltransferase (MGMT) promoter in 
glioma cells [18].
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Fig. 2 Pseudoprogression. Example of a 45-year-old female with GBM. Axial post-contrast images immedi-
ately after resection show minimal enhancing disease (a). Follow-up MRI at 1 month demonstrates new thick 
enhancement (b) that subsequently reduced on images 12 months out (c) 

Presently, the exact mechanism is still not fully understood, and 
the only accepted standard to distinguish true progression of dis-
ease (PD) from treatment-related psPD is invasive tissue sampling 
or short interval imaging or clinical follow-up, which may delay and 
compromise management changes in an aggressive tumor 
[16, 17]. In 2010, the Response Assessment in Neuro-Oncology 
(RANO) working group set criteria to address some of these chal-
lenges, including psPD [19]. However, evaluation of psPD remains 
limited with conventional imaging techniques. Challenges in mon-
itoring GBM patients due to psPD are also observed in other newer 
treatments, including immunotherapies [20, 21]. The immune-
related response criteria working group (iRANO) has made guide-
lines to address challenges of radiographic worsening in order to 
avoid classifying effective treatments as ineffective in instances of 
psPD; however, the group acknowledges that future research and 
solutions incorporating advanced imaging are necessary to improve 
assessment in these patients [21, 22]. 

3.3 Molecular 

Classification 

Glioma inter-tumoral genetic heterogeneity has been shown to 
impact both prognosis and response to therapy. For example, iso-
citrate dehydrogenase (IDH)-mutant GBMs demonstrate signifi-
cantly improved survivorship compared to IDH-wild GBMs 
(31 months vs. 15 months) [12, 23]. Recognition of the impor-
tance of genetic information has led the World Health Organiza-
tion (WHO) to place considerable emphasis on the integration of 
molecular markers for its classification schemes in its 2021 update, 
including IDH status [24]. Regarding treatment response, it is 
becoming increasingly evident that GBMs’ differing genetic attri-
butes also result in mixed responses [25]. One of the early

3.3.1 Impact of Glioma 

Inter-tumoral 

Heterogeneity



mutations discovered was O6-methylguanine-DNA methyltrans-
ferase (MGMT) promoter silencing, which reduces tumor cells’ 
ability to repair DNA damage from alkylating agents such as temo-
zolomide (TMZ). Hegi et al. [26] subsequently observed that 
MGMT promoter methylation silencing was observed in 45% of 
GBM patients, who demonstrated a survival benefit when treated 
with a combination of TMZ and radiotherapy versus radiotherapy 
alone (21.7 months versus 15.3 months). It is critical that future 
GBM monitoring integrates imaging and genetic data in order to 
provide accurate prognostic information and guide personalized 
therapies.
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3.3.2 Challenges of 

Personalized Therapy 

Discoveries in genetic profiling have spurred the development of 
new targeted therapies [27] with over 140 clinical trials presently 
evaluating personalized or targeted therapies for GBMs alone. 
These therapies are tailored to exploit genetically driven therapeutic 
targets. However, an apparent roadblock to these individualized 
approaches is the growing evidence of GBM intra-tumoral hetero-
geneity. Patel et al. demonstrated that GBMs consist of a mixture of 
cells with variable gene expression profiles using single-cell RNA 
sequencing [28]. Likewise, Sottoriva et al. observed genome-wide 
variability using surgical multisampling approach from 11 GBM 
patients [29]. Thus, each brain tumor may reflect multiple unique 
tumor habitats with corresponding differences in response and 
resistance to therapy, challenging the identification, development, 
and implementation of individualized care. 

3.3.3 MRI Biomarkers of 

Tumor Biology and Genetic 

Heterogeneity 

Both spatial and temporal variations in genetic expression result in 
alterations in tumor biology, including changes in apoptosis, cellu-
lar proliferation, cellular invasion, and angiogenesis [30]. In turn, 
these biologic changes manifest in the heterogeneous imaging 
features of brain tumors, resulting in varying degrees of enhance-
ment and edema. For example, imaging changes on contrast-
enhanced MRI result from the breakdown of the blood-brain 
barrier and can demonstrate areas of necrosis as a marker for 
apoptosis. Additionally, MRI sequences based on physiology such 
as apparent diffusion coefficient (ADC) and perfusion imaging have 
been shown to relate to tumoral cellularity and angiogenesis, 
respectively. Furthermore, promising efforts have shown that 
tumors with lower cerebral blood volume (CBV) on perfusion are 
more likely to be IDH mutants and have longer overall survival 
(OS) [31, 32]. Other reports have used enhancement patterns and 
ADC to predict IDH status with some success [33, 34]. Currently, 
efforts to provide molecular classification for brain tumors based on 
these MRI features have had mixed results. For example, classifica-
tion of IDH and MGMT mutant status has had some success; 
however, methods for 1p19q and EGFR have demonstrated less 
reproducibility [35–37]. Different mutations may have similar MRI



features, and a “single” tumor can have multiple different muta-
tions internally. Several approaches have emerged to provide stan-
dardized visual interpretation of gliomas for tissue classification. 
For example, the Visually AcceSAble Rembrandt Images (VASARI) 
feature set is a rule-based lexicon to improve the reproducibility of 
interpretation [38]. However, these methods rely on human visual 
interpretation, which is inherently subjective and prone to inter-
rater variability. Ultimately, steps are needed to provide reliable and 
reproducible methods to accurately classify molecular subtypes a 
priori. 
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4 Potential Applications for Machine Learning 

4.1 Segmentation Radiographic assessment serves an important role for clinical 
follow-up and research trials in oncology. Currently, the RANO 
criteria rely on 2D measurements of the enhancing disease as well as 
subjective assessment of the FLAIR non-enhancing tumor, which is 
then used to guide treatment strategies. However, the postsurgical 
cavity tends to be highly irregular in shape, which may increase the 
difficulty in obtaining accurate and reproducible measurements. 
Additionally, linear measurements obtained for cystic and necrotic 
tumors are often overestimated [39]. Intuitively, 3D segmentation 
provides a more accurate method for assessing tumor size com-
pared to linear 2D approaches and techniques [40–42]. For exam-
ple, Dempsey et al. [43] observed that 3D segmentation allows for 
better survival prediction compared with traditional diameter-
based analysis. 

Deep learning, an emerging branch of artificial intelligence, has 
been shown to rapidly outperform other machine learning 
approaches’ imaging benchmarks for various computer vision 
tasks [44, 45], including imaging 3D segmentation tasks. For 
example, Zhang et al. [46] observed that a CNN approach per-
formed significantly better than other techniques, including ran-
dom forest, support vector machine (SVM, a traditional linear 
machine learning technique), coupled level sets, and majority vot-
ing for brain segmentation. 

Since 2012, the Multimodal Brain Tumor Image Segmentation 
(BraTS) challenge has demonstrated the efficacy of deep learning 
approaches for tumor segmentation [47]. This unique dataset pro-
vides developers access to GBM images, which now includes over 
2000 patients from 37 institutions. As result, multiple groups have 
developed fully automated brain tumor segmentation tools which 
rely on various AI techniques to identify lesion margins and provide 
a more accurate estimate for disease burden (Fig. 3)  [48–51]. In 
2020, Isensee et al. [52] took first place with Sørensen-Dice coeffi-
cient scores of 88.95, 85.06, and 82.03 for whole tumor, tumor 
core, and enhancing tumor, respectively. Most recently in 2021,



BraTS has partnered with the Radiological Society of North Amer-
ica (RSNA) and the American Society of Neuroradiology 
(ASNR) [53]. 
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Fig. 3 Example of automated glioma segmentation using deep learning showing FLAIR edema segmentation 
(left) as well as segmentation of enhancing tissue (right). (Courtesy Peter Chang, MD) 

4.2 Surveillance As described previously, psPD cases are not reliably distinguished 
from true progression using RANO criteria with a recent meta-
analysis suggesting that upward of 36% are underdiagnosed 
[54]. In fact, the only accepted methods to distinguish true PD 
from treatment-related psPD are invasive tissue sampling and short 
interval clinical follow-up with imaging, which may delay and com-
promise disease management in an aggressive tumor [16, 17]. 

Traditional machine learning models have been previously uti-
lized for psPD characterization from radiologic imaging. Hu et al.’s 
[55] SVM approach examining multi-parametric MRI data yielded 
an optimized classifier for psPD with a sensitivity of 89.9% and 
specificity of 93.7%. Though deep learning methods have been 
leveraged less frequently, they are showing promise for



characterizing psPD versus true PD [56–58]. Jang et al. [56] 
assessed a deep learning, a long short-term memory network com-
bined with a CNN (CNN-LSTM), to determine psPD versus 
tumor PD in GBM. Their dataset consisted of clinical and MRI 
data from 2 institutions, with 59 patients in the training cohort and 
19 patients in the testing cohort. Their CNN-LSTM structure, 
utilizing both clinical and MRI data, outperformed the two com-
parison models of CNN-LSTM with MRI data alone and a random 
forest structure with clinical data alone, yielding an AUC (area 
under the curve) of 0.83, an AUPRC (area under the precision-
recall curve) of 0.87, and an F-1 score of 0.74 [56]. More recently, 
Lee et al. [58] also utilized a CNN-STM to distinguish PD from 
psPD with an accuracy range of 0.62–0.75. These examples indi-
cate that utilization of a deep learning approach can outperform a 
more traditional machine learning approach in analyzing images. 
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4.3 Molecular 

Classification 

Radiogenomics focuses on bridging the associations between med-
ical imaging and gene expression data in order to aid in the under-
standing of underlying disease mechanisms and improve 
diagnostics [59]. Certain molecular and genetic alterations in tissue 
can be observed computationally in terms of radiological appear-
ance, including shape and texture of tissue. Radiogenomics, which 
leverages the interplay between radiological and genetic features in 
oncology, is important to improve patient treatment decisions, and 
artificial intelligence has become a key player that has led to signifi-
cant advancements in these areas. AI-based radiogenomics has the 
potential to better characterize diagnosis, prognosis, and survival 
prediction by detecting key features in images that identify molec-
ular characteristics of disease. 

In gliomas, one of the earliest groups that used neural networks 
to predict tumoral genetic subtypes from imaging features was 
Levner et al. [60]. In this study, features were extracted from 
space-frequency texture analysis on the S-transform of brain MRIs 
to predict MGMT promoter methylation status in newly diagnosed 
GBM patients. Levner’s group achieved an accuracy of 87.7% across 
59 patients, among which 31 patients had biopsy-confirmed 
MGMT promoter methylated tumors. Residual CNN methods 
have also been used to predict MGMT promoter methylation status 
[61], as well as IDH mutation status. For example, Chang et al. 
developed a CNN to simultaneously classify IDH1, 1p19q codele-
tion, and MGMT promoter methylation status with high accuracy 
from imaging data derived from 259 patients in the Cancer Imag-
ing Archives dataset [35]. Chang et al. also developed a principal 
component analysis approach to disentangle the final feature layer 
and determine the most influential features for each classification 
(Fig. 4). These features largely overlap with what has been 
described in the literature by subjective visual assessment. Ryu 
et al. [62] evaluated glioma heterogeneity via textural analysis and



distinguished low- and high-grade gliomas with 80% accuracy. 
Additionally, Drabycz et al. [63] were able to classify MGMT 
promoter methylation status in glioblastoma patients with 71% 
accuracy using a textural analysis approach. 
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Fig. 4 MRI separating gliomas by MGMT methylation status. Features include thick enhancement with central 
necrosis (a) with infiltrative edema patterns (b). In contrast, features predictive of MGMT promoter methylated 
status include nodular and heterogeneous enhancement (c) with masslike FLAIR edema (d). (Copyright 
American Journal of Neuroradiology, adapted, with permission, from reference [35]) 

5 Summary 

In summary, present challenges in brain tumor imaging in part stem 
from the heterogeneity of the disease, which results in challenges 
related to disease characterization. However, the application of 
novel AI, ML, and DL approaches for brain tumor imaging aims 
to improve many of these areas due to its ability to accurately and 
reliably detect imaging patterns beyond human perception. 
Numerous public competitions (e.g., BraTS) have also spurred 
the field and have recently begun collaborations with multiple



imaging societies, including the RSNA and ASNR. Ultimately, 
there is optimism that these tools will continue to yield new oppor-
tunities to enhance discovery and care in the future. 
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8. Urbańska K, Sokołowska J, Szmidt M, Sysa P 
(2014) Glioblastoma multiforme - an over-
view. Contemp Oncol (Pozn) 18(5):307–312. 
https://doi.org/10.5114/wo.2014.40559 

9. Ostrom QT, Gittleman H, Xu J et al (2016) 
CBTRUS statistical report: primary brain and 
other central nervous system tumors diagnosed 
in the United States in 2009–2013. Neuro 
Oncol 18(suppl_5):v1–v75. https://doi.org/ 
10.1093/neuonc/now207 

10. Braganza MZ, Kitahara CM, Berrington de 
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Chapter 31 

Machine Learning for Neurodevelopmental Disorders 

Clara Moreau, Christine Deruelle, and Guillaume Auzias 

Abstract 

Neurodevelopmental disorders (NDDs) constitute a major health issue with >10% of the general world-
wide population affected by at least one of these conditions—such as autism spectrum disorders (ASD) and 
attention deficit hyperactivity disorders (ADHD). Each NDD is particularly complex to dissect for several 
reasons, including a high prevalence of comorbidities and a substantial heterogeneity of the clinical 
presentation. At the genetic level, several thousands of genes have been identified (polygenicity), while a 
part of them was already involved in other psychiatric conditions (pleiotropy). Given these multiple sources 
of variance, gathering sufficient data for the proper application and evaluation of machine learning 
(ML) techniques is essential but challenging. In this chapter, we offer an overview of the ML methods 
most widely used to tackle NDDs’ complexity—from stratification techniques to diagnosis prediction. We 
point out challenges specific to NDDs, such as early diagnosis, that can benefit from the recent advances in 
the ML field. These techniques also have the potential to delineate homogeneous subgroups of patients that 
would enable a refined understanding of underlying physiopathology. We finally survey a selection of recent 
papers that we consider as particularly representative of the opportunities offered by contemporary ML 
techniques applied to large open datasets or that illustrate the challenges faced by current approaches to be 
addressed in the near future. 

Key words Neurodevelopmental disorders, Autism spectrum disorders, Attention deficit hyperactiv-
ity disorders, Machine learning, Pattern recognition, Classification, Clustering, Stratification 

1 A Brief Introduction to Neurodevelopmental Disorders 

Neurodevelopmental disorders (NDDs) cover a large range of 
pathologies. This term can be used to refer to known genetic 
syndromes such as fragile X syndrome or, in a much broader 
sense, include conditions with multifactorial etiology such as 
autism spectrum disorders (ASD), attention deficit hyperactivity 
disorders (ADHD), or developmental dyslexia. Even more broader 
are the definitions from the DSM-5 or the ICD-10 which also 
encompasses intellectual disabilities (ID), communication disor-
ders, specific learning disorders, and motor disorders [1]. NDDs 
embrace defects that disturb the developmental function of the 
brain, which could lead to neuropsychiatric complications, learning
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difficulties, language or non-verbal communication problems, or 
motor function disabilities. However, although there is a tight 
intrication between NDDs and psychiatric disorders—for whom 
manifestations come later in life—phenomenological categories 
used in the adult population do not apply consistently in NDDs. 
The latter are conditions for which the cause or the onset is located 
during gestation or birth and should be distinguished from late-
onset disorders. We refer to [2–4] for a historical view of the 
standardized tools allowing for reliable and valid categorical dis-
tinctions, available to the community since the 2000s.
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NDDs constitute a critical health problem in our society. More 
than 10% of the general worldwide population is affected by neu-
rodevelopmental disorders [5]. The consequences of NDDs impact 
a person’s lifetime, so patient management represents a major cost 
for society. Important healthcare advances have improved the life 
course of several NDDs (e.g., very low birth weight preterm 
infants, congenital hydrocephalus) and extended the expected life-
span of others (e.g., cystic fibrosis). The assessment and study of 
individuals with NDDs become thus an increasingly crucial issue. 
Researchers and clinicians have strongly emphasized the impor-
tance of early identification and intervention to improve the level 
of functioning. However, because of the high complexity intrinsic 
to these pathologies, we face a lot of misdiagnoses or even missed 
diagnoses which prevent early and effective therapeutic interven-
tions. As an illustration, 1/5 of children diagnosed with ADHD or 
ASD in the population are currently misdiagnosed, which leads to a 
failure to get the adequate treatment or the administration of an 
unnecessary one. 

NDDs are particularly complex to approach and to diagnose for 
several reasons. First, comorbidities are common in NDDs. 
Comorbid clinical features have been shown to be the rule rather 
than the exception in NDDs, adding to the complexity of proper 
diagnostic boundaries’ delineation. Over a third of individuals with 
ASD meet criteria for ADHD, obsessive-compulsive disorder 
(OCD), disruptive behavior disorders, anxiety and mood disorders, 
intellectual disability, or epilepsy, inducing various diagnostic com-
binations [2, 6, 7]. This overlap across conditions probably origi-
nates from a shared neurological etiology. As a consequence, 
studies that exclude other psychiatric disorders have limited trans-
lational application because of the pathophysiological overlap 
between many comorbid disorders (see Fig. 1 for an illustration of 
this issue). 

In relation to this first issue, neurodevelopmental disorders 
overlap a lot in terms of etiology because of important epidemio-
logical comorbidity and community of symptoms [8]. NDDs show 
indeed considerable overlap both neuropsychologically, physiolog-
ically, and genetically. For instance, the presence of certain behav-
ioral characteristics, such as attention problems, does not



systematically indicate a specific diagnostic entity (e.g., ADHD), 
but instead, attention problems occur across a large variety of 
disorders (such as in ASD or in anxiety disorders). When biological 
bases are considered, the level of heterogeneity remains elevated. A 
wide range of neurological substrates have been associated with 
individual disorders. For example, ADHD has been associated 
with differences in gray matter within the anterior cingulate cortex, 
caudate nucleus, pallidum, striatum, cerebellum, prefrontal cortex, 
premotor cortex, and most parts of the parietal lobe [9]. 
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Fig. 1 Left: As introduced in Subheading 1, the complexity of NDDs comes from the combination of multiple 
sources of heterogeneity acting at different levels and that overlap across conditions as illustrated here with 
ASD, ADHD, and intellectual disability (ID). Right: As described in Subheading 2, ML approaches are 
instrumental to characterize and overcome the heterogeneity at each level with dedicated techniques 

Similarly, at the genetic level, both common and rare, and 
structural as well as sequence, variations have been identified as 
contributing to NDDs. There are multiple examples in which the 
identical variant has been found to contribute to a wide range of 
formerly distinct diagnoses, including autism, schizophrenia, epi-
lepsy, intellectual disability, and language disorders. These include 
variations in chromosomal structure at 16p11.2, rare de novo point 
mutations at the gene SCN2A, and common single nucleotide 
polymorphism (SNP) mapping near loci encoding the genes 
ITIH3, AS3MT, CACNA1C, and CACNB2. In the case of autism, 
high genetic heritability (70–80%) with more than 1000 genes 
contributing to ASD has been yielded [10]. These selected exam-
ples point that heterogeneity in these pathologies is clearly multidi-
mensional [3]. As a result, conferral of a diagnosis based on DSM-5



or ICD-10 criterion ascribes an underlying cause to the various 
behavioral difficulties without a method available to verify that the 
disorder arises from underlying biological dysfunction. 
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The specificity of NDDs relative to psychiatric disorders (cov-
ered in Chapter 32) is that the challenges induced by the intrication 
of a spectrum of conditions are potentialized by the developmental 
dimension. Indeed, the developmental transformation is a major 
contributor to the multidimensional heterogeneity across indivi-
duals affected by NDDs. Brain developmental trajectory exhibits 
marked variations across individuals [11, 12], but also across brain 
regions [13, 14]. The development course concerns cognitive, 
neuronal, and epigenetic maturation processes that follow distinct, 
yet inter-dependent, nonlinear trajectories [15, 16]. During devel-
opment, reorganization and competition for function are highly 
active. Compensatory mechanisms can thus interfere with potential 
alterations of the nervous system in individuals with NDDS. The 
timing of these alterations is of high relevance as different neural 
systems are selectively vulnerable to injury at different phases of 
prenatal and postnatal development [17]. This plasticity partially 
explains the heterogeneity in behavioral and cognitive dysfunction 
associated with early alteration, ranging from subtle to diffuse and 
profound. In addition, the functional impairments can be observed 
immediately in some individuals, while in others, the full range of 
deficits may not manifest until later in life [18]. 

As a consequence, early diagnosis is key since early medical 
intervention would benefit from the remarkable plasticity of the 
immature brain, allowing the patient to adapt and/or develop 
compensatory mechanisms. On the basic research side, investigat-
ing earlier allows to reduce the influence of compensatory mechan-
isms and secondary perturbations. Studies focused on young 
children are more likely to reach the causes, whereas in adult 
populations, consequential or adaptation abnormalities likely con-
taminate the observations. 

There are thus crucial needs in NDDs for a better detection of 
early, subtle signs of neurodevelopmental pathology and more 
accurate prediction of the evolution of the impairments. Gaining 
insight on the pathophysiological processes and the identification 
of more homogeneous subtypes is also required for the identifica-
tion of new targets for drug development. 

To address these needs, collective efforts have been made to 
constitute large public datasets giving access to sufficient amounts 
of multidimensional data covering the dimensions mentioned 
above (see, e.g., [19]). Recently, we have witnessed the constitution 
of large databases trying to address these issues and which we will 
refer to in the following chapters. We can mention, for instance, 
ABCD [20], ABIDE [21], EU-AIMS [22], and ADHD200 [23] 
(see Chapter 24, for general considerations regarding the rise of 
openly accessible large datasets). It induced a crucial need for



statistical approaches tailored for the data-rich setting and thus 
called for closer collaboration with the field of machine learning. 
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Unsurprisingly, the NDDs having the largest prevalence, and, 
thus, the greater societal impact and the easier recruitment, are 
largely overrepresented in these databases. As a consequence, they 
are also overrepresented in the literature of ML techniques applied 
to NDDs. In the remainder of this chapter, we focus on ASD and 
ADHD. With regard to the characteristics mentioned above, we 
argue that ASD and ADHD are highly representative of the NDDs 
in general. As detailed in Boxes 1 and 2, they are the two most 
common neurodevelopmental disorders observed in childhood, 
and they present considerable variability, both within and across 
conditions. These two syndromes share most of their comorbid-
ities, while 40–83% of children with ASD also have ADHD [24], 
and 28–87% of children with ASD show symptoms of ADHD 
[25]. See [26] for a comparison of the outcomes from recent 
neuroimaging studies in these two disorders. As a consequence of 
this heterogeneous clinical presentation, we clearly face a lack of 
objective criteria for diagnosis for these two disorders as well as for 
the other NDDs. 

Box 1 Autism Spectrum Disorder (ASD) 
ASD is a complex neurodevelopmental condition with life-
long impacts. Current prevalence is estimated to be at least 
1.5% in developed countries. The male-to-female ratio is esti-
mated to 4:1 in this pathology. This sex ratio varies, however, 
according to intellectual disability (ID): reported median sex 
ratios of 6:1 among normal-functioning subjects and 1.7:1 
among cases with moderate to severe ID [27]. Individuals 
with ASD suffer from a specific combination of deficits in 
social communication and repetitive behaviors, severely 
restricted interests, and sensory behaviors from early in life. 
Despite the vast resources devoted to the study of ASD, its 
pathogenesis remains largely unknown. Recent genetic stud-
ies have identified a number of rare de novo mutations and 
provided insight into polygenic risk, epigenetics, and gene-
by-environment interaction related to autism or autistic traits 
[28]. In addition, epidemiologic investigations focusing on 
nongenetic factors have identified advanced parental age and 
preterm birth as risk factors for ASD and have suggested that 
prenatal exposure to air pollution and short inter-pregnancy 
interval are also potential risk factors. See, e.g., [29] for more 
detailed information.
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Box 2 Attention Deficit Hyperactivity Disorder (ADHD) 
ADHD is one of the most common neurodevelopmental 
disorders, characterized by inappropriate and developmen-
tally harmful levels of inattention, hyperactivity, and impulsiv-
ity. It affects boys more often than girls. Its prevalence in the 
general population is between 3% and 4%. ADHD is diag-
nosed according to strictly defined criteria, but there is still no 
reliable biomarker of the pathology. The causes of ADHD are 
complex and multifactorial, with genetics, early environment, 
and gene-environment interplay being involved. Although 
ADHD is highly heritable, and multiple types of genetic 
variants are associated with the disease, none of them can be 
used as diagnostic. Diagnostic thresholds are given by both 
the ICD-10 and the DSM-5, but the clinical features of 
ADHD behave as continuously distributed dimensions and 
vary considerably between individuals. Clinical features are 
heterogeneous. ADHD profiles include not only its definite 
symptoms (hyperactivity-impulsiveness, inattention) and fea-
tures of other neurodevelopmental disorders but also addi-
tional cognitive deficits such as impaired working memory 
and planning. Early comorbidity with developmental, 
learning, and psychiatric problems, such as ASD, is very fre-
quent. ADHD is lifelong, but its course and outcome are 
highly variable. Core symptoms such as the hyperactivity 
observed at preschool age may turn into inattention and 
executive dysfunction in older children, for instance. See, 
e.g., [30] for further information. 

2 What Are the Main Challenges in These Conditions That Can Be Addressed Using 
Machine Learning? 

Given these multiple sources of variance, gathering sufficient 
amounts of data for the proper application and evaluation of 
machine learning (ML) techniques is essential, but also very chal-
lenging. As underlined earlier and illustrated on Fig. 1, NDDs, and 
more specifically the two we focus on, present a number of specific 
challenges that can be formulated in terms of heterogeneity, trajec-
tory of development, and comorbidities. 

In this section, we give an overview of the methods most widely 
used in the NDDs’ literature and point to specific challenges that 
can benefit from the recent advances from the ML field. We refer 
readers interested in an exhaustive view of the available approaches 
and their performances in the context of NDDs to the following



recent review papers [31–36]. We organize this overview by follow-
ing the historical evolution of the methods used in the field. The 
first applications of ML techniques were focused on classification 
tasks. Indeed, classification techniques can be designed for the 
prediction of later evolution and are thus in principle well suited 
to address the challenge of early diagnosis. We then observe a 
progressive shift toward regression, latent space decomposition, 
and stratification purposes. These approaches have the potential 
to uncover more homogeneous subpopulations of patients that 
would enable the refined understanding of underlying physiopa-
thology. More recently, specific approaches have been proposed for 
characterizing the atypical brain maturation trajectory in NDDs. 
Finally, we discuss the potential of deep learning techniques for 
learning representations that might represent a major step toward 
prediction at the individual level, which is crucial for translation 
into clinical applications. 
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2.1 The Classical 

Analysis Approach 

Failed to Reach 

Consensus 

Historically, the classical analysis approach consisted in designing a 
study starting from the definition of an “atypical” population of 
interest, based on particular clinical scores selected among the 
behavioral assessments used for diagnosis. This population of inter-
est is compared to a group of control subjects, following a feature 
defined a priori such as “the volume of a specific cortical region 
estimated from anatomical MRI.” As extensively described in, e.g., 
[37–39], this corresponds to statistically testing the hypothesis: 
Does the atypical population differ, on average, from controls in 
the selected feature? Statistically speaking, this amounts to a case-
control study using univariate hypothesis testing for one or a few 
features. The large literature of early studies following this approach 
allowed to refine the characterization of the different sources of 
heterogeneity presented above and shed light on the lack of 
biological validity of categorical representations of NDDs that 
manifest in the evolution of the nosology, for instance, moving 
from “autism” to “autism spectrum disorders” [3]. However, as 
we progressed in our understanding of the interactions between 
genetics, biological brain, and behavior, the limits of the group 
statistics and univariate approaches became obvious. 

2.1.1 Limitations of 

Classical Univariate 

Analysis Techniques 

The univariate approach is prevalent in the literature for historical 
reasons. It relies on the implicit assumption that different brain 
regions and/or different features are independent, while more and 
more evidence supports the opposite view: effects are spread across 
several brain regions, possibly located far from each other. Knowing 
the various sources of variance in NDDs’ data described earlier, it is 
unlikely that a single feature may capture a large portion of that 
variation and thus be interpreted in terms of underlying biological 
processes. It is thus not surprising that the effect sizes reported in 
meta-analyses remain small. In addition to potentially reduced



statistical power, the problem of inflated false discovery rate in 
univariate analysis framework has been raised and extensively dis-
cussed [40]. Multivariate approaches are much more relevant in this 
context. Indeed, combining in a multivariate approach a group of 
features having small effect size when considered independently 
might lead to a large effect [38]. 
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2.1.2 Limitations of 

Group Statistics 

As extensively discussed in [41], group statistics all focus on first-
order statistics (group means), thereby seeking a pattern of atypi-
cality that is consistent across the population (i.e., the “average 
patient”). Indeed, mean group differences may reflect a systematic 
shift in the distribution of the clinical group and thus provide useful 
information on altered processes in that population. However, 
those differences do not delineate variability within groups 
[38]. In addition, the evolution of the DSM by regrouping condi-
tions that were considered in previous versions as distinct (e.g., 
Asperger and pervasive developmental disorders not otherwise spe-
cified) induced an increase in the heterogeneity of the populations 
included in studies on ASD [37]. Group comparisons based on 
diagnosis thus present the major caveat of ignoring psychiatric 
comorbidities, which are common in NDDs. It thus becomes 
obvious that group statistics applied to populations defined based 
on diagnostic categories are inadequate. Indeed, categorical diag-
noses from the DSM are increasingly found to be incongruent with 
emerging neuroscientific evidence that points toward shared neu-
robiological dysfunction underlying NDDs [42]. See, e.g., [39] for 
extensive discussions on the limitations of the diagnostic-first 
approach in comparison to the alternative strategy that begins at 
the level of molecular factors enabling the study of mechanisms 
related to biological risk, irrespective of diagnoses or clinical 
manifestations. 

The combination of univariate statistics and mean group differ-
ence analysis applied to heterogeneous populations with small sam-
ple sizes resulted in highly inconsistent findings. Indeed, most of 
the published findings are not consistent and were not replicated. 
The recent challenge [43] further illustrates the intrinsic limitation 
of the group statistics framework, but also that state-of-the-art ML 
techniques do not systematically outperform classical approaches in 
such a binary classification task. In this context, deep learning 
techniques were prone to overfitting with poor generalization to 
unseen dataset, while simpler approaches had a stable prediction 
performance when applied to new data. It is important to stress that 
several limitations from this early literature do fully apply to more 
advanced ML techniques and/or multivariate data analysis strate-
gies. While the problem of inflated false discovery rate in univariate 
analysis framework has been extensively discussed [40], the pro-
blems related to the improper evaluation and validation of ML



techniques (e.g., overfitting and biases induced by inadapted cross-
validation strategy or absence of a truly independent test set) 
emerge in the recent literature [31, 44–46]. While discussing the 
limitations of cross-validation for estimating the potential overfit-
ting of statistical models is beyond the topic of this chapter, we 
stress the crucial importance of raising awareness of these aspects. 
We refer interested readers to essential guidelines and recommen-
dations that have been provided in [43, 47–51]. Indeed, uncover-
ing potential biases in the models’ validation strategy is a tedious 
but essential step. Abraham et al. [52] is a nice illustration of the 
major gains in interpretation resulting from an extensive analysis of 
the most influential factors. 
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2.2 Promises of ML 

in NDDs 

The rise of big data and the sustained advances in ML enable in 
principle the integration of various and heterogeneous character-
istics such as behavioral profiles, imaging phenotypes, and geno-
mics. The extraction and manual construction of features from each 
data type, also termed as feature engineering, did undergo continu-
ous progress in tight relation with innovations in the acquisition 
processes. As an illustration, the imaging phenotype today covers a 
wide range of features extracted mainly from MRI data. For 
instance, a variety of measures can be extracted from diffusion-
weighted imaging [53], from basic estimation in each voxel such 
as the fractional anisotropy to higher-level connectivity measures in 
each anatomically defined fiber tract, or even connections between 
distant anatomical regions (structural connectivity). On the genet-
ics side, polygenic risk scores (PRS) are additive models developed 
to estimate the aggregate effects of thousands of common variants 
with very small individual effects. They can be computed for any 
individual to estimate the risk/probability for a particular trait 
conferred by common variants [54]. Feature engineering is a cru-
cial step in the analysis since the biological relevance of the features 
directly impacts the interpretation, and the strategy used to manage 
potential interaction across different features might determine the 
performance of the analysis procedure more than the ML algorithm 
itself. In parallel, the increase in the size of the available data enables 
the training of more complex algorithms, making it possible to 
investigate central questions related to the dynamics of normal 
and abnormal development by means of advanced ML techniques. 

2.3 Classification 

and Prediction: 

Supervised Learning 

for NDDs 

Classification techniques consist in learning a model allowing to 
separate different groups of subjects based on a set of training data 
that have been labeled and are thus subtypes of supervised machine 
learning techniques. In this context, classification techniques inte-
grate biological and/or behavioral measures in order to extract a 
predictive pattern corresponding to the diagnosis. Classification 
techniques used in the literature of NDDs are the same as those 
used in the field of psychiatry and span the whole range of methods



detailed in Chapters 1, 2, 3, 4, 5, and 6, from simple linear models 
to most recent deep networks. References [31, 32, 34, 51, 55] 
provide a detailed overview of the recent applications of classifica-
tion techniques in the context of ASD and ADHD. The general 
trends indicate that linear discriminant and logistic regression clas-
sifiers were prominent until around 2014, most studies focusing on 
a single modality (usually structural or functional MRI). Support 
vector machines (SVM) then became the most commonly used 
approach due to their performance in the small-sample high-
dimension regime but also their ability to perform nonlinear classi-
fication. Approaches based on ensembles of classifiers were more 
recently developed to combine data from several modalities or 
acquired in different settings (e.g., different scanners). Even more 
recently, deep learning techniques’ neural networks were applied to 
populations of a few hundred subjects. We will discuss the potential 
of these advanced approaches later, in a dedicated section. In terms 
of input data types, structural and functional MRI modalities are 
overrepresented in comparison to diffusion MRI, EEG, and behav-
ioral data. Classification techniques based on genetics are getting 
more and more attention (e.g., using polygenic risk scores). Due to 
the complex and specific data preprocessing required for each 
modality (see, e.g., [43]), combining features extracted from several 
modalities into a multimodal classification technique represents 
important additional challenges. Only a few studies did explore 
the potential of combining several modalities so far (e.g., 4 studies 
among 57 reviewed in [31]), but the initiatives for sharing prepro-
cessed data such as those in [23, 56] will facilitate this type of 
analyses in the future. Multimodal classification techniques did 
not demonstrate major performance gain so far, but further 
improvements can be expected by better exploiting the comple-
mentarity of the information across different modalities [32]. In 
terms of classification performances, the high accuracy (>80%) 
reported in early studies tended to decrease, while sample size 
increased [31, 32], suggesting that the impressive results obtained 
on small cohorts were affected by overfitting, sampling biases, and 
artificially reduced heterogeneity within and across the populations 
involved. Note that the decreasing effect sizes of group comparison 
studies might also be related to the evolution in the definition of 
autism toward a more inclusive and heterogeneous 
population [57]. 
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In parallel with this decrease with time in the performance, the 
research field on psychopathology did initiate a shift, moving away 
from diagnostic categories based on symptoms to the concept of 
dimensions related to more objective measures and having better 
cognitive and biological validity. In particular, the US National 
Institute of Mental Health initiated in 2009 the Research Domain 
Criteria (RDoC) project to develop a classification system for men-
tal disorders based upon fundamental dimensions of neurobiology



and observable behavior that cut across current heterogeneous 
disorder categories [58, 59]. Of note, this research classification 
system diverges from one intended for routine clinical use in multi-
ple respects [60]. Following this progressive conceptual shift, the 
major methodological challenge to be addressed moved away from 
classification and diagnostic prediction to latent space decomposi-
tion and stratification. 
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2.4 Latent Space 

Decomposition and 

Clustering: 

Unsupervised Learning 

for NDDs 

Following the progressive confirmation of the inadequacy of mutu-
ally exclusive diagnostic categories, behavioral assessments for 
quantifying ASD traits in any given individual were introduced, 
such as the autism spectrum quotient questionnaire [61] and the 
Social Responsiveness Scale (SRS) [62]. A number of studies used 
these scores to demonstrate that ASD traits are also present in the 
typically developing population as well as in other NDDs such as 
ADHD [63]. These studies supported the view of a continuum 
across NDDs and emphasized the need for novel approaches to 
identify general psychopathology dimensions that cut through 
diagnostic boundaries. Such data-driven dimensions would ulti-
mately enable the identification of new targets for treatment devel-
opment and to stratify the NDDs in subgroups more appropriate 
for treatment selection [58, 59, 64]. Uncovering the hidden intrin-
sic structure in the data is a well-known ML problem that has been 
formulated as unsupervised learning in opposition to supervised 
learning tasks such as classification where the algorithm learns to 
predict a label based on a training set for which the true label is 
known (see Chapters 1 and 2 or, e.g., [65]). Unsupervised ML 
techniques consist in fitting a statistical model to the data by 
implementing specific assumptions regarding the relationships 
between the input features and on the supposed hidden structure. 
A general assumption to all unsupervised techniques is that there 
exists a non-negligeable degree of correlation across some of the 
features in the actual data, which justifies the search for a more 
compact optimal representation. Depending on the assumptions 
regarding the hidden structure to discover, unsupervised techni-
ques can be divided into two classes: latent space decomposition 
and clustering. Latent space decomposition techniques aim at pro-
jecting the data onto a new feature space of lower dimension in 
which a large portion of the variance can be explained by a few 
factors. The underlying assumption is that the projected features 
vary continuously along the axes of this compact subspace. In 
contrast, clustering techniques seek to partition the data into dis-
tinct groups (often termed as population stratification) so that the 
observations within each group are similar to each other, while 
observations in different groups differ from each other. The under-
lying assumption is thus that a categorical representation is more 
appropriate than in the case of the latent space decomposition 
approach. In contrast with the classification task, the algorithm is



designed in this case to identify homogeneous subpopulations 
within and across diagnostic categories. Several recent approaches 
propose a unified framework combining the advantages of both the 
dimensional and categorical models [3, 66, 67]. 
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All unsupervised approaches face two main challenges in the 
context of NDDs. First, since we are dealing with a limited amount 
of data, the number of dimensions or clusters that can be identified 
needs to remain limited in order to avoid the curse of dimensional-
ity, i.e., when an infinite number of solutions can fit data equally 
well [64, 65, 68]. As a consequence, in the majority of studies, the 
set of input features (and thus the dimension of the input space) is 
selected based on data availability or prior knowledge, which raises 
the problem of establishing an optimal set of variables of particular 
relevance for NDDs [69]. Automated feature selection procedures 
can be used to reduce the dimensions to be explored (see [69] for a 
recap of the approaches explored so far in ASD), but the funda-
mental problem of limited amount of data relative to the very large 
dimension to explore remains [64]. The second major challenge is 
the validation, since with unsupervised approaches no ground truth 
data is available by definition, unlike in the case of supervised 
ML. The relevance of the resulting dimensions or clusters should 
be assessed in terms of interpretability relative to external measures 
that would ideally have some clinical relevance. Replication on a 
fully independent dataset allows to assess the generalizability and 
reduces the risk of overfitting. This is however very hard to achieve 
since the number of datasets available with identical measures is 
limited. As a consequence, it is crucial to keep in mind that unsu-
pervised learning is only meaningful in relation to some context 
[70]. As extensively discussed in [64], “due to the vast dimension-
ality of the human population (based on environment, behavior, 
biology/physiology, etc.) there are multiple ways that the popula-
tion might be subcategorized that are valid and ‘real’; however, any 
given subgrouping might not be important for the question we 
care about.” 

Contrary to the classification task where the literature is very 
rich, latent space decomposition and stratification studies in NDDs 
are emerging approaches, and only few findings have been pub-
lished so far. Two recent publications review unsupervised 
approaches applied to neuroimaging in the context of ASD: [31] 
covered 19 studies published since 2018, and [69] identified 
12 studies among which 2 were already included in [31]. For an 
extensive review covering the literature back to 2001, see [71]. The 
methods used range from the most common such as principal 
component analysis for latent space decomposition and K-means 
for clustering to more advanced techniques such as nonnegative 
matrix factorization, spectral clustering, Gaussian mixture models, 
and Bayesian latent factor analysis such as Indian buffet processes. 
Most advanced approaches such as Bayesian latent factor analysis



techniques enable to infer the number of latent factors and number 
of putative subpopulations from the data and can be interpreted in 
terms of both categorical and dimensional aspects of the heteroge-
neity in NDDs [69, 72]. On the genomics side, multivariate 
approaches such as canonical correlation analysis and partial least 
square regression are the tools of choice for investigating the rela-
tionship between genomic variants, neuroimaging features, psychi-
atric conditions, and behavioral traits [39]. The development of 
specific methods allowing to better model the multivariate genetic 
covariance structure in genome-wide association studies is a very 
active field. For instance, [73] introduced a new approach called 
genomic structural equation modeling, which allows to investigate 
shared genetic effects across phenotypes, while concurrently testing 
for causes of divergence. Importantly, this evolution in the methods 
reflects the progressive integration of latent space decomposition 
and clustering techniques into unified approaches. A promising 
avenue of research that benefited from access to larger datasets in 
the past years consists in combining neuroimaging and genomics. 
Indeed, the effects of latent factors derived from genomics on 
neuroimaging endophenotypes demonstrate higher reproducibility 
and larger effect size than in the previous literature [39, 74]. 
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In terms of evaluation and performances, the studies are highly 
dependent on the data and the assumptions that are made, either 
implicitly or explicitly. An illustration of this dependency on the 
application is the variation in the number of subtypes reported, 
ranging from two to six across the neuroimaging studies on ASD 
included in the two reviews [31, 69]. In [71], the authors cover a 
much broader literature (159 articles) by relaxing inclusion criteria 
compared to the two others. This exhaustive review identifies seven 
validation strategies, defined as follows: “cross-method replica-
tion,” “subtype separation,” “independent replication,” “temporal 
stability,” “external validation,” “parallel validation,” and “predic-
tive validation.” They provide the distribution of the number of 
identified subtypes across the reviewed studies, with a range of 
values varying between 1 and 16, but 82% of all studies report 
between two and four subtypes. Of note, this chapter underlies as 
major challenges the access to large and multidimensional datasets 
and the design of an unbiased validation framework. We refer 
interested readers to [71], in particular for the didactic description 
of the various validation strategies that apply to the literature of 
ASD and more generally to psychiatry or other clinical groups. 

2.5 Normative 

Modeling for NDDs 

Normative modeling gained great interest in the context of psychi-
atry recently, and the first applications to NDDs confirm the partic-
ular relevance of this approach in this context. Marquand et al. [75] 
introduced normative modeling as an alternative to clustering for 
parsing heterogeneity across the full range of population variation, 
i.e., spanning both clinical and healthy cohorts. In the approach



proposed by [75], the normative models were estimated using 
Gaussian process regression [76]. The flexibility of this Bayesian 
method enables to define a mapping between any quantitative 
biological measures and clinically relevant variables and offers desir-
able properties such as robustness to overfitting and principled ways 
for tuning hyper-parameters. Gaussian process regression is flexible 
but does not scale with an increase in sample size. More impor-
tantly, this technique can lead to inaccurate uncertainty estimates 
when the data are non-Gaussian [77]. Less demanding alternative 
approaches have been proposed. In [78], the authors used a 
non-parametric local weighted regression to fit a smooth curve 
through data points. Based on the assumption that the estimated 
regression is likely to be smooth, [79] proposed to estimate non-
linear effects using a smoothing spline model. This approach is a 
special case of Gaussian process regression. It is thus less adaptive, 
but presents a lower computational cost than Gaussian process 
regression. Fraza et al. [80] presented a novel framework based 
on spline interpolation combined with likelihood warping and 
Bayesian estimation that allows to scale normative modeling to 
big data cohorts. Another approach based on generalized additive 
models was proposed in [81, 82]. The very last version of norma-
tive models was presented recently by [83] with the generalized 
additive models for location, scale, and shape (GAMLSS), a flexible 
modeling framework that can model heteroskedasticity, nonlinear 
effects of variables, and hierarchical structure of the data. As 
demonstrated in [84] with features extracted from more than 
120,000 MRI, these models can be estimated on very large data-
sets. They are however not suitable for small datasets since the 
higher flexibility of such a model would be detrimental and might 
lead to overfitting. 
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Normative models are highly relevant for analyzing neuroim-
aging data since they can be fit at each brain location to estimate 
regional specificity. In the context of NDDs, two advantages are 
particularly critical. First, normative modeling is efficient to disen-
tangle the effects related to brain maturation dynamics and neuro-
developmental diseases in a data-driven way. Indeed, the Bayesian 
framework enables estimating distinct variance components. The 
effect of age within the reference cohort is estimated by nonlinear 
interpolation, which is appropriate in this period of highly active 
neurodevelopment [14, 85]. 

Second, normative modeling provides uncertainty measures to 
quantify the variation across the estimated mean within the refer-
ence cohort and the deviation of each patient from the group mean. 
This enables the detection and mapping of subject-specific patterns 
of abnormality in each individual. The statistical inference at the 
level of the individual participant is the key to explicitly characterize 
the heterogeneity underlying clinical conditions. It represents a 
concrete alternative to the limitations of the case-control analysis



A

seeking a pattern of atypicality that is consistent across the popula-
tion as discussed in Subheading 2.1. In the normative modeling 
framework, a deviation map is computed for each individual based 
on extreme values statistics, which does not require that atypical-
ities overlap across participants. These individual deviation maps 
can then be analyzed (e.g., using unsupervised ML approaches 
described in Subheading 2.4) to identify distinct patterns of abnor-
mality, i.e., to characterize putative subpopulations. 
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See [41, 83, 86, 87] for further description of the normative 
modeling framework and recommendations to guide future appli-
cations. The release of two python packages contributed to the 
widespread use of this approach: https://github.com/ppsp-team/ 
PyNM and https://github.com/amarquand/PCNtoolkit.  
didactic tutorial with a step-by-step comparison of the different 
normative modeling approaches on synthetic data illustrating 
their advantages and limitations is available online here: https:// 
github.com/ppsp-team/PyNM/tree/master/tutorials. 

2.6 Potential and 

Challenges of Deep 

Learning 

Deep learning is a class of ML algorithms characterized by their 
specific internal architecture as multi-layered neural networks. 
These multiple layers enable the striking capacity to progressively 
extract higher-level features without extensive prior injection. Their 
advantages compared to previous approaches are of crucial impor-
tance in a large range of applications and explain the considerable 
attention gained by DL in the wider scientific community. See, e.g., 
[88] for a detailed description of the DL methods used in the 
literature to investigate the neuroimaging correlates of psychiatric 
and neurological disorders. Conceptually, DL techniques are par-
ticularly relevant for the investigation of NDDs for the following 
reasons:

• Integrated learning of hierarchy of features. As mentioned in 
Subheading 2.2, classical ML algorithms leverage sets of 
structured features extracted from the input data. This feature 
engineering step relies on a priori regarding the data and has a 
strong influence on the performances. DL algorithms process 
directly the raw data without requiring prior feature extraction. 
During the learning, the algorithm can determine the optimal 
hierarchy of most relevant features for representing the data, 
resulting in a more objective process.

• Learning relevant spatial relationships from neuroimaging data. 
In the context of neuroimaging, a striking advantage of DL is its 
capacity to learn relevant spatial relationships among the image 
domain, such as an atrophy distributed across a network of 
several brain regions supporting a specific function [89]. In 
classical ML techniques, the feature engineering step and the 
learning phase are dissociated, such that relevant spatial

https://github.com/ppsp-team/PyNM
https://github.com/ppsp-team/PyNM
https://github.com/amarquand/PCNtoolkit
https://github.com/ppsp-team/PyNM/tree/master/tutorials
https://github.com/ppsp-team/PyNM/tree/master/tutorials
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relationships may be lost. On the contrary, this spatial relation-
ship might be preserved by DL techniques and integrated into 
the optimal hierarchy of features.

• Learning nonlinear relationships and biologically relevant com-
pact representations. As already discussed in Subheading 2.5, 
nonlinear relationships across data or dimensions relevant to 
NDDs are expected. Conceptually, the combination of the mul-
tiple layers available in DL architectures enables to encode this 
nonlinearity into a cascade of nonlinear transformations while 
reducing the input space into a lower-dimensional “latent 
space,” providing a compact representation of the data. The 
recent works from [89–91] demonstrated that DL can exploit 
the presence of nonlinearity in neuroimaging data to learn gen-
eralizable representations highly relevant for characterizing the 
human brain. They combined supervised and unsupervised tasks 
in a DL framework which consisted in learning the representa-
tion from classification tasks (predicting age and sex) and then 
applying decomposition and clustering techniques to the latent 
space. These studies strongly support that DL approaches can 
provide more accurate mappings of the effects of age and sex on 
brain MRI than simpler models. The resulting representations 
obtained in these works are instrumental for refining the link 
between cognition and underlying brain systems. Another 
promising avenue of research denoted as scientific machine 
learning (https://sciml.ai) consists in injecting traditional scien-
tific mechanistic models into modern deep learning architec-
tures in order to combine the benefits of efficient data-driven 
automatic learning with better interpretability and integration of 
biophysical constraints. See [92] for a review discussing the 
potential of these approaches in computational neuroscience 
and [93] for an example application to neuroimaging data. DL 
techniques can thus learn representations of data that have the 
potential to help explain the biological underpinnings of mental 
disorders, providing that enough data is available. 

3 A Non-exhaustive Survey of Existing Papers on Machine Learning for NDDs and 
Their Limitations 

We refer to the recent reviews [31, 32, 34, 51, 55, 69, 71], for a 
complete overview of the literature of the field. Here, we survey a 
selection of very recent works that we consider particularly relevant 
with respect to the opportunities offered by recent ML techniques 
applied to large open datasets, or that illustrate the challenges faced 
by current approaches, to be addressed in the near future.

https://sciml.ai/
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3.1 Using ML 

Techniques on 

Neuroimaging Data to 

Predict the Diagnosis 

An international challenge (146 challengers) has been organized to 
predict ASD diagnosis based on several neuroimaging modalities 
[43]. This challenge was conducted on the largest sample available 
to date (>2000 individuals from the ABIDE dataset and a second, 
private dataset not open to challengers). An additional dataset from 
the EU-AIMS project [22] was used to evaluate the reproducibility 
of the prediction on an independent dataset (out-of-sample predic-
tion). The ten best submissions used either logistic regression as a 
first-layer predictor, linear vector classification, or a combination of 
different methods. Best algorithms managed to predict ASD diag-
nosis with an in-sample AUC of 0.80. Resting-state fMRI data was 
a better diagnostic predictor than anatomical MRI, and simple 
logistic regression performed better than complex graph convolu-
tional deep learning models (likely due to overfitting). Finally, the 
performances of the best algorithms decreased to an out-of-sample 
AUC of 0.72 (on the external sample). Authors projected that 
10,000 individuals might be necessary to reach the optimal 
prediction. 

Another study of interest was led by the consortium “Infant 
Brain Imaging Study” (IBIS) [94]. The authors investigated 
whether infants at high familial risk for autism present early postna-
tal atypical brain volume. A deep learning algorithm used surface 
area at 6 and 12 months to successfully predict an early diagnosis of 
autism in infants at high risk of autism at 24 months (in-sample 
predictive value of 81%, no out-of-sample prediction accuracy 
provided). These results should be tempered by several major pit-
falls. First, the diagnosis of ASD is very challenging at that early age. 
Second, the sample size was very small (15 high-risk infants diag-
nosed with autism at 24 months) and thus does not comply with 
the recommended practices for predictive modeling [46]. Third, 
the specificity of the results with respect to other NDDs was not 
assessed. A confirmation of the reproducibility of these results in a 
larger, external cohort would thus be much welcome. 

Overall, these results showed that applying prediction algo-
rithms on large enough imaging data could be instrumental for 
the early detection of ASD and therefore early intervention. In line 
with the conclusions of previous reviews [31, 69], these studies also 
demonstrated the relevance of using imaging data as an intermedi-
ate phenotype between the biological cause (e.g., deletion of the 
gene content at the 16p11.2 chromosomal segment) and the asso-
ciated phenotype (e.g., ASD, ADHD, intellectual disability). 

3.2 Latent Space 

Decomposition and 

Subtyping Approaches 

Applied to NDDs 

Complementary works are aiming to face clinical and biological 
heterogeneity in NDDs using a subtyping approach based on imag-
ing data. Using hierarchical clustering methods on neuroanatomi-
cal data, Hong and colleagues [95] identified three distinct 
morphometric subtypes in ASD: ASD-I characterized by cortical 
thickening, increased surface area, and tissue blurring; ASD-II with



cortical thinning and decreased geodesic distance; and ASD-III 
with increased geodesic distance. These groups were associated 
with gradual symptom severities and might help tackle the well-
known clinical heterogeneity issue introduced in Subheading 1. 
The genetic contribution to the observed clinical heterogeneity 
was investigated across eight psychiatric conditions including 
ASD and ADHD [96] with common variants. Exploratory factor 
analysis (EFA) on GWAS cross-disorders’ summary results led to 
the identification of three genetically inter-related groups of dis-
orders, explaining together 51% of the genetic variation across 
NDDs and psychiatric conditions. The first factor linked anorexia 
nervosa, OCD, and Tourette syndrome. The second one was asso-
ciated with major depression, bipolar disorder, and schizophrenia. 
The last one encompassed early-onset NDDs (ASD, ADHD, Tour-
ette syndrome) and major depression. Similar to EFA results, hier-
archical genetic clustering identified the same three subgroups 
among the eight disorders. These methods therefore have a great 
potential to uncover new biologically relevant diagnostic 
categories. 
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Such overlaps across clinical diagnoses have also been charac-
terized at the imaging level. Patel et al. [19] determined a common 
pattern of group differences in cortical thickness across six 
disorders—including ASD, OCD, ADHD, schizophrenia, bipolar, 
and major depression disorders—and their link with gene expres-
sion profiles. Analyses of correlation and clustering revealed a 
shared profile of differences across disorders with 48% of variance 
explained, associated with pyramidal-cell gene expression. Analyses 
of gene co-expression highlighted two pre- and postnatal clusters 
associated with this common brain profile of group differences, 
enriched with genes associated with these disorders. Kebets and 
colleagues [97] applied partial least square regression (PLSR) to 
resting-state fMRI and cognitive metrics in participants with either 
ASD, ADHD, schizophrenia, or bipolar disorders. They identified 
three latent components (general psychopathology, cognitive dys-
function, and impulsivity) with unique fMRI signatures. Connec-
tivity patterns of the somatosensory-motor network were main 
drivers across the three components. Similar findings on the 
somatosensory-motor network have been observed by [98] and 
extended to rare genetic mutations that confer high risk for neu-
ropsychiatric conditions. Kernbach et al. [42] designed a hierarchi-
cal Bayesian modeling framework to derive hidden disease 
dimensions from RS-fMRI data across a population of ADHD, 
ASD, and controls. Using these methods, the number of compo-
nents is inferred from the data. They obtained 45 hidden compo-
nents that were then reduced to 3 main factors for better 
interpretation. For each of these three identified factors, the 
authors characterized the associated fMRI coupling patterns and 
symptom measures from the clinical questionnaires. These brain-



derived factors predicted the classification of subjects as ADHD, 
ASD, or control with an accuracy of 67%, computed using a variant 
of cross-validation called pre-validation described in [99]. This 
variant is expected to enable a fairer evaluation of the group labels 
than cross-validation, but still leaves room for errors compared to 
out-of-sample predictions [46]. 
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Latent space decomposition techniques have been also used to 
identify general principles of the hierarchical brain organization— 
denoted as functional gradients—that locate sensory-motor net-
works at one end and the transmodal default-mode network at the 
other end [100, 101]. Hong and colleagues [102] hypothesized 
that NDDs’ conditions may preferentially affect the sensory-motor 
dimension. They used surface-based analytical models to compare 
the first functional gradient (explaining 24% of the connectome 
variance) in ASD vs. controls and showed that both extremes of 
the rostrocaudal gradient were decreased in ASD. Interestingly, 
vertex-wise analyses revealed that such diminution in ASD was 
driven by transmodal medial PFC and posterior cingulate 
regions [102]. 

Combining large-scale multidimensional data is perceived as 
the golden standard to correctly apply ML algorithms. However, 
only a few precision medicine studies managed so far to do so. In 
[103], the authors extracted electronic health records, familial 
whole-exome sequences, and neurodevelopmental gene expression 
patterns in a large sample of ASD patients. Their goal was to 
identify biologically homogeneous ASD subtypes. For this pur-
pose, the authors used spatiotemporal expression data from typi-
cally developing human brains to identify clusters of exons that are 
co-expressed during early human brain development. Based on 
prior knowledge on sexually different prenatal gene expression in 
ASD, they focused the analysis on a set of clusters that are differen-
tially expressed between males and females. They then selected 
inherited, likely gene-disrupting variants among all the 
ASD-segregating ones by leveraging a large dataset of families 
who have one child with ASD and one unaffected sibling. They 
mapped variants back to exon clusters to identify 33 clusters of 
neurodevelopmentally co-regulated, ASD-segregating deleterious 
variants. The functional enrichment analysis of the identified exon 
clusters (detailed in [103]) revealed a new molecular convergence 
on lipid regulation, with variants expected to collectively alter LDL, 
cholesterol, and triglyceride levels. They confirmed that children 
with ASD have blood lipid profiles that are significantly outside the 
physiological range. Finally, they characterized the diagnostic spec-
trum of the dyslipidemia-associated ASD subtype and confirmed its 
specificity by comparing with individuals with ASD and no dyslipi-
demia. This work demonstrated the potential of combining massive 
amounts of multimodal data for uncovering new ASD subtypes.
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3.3 Normative 

Modeling 

In [104], the authors applied normative modeling to a large sample 
of ASD and controls males covering a wide age range (5–40 years). 
They investigated the potential of age-related effects on cortical 
thickness to serve as an individualized metric of atypicality in indi-
viduals with ASD. They reported that only a small subgroup of 
patients showed age-atypical cortical thickness. By comparing with 
conventional case-control analyses, they observed that most case-
control differences were driven by a small subgroup of patients with 
high atypicality for their age. Highly consistent results were 
obtained in another application of normative modeling to a differ-
ent ASD cohort [105], despite important variations across these 
studies. The population of the second work was composed of both 
males and females, and sex was included as a factor in the normative 
model. In addition, the normative models were estimated using 
different approaches (non-parametric regression in [104], Gaussian 
process regression in [105]). The overall consistent results despite 
the methodological differences support the relevance of the nor-
mative modeling approach for NDDs. In a follow-up study, [106] 
applied the spectral clustering technique to the atypicality maps 
computed at the individual level as deviation in the cortical thick-
ness with respect to the normative model estimated in [105].They 
identified five subtypes of individuals with ASD and assessed their 
separability using a multi-class linear SVM. Each subpopulation was 
then characterized in terms of demographic and clinical measures as 
well as association with polygenic scores for seven traits (autism, 
ADHD, epilepsy, full IQ, neuroticism, schizophrenia, and cross-
disorder risk for psychiatric disorders). Importantly, they observed 
striking differences in the spatial patterns of cortical thickness atyp-
icality maps between subtypes: three clusters showed reduced cor-
tical thickness relative to the normative pattern, whereas two 
clusters showed an increased cortical thickness. These distinct and 
opposing atypicalities across different subtypes could explain the 
inconsistency in the previous case-control analyses. A last study did 
apply normative modeling to an adult population of ADHD 
patients [107]. The authors estimated a normative model predict-
ing regional gray and white matter volumes across the brain from 
age and sex. They observed deviations shared across patients in gray 
matter in the cerebellum, temporal regions, and the hippocampus. 
They also provided a measure of the inter-individual variation 
between ADHD patients with extreme deviations in specific 
regions in more than 2% of the participants. Overall, these results 
highlighted the relevance of the normative modeling approach to 
understanding the heterogeneity in NDDs. 

3.4 Genetic Features 

to Predict Cognitive 

Deficit in NDDs 

As extensively discussed in [39], attempts to dissect mechanisms of 
NDD have mainly used a top-down approach, starting with a 
diagnosis and moving down to brain intermediate phenotypes 
and to genes. By contrast, the recruitment of groups based on the



presence of a genetic risk factor for NDDs allows for the investiga-
tion of pathways related to a particular biological risk for psychiatric 
symptoms (bottom-up approach). Clinical routine with genomic 
microarrays revealed that copy number variants are present in 
10–15% of children with neurodevelopmental conditions 
[108]. Genetic-first approaches can however only be applied to a 
few recurrent pathogenic mutations frequent enough to establish a 
case-control study design. Thus, the effect of the vast majority of 
rare deleterious risk variants remains undocumented. Because a 
highly diverse landscape of rare variants confers a higher risk to a 
spectrum of NDDs, studies focusing on individual mutations will 
not be able to properly disentangle the relationship between muta-
tions, molecular mechanisms, and diagnoses. Huguet and collea-
gues [109] speculated that large effect size pathogenic deletions 
may be attributable to the sum of individual effects of genes 
encompassed in each copy number variation. They introduced a 
new framework to estimate the effect of any pathogenic deletion on 
intelligence quotient (IQ). Using several types of functional anno-
tations of rare genetic deletions associated with NDDs, the pro-
posed framework predicted their impact on IQ with 76% accuracy 
[109]. They showed that haploinsufficiency scores—probability of 
being loss of function intolerant (pLI)—best explain the cognitive 
deficits. Follow-up works specifically on ASD confirmed that this 
score was the best predictor of IQ deficit and autism risk (odds 
ratio) [110, 111]. Deletion of 1 point of pLI was associated with a 
decrease of 2.6 points of IQ in autism. 
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3.5 Deep Learning 

Applied to NDDs 

A deep learning-based framework has been recently introduced to 
predict the regulatory contribution of non-coding mutations to 
autism [112]. Authors constructed a deep convolutional network 
to model the functional impact of each individual mutation (single 
nucleotide polymorphism). They first identified that ASD probands 
(n = 1700 families) were carriers of a higher rate of transcriptional 
and post-transcriptional regulation disrupting de novo mutations 
compared with their siblings. They also revealed a convergent 
pattern of coding and non-coding mutations. 

In [113], the authors analyzed resting-state fMRI (RS-fMRI) 
data from 260 subjects with ADHD and 343 healthy controls from 
the ADHD-200 database. They proposed to represent RS-fMRI 
data from each individual as a graph that integrates both temporal 
and spatial correlation of regional time-series signals. An original 
graph convolutional neural network architecture was introduced to 
characterize the brain functional connectome. The model also 
included seven non-imaging variables (age, gender, handedness, 
IQ measurement, and three Wechsler Intelligence Scale evaluation 
IQ variables) and was trained to distinguish ADHD patients from 
HC. Several experiments showed a performance gain compared to 
previous methods including SVM, logistic regression, and conven-
tional graph convolutional networks. The proposed method



outperformed other competing approaches, including SVM and 
logistic regression, with an AUC of 75 (72.0% accuracy, 71.6% 
specificity, and 72.2% sensitivity) on a tenfold cross-validation. A 
leave-study-site-out experiment demonstrated the robustness of 
the proposed model for unseen data from different study sites, 
and experiments with simplified versions of the model showed the 
relevance of each proposed improvement. Most discriminative 
regions were mainly located in the frontal lobe, occipital lobe, 
subcortical lobe, temporal lobe, and cerebellum—with hypo-
connections mainly between the frontal, parietal, and temporal 
lobes and widespread hyper-connections. 
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These studies support that new methodological improvements 
can be expected from the very active field of deep learning applica-
tions to neuroimaging and genetics data. As pointed in [88], the 
anticipated increase in sample size in NDDs studies will allow fit 
more complex models, which might reveal larger differences in 
performances compared to conventional methods. The literature 
of DL applications to NDDs is however still in its initial stages, and 
major challenges such as tendency to overfitting [43] have to be 
carefully addressed in future studies. 

3.6 Discussion The review of the selected recent studies presented above demon-
strates that the application of ML in NDDs is a very active field of 
research, with encouraging perspectives. This field indeed benefits 
directly from initiatives to openly share data [114], which did 
increase the sample size involved across studies, and favored the 
engagement of ML scientists. The paradigm shift from diagnostic-
first to genetic-first and from one diagnostic at a time to cross-
diagnoses approaches is afoot, with a clear rise of large-scale studies 
based on normative modeling and deep learning approaches. Meth-
odological works continue to introduce new innovative ML 
approaches specifically designed to address the central tasks in 
NDDs. Importantly, the adoption of best practices for the valida-
tion and replication of the results across independent datasets as 
stated in [46] is clearly encouraged by the recent reviews [31, 32, 
34, 51, 55, 69, 71]. However, the validation is limited by insuffi-
cient access to large enough datasets combining multiscale data 
(genetics, transcriptomic, proteomic, metabolomic, neuroimaging 
features, phenomics). There is no open dataset so far offering that 
level of granularity. Indeed, the imaging field is just reaching the 
sample size allowing for running modern ML techniques for some 
but not all modalities. For instance, large-scale studies involving 
diffusion-weighted imaging are clearly lacking in NDDs, probably 
due to insufficient access to appropriate data. The genomic field is 
not ready yet, and several domains remain relatively new (e.g., first 
genome sequenced in 2000, next-generation sequencing techni-
ques in 2010) and expensive (e.g., RNA-Seq data) 
[115, 116]. Such data will provide—in the near future—massive 
potential for accurate classification and appropriate validation.
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4 Open Challenges and Conclusion 

Methodological improvements described in Subheading 2 and 
studies reviewed in Subheading 3 are encouraging for concrete 
impact on clinical practice in the future. However, such clinical 
translation is raising major challenges that should be addressed. 

4.1 Potential Bias in 

Data and Processing 

Pipelines 

Despite the large amount of new approaches released by recent 
literature, some potential biases in analysis pipelines should be 
mentioned. For instance, the analysis of functional networks com-
puted from RS-fMRI relies on a complex succession of processing 
steps. Several of these processing steps actually correspond to 
implementing assumptions regarding the data. However, the valid-
ity of these assumptions and their influence on the subsequent 
results are not sufficiently discussed in the literature. See, for 
instance, [117] for a quantitative evaluation of the impact of the 
brain parcellation procedure on functional connectivity analyses. 
Another major barrier to reproducibility is the lack of compatibility 
among programming languages, software versions, and operating 
systems as illustrated in [118]. This report highlights the challenges 
and potential solutions to be implemented at both the individual 
researcher and community levels in order to enable the appropriate 
reuse of published methods. 

On the data side, the limitations related to the absence of 
recording of potentially influencing factors are not sufficiently 
investigated and acknowledged. As pointed, e.g., in [119]: “The 
extent of brain differences in disease may depend critically on a 
patient’s age, duration of illness, course of treatment, as well as 
adherence to the treatment, polypharmacy and other unmeasured 
factors. Differences in ancestral background, as determined based 
on genotype, are strongly related to systematic differences in brain 
shape. Any realistic understanding of the brain imaging measures 
must take all these into account, as well as acknowledge the exis-
tence of causal factors perhaps not yet known or even imagined.” As 
a concrete illustration, [120, 121] recently reported significant 
alterations in brain morphometry induced by prematurity, a factor 
that was not considered by any of the studies we reviewed here. 
Such uncontrolled factors might introduce considerable bias in the 
learning process. The ML research field has identified this pitfall, 
and several solutions to prevent unexpected implications in clinical 
applications are actively debated [122–124]. 

4.2 Interpretability 

and Biological 

Substrates 

Even in the absence of bias, the interpretation of the outcome of 
any ML algorithm in the context of clinical application represents a 
critical challenge. More than the level of raw performance, the level 
of expertise required from medical doctors in (1) the recording and 
(2) the analysis of the data compared to “expertise-free” raw data is



a question that requires more attention. We refer to [125] for a 
thoughtful discussion on the need for clarification of the role of 
ML-based tools in relation to clinicians’ decisions and actions in 
clinical practice. The authors call for a more systematic demonstra-
tion that models learning from non-clinician-initiated data outper-
form models based on clinician-initiated data. They purposely 
argue that models driven by features derived from the actions of 
clinicians and not related to the underlying physiology might intro-
duce some deleterious circularity. Indeed, the outcome of such a 
model might potentially confuse more than support a clinician in 
his decisions. 
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Then—regarding the interpretation in terms of 
pathophysiology—the challenge is to relate the decisions of any 
ML techniques to putative underlying biological processes. Meth-
odological innovations will enhance the explainability of ML mod-
els, but explainability and transparency do not imply interpretability 
[126, 127]. Another major challenge is to assess the biological 
relevance of the features extracted from the data during the learning 
procedure. Purely data-driven approaches are limited by the diffi-
culty to relate the parameters of the model to biological knowledge. 
A promising perspective consists in inserting biological priors 
directly in predictive models. See [92] for an introductory review 
to this type of approach in the context of computational neurosci-
ence and (https://sciml.ai) for further information on the 
emerging field of scientific machine learning. However, extensive 
basic research at conceptual, methodological, and experimental 
levels are required to fill the gap between measures accessible 
in vivo in patients and the biophysiology acting at cellular and 
molecular levels. See, for instance, [128] for an illustration of the 
complexity of this challenge, where the authors propose a frame-
work integrating different levels of interactions, from genes to cells, 
circuits, and clinical expression, to better understand and treat 
cortical malformations. As discussed in [129] for ASD, research 
designs aiming at a better conceptual integration between different 
levels of brain organization are required to characterize the cascade 
of pathogenic processes in NDDs. 

4.3 Conclusion In NDDs, as in healthcare in general, ML has a role to play in 
addressing the longstanding deficiencies such as serious diagnostic 
errors, mistakes in treatment, and waste of resources [130]. Indeed, 
ML will undoubtedly help redefine NDDs’ categories and other 
mental illnesses more objectively, identify them at an early stage, 
and contribute to more adapted treatments. The rise of ML is the 
occasion to improve the standardization of practice and to enforce 
the generalization of open science with preregistration and data 
sharing or federated learning. In addition, the field has to demon-
strate high and reproducible performances in the real-world clinical 
environment. Finally, major conceptual, ethical, and socio-technical 
challenges have to be addressed.

https://sciml.ai/
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Machine Learning and Brain Imaging for Psychiatric 
Disorders: New Perspectives 

Ivan Brossollet, Quentin Gallet, Pauline Favre, and Josselin Houenou 

Abstract 

Psychiatric disorders include a broad panel of heterogeneous conditions. Among the most severe psychiatric 
diseases, in intensity and incidence, depression will affect 15–20% of the population in their lifetime, 
schizophrenia 0.7–1%, and bipolar disorder 1–2.5%. Today, the diagnosis is solely based on clinical evalua-
tion, causing major issues since it is subjective and as different diseases can present similar symptoms. These 
limitations in diagnosis lead to limitations in the classification of psychiatric diseases and treatments. There 
is therefore a great need for new biomarkers, usable at an individual level. Among them, magnetic resonance 
imaging (MRI) allows to measure potential brain abnormalities in patients with psychiatric disorders. This 
creates datasets with high dimensionality and very subtle variations between healthy subjects and patients, 
making machine and statistical learning ideal tools to extract biomarkers from these data. Machine learning 
brings different tools that could be useful to tackle these issues. On the one hand, supervised learning can 
support automated classification between different psychiatric conditions. On the other hand, unsupervised 
learning could allow the identification of new homogeneous subgroups of patients, refining our under-
standing of the classification of these disorders. In this chapter, we will review current research applying 
machine learning tools to brain imaging in psychiatry, and we will discuss its interest, limitations, and future 
applications. 

Key words Psychiatry, Depression, Schizophrenia, Bipolar disorder, Machine learning, Artificial 
intelligence, Neuroimaging, MRI, Clustering, Classification 

1 Introduction 

Major psychiatric conditions affecting adults can be classified into 
several groups: affective disorders (e.g., bipolar disorders, major 
depressive disorders), psychotic disorders (e.g., schizophrenia), 
anxiety disorders (e.g., obsessive-compulsive disorders), neurode-
velopmental disorders (e.g., autism), and substance use disorders. 
We will focus this chapter on the two first categories, as they carry a 
high individual and societal burden and are highly prevalent 
throughout the world. 
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1.1 Major Depressive 

Disorder 

Major depressive disorder (MDD) is defined by the occurrence of 
one or more major depressive episodes without any manic or hypo-
manic episodes in the lifetime. Its prevalence can vary significantly 
according to the studies, but exceeds 15% of the population during 
their lifetime [1], and affects two women for one man. Depression 
can affect people at any time during their life [2]. Nowadays, the 
diagnosis is based on structured interviews, and the clinical criteria 
are given by, among others, two classification manuals: the Interna-
tional Classification of Diseases [1] and the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 
[3]. According to the DSM-5, to meet the criteria for a major 
depressive episode, five of the nine following symptoms must be 
present over a 2-week period: depressed mood or anhedonia (loss 
of interest or pleasure), change in weight or appetite, sleep distur-
bances (insomnia or hypersomnia), psychomotor retardation or 
restlessness, loss of energy or fatigue, low self-esteem or guilt, 
difficulty in concentrating or indecisiveness, and thoughts of 
death or suicidal thoughts. Patients with MDD are at an increased 
risk of other comorbid disorders. Most commonly, they may pres-
ent alcohol abuse or dependence, anxiety disorders such as panic 
disorder, obsessive-compulsive disorder, and generalized anxiety 
disorder. Treatment options for MDD include a variable combina-
tion of pharmacotherapy (antidepressants such as serotonin selec-
tive reuptake inhibitors or tricyclics) and psychotherapy (cognitive 
behavioral therapy, interpersonal therapy, etc.). Despite consider-
able progress in its diagnosis and treatment, MDD remains under-
diagnosed and underestimated and remains a challenge for 
healthcare institutions, especially since one of the main risks of 
mood disorders (BD or MDD) is suicidal behavior. 

1.2 Bipolar Disorder Bipolar disorder (BD) is defined as a chronic mood disorder char-
acterized by episodes of depression and episodes of abnormal exci-
tation (mania, hypomania), separated by periods of “euthymia” 
(without any symptoms of major mood episode) [3]. This mood 
disorder affects around 1% of the world’s adult population [4], 
regardless of continent, socioeconomic status, or ethnicity. The 
course of BD is lifelong, but is heterogeneous in terms of number 
of episodes, relapses, polarity (i.e., higher number of manic or 
depressive episodes), and response to treatment. The impact of 
the disease on cognitive function and quality of life can be major 
[4]. Diagnosis, treatment, health, and social care are major goals in 
the management of BD. 

Manic episodes are defined by a period lasting at least 1 week, 
during which patients exhibit elevated mood and increased motor 
activity. The intensity of these symptoms defines the manic or 
hypomanic nature of the episode. During a manic episode, patients 
may experience psychotic symptoms such as hallucinations, delu-
sions, disorganized thinking, and sleep disturbances. The delusions 
may be consistent with the manic mood, with individuals displaying



grandiosity, megalomania, or messianic ideas. Impaired judgment 
and risk of endangering the patient often lead to hospitalization. 
Hypomanic episodes are characterized by lower symptom intensity 
(abnormally high, expansive, or irritable mood, as well as abnormal 
increase in activity or energy, most of the day) and must last at least 
4 consecutive days. Although there are no pathognomonic features 
of bipolar or unipolar depression, some clinical features are useful in 
distinguishing them: bipolar depression usually occurs at an earlier 
age, and the episodes are also more frequent and shorter, show an 
abrupt onset and termination, and are more frequently associated 
with substance abuse. Patients with bipolar depression may also 
present atypical symptoms, such as hypersomnia and weight insta-
bility. Psychosis (delusions and hallucinations) and catatonia are 
also more frequent in bipolar depression, whereas somatic com-
plaints are more common in unipolar depression. The presence of a 
family history of mania is also a relevant indicator of bipolar depres-
sion. The establishment of the diagnosis of BD is a major challenge 
and has several consequences: stabilizing the disease, allowing good 
social reintegration, avoiding relapses and side effects, and, finally, 
limiting the long-term effects of the disease, particularly on the 
cognitive level. Treatment strategies usually combine pharmaco-
therapy (mostly mood stabilizers) and psychosocial care, tailored 
to each patient. Mood stabilizers aim at decreasing the frequency of 
major mood episodes. Lithium, some anticonvulsants (such as 
valproate and carbamazepine), and some antipsychotics (such as 
aripiprazole, quetiapine, or olanzapine) are the three classes of 
available mood stabilizers. Psychosocial care includes cognitive 
rehabilitation strategies, psychoeducation, and interpersonal social 
and rhythm therapies. 
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1.3 Schizophrenia The annual incidence of schizophrenia is 0.2–0.4 per 1000, with a 
lifetime prevalence of about 0.8% [5], which can slightly vary 
between countries and cultural groups [6]. These differences are 
reduced when stricter diagnostic criteria are used for schizophrenia, 
such as the ones of the DSM-5. Research conducted by the WHO 
has further confirmed this observation by showing that 
schizophrenic disorder prevalence is similar across a wide range of 
cultures and countries, including developed and developing 
countries [6]. Its sex ratio is around 1:1. 

Schizophrenia is characterized by three main types of symp-
toms, namely, positive symptoms, negative symptoms, and cogni-
tive impairment [7]. Positive symptoms involve a loss of contact 
with reality; the patient has false beliefs (delusions) and perceptual 
experiences not shared with others (hallucinations) and may exhibit 
behavioral oddities. People with schizophrenia can experience dif-
ferent kinds of hallucinations: auditory, visual, olfactory, gustatory, 
or tactile. About delusions, patients with schizophrenia may have 
persecutory delusions, control delusions (e.g., belief in telepathy), 
grandiose delusions (e.g., belief in being a god), and somatic



delusions (e.g., belief that one’s body is rotting from the inside) 
[8]. Negative symptoms are characterized by a deficit state during 
which basic emotional and behavioral processes are diminished or 
absent. The most common negative symptoms are blunted affect, 
anhedonia, avolition, apathy, and alogia (i.e., reduction in the 
amount or content of speech). Negative symptoms are more fre-
quent and less fluctuating over time than positive symptoms 
[9]. They are also strongly associated with poor psychosocial func-
tioning [10]. Cognitive impairments in schizophrenia include def-
icits with attention and concentration, psychomotor speed, 
learning and memory, and executive function. A decline in cogni-
tive abilities from premorbid functioning is present in most of the 
patients, with cognitive functioning after the onset of the illness 
being relatively stable over time [10]. Despite this decline, cogni-
tive functioning in some patients could be in the normal range. As 
for the negative symptoms, cognitive impairment is strongly asso-
ciated with poor psychosocial functioning, particularly with regard 
to social and professional lives. 
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The etiology of schizophrenia is complex and multifactorial. 
Genetic and environmental factors seem to play a major role. The 
risk of developing schizophrenia is higher in patients’ relatives than 
in the general population [11, 12]. Adoption and twin studies have 
shown that this increased risk is genetic, with the risk being 
increased by the presence of an affected first-degree relative 
[12]. There are two main approaches to the treatment of schizo-
phrenia: pharmacological and psychosocial treatments [13]. Anti-
psychotics constitute the main medication, with major effects on 
reducing positive symptoms and preventing relapses. First-
generation antipsychotics include molecules such as chlorproma-
zine or haloperidol. Second-generation antipsychotics were devel-
oped to decrease the neurological and cognitive side effects. They 
are the most used molecules nowadays (quetiapine, aripiprazole, 
risperidone, clozapine, etc.). In contrast, their effects on negative 
symptoms and cognitive impairment are much more moderate 
[14]. Psychosocial interventions improve the management of 
schizophrenia, e.g., through symptom management or relapse pre-
vention. Other specific interventions that can improve the outcome 
of schizophrenia include family psychoeducation, supported 
employment, social skills training, psychoeducation, cognitive 
behavioral therapy, and integrated treatment of comorbid sub-
stance abuse [8]. 

The remainder of this chapter is organized as follows: We first 
describe the challenges in psychiatry that can potentially be 
addressed with machine learning. We then provide a 
non-exhaustive state of the art of machine learning with magnetic 
resonance imaging in psychiatry. We finally highlight the limitations 
of current approaches and propose perspectives for the field. Stud-
ies reviewed in this chapter are summarized in Table 1.
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2 Challenges for Machine Learning in Psychiatry 

Diagnosis and treatment are based on clinical diagnostic criteria 
developed from the subjective human experience, rather than on 
objective markers of illness. These criteria have been developed 
based on experts’ opinion and are included in the DSM-5 and 
ICD-10 manuals. This approach has some limitations. Diagnosis 
can vary across interview methodologies [50], and clinically identi-
cal symptoms can be caused by different underlying conditions. 
Therefore, the common diagnostic criteria, which are based on 
symptom manifestation alone, are not always reliable in the clinical 
context [51]. They are indeed often unstable over time and unspe-
cific [52] and provide little guidance to select the appropriate 
treatment. These misdiagnoses and misclassifications could lead to 
a poor therapeutic response and suboptimal management of the 
illness. Based on these observations, it appears necessary to develop 
objective markers and a better characterization of these illnesses. 

In this section, we will discuss how machine learning could be 
used to improve diagnosis, to help characterize the different mental 
illnesses, and to improve treatment response and prognostic 
approach. 

2.1 Improving the 

Diagnosis of 

Psychiatric Disorders 

In the early stages of research on machine learning and psychiatric 
disorders, researchers wanted to explore whether different diag-
noses could be predicted using machine learning algorithms 
applied to neuroimaging features. They mainly applied machine 
learning on structural MRI (sMRI) and functional MRI (fMRI) 
data (during tasks or at rest) [53]. Recent efforts have been made to 
apply machine learning on diffusion MRI [15], mostly in combina-
tion with other modalities [53, 54], and to explore whether adding 
modalities improves the diagnosis. Classification using machine 
learning in neuroimaging initially focused on major psychiatric 
disorders, such as MDD [55], schizophrenia [56], and bipolar 
disorder [54]. In a second phase, research has broadened the 
spectrum of psychiatric disorders such as anxiety disorders [23], 
anorexia [20], substance abuse [57], specific phobia [19], and 
autism spectrum disorders [58]. Machine learning using EEG has 
also been investigated for schizophrenia classification [59] as it is an  
affordable method for functional imaging and since it has a better 
temporal resolution than fMRI. While lots of machine learning 
studies in psychiatry focused on neuroimaging data, other fields 
of research were increasingly interested in using other modalities, 
such as proteomic, metabolomic [22], and genetic [24] data. 

Machine learning also opens perspectives for the identification 
of relevant features (e.g., the measured variables) for the diagnosis. 
Using interpretable models such as support vector machines (SVM) 
or decision trees lets researchers investigate features that are used in



the decision. Deep learning could also be used to find useful 
features without a priori preprocessing of the images when it is 
used in combination with interpretation techniques [59]. Another 
way to identify relevant features for the classification is to compare 
the prediction performances of different machine learning models 
with different input features. It then allows us to evaluate if the 
information present in the different features helps the classification. 
For example, this was shown in the study of Lin et al. [16], where 
the authors established that the G72 protein alone yielded almost as 
much information for the diagnosis of schizophrenia than com-
bined with other G72 single nucleotide polymorphisms. While this 
approach could be fruitful to build more resilient and interpretable 
algorithms, we should be careful when interpreting their results. 
We must keep in mind that statistical algorithms such as the 
machine learning ones are designed to predict (classes), while infer-
ence tests (i.e., univariate statistics) usually rely on association 
studies, which are more reliable to infer correlation and causal 
relations [60]. Moreover, when interpreting SVM weights, for 
example, one must keep in mind that some features are only includ-
ing noise but are still important when considered in combination 
with other features [61]. For all these reasons, even though finding 
important features is necessary to better understand the models, 
their interpretation to infer pathophysiology or biomarkers must be 
cautious. 
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2.2 Refining the 

Classification of 

Psychiatric Disorders 

Since there is a significant overlap in the clinical symptoms of 
different psychiatric disorders, many patients suffer from an impor-
tant delay in the diagnostic establishment, after a potentially harm-
ful diagnosis wavering. For instance, patients with BD wait on 
average 10 years before receiving an accurate diagnosis [62] and 
are often misdiagnosed with unipolar depression for years. As for 
MDD, it is often underdiagnosed even though fast and accurate 
diagnosis could avoid long-term cognitive impairment in under-
treated patients [63]. For all these reasons, making the right diag-
nosis as early as possible is a major public health challenge. 

Machine learning may be a useful tool to discriminate between 
different diagnoses. Indeed, the interest in machine learning is not 
only to distinguish a patient with a psychiatric disorder from a 
healthy subject – which is not the most difficult task for the 
clinician – but it could be used to help the clinician when the 
diagnosis becomes more difficult, e.g., to distinguish bipolar 
depression from unipolar depression [18] or to identify a patient 
at risk of psychosis [24]. 

As studies investigate new biomarkers to differentiate between 
different conditions, our current classification of psychiatric disor-
ders appears to be limited. There are numerous different classifica-
tion criteria to describe psychopathology, and theoretical 
frameworks are evolving rapidly [52], which contributes to our



limited understanding of these disorders. The classification of psy-
chiatric disorders is also a complex issue at the biological level, since 
biological boundaries between conditions are not binary and are 
blurred by the imprecision of the current genetic and imaging tools 
(e.g., between BD and schizophrenia [17]). Moreover, the hetero-
geneity in the clinical presentation of the patients limits the effi-
ciency of a binary classification task. A simple classification 
algorithm as SVM will only find the largest and shared biomarkers, 
leading to a suboptimal classification. 
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The question we might ask is whether changing our perspective 
and the way we approach psychiatric disorders’ heterogeneity will 
improve our understanding and management of the patients. To 
consider this heterogeneity, unsupervised machine learning seems 
to be an appropriate method, as it allows to find new homogeneous 
subgroup within the population without preconceptions. Current 
research is using unsupervised machine learning to automatically 
detect new subgroups (i.e., clusters) of patients based on similar 
cognitive [25], genetic [64], and/or cerebral [64] profiles. After 
subgrouping, supervised machine learning can be used to automat-
ically classify the patients into one group or another. For instance, 
Wu et al. [25] identified two phenotypic groups of patients with BD 
using a cognitive task battery. Then, they used classifiers to detect 
white matter tracts’ microstructural differences between the two 
groups. Newly developed algorithms combining supervised 
learning and clustering show promising results [65], as they can 
disentangle the heterogeneity of some disorders and improve diag-
nostic prediction at the same time. The HYDRA model is one of 
those promising algorithms that has already been used to find some 
subtypes of Alzheimer disease and to reveal meaningful biomarkers 
of this disease at the same time [66]. These semi-supervised clus-
tering algorithms [67] are also starting to be used in psychiatry 
[68] as they could help to reveal biomarkers while discriminating 
between two different homogeneous classes. Finally, these algo-
rithms are of special interest as they are also handling common 
source of variation in the groups to be classified (i.e., the age, the 
sex, or other clinical or biological variables) [ 69]. 

Other approaches aim to identify differences between the 
patients (the cases) and a reference population [70] (the controls). 
These so-called normative models drop the hypothesis that the 
patients do not belong to a homogeneous group, which is a step 
toward a finer analysis. Indeed, recent studies showed important 
clinical and biological heterogeneity between the patients, espe-
cially regarding brain structural abnormalities. Therefore, the 
hypothesis of an average patient, as it is in classical “case-control” 
studies, could limit our understanding of the diseases in the long 
term. Normative modeling could overpass this limitation as it 
allows to situate a given patient among the “norm” while consider-
ing the strong heterogeneity within the patients’ population. For



instance, Wolfer et al. [70] showed that deviations from the nor-
mative model of gray matter volume were frequent in both SZ and 
BD but highly heterogeneous. However, these models also induce 
an asymmetry as they hypothesize that the controls are homoge-
neous, which is debatable in practice. Nevertheless, it appears that 
subtyping leads to increased predictive accuracy in identifying indi-
viduals with mental illnesses compared with healthy controls, even 
though results are mixed [71]. This approach could gain attention 
with the development of new tools such as longitudinal normative 
brain charts that cover the whole lifespan [72]. 
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2.3 Predicting 

Evolution and 

Treatment Response 

Predicting the evolution of psychiatric disorders is an important 
challenge. As previously mentioned, clinicians’ choices are guided 
by recommendations based on broad symptom classifications, such 
as depression, anxiety, or psychosis criteria, and become persona-
lized over time through an empirical process of trials and errors. 
Being able to predict the prognosis of the mental illnesses would 
allow a better organization of care and more adapted psychoeduca-
tion consultations, would let clinicians set up strategies to prevent 
relapses, and would finally greatly improve the quality of life of the 
patients. Some studies tried to predict psychotic transition using 
neuroimaging [29] or using EEG [32] and clinical measures 
[35]. Schmaal et al. [31] used Gaussian process classifiers based 
on structural and functional MRI (emotional task) to characterize 
trajectories of depression (chronic, improvement, and rapid remis-
sion). They successfully classified the chronic group vs. the rapid 
remission group with an accuracy of 73%. Regarding other studies 
on depression, Kessler et al. [73] used self-reported clinical ques-
tionnaires of 1057 patients and machine learning algorithm to 
predict the course of MDD. They predicted the risk of suicide 
attempt with an AUC of 0.76 and whether the patient would 
experience a depressive episode lasting more than 2 weeks with an 
AUC of 0.71. Tran et al. [34] used electronical record’s informa-
tion such as medication, diagnosis, occurrence of interactions with 
health services, etc. with the aim of stratifying individuals according 
to their suicide risk. Interestingly, according to their results, their 
algorithms predicted the suicide risk better than clinicians, with an 
AUC of 0.73 vs. 0.57 for the prediction of high suicide risk 
patient vs. the rest of the population. It could also be possible to 
predict future substance abuse using neuroimaging data [33] and 
using combinations of demographic, clinical, cognitive, neuroim-
aging, and genetic data [30]. For schizophrenia, EEG-based 
machine learning could also be used to determine at-risk patients 
[59]. Machine learning could also be useful to predict the outcome 
of a first episode of psychosis [42] and to adapt the treatment. 
These studies highlight the possibility to stratify and classify indivi-
duals to optimize prognostic assessments, thanks to machine



learning. That would help the clinician to propose personalized 
care, such as primary care facilities for patients at high suicidal risk. 
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Regarding the treatment outcome, the major challenge is to 
determine whether machine learning could be used to predict 
treatment response. This knowledge would be extremely useful, 
as for now therapeutic choices are made through a trial-error 
process, which increases the time interval between the apparition 
of the symptoms and the administration of the adequate treatment. 
This leads to a serious socioeconomic burden and can have debil-
itating consequences. In depression, the interest of the machine 
learning approach was tested on pharmacological decision, for 
instance, to predict the response to serotonin reuptake inhibitor 
medications [27]. The authors were able to predict the treatment 
response using EEG-derived features with an accuracy of 87.9%. In 
another study, EEG features were also used to predict antipsycho-
tics response in schizophrenia [74]. More recently, studies focused 
on anatomical and functional MRI. For instance, Whitfield-Gabrieli 
et al. [28] used resting-state fMRI combined with FA maps as well 
as initial severity assessment to predict the response to cognitive 
behavioral therapy in patients with social anxiety. They were able to 
classify good and poor responders with an accuracy of 81% in a 
sample of 38 patients. Predicting treatment response is particularly 
interesting when the treatment is more invasive, such as for the use 
of electroconvulsive therapy (ECT). Indeed, one team showed 
(with a sample of 122 depressed patients) that the brain structure 
can predict the ECT response with an accuracy of 78% [75]. Finally, 
choosing the right treatment is not just about measuring its effec-
tiveness; it is always about balancing the cost and the acceptable 
benefit for the patients. In summary, all these features could be 
integrated in machine learning algorithms and used by the clini-
cians as tools to improve the accuracy of the therapeutic decisions. 

3 MRI and Machine Learning in Psychiatry: State of the Art (Table 1) 

To this day, unlike in some medical specialties such as neurology, 
MRI is rarely used for psychiatric clinical practice. However, it is 
extensively used in research as it provides a large variety of informa-
tion about the brain structure and function. Currently, sMRI is the 
easiest method to implement and the most used in the MRI studies. 
It is preferentially used to measure the cortex thickness and the 
cortical surface and to estimate the gray and white matter density 
and/or volume. Diffusion-weighted imaging (DWI) is less used 
but provides useful information on the white matter microstruc-
ture, thanks to different markers such as fractional anisotropy (the 
most used), mean diffusivity, and radial diffusivity. fMRI is of 
particular interest to investigate the neural correlates of cognition 
and emotion processes and their alteration in patients with



psychiatric conditions. Predictive models are thus useful tools when 
analyzing MRI data, because they allow to handle high-
dimensional inputs and fit more unknown variables than available 
observations. In neuroimaging, machine learning allows to model 
sets of effects rather than single effects and thus to build models 
that describe more than one isolated dimension of cognition. 
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3.1 Classification 

Versus Healthy 

Controls 

Classification of patients with psychiatric disorder vs. healthy con-
trols is a widely studied area of research. Even though most studies 
fail to obtain the 80% of accuracy needed for clinical relevance, they 
yield promising results and give important methodological insights. 

Regarding MDD, using sMRI, machine learning studies [55] 
found accuracies ranging from 67.6% to 90.3%. These results 
should be taken with great caution since they are usually obtained 
from small samples. For example, Mwangi et al. [39] obtained an 
accuracy of 90.3% using relevance vector machines and a sample of 
60 subjects. They also showed that the brain regions identified 
during the features selection process were consistent with those of 
previous studies that reported gray matter reductions in patients 
with MDD, which were mostly located in the frontal lobe, the 
orbitofrontal and cingulate cortex, the middle frontal gyrus, and 
the inferior and superior gyri [76]. As for fMRI studies, Gao et al. 
[55] found an accuracy ranging from 56% to 99%; Ramasubbu et al. 
[36] found a significant accuracy of 66% for very severe depression 
using resting-state fMRI in 19 control subjects vs. 45 patients with 
different intensities of depression; and Fu et al. [21] obtained an 
accuracy of 86% in a sample of 19 patients with MDD and 19 HC 
who were processing sad faces during fMRI scanning. 

Regarding bipolar disorder (BD), a recent literature review 
counted 25 studies using machine learning with different MRI 
modalities to classify BD vs. HC [54]. They found a median accu-
racy of 66% for BD vs. HC classification. Even though most studies 
used samples of less than 100 subjects, a study stood out by the 
number of samples. Using 3040 subjects, sMRI, and a linear SVM, 
Nunes et al. [43] obtained an accuracy of 65.23% using aggregate 
subject-level analyses and an accuracy of 58.67% when testing on 
left out sites. Their results, which highlighted the importance of 
regions such as the hippocampus, the amygdala, and the inferior 
frontal gyrus for the classification, were in good accordance with 
previous MRI studies in BD [76–78]. Regarding fMRI, the review 
of Claude et al. [54] highlighted that machine learning studies 
performed with an accuracy range between 37.5% and 83.5%. The 
minimum accuracy was 37.5% for the classification of bipolar 
depression vs. HC, during angry face processing using a Gaussian 
process classifier (GPC) [37]. DWI was not investigated much. In 
the review of Claude et al. [54], only two DWI studies were 
referenced. Achalia et al. [15] used DWI and machine learning on 
60 subjects and obtained an accuracy of 74% for DWI alone. Even



though DWI gave lower classification scores than sMRI (77.8%) 
and fMRI (80.3%), combining it with other modalities significantly 
enhanced the accuracy (87.6%). Mwangi et al. [40] also used DWI 
in combination with sMRI on 30 pediatric patients with BD and 
obtained a classification accuracy of 78.12%. 
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Regarding schizophrenia (SZ), Filippis et al. [56] conducted a 
systematic review focusing on sMRI and fMRI studies that attempt 
to classify SZ vs. HC. Notably, the study of Salvador et al. [38] 
focused on a sample of 128 patients with SZ and 127 HC and 
aimed to compare the classification score of different neuroimaging 
features such as voxel-based and wavelet-based (a transformation 
like Fourier transform) morphometry of gray and white matter, 
vertex-based cortical thickness and volume defined as regions of 
interest, as well as volumetric measures. They also compared differ-
ent methods, such as random forest, regressions with different 
regularization methods and levels, and SVM. The best results 
were obtained using the voxel-based and wavelet-based morphom-
etry in combination with a SVM, with respective accuracy of 77.2% 
and 71%. The authors stress on the fact that no algorithm clearly 
outperforms the others, but that the selection of features has a real 
influence on the classification accuracy. Another notable study 
focused on cortical thickness and surface area measurement to 
differentiate first-episode psychosis from healthy subjects 
[42]. This study witnessed that regions contributing to the classifi-
cation accuracy included the default mode network (DMN), the 
central executive network, the salience network, and the visual 
network. They observed a classification accuracy of 85.0% for the 
surface area and 81.8% for the cortical thickness. Pinaya et al. [79] 
used a deep belief network, which is a deep neural network that 
extrapolated and interpreted features, on sMRI data from 83 HC 
and 143 patients with SZ. The deep belief network highlighted an 
accuracy of 73.6% vs. 68.1% for a classical SVM. It also detected 
large differences between classes among specific regions, particu-
larly frontal, temporal, parietal, and insular cortices, the corpus 
callosum, the putamen, and the cerebellum. Finally, as already 
mentioned in Subheading 2.1, normative models constructed 
with MRI data could be a useful tool to handle the inter-subject 
variability in machine learning models [71]. 

3.2 Inter-Illness 

Classification and 

Clustering 

One major challenge of machine learning studies using MRI is to 
be able to correctly distinguish or classify patients suffering from 
different disorders. Several studies focused on the classification 
between BD and SZ. In their review, Claude et al. [54] found 
that three studies used sMRI in combination with machine learning 
algorithms to discriminate between BD and SZ with an accuracy 
ranging between 58% and 66%. Precisely, Schnack et al. [44] 
showed good classification performance on an independent dataset, 
with an average classification accuracy of 66%. Mothi et al. [45]



used K-mean clustering after a non-linear PCA to separate patients 
with BD, SZ, or schizoaffective disorder. They found out that the 
separation in three clusters was optimal, comprising a cluster 
including a major proportion of patients with BD, a second with 
mostly patients with SZ, and a third with a balanced proportion of 
the three types of illnesses. To build their clusters, they used clinical 
and cognitive data and validated the robustness of their results with 
sMRI data. The cluster including more patients with SZ was the 
one to have a significantly reduced cortical thickness in the frontal 
lobe. In addition, the BD and the SZ clusters presented significant 
cortical thickness reductions in occipital and temporal regions. 
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Several studies attempted to predict the diagnosis of BD in a 
population of unipolar, bipolar depression, and healthy controls 
with a median accuracy of 79% and an accuracy ranging from 50% 
to 90.69% [54]. Burger et al. [37] focused on the classification of 
unipolar vs. bipolar depression using different regions of interest. 
They did not find any significant results using the whole brain but 
found an accuracy of 63.89% for the classification of 
BD vs. unipolar depression using a GPC based on a happy face 
processing paradigm and the amygdala activity. Their best accuracy 
was of 72.2% for the classification of bipolar vs. unipolar depres-
sion, using a fear processing paradigm and GPC on the anterior 
cingulate gyrus. Overall, the best performance was obtained by 
Grotegerd et al. [18] In a pilot study, they obtained an accuracy 
of 90% using fMRI with a happy vs. neutral contrast image and an 
SVM on 10 BD, 10 HC, and 10 MDD. Using sMRI and DWI with 
a multiple kernel learning and a sample of 74 MDD and 74 BD, Vai 
et al. [46] obtained an accuracy of 74.32%, with a positive predic-
tive value of 73.33% (probability that subjects with a positive BD 
prediction suffer from BD). The accuracy for MDD was 72.97%, 
indicating the ability to correctly identify people with MDD, with a 
predictive value of 73.97%. Their models are particularly interesting 
as they included relevant covariates in their models, such as age, 
gender, number of previous episodes, and drug load, which can 
confound and bias the accuracy estimates. Taking into account all 
these factors helps to increase the performance of the algorithm, as 
they impact the brain structural measures. It is necessary since these 
effects were witnessed by the ENIGMA-BD Working Group that 
used a large cohort of 2447 BD and 4056 HC and found [80] that 
several commonly prescribed drugs for BD treatment, including 
lithium, anti-epileptic, and antipsychotic treatments, showed sig-
nificant associations with cortical thickness and surface area, even 
after accounting for patients receiving multiple drugs. 

3.3 Treatment 

Response and Illness 

Prediction 

Another perspective is the use of MRI and machine learning algo-
rithms to predict treatment response. This was done by the team of 
Liu et al. [47] who tested the sensitivity to antidepressants in 
patients with MDD. Precisely, the study included 17 subjects that



(c
o
n
ti
n
u
ed

)

Machine Learning for Psychiatric Disorders 1021

Ta
bl
e 
1 

S
um

m
ar
y 
of
 r
ev
ie
w
ed
 s
tu
di
es
 

S
tu
dy

M
od
al
it
ie
s

D
is
ea
se
s 
an
d 
go
al
 

N
um

be
r 
of
 

su
bj
ec
ts
 

M
et
ho
ds
 a
nd
 v
al
id
at
io
n 

pr
oc
ed
ur
e

R
es
ul
ts
 

A
ch
al
ia
 e
t 
al
. 
[1
5
] 

sM
R
I,
 d
M
R
I,
 r
s-
fM

R
I,
 

co
g
n
it
iv
e 
te
st
 

C
la
ss
ifi
ca
ti
o
n
 o
f 
B
D
 v
s.
 H

C
 
3
0
 H

C
, 
3
0
 B
D

S
V
M
 a
n
d
 f
ea
tu
re
 s
el
ec
ti
o
n
 

A
cc
u
ra
cy
 o
f 
8
7
.6
0
%
, 

se
n
si
ti
vi
ty
 o
f 
8
2
.3
%
 a
n
d
 

sp
ec
ifi
ci
ty
 o
f 
9
2
.7
%
 

L
in
 e
t 
al
. 
[1
6
]

G
7
2
 g
en

o
ty
p
es
, 
p
ro
te
in
s 

le
ve
ls
 

C
la
ss
ifi
ca
ti
o
n
 o
f 
S
Z
 v
s.
 H

C
 
8
9
 S
Z
, 
6
0
 H

C
N
ai
ve
 B
ay
es
, 
lo
g
is
ti
c 

re
g
re
ss
io
n
, 
d
ec
is
io
n
 t
re
e 

N
ai
ve
 B
ay
es
 m

o
d
el
: 

se
n
si
ti
vi
ty
 =

 0
.7
9
6
9
, 

sp
ec
ifi
ci
ty
 =

 0
.9
3
7
2
, 

(A
U
C
) 
=
 0
.9
3
5
6
 

K
li
em

an
n
 e
t 
al
. 

[1
7
] 

E
m
o
ti
o
n
 a
tt
ri
b
u
ti
o
n
 t
as
k,
 

lo
ca
li
ze
r 
ta
sk
 a
n
d
 

b
eh

av
io
ra
l 
ta
sk
 i
n
 f
M
R
I 

C
la
ss
ifi
ca
ti
o
n
 o
f 
A
u
ti
sm

 
sp
ec
tr
u
m
 d
is
o
rd
er
 

(A
S
D
) 
vs
. 
H
C
 

S
tu
d
y 
1
: 
A
S
D
: 

1
6
, 
H
C
: 
2
1
 

S
tu
d
y 
2
: 
A
S
D
: 

2
2
, 
H
C
: 
3
0
 

R
O
I-
b
as
ed

 M
V
P
A
 

(M
u
lt
iv
ar
ia
te
 p
at
te
rn
 

an
al
ys
is
) 
w
it
h
 a
 S
V
M
 

O
n
ly
 s
ta
ti
st
ic
s 
o
n
 t
h
e 

M
V
P
A
 r
es
u
lt
s 

G
ro
te
g
er
d
 e
t 
al
. 

[1
8
] 

F
ac
ia
l 
em

o
ti
o
n
 p
ro
ce
ss
in
g
, 

fM
R
I 

C
la
ss
ifi
ca
ti
o
n
 o
f 

B
D
 v
s.
 H

C
 v
s.
 U

n
ip
o
la
r 

d
ep
re
ss
io
n
 (
U
D
) 

B
D
: 
1
0
, 
H
C
: 

1
0
, 
U
D
: 
1
0
 

S
V
M
, 
G
P
C

B
es
t 
re
su
lt
s:
 h
ap
p
y 
ve
rs
u
s 

n
eu

tr
al
 w

it
h
 t
h
e 
S
V
M
 

fo
r 
U
D
 v
s.
 B
D
: 
9
0
%
 

ac
cu
ra
cy
 

V
is
se
r 
et
 a
l.
 [
1
9
]

G
en

er
al
iz
at
io
n
 t
as
k,
 f
M
R
I 

Id
en

ti
fy
in
g
 a
re
a 
th
at
 

in
fl
u
en

ce
 t
h
e 
fe
ar
 o
f 

sp
id
er
s 
in
 s
p
id
er
-p
h
o
b
ia
 

st
ri
ck
en

 p
at
ie
n
ts
 

H
ig
h
 s
p
id
er
 f
ea
r 

p
at
ie
n
ts
 (
H
S
F
):
 

1
8
, 
L
o
w
 s
p
id
er
 

fe
ar
 p
at
ie
n
t 

(L
S
F
):
 2
0
 

S
V
M
-b
as
ed

 M
V
P
A

S
ev
er
al
 a
b
o
ve
 c
h
an
ce
 

re
su
lt
s 
o
f 
co
rr
ec
t 

cl
as
si
fi
ca
ti
o
n
 o
f 
th
e 

st
im

u
li
 d
ep
en

d
in
g
 o
n
 

th
e 
R
O
Is
 

L
av
ag
n
in
o
 e
t 
al
. 

[ 2
0
] 

sM
R
I

C
la
ss
ifi
ca
ti
o
n
 o
f 
A
n
o
re
xi
a 

N
er
vo

sa
 (
A
N
) 
p
at
ie
n
t 

ve
rs
u
s 
H
C
 

A
N
: 
1
5
, 
H
C
: 
1
5
 

L
A
S
S
O
 l
in
ea
r 
re
g
re
ss
io
n

8
3
.3
%
 a
cc
u
ra
cy
 

(s
en

si
ti
vi
ty
 8
6
.7
%
, 

sp
ec
ifi
ci
ty
 8
0
.0
%
) 

F
u
 e
t 
al
. 
[2
1
]

S
ad
 f
ac
e 
p
ro
ce
ss
in
g
, 
fM

R
I 

C
la
ss
ifi
ca
ti
o
n
 o
f 
M
D
D
 

ve
rs
u
s 
H
C
 

M
D
D
: 
1
9
, 
H
C
: 

1
9
 

S
V
M

A
cc
u
ra
cy
 o
f 
8
6
%
 (
8
4
%
 o
f 

se
n
si
ti
vi
ty
 a
n
d
 8
9
%
 o
f 

sp
ec
ifi
ci
ty
)



Ta
bl
e
1

(c
on
ti
nu
ed
)

S
tu
dy

M
od
al
it
ie
s

D
is
ea
se
s
an
d
go
al

N
um

be
r
of

su
bj
ec
ts

M
et
ho
ds

an
d
va
lid
at
io
n

pr
oc
ed
ur
e

R
es
ul
ts

S
et
o
ya
m
a 
et
 a
l.
 

[2
2
] 

P
la
sm

a 
m
et
ab
o
li
te
s 

co
n
ce
n
tr
at
io
n
 

P
re
d
ic
ti
o
n
 o
f 
su
ic
id
e 

id
ea
ti
o
n
 (
S
I)
 i
n
 M

D
D
 

an
d
 B
D
 p
at
ie
n
ts
 

D
at
as
et
 1
: 

5
1
 d
ru
g
-f
re
e 

M
D
D
 p
at
ie
n
ts
 

D
at
as
et
 2
: 

2
3
 m

ed
ic
at
ed

 
M
D
D
 p
at
ie
n
ts
 

D
at
as
et
 3
: 

2
7
 M

D
D
, 

1
4
 B
D
 

L
o
g
is
ti
c 
re
g
re
ss
io
n
, 
S
V
M
 

an
d
 r
an
d
o
m
 f
o
re
st
. 

R
es
u
lt
s 
re
p
o
rt
ed

 f
o
r 
ea
ch
 

fo
ld
 o
f 
a 
1
0
-f
o
ld
 c
ro
ss
 

va
li
d
at
io
n
 

L
o
g
is
ti
c 
re
g
re
ss
io
n
 

ac
cu
ra
cy
 o
f 
S
I 
vs
. 
n
o
 S
I:
 

5
7
.1
4
%
 (
m
ea
n
 o
f 
th
e 

1
0
-f
o
ld
) 

S
V
M
 a
cc
u
ra
cy
 o
f 

S
I 
vs
. 
n
o
 S
I:
 5
2
.0
8
%
 

(m
ea
n
 o
f 
th
e 
1
0
-f
o
ld
) 

R
an
d
o
m
 f
o
re
st
: 
o
ve
rfi
t 

L
u
ek
en

 e
t 
al
. 
[2
3
] 

F
ea
r 
co
n
d
it
io
n
in
g
 t
as
k,
 

fM
R
I 

P
an
ic
 d
is
o
rd
er
, 
M
D
D

P
an
ic
 d
is
o
rd
er
: 

3
3
, 
P
an
ic
 

d
is
o
rd
er
 w

it
h
 

d
ep
re
ss
io
n
: 
2
6
 

A
d
ab
o
o
st

C
o
m
o
rb
id
it
y 
st
at
u
s 
w
as
 

co
rr
ec
tl
y 
p
re
d
ic
te
d
 i
n
 

7
9
%
 o
f 
p
at
ie
n
ts
 

(s
en

si
ti
vi
ty
: 
7
3
%
; 

sp
ec
ifi
ci
ty
: 
8
5
%
) 
b
as
ed

 
o
n
 b
ra
in
 a
ct
iv
at
io
n
 

d
u
ri
n
g
 f
ea
r 

co
n
d
it
io
n
in
g
 

(c
o
rr
ec
te
d
 f
o
r 
p
o
te
n
ti
al
 

co
n
fo
u
n
d
er
s:
 a
cc
u
ra
cy
: 

7
3
%
; 
se
n
si
ti
vi
ty
: 
7
7
%
; 

sp
ec
ifi
ci
ty
: 
7
0
%
) 

P
et
te
rs
so
n
-Y
eo

 
et
 a
l.
 [
2
4
] 

G
en

o
ty
p
e,
 s
M
R
I,
 d
M
R
I,
 

co
g
n
it
iv
e 
d
at
a,
 f
M
R
I 

C
la
ss
ifi
ca
ti
o
n
 o
f 
u
lt
ra
 h
ig
h
 

ri
sk
 (
U
H
R
) 

p
at
ie
n
ts
 v
s.
 fi
rs
t 
ep
is
o
d
e 

p
sy
ch
o
si
s 
p
at
ie
n
t 

(F
E
P
) 
vs
. 
H
C
 

H
C
: 
2
3
, 
U
H
R
: 

1
9
, 
F
E
P
: 
1
9
 

S
V
M

F
E
P
 v
s.
 H

C
 (
g
en

o
ty
p
e,
 

6
7
.8
6
%
; 
d
M
R
I,
 

6
5
.7
9
%
; 
fM

R
I,
 6
5
.7
9
%
 

an
d
 6
8
.4
2
%
; 
co
g
n
it
iv
e 

d
at
a,
 7
3
.6
9
%
),
 U

H
R
 

ve
rs
u
s 
H
C
 (
sM

R
I,
 

6
8
.4
2
%
; 
d
M
R
I,
 

6
5
.7
9
%
),
 a
n
d
 F
E
P

1022 Ivan Brossollet et al.



(c
o
n
ti
n
u
ed

)

ve
rs
u
s 
U
H
R
 (
sM

R
I,
 

7
6
.6
7
%
; 
fM

R
I,
 7
3
.3
3
%
; 

co
g
n
it
iv
e 
d
at
a,
 

6
6
.6
7
%
).
 

Id
en

ti
fi
ca
ti
o
n
 o
f 
tw

o
 

p
h
en

o
ty
p
es
 b
y 
K
-m

ea
n
s 

W
u
 e
t 
al
. 
[2
5
]

N
eu

ro
co
g
n
it
iv
e 
d
at
a,
 

d
M
R
I 
(F
A
, 
M
D
) 

U
n
su
p
er
vi
se
d
 c
lu
st
er
in
g
 o
f 

B
D
 p
at
ie
n
ts
 c
o
n
fi
rm

ed
 

b
y 
su
p
er
vi
se
d
 

cl
as
si
fi
ca
ti
o
n
 

B
D
: 
7
0

K
-m

ea
n
s,
 E
la
st
ic
N
et
 

D
ry
sd
al
e 
et
 a
l.
 [
2
6
] 

rs
fM

R
I

U
n
su
p
er
vi
se
d
 c
lu
st
er
in
g
 o
f 

d
ep
re
ss
iv
e 
d
is
o
rd
er
 

D
at
as
et
 1
: 

3
3
3
 D

D
, 

3
7
8
 H

C
 

D
at
as
et
 2
: 

3
5
2
 H

C
, 

1
0
9
 D

D
, 

1
6
 B
D
 I
I 

K
-m

ea
n
s,
 S
V
M
, 
L
o
g
is
ti
c 

re
g
re
ss
io
n
, 
L
D
A
 w
it
h
 

cr
o
ss
 v
al
id
at
io
n
 

Id
en

ti
fi
ca
ti
o
n
 o
f 
tw

o
 

p
h
en

o
ty
p
es
 f
o
r 

d
ep
re
ss
iv
e 
d
is
o
rd
er
 

K
h
o
d
ay
ar
i-

R
o
st
am

ab
ad
 

et
 a
l.
 [
2
7
] 

E
E
G

P
re
d
ic
ti
o
n
 o
f 
th
e 
re
sp
o
n
se
 

to
 S
S
R
I 
an
ti
d
ep
re
ss
an
t 

th
er
ap
y 
in
 t
re
at
m
en

t-
re
si
st
an
t 
M
D
D
 

2
1
 M

D
D
 s
u
b
je
ct
s 

M
ix
tu
re
 o
f 
fa
ct
o
r 
an
al
ys
is
 

(M
F
A
) 

S
p
ec
ifi
ci
ty
: 
8
0
.9
%
, 

se
n
si
ti
vi
ty
: 
9
4
.9
%
, 

ac
cu
ra
cy
: 
8
7
.9
%
. 

W
h
it
fi
el
d
-G

ab
ri
el
i 

et
 a
l.
 [
2
8
] 

R
s-
fM

R
I,
 d
M
R
I

P
re
d
ic
ti
o
n
 o
f 
co
g
n
it
iv
e 

b
eh

av
io
ri
al
 t
h
er
ap
y 

re
su
lt
s 
o
n
 s
o
ci
al
 a
n
xi
et
y 

d
is
o
rd
er
 i
n
p
at
ie
n
ts
 

3
8
 s
o
ci
al
 a
n
xi
et
y 

d
is
o
rd
er
 

p
at
ie
n
ts
 

L
o
g
is
ti
c 
re
g
re
ss
io
n
 a
n
d
 

M
V
P
A
, 
le
av
e-
o
n
e 
o
u
t 

cr
o
ss
 v
al
id
at
io
n
 

B
et
te
r 

re
sp
o
n
d
er
s 
vs
. 
w
o
rs
t 

re
sp
o
n
d
er
s:
 8
1
%
 

ac
cu
ra
cy
, 
8
4
%
 

se
n
si
ti
vi
ty
 a
n
d
 7
8
%
 

sp
ec
ifi
ci
ty
. 

K
o
u
ts
o
u
le
ri
s 
et
 a
l.
 

[2
9
] 

sM
R
I

C
la
ss
ifi
ca
ti
o
n
 o
f 

S
Z
 v
s.
 M

D
D
 

D
at
ab
as
e 
1
:1
0
4
 

M
D
D
, 
1
5
8
 S
Z
, 

4
3
7
 H

C
 

D
at
ab
as
e 
2
: 

3
5
 B
D
, 
2
3
 F
E
P
, 

8
9
 A
t 
ri
sk
 

p
at
ie
n
ts
 

S
V
M

C
la
ss
ifi
ca
ti
o
n
 o
f 

M
D
 v
s.
 S
Z
: 
7
6
%
 o
f 

b
al
an
ce
d
 a
cc
u
ra
cy
.
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Ta
bl
e
1

(c
on
ti
nu
ed
)

S
tu
dy

M
od
al
it
ie
s

D
is
ea
se
s
an
d
go
al

N
um

be
r
of

su
bj
ec
ts

M
et
ho
ds

an
d
va
lid
at
io
n

pr
oc
ed
ur
e

R
es
ul
ts

T
h
e 
IM

A
G
E
N
 

C
o
n
so
rt
iu
m
 

et
 a
l.
 [
3
0
] 

S
to
p
-s
ig
n
al
 t
as
k,
 f
M
R
I,
 

p
er
so
n
al
it
y 
m
ea
su
re
, 

co
g
n
it
iv
e 
te
st
 

P
re
d
ic
ti
o
n
 o
f 
fu
tu
re
 

al
co
h
o
l-
m
is
u
se
 

6
9
2
 t
ee
n
ag
er
s

E
la
st
ic
N
et
 l
o
g
is
ti
c 

re
g
re
ss
io
n
 

9
4
%
 o
f 
co
rr
ec
t 

cl
as
si
fi
ca
ti
o
n
 o
f 
b
in
g
e-

d
ri
n
ke
rs
 a
n
d
 3
4
%
 o
f 

n
o
n
 b
in
g
e-
d
ri
n
k
er
s 
at
 

th
e 
o
p
ti
m
u
m
 o
f 
th
e 

R
ec
ei
ve
r 
O
p
er
at
in
g
 

C
h
ar
ac
te
ri
st
ic
 c
u
rv
e.
 

S
ch
m
aa
l 
et
 a
l.
 [
3
1
] 

F
ac
e 
ta
sk
 a
n
d
 L
o
n
d
o
n
 

to
w
er
 t
as
k,
 f
M
R
I,
 c
li
n
ic
al
 

d
at
as
, 
sM

R
I 

P
re
d
ic
ti
o
n
 o
f 
M
D
D
 

p
ro
g
n
o
si
s 

1
5
6
 M

D
D
, 

1
4
5
 H

C
 

G
P
C

fM
R
I:
 7
3
%
 o
f 
co
rr
ec
t 

cl
as
si
fi
ca
ti
o
n
 f
o
r 

ch
ro
n
ic
 

p
at
ie
n
ts
 v
s.
 m

o
re
 

fa
vo

ra
b
le
 t
ra
je
ct
o
ri
es
 

p
at
ie
n
ts
. 
6
9
%
 o
f 

ac
cu
ra
cy
 f
o
r 

ch
ro
n
ic
 v
s.
 r
em

it
te
d
 

p
at
ie
n
ts
 w

it
h
 

cl
in
ic
al
 d
at
a.
 

R
am

ye
ad
 e
t 
al
. 

[3
2
] 

E
E
G

P
re
d
ic
ti
o
n
 o
f 
p
sy
ch
o
si
s 

tr
an
si
ti
o
n
 

5
3
 a
t 
ri
sk
 o
f 

p
sy
ch
o
si
s 

in
p
at
ie
n
ts
 

(1
8
 m

ad
e 
a 

tr
an
si
ti
o
n
 t
o
 

p
sy
ch
o
si
s)
 

L
A
S
S
O
 r
eg
re
ss
io
n

P
re
d
ic
ti
o
n
 o
f 
p
sy
ch
o
ti
c 

tr
an
si
ti
o
n
: 
A
U
C
 o
f 

0
.7
7
 

B
er
to
cc
i 
et
 a
l.
 [
3
3
] 

re
w
ar
d
-t
as
k,
 f
M
R
I

P
re
d
ic
ti
o
n
 o
f 
su
b
st
an
ce
 

ab
u
se
 i
n
 e
m
o
ti
o
n
al
ly
 

d
ys
re
g
u
la
te
d
 t
ee
n
ag
er
s 

3
0
 e
m
o
ti
o
n
al
ly
 

d
ys
re
g
u
la
te
d
 

fe
m
al
e 

te
en

ag
er
s 

L
A
S
S
O
 r
eg
re
ss
io
n

C
la
ss
ifi
ca
ti
o
n
 o
f 
su
b
st
an
ce
 

ab
u
se
 v
s.
 n
o
 s
u
b
st
an
ce
 

ab
u
se
: 
8
3
.6
%
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(c
o
n
ti
n
u
ed

)

T
ra
n
 e
t 
al
. 
[3
4
]

E
le
ct
ro
n
ic
 m

ed
ic
al
 r
ec
o
rd
 

(E
M
R
) 

R
is
k 
st
ra
ti
fi
ca
ti
o
n
 o
f 

su
ic
id
al
 b
eh

av
io
u
r 

7
3
9
9
 s
u
b
je
ct
s 

w
it
h
 r
is
k 

as
se
ss
m
en

t 

L
1
 c
o
n
ti
n
u
at
io
n
-r
at
io
 

m
o
d
el
 f
o
r 
o
rd
in
al
 

o
u
tc
o
m
es
 

C
la
ss
ifi
ca
ti
o
n
 o
f 
h
ig
h
-r
is
k
 

p
at
ie
n
ts
 v
er
su
s 
th
e 
re
st
 

u
si
n
g
 E
M
R
 d
at
a:
 A
U
C
 

o
f 
0
.7
9
 

M
ec
h
el
li
 e
t 
al
. 
[3
5
] 

C
li
n
ic
al
 d
at
a

P
sy
ch
o
ti
c 
d
is
o
rd
er
s

4
1
6
 s
u
b
je
ct
s 
at
 

ri
sk
 f
o
r 

p
sy
ch
o
si
s 

S
V
M
 w
it
h
 l
ea
ve
-o
n
e-
o
u
t 

cr
o
ss
 v
al
id
at
io
n
 

6
4
.6
%
 o
f 
ac
cu
ra
cy
 f
o
r 
th
e 

p
ro
g
n
o
st
ic
 p
re
d
ic
ti
o
n
 

o
f 
tr
an
si
ti
o
n
 t
o
 

p
sy
ch
o
si
s 

R
am

as
u
b
b
u
 e
t 
al
. 

[3
6
] 

R
es
ti
n
g
-s
ta
te
 f
M
R
I,
 

E
m
o
ti
o
n
al
-f
ac
es
 t
as
k 

fM
R
I 

C
la
ss
ifi
ca
ti
o
n
 o
f 
d
if
fe
re
n
t 

M
D
D
 s
u
b
g
ro
u
p
s 
vs
. 
H
C
 
4
5
 M

D
D
, 
1
9
 H

C
 
IC

A
 f
o
r 
fe
at
u
re
 s
el
ec
ti
o
n
 

S
V
M
 f
o
r 
cl
as
si
fi
ca
ti
o
n
 

V
er
y 
se
ve
re
 g
ro
u
p
 v
s.
 H

C
 

w
it
h
 r
s-
fM

R
I:
 6
6
%
 

ac
cu
ra
cy
 

R
es
t 
o
f 
th
e 
cl
as
si
fi
ca
ti
o
n
s 

at
 c
h
an
ce
 l
ev
el
s 

B
ü
rg
er
 e
t 
al
. 
[3
7
] 

E
m
o
ti
o
n
al
 f
ac
es
 t
as
k 
fM

R
I.
 

F
ea
tu
re
s 
fr
o
m
 t
h
e 

an
te
ri
o
r 
ci
n
g
u
la
te
 g
yr
u
s 

o
r 
th
e 
am

yg
d
al
a 

C
la
ss
ifi
ca
ti
o
n
 o
f 

B
D
 v
s.
 H

C
 v
s.
 U

D
 

3
6
 H

C
, 
3
6
 B
D
, 

3
6
 U

D
 

S
V
M
 o
r 
G
P
C
 f
o
r 
th
e 

M
V
P
A
 

S
ig
n
ifi
ca
n
t 
re
su
lt
s 

B
D
 v
s.
 U

C
 w
it
h
 a
 S
V
M
 

an
d
 f
ea
rf
u
l 
fa
ce
s:
 

6
9
.4
4
%
, 
w
it
h
 G

P
C
: 

7
2
%
. 

U
C
 v
s.
 H

C
 w
it
h
 G

P
C
 a
n
d
 

h
ap
p
y 
fa
ce
s:
 6
6
.6
7
%
. 

S
al
va
d
o
r 
et
 a
l.
 [
3
8
] 

sM
R
I 
fe
at
u
re
s:
 v
er
te
x-

b
as
ed

 c
o
rt
ic
al
 t
h
ic
kn

es
s,
 

g
re
y 
an
d
 w
h
it
e 
m
at
te
r 

vo
xe
ls
/
w
av
el
et
-b
as
ed

 
m
o
rp
h
o
m
et
ry
, 
re
g
io
n
al
 

vo
lu
m
es
 a
n
d
 

in
te
ra
ct
io
n
s.
 

C
la
ss
ifi
ca
ti
o
n
 o
f 

H
C
 v
s.
 S
Z
 v
s.
 B
D
 

1
2
7
 H

C
, 
1
2
8
 B
D
, 

1
2
8
 S
Z
 

L
o
g
is
ti
c 
re
g
re
ss
io
n
, 
L
as
so
, 

R
id
g
e 
an
d
 E
la
st
ic
N
et
, 

S
V
C
, 
R
D
A
, 
G
P
C
, 

R
an
d
o
m
 f
o
re
st
 

B
es
t 
re
su
lt
s 
w
it
h
 V
B
M
. 

S
Z
 v
s.
 H

C
: 
7
5
%
, 

B
D
 v
s.
 H

C
: 
6
3
%
 a
n
d
 

S
Z
 v
s.
 B
D
: 
6
2
%
. 

M
w
an
g
i 
et
 a
l.
 [
3
9
] 

sM
R
I 
fe
at
u
re
s

C
la
ss
ifi
ca
ti
o
n
 o
f 
M
D
D

3
0
 M

D
D
, 
3
2
 H

C
 
S
V
M
 a
n
d
 R
el
ev
an
ce
 V
ec
to
r 

M
ac
h
in
e,
 t
ra
in
/
te
st
 s
p
li
t 

C
la
ss
ifi
ca
ti
o
n
 o
f 
9
0
.3
%
 f
o
r 

M
D
D
 v
s.
 H

C
, 

co
rr
el
at
io
n
 o
f 

R
el
ev
an
ce
 V
ec
to
r 

M
ac
h
in
e 
p
re
d
ic
ti
o
n
 a
n
d
 

il
ln
es
s 
se
ve
ri
ty
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Ta
bl
e
1

(c
on
ti
nu
ed
)

S
tu
dy

M
od
al
it
ie
s

D
is
ea
se
s
an
d
go
al

N
um

be
r
of

su
bj
ec
ts

M
et
ho
ds

an
d
va
lid
at
io
n

pr
oc
ed
ur
e

R
es
ul
ts

M
w
an
g
i 
et
 a
l.
 [
4
0
] 

d
M
R
I 
fe
at
u
re
s

P
re
d
ic
ti
o
n
 o
f 
d
ia
g
n
o
si
s 
in
 

p
ed

ia
tr
ic
 B
D
 

1
6
 p
ed

ia
tr
ic
 B
D
 

p
at
ie
n
ts
, 

1
6
 m

at
ch
ed

 
H
C
 

S
V
M
 w
it
h
 l
ea
ve
-o
n
e-
o
u
t 

cr
o
ss
-v
al
id
at
io
n
 a
n
d
 g
ri
d
 

se
ar
ch
 

T
h
e 
S
V
M
 a
lg
o
ri
th
m
 

tr
ai
n
ed

 w
it
h
 a
 l
in
ea
r 

ke
rn
el
 f
u
n
ct
io
n
 a
n
d
 F
A
 

va
lu
es
 p
er
fo
rm

ed
 b
es
t 

w
it
h
 

ac
cu
ra
cy
 =

 7
8
.1
2
%
, 

se
n
si
ti
vi
ty
 =

 6
8
.7
5
%
, 

sp
ec
ifi
ci
ty
 =

 8
7
.5
%
 

C
o
st
af
re
d
a 
et
 a
l.
 

[4
1
] 

sM
R
I

C
la
ss
ifi
ca
ti
o
n
 o
f 

M
D
D
 v
s.
 H

C
 a
n
d
 

p
ro
g
n
o
si
s 
p
re
d
ic
ti
o
n
 o
f 

C
B
T
 a
n
d
 fl
u
o
te
xi
n
e 

tr
ea
tm

en
t 

3
7
 M

D
D
, 
3
7
 H

C
 
S
V
M
 a
n
d
 l
ea
ve
-o
n
e-
o
u
t 

cr
o
ss
-v
al
id
at
io
n
 

T
h
e 
w
h
o
le
 b
ra
in
 

st
ru
ct
u
ra
l 

n
eu

ro
an
at
o
m
y 

p
re
d
ic
te
d
 8
8
.9
%
 o
f 
th
e 

cl
in
ic
al
 r
es
p
o
n
se
. 

A
cc
u
ra
cy
 o
f 
th
e 
st
ru
ct
u
ra
l 

n
eu

ro
an
at
o
m
y 
as
 a
 

d
ia
g
n
o
st
ic
 m

ar
k
er
 w

as
 

6
7
.6
%
. 

X
ia
o
 e
t 
al
. 
[4
2
]

sM
R
I 
fe
at
u
re
s

C
la
ss
ifi
ca
ti
o
n
 o
f 
fi
rs
t 

ep
is
o
d
e 
p
sy
ch
o
si
s 

p
at
ie
n
ts
 v
s.
 H

C
 

1
6
3
 d
ru
g
 n
ai
ve
 

fi
rs
t 
ep
is
o
d
e 

p
sy
ch
o
si
s 

p
at
ie
n
ts
, 

1
6
3
 H

C
 

S
V
M
 a
n
d
 1
0
-f
o
ld
 c
ro
ss
-

va
li
d
at
io
n
 

S
u
rf
ac
e 
A
re
a.
 A
cc
u
ra
cy
: 

8
5
.0
%
 (
sp
ec
ifi
ci
ty
 

=
 8
7
.0
%
, 
se
n
si
ti
vi
ty
 

=
 8
3
.0
%
) 

C
o
rt
ic
al
 t
h
ic
k
n
es
s.
 

A
cc
u
ra
cy
: 
8
1
.8
%
 

(s
p
ec
ifi
ci
ty
 =

 8
5
.0
%
, 

se
n
si
ti
vi
ty
 =

 7
6
.9
%
)
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(c
o
n
ti
n
u
ed

)

A
b
ra
h
am

 e
t 
al
. 
fo
r 

th
e 
E
N
IG

M
A
 

B
ip
o
la
r 

D
is
o
rd
er
s 

W
o
rk
in
g
 G

ro
u
p
 

et
 a
l.
 [
4
3
] 

sM
R
I 
fe
at
u
re
s

C
la
ss
ifi
ca
ti
o
n
 o
f 
B
D
 v
s.
 H

C
 
8
5
3
 B
D
, 
2
1
6
7
 

H
C
 

S
V
M
 a
n
d
 3
0
-f
o
ld
 c
ro
ss
-

va
li
d
at
io
n
 o
r 
le
av
e-
o
n
e-

si
te
-o
u
t 

A
g
g
re
g
at
e 
su
b
je
ct
 

an
al
ys
is
: 
ac
cu
ra
cy
 

=
 6
5
.2
3
%
 

L
ea
ve
-o
n
e-
si
te
-o
u
t 
cr
o
ss
-

va
li
d
at
io
n
: 
ac
cu
ra
cy
 

=
 5
8
.6
7
%
 

S
ch
n
ac
k 
et
 a
l.
 [
4
4
] 

sM
R
I 
fe
at
u
re
s 
(G

M
D
)

C
la
ss
ifi
ca
ti
o
n
 o
f 

B
D
 v
s.
 S
Z
 v
s.
 H

C
 

1
1
2
 S
Z
, 
1
1
3
 B
D
 

an
d
 1
0
9
 H

C
 

3
 S
V
M
 m

o
d
el
s 
(H

C
 v
s.
 

B
D
, 
H
C
 v
s.
 S
Z
 a
n
d
 

B
D
 v
s.
 S
Z
) 
te
st
ed

 o
n
 a
 

va
li
d
at
io
n
 s
am

p
le
 

O
n
 t
h
e 
va
li
d
at
io
n
 s
am

p
le
: 

R
O
C
 A
U
C
 =

 6
6
%
 f
o
r 

B
D
 v
s.
 S
Z
, 
5
5
.5
%
 f
o
r 

B
D
 v
s.
 H

C
, 
7
9
.2
%
 f
o
r 

S
Z
 v
s.
 H

C
 

M
o
th
i 
et
 a
l.
 [
4
5
]

C
li
n
ic
al
 m

ea
su
re
s,
 e
ye
 

m
o
ve
m
en

t 
tr
ac
ks
, 

co
g
n
it
iv
e 
as
se
ss
m
en

t,
 

sM
R
I 

U
n
su
p
er
vi
se
d
 c
lu
st
er
in
g
 o
f 

B
D
, 
S
Z
 a
n
d
 

sc
h
iz
o
af
fe
ct
iv
e 
p
at
ie
n
ts
 

2
5
1
 S
Z
, 
1
6
4
 S
Z
A
, 

1
9
5
 B
D
 

K
-m

ea
n
s 
w
it
h
 1
0
 fi
rs
t 

co
m
p
o
n
en

ts
 o
f 
a 
P
C
A
 

ra
n
 o
n
 c
li
n
ic
al
 m

ea
su
re
s,
 

ey
e 
m
o
ve
m
en

t,
 c
o
g
n
it
iv
e 

as
se
ss
m
en

t 

3
 c
lu
st
er
s 
w
it
h
 o
n
e 
w
it
h
 a
 

m
aj
o
ri
ty
 o
f 
S
Z
, 
o
n
e 

w
it
h
 a
 m

aj
o
ri
ty
 o
f 
B
D
, 

an
d
 o
n
e 
d
is
tr
ib
u
te
d
 

ac
ro
ss
 t
h
e 
3
 d
is
o
rd
er
s 

V
ai
 e
t 
al
. 
[4
6
]

sM
R
I 
an
d
 d
M
R
I 
fe
at
u
re
s 

(F
A
) 

C
la
ss
ifi
ca
ti
o
n
 o
f 

B
D
 v
s.
 M

D
D
 

7
4
 B
D
, 
7
4
 M

D
D
 
M
V
P
A
 w
it
h
 1
0
-f
o
ld
 c
ro
ss
-

va
li
d
at
io
n
 

B
al
an
ce
d
 a
cc
u
ra
cy
 o
f 

7
3
.6
5
%
 w

it
h
 a
 

se
n
si
ti
vi
ty
 f
o
r 
B
D
 o
f 

7
4
.3
2
%
 a
n
d
 s
p
ec
ifi
ci
ty
 

fo
r 
M
D
D
 o
f 
7
2
.9
7
%
 

L
iu
 e
t 
al
. 
[4
7
]

sM
R
I 
(V

B
M
 o
f 
G
M
 o
r 

W
M
) 

C
la
ss
ifi
ca
ti
o
n
 o
f 
tr
ea
tm

en
t 

re
si
st
an
t 

d
ep
re
ss
io
n
 v
s.
 t
re
at
m
en

t 
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were treatment resistant, 17 that were treatment sensitive, and 
17 controls. The accuracy of the MVPA models that correctly 
distinguished resistant and sensitive patients from HC ranged 
from 85.7% to 91.2% depending on the features used. The authors 
highlighted differences in structural alterations between responders 
and non-responders suggesting that structural differences may be 
related to different responses to antidepressants. Furthermore, they 
found that the structural abnormalities were larger between respon-
ders and HC than between non-responders and HC. These results 
are somewhat counterintuitive as one would expect resistant 
patients to show more structural differences from HC than respon-
ders. However, this lack of specificity is probably related to a high 
degree of clinical heterogeneity and the small sample size that does 
not allow sufficient precision to distinguish more specific 
abnormalities.
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Hajek et al. [48] used machine learning applied to white matter 
sMRI to distinguish 45 unaffected participants at high genetic risk 
of BD from 45 low-risk healthy controls with an accuracy of 68.9%. 
Similarly, Lin et al. [81] successfully classified HR individuals for 
BD with vs. without (sub)syndromic risk with an accuracy of 
83.21% based on the gray matter volume. Finally, a pilot study 
was conducted using a novel machine learning system based on a 
“multi-cascade fuzzy genetic tree” with sMRI capable of accurately 
classifying subjects with BD in a first manic episode into groups that 
responded or did not respond to lithium treatment [49]. 

4 Limitations and Perspectives 

As illustrated in this chapter, numerous studies have been con-
ducted to classify psychiatric disorders and refine the definition of 
psychiatric subgroups using machine learning. However, methods 
and results are heterogeneous. In fact, many authors point to a 
major limitation of most studies, that is, the limited number of 
samples [53–55]. Claude et al. [54] also pointed out a negative 
correlation between the accuracy and the number of subjects, 
leading to think that the results obtained from small samples are 
artificially high. Another effect of this limited number of samples 
resides on the fact that models need to be trained on a population 
that is representative of the population on which we will use them. 
Indeed, models trained on a young population will be biased when 
used on an older one, and similar bias could be raised when using a 
model trained with a population from a specific country on subjects 
from another country. 

As it is difficult to recruit enough patients to obtain a sufficient 
statistical power, this limitation may persist in the long term, unless



collective efforts for data sharing are undertaken. This issue dee-
pens when looking at more specific subsets of patients. The field 
therefore needs more and larger datasets to work on. These datasets 
start to be collected, with, e.g., the UK BioBank dataset (~40,000 
subjects). Even though they are not focused on psychiatric disor-
ders, they are interesting because they are multimodal datasets, 
with genetic, clinical, and MRI data, and some participants will 
develop psychiatric syndromes throughout the follow-up. Recent 
efforts have been specifically made for psychiatric disorders, e.g., by 
the ENIGMA Consortium, a multisite and multimodal project 
including several working groups focused on different diseases, 
such as bipolar disorder, schizophrenia, autism, ADHD, etc. 
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Larger datasets are often multisite ones, and they bring their 
own challenges. Since the MRI devices that are used for different 
studies have different magnetic field strengths, different vendors, 
coils, etc., there are large site effects that need to be considered. 
These site effects are particularly important for DWI and fMRI, but 
they even appear for sMRI [82], the most robust method of imag-
ing. A second source of site effects lies in the preprocessing of the 
data, which may vary between different sites and protocols. The 
preprocessing steps are of major importance and need to be homo-
genized since different softwares can lead to different results 
[83]. The remaining “site effects” can be partially corrected, thanks 
to different methods. Statistics-based methods include adjusted 
residualizations or ComBat [84, 85], a method originally proposed 
to remove batch effects in genomics [86] and then adapted for 
DWI and then for sMRI [87]. Other methods are more specific to 
MRI, such as RAVEL [88], which aims at capturing the sites’ 
variability using the signal from the CSF, with mixed results for 
now. Since the extent of the efficiency of these corrections is still 
under discussion [89], we must consider the site effect in our 
models and use validation methods such as leave-one-site-out vali-
dation to evaluate the reproducibility of our approaches. 

The site effect highlights a deeper and more fundamental limi-
tation of our studies, the signal-to-noise ratio. That issue, which is 
faced by all imaging studies, is particularly present in neuroimaging 
for psychiatric diseases as the changes that we are looking for are 
subtle and probably not the main causes of variation in our datasets 
(e.g., one important cause of variance is the age, which produces 
consequent variations in the gray and white matter density [72]). 
We therefore need to be vigilant and make specific efforts when 
interpreting the results of machine learning algorithms as they can 
learn some information that are irrelevant for psychiatric disorders. 
Nevertheless, it is possible to improve this signal-to-noise ratio. 
One way to do so is to improve the signal; the second is to diminish 
the noise. Larger datasets improve the statistical power of the 
algorithms but may induce noise (such as the multisite noise). In 
addition to the fact that methodological modifications can change



and improve the performance of machine learning, technological 
improvements seem to bring better performance as shown by the 
team of Iwabuchi et al. [90], who showed that 7 T MRI compared 
to 3 T MRI gave higher classification accuracy when distinguishing 
patients with schizophrenia vs. controls (77% versus 66%). More-
over, the use of multimodal datasets has shown promising results in 
increasing the signal-to-noise ratio in current studies [91]. While 
trying to determine to what extent machine learning using MRI 
can still improve its results, Schulz et al. [91] highlighted two 
interesting perspectives: first, that there is still room for improve-
ment of the classification accuracy by getting larger datasets and 
second, that multimodal MRI and more specifically fMRI could 
improve the classification. 
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Other ways to collect data could also be thought about, with, 
for example, the use of tools such as smartphones. Data can be 
provided through active monitoring (self-reporting), passive mon-
itoring of various activities, mobility, or statistics on phone calls 
[92]. Promising results show that voice data from daily phone calls 
could be a valid marker of mood states and hold promise for 
monitoring BD [93]. Taken together, the development of our 
knowledge of machine learning and the growing data resources 
could provide new tools for the management of psychiatric disor-
ders soon. However, their development can only be done by con-
sidering the challenges they raise, such as personal data protection, 
but also by considering all the ethical issues that these new tools will 
raise. 

Finally, machine learning in psychiatry is a promising field of 
research, with still a lot to do to characterize the different biomar-
kers and psychiatric disorders properly and accurately. The use of 
MRI and other clinical and biological features could in a near future 
bring new tools for diagnosis, risk assessment, and treatment selec-
tion that could be used by the clinician. However, due to the actual 
social stigma around psychiatric disorders and the apparent arbi-
trary character of classification algorithms, their use would need an 
important ethical discussion beforehand, notably when people 
would like to use them to identify at-risk healthy subjects or when 
using them to determine the treatment of already symptomatic 
patients. 
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