Skip to main content

Fluorescent Fusion Protein Expression in Plant Cells

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

Abstract

Fluorescent proteins (FPs) revolutionized the cell biology research by visualizing the dynamics of cellular events. In fusion with the targeted proteins, the FPs can be utilized to monitor the protein dynamics and localization in cells. Recently, FPs have been used as reporters for live cell imaging to study the protein localization or organelles dynamics in plants, allowing cell biologists to explore the plant cell function by obtaining tremendous details of cell structures and functions in combination with confocal imaging. To facilitate the usage of fluorescent proteins for protein localization and dynamic analysis in plant cell biology research, here we describe the updated protocol of Agrobacterium-mediated transformation of Arabidopsis thaliana using fluorescent proteins to generate the stable expression transgenic plants for protein trafficking and localization study. We further use the GFP-tagged SDP1 (sugar-dependent protein) lipase, mCherry-tagged peroxisome marker, and BODYPY or Nile Red (lipid droplet staining dye) as examples to introduce the method for the protein localization analysis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snapp EL (2009) Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol 19:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kremers G-J, Gilbert SG, Cranfill PJ et al (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    Article  CAS  PubMed  Google Scholar 

  3. Katoh Y, Nozaki S, Hartanto D et al (2015) Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J Cell Sci 128:2351–2362

    Article  CAS  PubMed  Google Scholar 

  4. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Campbell RE, Ting AY et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  PubMed  Google Scholar 

  6. Bayguinov PO, Oakley DM, Shih C-C et al (2018) Modern laser scanning confocal microscopy. Curr Protoc Cytom 85:e39

    PubMed  Google Scholar 

  7. Valuchova S, Mikulkova P, Pecinkova J et al (2020) Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. elife 9:e52546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komis G, Mistrik M, Šamajová O et al (2014) Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. Plant Physiol 165:129–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  10. Komis G, Mistrik M, Šamajová O et al (2015) Superresolution live imaging of plant cells using structured illumination microscopy. Nat Protoc 10:1248–1263

    Article  CAS  PubMed  Google Scholar 

  11. Sparkes IA, Runions J, Kearns A et al (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  12. Gao CJ, Luo M, Zhao Q et al (2014) A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol 24:2556–2563

    Article  CAS  PubMed  Google Scholar 

  13. Zeng Y, Li B, Ji C et al (2021) A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci 118:e2021293118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He F, Chen S, Ning Y et al (2016) Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis. Curr Protoc Plant Biol 1:373–383

    Article  CAS  PubMed  Google Scholar 

  15. Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2:2348–2353

    Article  CAS  PubMed  Google Scholar 

  16. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Henriques R, Lin S-S et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  18. Boruc J, Van Damme D (2015) Endomembrane trafficking overarching cell plate formation. Curr Opin Plant Biol 28:92–98

    Article  CAS  PubMed  Google Scholar 

  19. Gadeyne A, Sánchez-Rodríguez C, Vanneste S et al (2014) The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156:691–704

    Article  CAS  PubMed  Google Scholar 

  20. Belda-Palazon B, Rodriguez L, Fernandez MA et al (2016) FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28:2291–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao CJ, Zhuang XH, Shen JB et al (2017) Plant ESCRT complexes: moving beyond endosomal sorting. Trends Plant Sci 22:986–998

    Article  CAS  PubMed  Google Scholar 

  22. Spitzer C, Reyes FC, Buono R et al (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21:749–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu F, Lou L, Tian M et al (2016) ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant 9:1570–1582

    Article  CAS  PubMed  Google Scholar 

  24. Siloto RMP, Findlay K, Lopez-Villalobos A et al (2006) The accumulation of oleosins determines the size of seed oil bodies in Arabidopsis. Plant Cell 18:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poxleitner M, Rogers SW, Samuels AL et al (2006) A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J 47:917–933

    Article  CAS  PubMed  Google Scholar 

  26. Gidda SK, Park S, Pyc M et al (2016) Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol 170:2052–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pyc M, Cai YQ, Gidda SK et al (2017) Arabidopsis lipid droplet-associated protein (LDAP) interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J 92:1182–1201

    Article  CAS  PubMed  Google Scholar 

  28. Thazar-Poulot N, Miquel M, Fobis-Loisy I et al (2015) Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc Natl Acad Sci U S A 112:4158–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deruyffelaere C, Purkrtova Z, Bouchez I et al (2018) PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis. Plant Cell 30:2116–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the members in the lab for developing this protocol.

Author Contributions

S.H. and Y.Z. designed the concept and the organization of the manuscript; S.H. wrote the manuscript; Y.Z. edited the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, S., Yonglun, Z. (2023). Fluorescent Fusion Protein Expression in Plant Cells. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics