Skip to main content

Isolation of Chromatin Proteins by Genome Capture

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2655))

Abstract

Control of gene expression and the faithful transmission of genetic and epigenetic information rely on chromatin-bound proteins. These include the polycomb group of proteins, which can display a remarkable variability in their composition. Alterations in the chromatin-bound protein compositions are relevant for physiology and human disease. Thus, chromatin-bound proteomic profiling can be instrumental for understanding fundamental cellular processes and for identifying therapeutic targets. Inspired by biochemical strategies for the isolation of proteins on nascent DNA (iPOND) and the very similar DNA-mediated chromatin pull-down (Dm-ChP), we described a method for the identification of Protein on Total DNA (iPOTD) for bulk chromatome profiling. Here, we update our iPOTD method and, in particular, detail the experimental procedure for the isolation of chromatin proteins for mass spectrometry-based proteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cramer P (2014) A tale of chromatin and transcription in 100 structures. Cell 159(5):985–994. https://doi.org/10.1016/j.cell.2014.10.047

    Article  CAS  PubMed  Google Scholar 

  2. Aranda S, Mas G, Di Croce L (2015) Regulation of gene transcription by Polycomb proteins. Sci Adv 1(11):e1500737. https://doi.org/10.1126/sciadv.1500737

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(11):661–678. https://doi.org/10.1038/nrg.2016.112

    Article  CAS  PubMed  Google Scholar 

  4. Almouzni G, Cedar H (2016) Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8(5). https://doi.org/10.1101/cshperspect.a019372

  5. Gilbert DM, Takebayashi SI, Ryba T, Lu J, Pope BD, Wilson KA, Hiratani I (2010) Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol 75:143–153. https://doi.org/10.1101/sqb.2010.75.011

    Article  CAS  PubMed  Google Scholar 

  6. Mirabella AC, Foster BM, Bartke T (2016) Chromatin deregulation in disease. Chromosoma 125(1):75–93. https://doi.org/10.1007/s00412-015-0530-0

    Article  CAS  PubMed  Google Scholar 

  7. Espejo I, Di Croce L, Aranda S (2020) The changing chromatome as a driver of disease: a panoramic view from different methodologies. BioEssays 42(12):e2000203. https://doi.org/10.1002/bies.202000203

    Article  PubMed  Google Scholar 

  8. Di Carlo V, Mocavini I, Di Croce L (2019) Polycomb complexes in normal and malignant hematopoiesis. J Cell Biol 218(1):55–69. https://doi.org/10.1083/jcb.201808028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chammas P, Mocavini I, Di Croce L (2020) Engaging chromatin: PRC2 structure meets function. Br J Cancer 122(3):315–328. https://doi.org/10.1038/s41416-019-0615-2

    Article  CAS  PubMed  Google Scholar 

  10. UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46(5):2699. https://doi.org/10.1093/nar/gky092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aranda S, Borras E, Sabido E, Di Croce L (2020) Chromatin-bound proteome profiling by genome capture. STAR Protoc 1(1):100014. https://doi.org/10.1016/j.xpro.2020.100014

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aranda S, Alcaine-Colet A, Blanco E, Borras E, Caillot C, Sabido E, Di Croce L (2019) Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Sci Adv 5(3):eaav2448. https://doi.org/10.1126/sciadv.aav2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75(6):535–546. https://doi.org/10.1002/cyto.a.20712

    Article  CAS  PubMed  Google Scholar 

  14. Qu D, Wang G, Wang Z, Zhou L, Chi W, Cong S, Ren X, Liang P, Zhang B (2011) 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal Biochem 417(1):112–121. https://doi.org/10.1016/j.ab.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  15. Neef AB, Luedtke NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci U S A 108(51):20404–20409. https://doi.org/10.1073/pnas.1101126108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish of Economy, Industry and Competitiveness (MEIC) (PID2019-108322GB-100), “CaixaResearch Health” (HR20-00411), “Fundación Vencer El Cancer” (VEC), the European Regional Development Fund (FEDER), and from AGAUR to L.D.C. The Ramon y Cajal program of the Ministerio de Ciencia, Innovación y Universidades and the European Social Fund under the reference number RYC-2018-025002-I, and the Instituto de Salud Carlos III-FEDER (PI19/01814 and PI22/01837), to S.A. We acknowledge the funding support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergi Aranda or Luciano Di Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aranda, S., Di Croce, L. (2023). Isolation of Chromatin Proteins by Genome Capture. In: Lanzuolo, C., Marasca, F. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 2655. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3143-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3143-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3142-3

  • Online ISBN: 978-1-0716-3143-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics