Skip to main content

Detection, Discrimination & Localization: The Psychophysics of Touch

  • Protocol
  • First Online:
Somatosensory Research Methods

Part of the book series: Neuromethods ((NM,volume 196))

Abstract

Detecting and discriminating touches on your fingertip and other highly sensitive body parts has been a paradigm in somatosensory science since the birth of psychophysics in the nineteenth century. By isolating a body part and applying discrete stimuli over many repetitions, the limits of somatosensation and bodily perception can be discovered. This chapter will focus on two methods of studying discriminative touch in the temporal and spatial domains: vibrotactile perception and spatial acuity. Different psychophysical approaches and experimental designs will be described and evaluated in terms of their validity, efficiency, and reliability. Practical and participant-specific difficulties will be noted. Vibrotactile and spatial acuity methods offer relatively cheap and reliable measures of somatosensation, often suitable for undergraduate student projects. Yet care and experimentation is required to ensure that the experimental design is adequate, and the data collection is sufficient to answer your theoretical question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber EH (1978) E.H. Weber on the tactile senses. Academic Press

    Google Scholar 

  2. Fechner GT (1860) Elemente der psychophysik [Elements of psychophysics]. Breitkopf und Härtel, Leipzig

    Google Scholar 

  3. Bradman MJG, Ferrini F, Salio C, Merighi A (2015) Practical mechanical threshold estimation in rodents using von frey hairs/semmes-weinstein monofilaments: towards a rational method. J Neurosci Methods 255:92–103. https://doi.org/10.1016/j.jneumeth.2015.08.010

    Article  PubMed  Google Scholar 

  4. von Békésy G (1967) Sensory inhibition. PhD thesis, Princeton University, Princeton, NJ

    Google Scholar 

  5. Sadibolova R, Tamè L, Walsh E, Longo MR (2018) Mind the gap: the effects of temporal and spatial separation in localization of dual touches on the hand. Front Hum Neurosci 12:55. https://doi.org/10.3389/fnhum.2018.00055

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hidaka S, Tamè L, Longo MR (2021) Tactile interactions in the path of tactile apparent motion. Cognition 209:104569. https://doi.org/10.1016/j.cognition.2020.104569

    Article  PubMed  Google Scholar 

  7. Hayward V (2008) A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store. Brain Res Bull 75(6):742–752. https://doi.org/10.1016/j.brainresbull.2008.01.008

    Article  PubMed  Google Scholar 

  8. Lederman SJ, Jones LA (2011) Tactile and haptic illusions. IEEE Trans Haptics 4(4):273–294. https://doi.org/10.1109/ToH.2011.2

    Article  CAS  PubMed  Google Scholar 

  9. Geldard FA (1953) The human senses. Wiley, New York, pp 11–584

    Google Scholar 

  10. Bolanowski SJJ, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84(5):1680–1694. https://doi.org/10.1121/1.397184

    Article  PubMed  Google Scholar 

  11. Craig JC (1985a) Tactile pattern perception and its perturbations. J Acoust Soc Am 77(1):238–246. https://doi.org/10.1121/1.392265

    Article  CAS  PubMed  Google Scholar 

  12. Verrillo RT (1985) Psychophysics of vibrotactile stimulation. J Acoust Soc Am 77(1):225–232

    Article  CAS  PubMed  Google Scholar 

  13. Saal HP, Bensmaia SJ (2014) Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Cogn Sci 37(12):689–697. https://doi.org/10.1016/j.tins.2014.08.012

    Article  CAS  Google Scholar 

  14. Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century, New York, pp 15–644

    Google Scholar 

  15. Craig JC, Johnson KO (2000) The two-point threshold: not a measure of tactile spatial resolution. Curr Dir Psychol Sci 9(1):29–32. https://doi.org/10.1111/1467-8721.00054

    Article  Google Scholar 

  16. Johnson KO, Phillips JR (1981) Tactile spatial resolution. I. Two-point discrimination, gap detection, grating recognition, and letter recognition. J Neurophysiol 46(6):1177–1191. https://doi.org/10.1152/jn.1981.46.6.1177

    Article  CAS  PubMed  Google Scholar 

  17. Phillips JR, Johnson KO (1981b) Tactile spatial resolution. II. Neural representation of bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46(6):1192–1203. https://doi.org/10.1152/jn.1981.46.6.1192

    Article  CAS  PubMed  Google Scholar 

  18. Onishi H, Nagasaka K, Yokota H, Kojima S, Ohno K, Sakurai N, Kodama N, Sato D, Otsuru N (2022) Association between somatosensory sensitivity and regional gray matter volume in healthy young volunteers: a voxel-based morphometry study. Cereb Cortex:bhac188. https://doi.org/10.1093/cercor/bhac188

  19. Tong J, Mao O, Goldreich D (2013) Two-point orientation discrimination versus the traditional two-point test for tactile spatial acuity assessment. Front Hum Neurosci 7:579. https://doi.org/10.3389/fnhum.2013.00579

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tremblay F, Backman A, Cuenco A, Vant K, Wassef AM (2000) Assessment of spatial acuity at the fingertip with grating (JVP) domes: validity for use in an elderly population. Somatosens Mot Res 17(1):61–66. https://doi.org/10.1080/08990220070300

    Article  Google Scholar 

  21. French B, Di Chiaro NV, Holmes NP (2022) Hand posture, but not vision of the hand, affects tactile spatial resolution in the grating orientation discrimination task. Exp Brain Res 240:2715–2723. https://doi.org/10.1007/s00221-022-06450-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamè L, Braun C, Lingnau A, Schwarzbach JV, Demarchi G, Hegner YL, Farnè A, Pavani F (2012) The contribution of primary and secondary somatosensory cortices to the representation of body parts and body sides: an fMRI adaptation study. J Cogn Neurosci 24(12):2306–2320. https://doi.org/10.1162/jocn_a_00272

    Article  PubMed  Google Scholar 

  23. Tamè L, Pavani F, Papadelis C, Farnè A, Braun C (2015) Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 36(4):1506–1523. https://doi.org/10.1002/hbm.22719

    Article  PubMed  Google Scholar 

  24. Brönnimann B, Meier ML, Hou M, Parkinson C, Ettlin DA (2016) Novel air stimulation MR-device for intraoral quantitative sensory cold testing. Front Hum Neurosci 10:335. https://doi.org/10.3389/fnhum.2016.00335

    Article  PubMed  PubMed Central  Google Scholar 

  25. Servos P, Zacks J, Rumelhart DE, Glover GH (1998) Somatotopy of the human arm using fMRI. Neuroreport 9(4):605–609. https://doi.org/10.1097/00001756-199803090-00008

    Article  CAS  PubMed  Google Scholar 

  26. Huang R, Chen C, Tran AT (2012) Mapping multisensory parietal face and body areas in humans. Proc Natl Acad Sci U S A 109(44):18114–18119. https://doi.org/10.1073/pnas.1207946109

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen C, Kreutz-Delgado K, Sereno MI, Huang R (2017) Validation of periodic fMRI signals in response to wearable tactile stimulation. NeuroImage 150:99–111. https://doi.org/10.1016/j.neuroimage.2017.02.024

    Article  PubMed  Google Scholar 

  28. Huang R, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. NeuroImage 34(3):1060–1073. https://doi.org/10.1016/j.neuroimage.2006.10.024

    Article  PubMed  Google Scholar 

  29. Tamè L, Tucciarelli R, Sadibolova R, Sereno MI, Longo MR (2021) Reconstructing neural representations of tactile space. NeuroImage 229:117730. https://doi.org/10.1016/j.neuroimage.2021.117730

    Article  PubMed  Google Scholar 

  30. Broser PJ, Braun C (2012) Hydraulic driven fast and precise nonmagnetic tactile stimulator for neurophysiological and MEG measurements. IEEE Trans Biomed Eng 59(10):2852–2858. https://doi.org/10.1109/TBME.2012.2212191

    Article  PubMed  Google Scholar 

  31. Valentini M, Kischka U, Halligan PW (2008) Residual haptic sensation following stroke using ipsilateral stimulation. J Neurol Neurosurg Psychiatry 79(3):266–270. https://doi.org/10.1136/jnnp.2007.120279

    Article  CAS  PubMed  Google Scholar 

  32. Gibson GO, Craig JC (2006) The effect of force and conformance on tactile intensive and spatial sensitivity. Exp Brain Res 170(2):172–181. https://doi.org/10.1007/s00221-005-0200-1

    Article  PubMed  Google Scholar 

  33. Goldreich D, Wong M, Peters RM, Kanics IM (2009) A tactile automated passive-finger stimulator (TAPS). J Vis Exp 28:e1374. https://doi.org/10.3791/1374

    Article  Google Scholar 

  34. Liao X, Li Y, Hu J, Ding X, Zhang X, Ying B, Takatera M, Sukigara S, Pan F, Sun Y, Wang Y, Feng W, Zhu C, Li Q, Wu X (2018) Effects of contact method and acclimation on temperature and humidity in touch perception. Can J 14:1605–1615. https://doi.org/10.1177/0040517517705628

    Article  CAS  Google Scholar 

  35. Tamè L, Holmes NP (2016) Involvement of human primary somatosensory cortex in vibrotactile detection depends on task demand. NeuroImage 138:184–196. https://doi.org/10.1016/j.neuroimage.2016.05.056

    Article  PubMed  Google Scholar 

  36. Tamè L, Braun C, Holmes NP, Farnè A, Pavani F (2016) Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol 33(1–2):48–66. https://doi.org/10.1080/02643294.2016.1159547

    Article  PubMed  Google Scholar 

  37. Vardar Y, Güçlü B, Basdogan C (2018) Tactile masking by electrovibration. IEEE Trans Haptics 11(4):623–635. https://doi.org/10.1109/TOH.2018.2855124

    Article  PubMed  Google Scholar 

  38. Tamè L, Moles AP, Holmes NP (2014) Within, but not between hands interactions in vibrotactile detection thresholds reflect somatosensory receptive field organization. Front Psychol 5:174. https://doi.org/10.3389/fpsyg.2014.00174

    Article  PubMed  PubMed Central  Google Scholar 

  39. Medina S, Tamè L, Longo MR (2018) Tactile localization biases are modulated by gaze direction. Exp Brain Res 236(1):31–42. https://doi.org/10.1007/s00221-017-5105-2

    Article  PubMed  Google Scholar 

  40. Gescheider GA, Bolanowski SJJ, Hall KRL, Hoffmann KE, Verrillo RT (1994) The effects of aging on information-processing channels in the sense of touch: I. Absolute sensitivity. Somatosens Mot Res 11(4):345–357. https://doi.org/10.3109/08990229409028878

    Article  CAS  PubMed  Google Scholar 

  41. Harris JA, Thein T, Clifford CWG (2004) Dissociating detection from localization of tactile stimuli. J Neurosci 24(14):3683–3693. https://doi.org/10.1523/JNEUROSCI.0134-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt TT, Blankenburg F (2018) Brain regions that retain the spatial layout of tactile stimuli during working memory – a “tactospatial sketchpad”? NeuroImage 178:531–539. https://doi.org/10.1016/j.neuroimage.2018.05.076

    Article  PubMed  Google Scholar 

  43. Tamè L, Bumpus N, Linkenauger SA, Longo MR (2017) Distorted body representations are robust to differences in experimental instructions. Atten Percept Psychophys 79(4):1204–1216. https://doi.org/10.3758/s13414-017-1301-1

    Article  PubMed  Google Scholar 

  44. Tamè L, Linkenauger SA, Longo MR (2018) Dissociation of feeling and belief in the rubber hand illusion. PLoS One 13(10):e206367. https://doi.org/10.1371/journal.pone.0206367

    Article  CAS  Google Scholar 

  45. Heed T, Azañón E (2014) Using time to investigate space: a review of tactile temporal order judgments as a window onto spatial processing in touch. Front Psychol 5:76. https://doi.org/10.3389/fpsyg.2014.00076

    Article  PubMed  PubMed Central  Google Scholar 

  46. Constable MD, Welsh TN, Huffman G, Pratt J (2019) I before U: temporal order judgements reveal bias for self-owned objects. Q J Exp Psychol 72(3):589–598. https://doi.org/10.1177/1747021818762010

    Article  Google Scholar 

  47. Baumgarten TJ, Schnitzler A, Lange J (2016b) Prestimulus alpha power influences tactile temporal perceptual discrimination and confidence in decisions. Cereb Cortex 26(3):891–903. https://doi.org/10.1093/cercor/bhu247

    Article  PubMed  Google Scholar 

  48. Grund M, Forschack N, Nierhaus T, Villringer A (2021) Neural correlates of conscious tactile perception: an analysis of bold activation patterns and graph metrics. NeuroImage 224:117384. https://doi.org/10.1016/j.neuroimage.2020.117384

    Article  PubMed  Google Scholar 

  49. Hurme M, Railo H (2022) Promise and challenges for discovering transcranial magnetic stimulation induced “numbsense”—commentary on Ro & Koenig (2021). Conscious Cogn 98:103265. https://doi.org/10.1016/j.concog.2021.103265

    Article  PubMed  Google Scholar 

  50. Bruyer R, Brysbaert M (2011) Combining speed and accuracy in cognitive psychology: is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychol Belg 51(1):5–13

    Article  Google Scholar 

  51. Orne MT (1962) On the social psychology of the psychological experiment, with particular reference to demand characteristics and their implications. Am Psychol 17(11):776–783. https://doi.org/10.1037/h0043424

    Article  Google Scholar 

  52. Croy I, Bierling A, Sailer U, Ackerley R (2021) Individual variability of pleasantness ratings to stroking touch over different velocities. Neuroscience 464:33–43. https://doi.org/10.1016/j.neuroscience.2020.03.030

    Article  CAS  PubMed  Google Scholar 

  53. Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33(2):113–120. https://doi.org/10.3758/BF03202828

    Article  CAS  PubMed  Google Scholar 

  54. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436. https://doi.org/10.1163/156856897X00357

    Article  CAS  PubMed  Google Scholar 

  55. D’Amour SAO, Harris LR (2014) Contralateral tactile masking between forearms. Exp Brain Res 232(3):821–826. https://doi.org/10.1007/s00221-013-3791-y

    Article  PubMed  Google Scholar 

  56. Rusconi E, Tamè L, Furlan M, Haggard P, Demarchi G, Adriani M, Ferrari P, Braun C, Schwarzbach JV (2014) Neural correlates of finger gnosis. J Neurosci 34(27):9012–9023. https://doi.org/10.1523/JNEUROSCI.3119-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. LaMotte RH, Mountcastle VB (1975) Capacities of humans and monkeys to discriminate between vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychophysical measurements. J Neurophysiol 38:539–559

    Article  CAS  PubMed  Google Scholar 

  58. Whang KC, Burton H, Shulman GL (1991) Selective attention in vibrotactile tasks: detecting the presence and absence of amplitude change. Percept Psychophys 50(2):157–165. https://doi.org/10.3758/bf03212216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Paul Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holmes, N.P., Tamè, L. (2023). Detection, Discrimination & Localization: The Psychophysics of Touch. In: Holmes, N.P. (eds) Somatosensory Research Methods. Neuromethods, vol 196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3068-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3068-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3067-9

  • Online ISBN: 978-1-0716-3068-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics