Skip to main content

Quantifying Immune Cell Force Generation Using Traction Force Microscopy

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

Abstract

Immune cells rely on the generation of mechanical force to carry out their function. Consequently, there is a pressing need for quantitative methodologies that permit the probing of the spatio-temporal distribution of mechanical forces generated by immune cells. In this chapter, we provide a guide to quantify immune cell force generation using traction force microscopy (TFM), with a specific focus on its application to the study of the T-cell immunological synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huse M (2017) Mechanical forces in the immune system. Nat Rev Immunol 17:679–690. https://doi.org/10.1038/nri.2017.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pageon SV, Govendir MA, Kempe D, Biro M (2018) Mechanoimmunology: molecular-scale forces govern immune cell functions. MBoC 29:1919–1926. https://doi.org/10.1091/mbc.E18-02-0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basu R, Whitlock BM, Husson J, Le Floc’h A, Jin W, Oyler-Yaniv A, Dotiwala F, Giannone G, Hivroz C, Biais N, Lieberman J, Kam LC, Huse M (2016) Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165:100–110. https://doi.org/10.1016/j.cell.2016.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li R, Ma C, Cai H, Chen W (2020) The CAR T-cell mechanoimmunology at a glance. Adv Sci 7:2002628. https://doi.org/10.1002/advs.202002628

    Article  CAS  Google Scholar 

  5. de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC (2018) Review: bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2:021501. https://doi.org/10.1063/1.5006599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zancla A, Mozetic P, Orsini M, Forte G, Rainer A (2022) A primer to traction force microscopy. J Biol Chem 298:101867. https://doi.org/10.1016/j.jbc.2022.101867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mustapha F, Sengupta K, Puech P-H (2022) May the force be with your (immune) cells: an introduction to traction force microscopy in immunology. Front Immunol 13:898558. https://doi.org/10.3389/fimmu.2022.898558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mustapha F, Sengupta K, Puech P-H (2022) Protocol for measuring weak cellular traction forces using well-controlled ultra-soft polyacrylamide gels. STAR Protoc 3:101133. https://doi.org/10.1016/j.xpro.2022.101133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vorselen D, Wang Y, de Jesus MM, Shah PK, Footer MJ, Huse M, Cai W, Theriot JA (2020) Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions. Nat Commun 11:20. https://doi.org/10.1038/s41467-019-13804-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colin-York H, Shrestha D, Felce JH, Waithe D, Moeendarbary E, Davis SJ, Eggeling C, Fritzsche M (2016) Super-resolved traction force microscopy (STFM). Nano Lett 16:2633–2638. https://doi.org/10.1021/acs.nanolett.6b00273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colin-York H, Javanmardi Y, Barbieri L, Li D, Korobchevskaya K, Guo Y, Hall C, Taylor A, Khuon S, Sheridan GK, Chew T-L, Li D, Moeendarbary E, Fritzsche M (2019) Spatiotemporally super-resolved volumetric traction force microscopy. Nano Lett 19:4427–4434. https://doi.org/10.1021/acs.nanolett.9b01196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barbieri L, Colin-York H, Korobchevskaya K, Li D, Wolfson DL, Karedla N, Schneider F, Ahluwalia BS, Seternes T, Dalmo RA, Dustin ML, Li D, Fritzsche M (2021) Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM). Nat Commun 12:2169. https://doi.org/10.1038/s41467-021-22377-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 47:10.16.1–10.16.16. https://doi.org/10.1002/0471143030.cb1016s47

    Article  Google Scholar 

  14. Butler JP, Tolić-Nørrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Phys Cell Phys 282:C595–C605. https://doi.org/10.1152/ajpcell.00270.2001

    Article  CAS  Google Scholar 

  15. Bauer A, Prechová M, Fischer L, Thievessen I, Gregor M, Fabry B (2021) pyTFM: a tool for traction force and monolayer stress microscopy. PLOS Comput Biol 17:e1008364. https://doi.org/10.1371/journal.pcbi.1008364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 8:e55172. https://doi.org/10.1371/journal.pone.0055172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han SJ, Oak Y, Groisman A, Danuser G (2015) Traction microscopy to identify force modulation in subresolution adhesions. Nat Methods 12:653–656. https://doi.org/10.1038/nmeth.3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saha K, Kim J, Irwin E, Yoon J, Momin F, Trujillo V, Schaffer DV, Healy KE, Hayward RC (2010) Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys J 99:L94–L96. https://doi.org/10.1016/j.bpj.2010.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trujillo V, Kim J, C. Hayward R (2008) Creasing instability of surface-attached hydrogels. Soft Matter 4:564–569. https://doi.org/10.1039/B713263H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.F., H.C.Y., and M.I. acknowledge generous funding from the Rosalind Franklin Institute, the Kennedy Trust for Rheumatology Research, the Wellcome Trust (212343/Z/18/Z), the EPSRC (EP/S004459/1), and the Oxford-ZEISS Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fritzsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Issler, M., Colin-York, H., Fritzsche, M. (2023). Quantifying Immune Cell Force Generation Using Traction Force Microscopy. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics