Skip to main content

Bottom-Up Assembly of Bioinspired, Fully Synthetic Extracellular Vesicles

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

Abstract

Extracellular vesicles (EVs) are lipid membrane-enclosed compartments released by cells for intercellular communication in homeostasis and disease. Studies have shown great therapeutic potential of EVs, including but not limited to regenerative and immunomodulatory therapies. Additionally, EVs are promising next-generation drug delivery systems due to their biocompatibility, low immunogenicity, and inherent target specificity. However, clinical application of EVs is so far limited due to challenges in scaling up production, high heterogeneity, batch-to-batch variation, and limited control over composition. Although attaining a fundamental characterization of EVs’ functions is a compelling goal, these limitations have hindered a full understanding. Therefore, there is rising interest in exploiting the beneficial properties of EVs while gaining better control over their production and composition. Herein, we describe a method for the bottom-up assembly of bioinspired, fully synthetic vesicles that mimic the most important biophysical and biochemical properties of natural EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4):851–858. https://doi.org/10.1002/stem.2575

    Article  CAS  PubMed  Google Scholar 

  3. Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE (2020) Human mesenchymal stem cells for spinal cord injury. Curr Stem Cell Res Ther 15(4):340–348. https://doi.org/10.2174/1574888X15666200316164051

    Article  CAS  PubMed  Google Scholar 

  4. Gomzikova MO, James V, Rizvanov AA (2019) Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Front Immunol 10:2663. https://doi.org/10.3389/fimmu.2019.02663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, Pra ID, Chiarini A (2019) Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 7:38. https://doi.org/10.1186/s41038-019-0178-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Antimisiaris SG, Mourtas S, Marazioti A (2018) Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 10(4):s. https://doi.org/10.3390/pharmaceutics10040218

    Article  CAS  Google Scholar 

  7. Kooijmans SAA, de Jong OG, Schiffelers RM (2021) Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 173:252–278. https://doi.org/10.1016/j.addr.2021.03.017

    Article  CAS  PubMed  Google Scholar 

  8. Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. https://doi.org/10.1038/s41565-021-00931-2

  9. Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O’Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Gorgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Kramer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lotvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BW, Wauben M, Andaloussi SE, Thery C, Rohde E, Giebel B (2015) Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 4:30087. https://doi.org/10.3402/jev.v4.30087

    Article  CAS  PubMed  Google Scholar 

  10. Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N, Stevens MM (2021) Extracellular vesicles for tissue repair and regeneration: evidence, challenges and opportunities. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2021.04.013

  11. Dooley K, McConnell RE, Xu K, Lewis ND, Haupt S, Youniss MR, Martin S, Sia CL, McCoy C, Moniz RJ, Burenkova O, Sanchez-Salazar J, Jang SC, Choi B, Harrison RA, Houde D, Burzyn D, Leng C, Kirwin K, Ross NL, Finn JD, Gaidukov L, Economides KD, Estes S, Thornton JE, Kulman JD, Sathyanarayanan S, Williams DE (2021) A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol Ther 29(5):1729–1743. https://doi.org/10.1016/j.ymthe.2021.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jhan YY, Prasca-Chamorro D, Palou Zuniga G, Moore DM, Arun Kumar S, Gaharwar AK, Bishop CJ (2020) Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int J Pharm 573:118802. https://doi.org/10.1016/j.ijpharm.2019.118802

    Article  CAS  PubMed  Google Scholar 

  13. Vazquez-Rios AJ, Molina-Crespo A, Bouzo BL, Lopez-Lopez R, Moreno-Bueno G, de la Fuente M (2019) Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnology 17(1):85. https://doi.org/10.1186/s12951-019-0517-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aday S, Hazan-Halevy I, Chamorro-Jorganes A, Anwar M, Goldsmith M, Beazley-Long N, Sahoo S, Dogra N, Sweaad W, Catapano F, Ozaki-Tan S, Angelini GD, Madeddu P, Benest AV, Peer D, Emanueli C (2021) Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol Ther 29(7):2239–2252. https://doi.org/10.1016/j.ymthe.2021.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Staufer O, Dietrich F, Rimal R, Schröter M, Fabritz S, Boehm H, Singh S, Möller M, Platzman I, Spatz JP (2021) Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci Adv 7(36):eabg6666. https://doi.org/10.1126/sciadv.abg6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skotland T, Sagini K, Sandvig K, Llorente A (2020) An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 159:308–321. https://doi.org/10.1016/j.addr.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Göpfrich K, Haller B, Staufer O, Dreher Y, Mersdorf U, Platzman I, Spatz JP (2019) One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells. ACS Synth Biol 8(5):937–947. https://doi.org/10.1021/acssynbio.9b00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa AP, Xu X, Burgess DJ (2014) Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res 31(1):97–103. https://doi.org/10.1007/s11095-013-1135-z

    Article  CAS  PubMed  Google Scholar 

  19. Alino SF, Garcia M, Lejarreta M, Bobadilla M, Perez-Yarza G, Unda FJ (1989) Trapping drug efficiency in liposomes produced by extrusion of freeze-thaw multilamellar vesicles. Biochem Soc Trans 17(6):1000–1001. https://doi.org/10.1042/bst0171000

    Article  CAS  PubMed  Google Scholar 

  20. Maguire LA, Zhang H, Shamlou PA (2001) Preparation of small unilamellar vesicles (SUV) and biophysical characterization of their complexes with poly-L-lysine-condensed plasmid DNA. Biotechnol Appl Biochem 37(Pt 1):73–81. https://doi.org/10.1042/ba20020107

  21. Jeffs LB, Palmer LR, Ambegia EG, Giesbrecht C, Ewanick S, MacLachlan I (2005) A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res 22(3):362–372. https://doi.org/10.1007/s11095-004-1873-z

    Article  CAS  PubMed  Google Scholar 

  22. Bailey AA, Sullivan SM (2000) Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium. Biochim Biophys Acta 1468(1-2):239–252

    Article  CAS  PubMed  Google Scholar 

  23. Ramezani R, Sadeghizadeh M, Behmanesh M, Hosseinkhani S (2013) Characterization of zwitterionic phosphatidylcholine-based bilayer vesicles as efficient self-assembled virus-like gene carriers. Mol Biotechnol 55(2):120–130. https://doi.org/10.1007/s12033-013-9663-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Federal Ministry of Education and Research of Germany, Grant Agreement No. 13XP5073A, PolyAntiBak, and the MaxSynBio Consortium; the latter is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society. They also acknowledge the support from the Volkswagen Stiftung (priority call “Life?”), the German Science Foundation SFB 1129 and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made to Order (EXC-2082/1 – 390761711). The authors acknowledge Dr. Oskar Staufer for his contribution in establishment of emulsification method for synEVs formation and Alessandro Strada for critical reading of the manuscript. J.P.S. acknowledges funding from the Gottfried Wilhelm Leibniz Award. M.M. acknowledges support from the Heidelberg Biosciences International Graduate School. The Max Planck Society is appreciated for its general support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilia Platzman or Joachim P. Spatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Macher, M., Platzman, I., Spatz, J.P. (2023). Bottom-Up Assembly of Bioinspired, Fully Synthetic Extracellular Vesicles. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics