Skip to main content

Epigenetic Reprogramming and Somatic Cell Nuclear Transfer

  • Protocol
  • First Online:
Somatic Cell Nuclear Transfer Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2647))

Abstract

Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patil V, Cuenin C, Chung F, Aguilera JRR, Fernandez-Jimenez N, Romero-Garmendia I et al (2019) Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 47:10072–10085

    CAS  PubMed  Google Scholar 

  2. Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7:e1002389

    CAS  PubMed  Google Scholar 

  3. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    CAS  PubMed  Google Scholar 

  4. Keown CL, Berletch JB, Castanon R, Nery JR, Disteche CM, Ecker JR et al (2017) Allele-specific non-CG DNA methylation marks domains of active chromatin in female mouse brain. Proc Natl Acad Sci U S A 114:2882–2890

    Google Scholar 

  5. Hadad N, Unnikrishnan A, Jackson JA, Masser DR, Otalora L, Stanford DR et al (2018) Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol Aging 67:53–66

    CAS  PubMed  Google Scholar 

  6. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    CAS  PubMed  Google Scholar 

  7. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    CAS  PubMed  Google Scholar 

  8. Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315:1141–1143

    CAS  PubMed  Google Scholar 

  9. Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T et al (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439

    CAS  PubMed  Google Scholar 

  10. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for De novo methylation and mammalian development. Cell 99:247–257

    CAS  PubMed  Google Scholar 

  11. Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B et al (2019) DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res 47:152–167

    CAS  PubMed  Google Scholar 

  12. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    CAS  PubMed  Google Scholar 

  13. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    CAS  PubMed  Google Scholar 

  14. Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F et al (2013) RNA–mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9:e1003498

    CAS  PubMed  Google Scholar 

  15. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700

    CAS  PubMed  Google Scholar 

  16. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2005) Spatial distribution of di-and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280:17732–17736

    CAS  PubMed  Google Scholar 

  17. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  18. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

    CAS  PubMed  Google Scholar 

  19. Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H (2013) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24:502–516

    CAS  PubMed  Google Scholar 

  20. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    CAS  PubMed  Google Scholar 

  21. Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M, Cerase A et al (2017) PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356:1081–1084

    CAS  PubMed  Google Scholar 

  22. Maclary E, Buttigieg E, Hinten M, Gayen S, Harris C, Sarkar MK et al (2014) Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun 5:1–14

    Google Scholar 

  23. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    CAS  PubMed  Google Scholar 

  24. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089

    CAS  PubMed  Google Scholar 

  25. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    CAS  PubMed  Google Scholar 

  26. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    CAS  PubMed  Google Scholar 

  27. MacDonald WA, Mann MRW (2014) Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 81:126–140

    CAS  PubMed  Google Scholar 

  28. Kobayashi H, Sakurai T, Miura F, Imai M, Mochiduki K, Yanagisawa E et al (2013) High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 23:616–627

    CAS  PubMed  Google Scholar 

  29. Cowley M, Oakey Rebecca J (2012) Resetting for the next generation. Mol Cell 48:819–821

    CAS  PubMed  Google Scholar 

  30. Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23–23

    PubMed  Google Scholar 

  31. Hill PWS, Amouroux R, Hajkova P (2014) DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104:324–333

    CAS  PubMed  Google Scholar 

  32. Fagundes NS, Michalczechen-Lacerda VA, Caixeta ES, Machado GM, Rodrigues FC, Melo EO et al (2011) Methylation status in the intragenic differentially methylated region of the IGF2 locus in Bos taurus indicus oocytes with different developmental competencies. Mol Hum Reprod 17:85–91

    CAS  PubMed  Google Scholar 

  33. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:47–58

    Google Scholar 

  34. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98:13734–13738

    CAS  PubMed  Google Scholar 

  35. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    CAS  PubMed  Google Scholar 

  36. Maalouf WE, Alberio R, Campbell KH (2008) Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3:199–209

    PubMed  Google Scholar 

  37. Aravin AA, Bourc’his D (2008) Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 22:970–975

    CAS  PubMed  Google Scholar 

  38. Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G et al (2012) Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 47:909–920

    CAS  PubMed  Google Scholar 

  39. Silveira MM, Salgado Bayão HX, dos Santos Mendonça A, Borges NA, Vargas LN, Caetano AR et al (2018) DNA methylation profile at a satellite region is associated with aberrant placentation in cloned calves. Placenta 70:25–33

    CAS  PubMed  Google Scholar 

  40. Silveira MM, Vargas LN, Bayão HXS, Schumann NAB, Caetano AR, Rumpf R et al (2019) DNA methylation of the endogenous retrovirus Fematrin-1 in fetal placenta is associated with survival rate of cloned calves. Placenta 88:52–60

    CAS  PubMed  Google Scholar 

  41. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    CAS  PubMed  Google Scholar 

  42. Surani MA, Barton SC (1983) Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222:1034

    CAS  PubMed  Google Scholar 

  43. McGrath J, Solter D (1983) Nuclear transplantation in mouse embryos. J Exp Zool 228:355–362

    CAS  PubMed  Google Scholar 

  44. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300

    CAS  PubMed  Google Scholar 

  45. Ferguson-Smith AC, Bourc’his D (2018) The discovery and importance of genomic imprinting. eLife 7:e42368. https://doi.org/10.7554/eLife.42368

    Article  PubMed  Google Scholar 

  46. Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498

    CAS  PubMed  Google Scholar 

  47. Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    CAS  PubMed  Google Scholar 

  48. Adalsteinsson BT, Ferguson-Smith AC (2014) Epigenetic control of the genome-lessons from genomic imprinting. Genes 5:635–655

    PubMed  Google Scholar 

  49. Mendonça ADS, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN et al (2019) DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics 14:568–588

    PubMed  Google Scholar 

  50. Franco MM, Prickett AR, Oakey RJ (2014) The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biol Reprod 91:125

    PubMed  Google Scholar 

  51. Leighton PA, Saam JR, Ingram RS, Tilghman SM (1996) Genomic imprinting in mice: its function and mechanism 1. Biol Reprod 54:273–278

    CAS  PubMed  Google Scholar 

  52. Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6:a018382. https://doi.org/10.1101/cshperspect.a018382

    Article  CAS  PubMed  Google Scholar 

  53. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372

    CAS  PubMed  Google Scholar 

  54. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    CAS  PubMed  Google Scholar 

  55. Nechin J, Tunstall E, Raymond N, Hamagami N, Pathmanabhan C, Forestier S et al (2019) Hemimethylation of CpG dyads is characteristic of secondary DMRs associated with imprinted loci and correlates with 5-hydroxymethylcytosine at paternally methylated sequences. Epigenetics Chromatin 12:64–64

    PubMed  Google Scholar 

  56. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87

    CAS  PubMed  Google Scholar 

  57. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    CAS  PubMed  Google Scholar 

  58. Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351:667–670

    CAS  PubMed  Google Scholar 

  59. Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    CAS  PubMed  Google Scholar 

  60. Nordin M, Bergman D, Halje M, Engström W, Ward A (2014) Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif 47:189–199

    CAS  PubMed  Google Scholar 

  61. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    CAS  PubMed  Google Scholar 

  62. Wolf JB, Hager R (2006) A maternal–offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol 4:e380. https://doi.org/10.1371/journal.pbio.0040380

    Article  CAS  PubMed  Google Scholar 

  63. Hanna CW (2020) Placental imprinting: emerging mechanisms and functions. PLoS Genet 16:e1008709. https://doi.org/10.1371/journal.pgen.1008709

    Article  CAS  PubMed  Google Scholar 

  64. Cleaton MAM, Edwards CA, Ferguson-Smith AC (2014) Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. Annu Rev Genomics Hum Genet 15:93–126

    CAS  PubMed  Google Scholar 

  65. Plasschaert RN, Bartolomei MS (2014) Genomic imprinting in development, growth, behavior and stem cells. Development 141:1805–1813

    CAS  PubMed  Google Scholar 

  66. Li Y, Donnelly CG, Rivera RM (2019) Overgrowth syndrome. Vet Clin North Am Food Anim Pract 35:265–276

    PubMed  Google Scholar 

  67. Chen Z (2013) Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann. Epigenetics 8:591–601

    CAS  PubMed  Google Scholar 

  68. Chen Z, Hagen DE, Elsik CG, Ji T, Morris CJ, Moon LE et al (2015) Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc Natl Acad Sci U S A 112:4618–4623

    CAS  PubMed  Google Scholar 

  69. Li Y, Hagen DE, Ji T, Bakhtiarizadeh MR, Frederic WM, Traxler EM et al (2019) Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome. Epigenetics 14:850–876

    PubMed  Google Scholar 

  70. Hirose M, Hada M, Kamimura S, Matoba S, Honda A, Motomura K et al (2018) Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics 13:693–703

    PubMed  Google Scholar 

  71. Okae H, Matoba S, Nagashima T, Mizutani E, Inoue K, Ogonuki N et al (2013) RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum Mol Genet 23:992–1001

    PubMed  Google Scholar 

  72. Matoba S, Wang H, Jiang L, Lu F, Iwabuchi KA, Wu X et al (2018) Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell 23:343–354

    CAS  PubMed  Google Scholar 

  73. Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A et al (2014) Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159:884–895

    CAS  PubMed  Google Scholar 

  74. Inoue K, Ogonuki N, Kamimura S, Inoue H, Matoba S, Hirose M et al (2020) Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nat Commun 11:2150–2150

    CAS  PubMed  Google Scholar 

  75. dos Santos Mendonça A, Franco MM, de Oliveira Carvalho J, Machado GM, Dode MAN (2019) DNA methylation of the insulin-like growth factor 2-imprinted gene in trophoblast cells of elongated bovine embryo: effects of the in vitro culture. Cell Reprogram 21:260–269

    PubMed  Google Scholar 

  76. Poirier M, Smith OE, Therrien J, Rigoglio NN, Miglino MA, Silva LA et al (2019) Resiliency of equid H19 imprint to somatic cell reprogramming by oocyte nuclear transfer and genetically induced pluripotency. Biol Reprod 102:211–219

    Google Scholar 

  77. Carvalho JO, Michalczechen-Lacerda VA, Sartori R, Rodrigues FC, Bravim O, Franco MM et al (2012) The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sorting. Mol Reprod Dev 79:77–84

    CAS  PubMed  Google Scholar 

  78. Mendonça AS, Guimarães ALS, da Silva NMA, Caetano AR, Dode MAN, Franco MM (2015) Characterization of the IGF2 imprinted gene methylation status in bovine oocytes during folliculogenesis. PLoS One 10:e0142072. https://doi.org/10.1371/journal.pone.0142072

    Article  CAS  PubMed  Google Scholar 

  79. Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–677

    CAS  PubMed  Google Scholar 

  80. Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18:415–418

    CAS  PubMed  Google Scholar 

  81. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    CAS  PubMed  Google Scholar 

  82. Shapiro LJ, Mohandas T, Weiss R, Romeo G (1979) Non-inactivation of an X-chromosome locus in man. Science 204:1224

    CAS  PubMed  Google Scholar 

  83. Brown CJ, Carrel L, Willard HF (1997) Expression of genes from the human active and inactive X chromosomes. Am J Hum Genet 60:1333–1343

    CAS  PubMed  Google Scholar 

  84. Zinn AR, Page DC, Fisher EMC (1993) Turner syndrome: the case of the missing sex chromosome. Trends Genet 9:90–93

    CAS  PubMed  Google Scholar 

  85. Bermejo-Alvarez P, Ramos-Ibeas P, Gutierrez-Adan A (2012) Solving the “X” in embryos and stem cells. Stem Cells Dev 21:1215–1224

    CAS  PubMed  Google Scholar 

  86. Okamoto I, Heard E (2006) The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet Genome Res 113:318–324

    CAS  PubMed  Google Scholar 

  87. Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    CAS  PubMed  Google Scholar 

  88. Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:370–374

    CAS  PubMed  Google Scholar 

  89. Gontan C, Mira-Bontenbal H, Magaraki A, Dupont C, Barakat TS, Rentmeester E et al (2018) REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice. Nat Commun 9:4752

    PubMed  Google Scholar 

  90. Maclary E, Hinten M, Harris C, Kalantry S (2013) Long noncoding RNAs in the X-inactivation center. Chromosom Res 21:601–614

    CAS  Google Scholar 

  91. Monk M (1992) The X chromosome in development in mouse and man. J Inherit Metab Dis 15:499–513

    CAS  PubMed  Google Scholar 

  92. Dindot SV, Kent KC, Evers B, Loskutoff N, Womack J, Piedrahita JA (2004) Conservation of genomic imprinting at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome 15:966–974

    CAS  PubMed  Google Scholar 

  93. Xue F, Tian XC, Du F, Kubota C, Taneja M, Dinnyes A et al (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31:216–220

    CAS  PubMed  Google Scholar 

  94. Jeon Y, Sarma K, Lee JT (2012) New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 22:62–71

    CAS  PubMed  Google Scholar 

  95. Xu N, Tsai C-L, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149

    CAS  PubMed  Google Scholar 

  96. Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT (2009) The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460:128–132

    CAS  PubMed  Google Scholar 

  97. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    CAS  PubMed  Google Scholar 

  98. Lee J, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    CAS  PubMed  Google Scholar 

  99. Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB, Brockdorff N et al (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3:e2521. https://doi.org/10.1371/journal.pone.0002521

    Article  CAS  PubMed  Google Scholar 

  100. Jeon Y, Lee Jeannie T (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133

    CAS  PubMed  Google Scholar 

  101. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750

    CAS  PubMed  Google Scholar 

  102. Furlan G, Rougeulle C (2016) Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. WIREs RNA 7:702–722

    CAS  PubMed  Google Scholar 

  103. Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ III, Lee JT (2011) Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7:e1002248. https://doi.org/10.1371/journal.pgen.1002248

    Article  CAS  PubMed  Google Scholar 

  104. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–1551

    CAS  PubMed  Google Scholar 

  105. Colognori D, Sunwoo H, Kriz AJ, Wang C-Y, Lee JT (2019) Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol Cell 74:101–117

    CAS  PubMed  Google Scholar 

  106. Wang C-Y, Jégu T, Chu H-P, Oh HJ, Lee JT (2018) SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174:406–421

    CAS  PubMed  Google Scholar 

  107. Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9:159–165

    CAS  PubMed  Google Scholar 

  108. Ohhata T, Hoki Y, Sasaki H, Sado T (2008) Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135:227

    CAS  PubMed  Google Scholar 

  109. Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L et al (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12:894–908

    CAS  PubMed  Google Scholar 

  110. Ferreira A, Aguiar Filho L, Sousa R, Sartori R, Franco M (2015) Characterization of allele-specific expression of the X-linked gene MAO-A in trophectoderm cells of bovine embryos produced by somatic cell nuclear transfer. Genet Mol Res 14:12128–12136

    CAS  PubMed  Google Scholar 

  111. Urrego R, Rodriguez-Osorio N, Niemann H (2014) Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 9:803–815

    PubMed  Google Scholar 

  112. Borensztein M, Syx L, Ancelin K, Diabangouaya P, Picard C, Liu T et al (2017) Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat Struct Mol Biol 24:226–233

    CAS  PubMed  Google Scholar 

  113. Yvan H (2005) Nuclear transfer: a new tool for reproductive biotechnology in cattle. Reprod Nutr Dev 45:353–361

    Google Scholar 

  114. Wells DN, Misica PM, Tervit HR (1999) Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod 60:996–1005

    CAS  PubMed  Google Scholar 

  115. Kato Y, Tani T, Tsunoda Y (2000) Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil 120:231–237

    CAS  PubMed  Google Scholar 

  116. Hirasawa R, Matoba S, Inoue K, Ogura A (2013) Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos. PLoS One 8:e76422. https://doi.org/10.1371/journal.pone.0076422

    Article  CAS  PubMed  Google Scholar 

  117. Hill JR, Burghardt RC, Jones K, Long CR, Looney CR, Shin T et al (2000) Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 63:1787–1794

    CAS  PubMed  Google Scholar 

  118. Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23:471. https://doi.org/10.1016/j.stem.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  119. Wang X, Qu J, Li J, He H, Liu Z, Huan Y (2020) Epigenetic reprogramming during somatic cell nuclear transfer: recent Progress and future directions. Front Genet 11:205–205

    CAS  PubMed  Google Scholar 

  120. Long CR, Westhusin ME, Golding MC (2014) Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 81:183–193

    CAS  PubMed  Google Scholar 

  121. Niemann H, Tian XC, King WA, Lee RSF (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135:151–163

    CAS  PubMed  Google Scholar 

  122. Mauch T, Schoenwolf G (2001) Developmental biology. Sixth Edition. By Scott F. Gilbert. Am J Med Genet 99(2):170–171

    Google Scholar 

  123. Degrelle SA, Jaffrezic F, Campion E, Lê Cao K-A, Le Bourhis D, Richard C et al (2012) Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLoS One 7:e38309. https://doi.org/10.1371/journal.pone.0038309

    Article  CAS  PubMed  Google Scholar 

  124. Gao G, Wang S, Zhang J, Su G, Zheng Z, Bai C et al (2019) Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid-to late gestation. Sci Rep 9:20035

    CAS  PubMed  Google Scholar 

  125. Miglino MA, Pereira FT, Visintin JA, Garcia JM, Meirelles FV, Rumpf R et al (2007) Placentation in cloned cattle: structure and microvascular architecture. Theriogenology 68:604–617

    CAS  PubMed  Google Scholar 

  126. Batchelder CA, Bertolini M, Mason JB, Moyer AL, Hoffert KA, Petkov SG et al (2007) Perinatal physiology in cloned and normal calves: physical and clinical characteristics. Cloning Stem Cells 9:63–82

    CAS  PubMed  Google Scholar 

  127. Palmieri C, Loi P, Ptak G, Della Salda L (2008) Review paper: a review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice. Vet Pathol 45:865–880

    CAS  PubMed  Google Scholar 

  128. Chavatte-Palmer P, Camous S, Jammes H, Le Cleac’h N, Guillomot M, Lee RSF (2012) Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33:99–104

    Google Scholar 

  129. Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    CAS  PubMed  Google Scholar 

  130. Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS et al (2015) Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet 47:544–549

    CAS  PubMed  Google Scholar 

  131. Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M et al (2017) Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife 6:e25125. https://doi.org/10.7554/eLife.25125

    Article  PubMed  Google Scholar 

  132. Hanna CW, Pérez-Palacios R, Gahurova L, Schubert M, Krueger F, Biggins L et al (2019) Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol 20:225

    PubMed  Google Scholar 

  133. Denner J (2016) Expression and function of endogenous retroviruses in the placenta. APMIS 124:31–43

    CAS  PubMed  Google Scholar 

  134. Weiss RA (2016) Human endogenous retroviruses: friend or foe? APMIS 124:4–10

    PubMed  Google Scholar 

  135. Chuong EB (2018) The placenta goes viral: retroviruses control gene expression in pregnancy. PLoS Biol 16:e3000028. https://doi.org/10.1371/journal.pbio.3000028

    Article  CAS  PubMed  Google Scholar 

  136. Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL (2017) Endogenous retroviruses: with us and against us. Front Chem 5:23

    PubMed  Google Scholar 

  137. Schumann NA, Mendonça AS, Silveira MM, Vargas LN, Leme LO, Sousa RV et al (2020) Procaine and S-adenosyl-l-homocysteine affect the expression of genes related to the epigenetic machinery and change the DNA methylation status of in vitro cultured bovine skin fibroblasts. DNA Cell Biol 39:37–49

    CAS  PubMed  Google Scholar 

  138. Shen C-J, Lin C-C, Shen P-C, Cheng WT, Chen H-L, Chang T-C et al (2013) Imprinted genes and satellite loci are differentially methylated in bovine somatic cell nuclear transfer clones. Cell Reprogram 15:413–424

    CAS  PubMed  Google Scholar 

  139. Jeon B-G, Coppola G, Perrault SD, Rho G-J, Betts DH, King WA (2008) S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer. Reproduction 135:815–828

    CAS  PubMed  Google Scholar 

  140. Huan YJ, Zhu J, Xie BT, Wang JY, Liu SC, Zhou Y et al (2013) Treating cloned embryos, but not donor cells, with 5-aza-2′-deoxycytidine enhances the developmental competence of porcine cloned embryos. J Reprod Dev 59:442. https://doi.org/10.1262/jrd.2013-026

    Article  CAS  PubMed  Google Scholar 

  141. Yamanaka K-i, Sakatani M, Kubota K, Balboula AZ, Sawai K, Takahashi M (2011) Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. J Reprod Dev 57:393. https://doi.org/10.1262/jrd.10-181A

    Article  CAS  PubMed  Google Scholar 

  142. Golding MC, Williamson GL, Stroud TK, Westhusin ME, Long CR (2011) Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol Reprod Dev 78:306–317

    CAS  PubMed  Google Scholar 

  143. Gao R, Wang C, Gao Y, Xiu W, Chen J, Kou X et al (2018) Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 23:426–435

    CAS  PubMed  Google Scholar 

  144. Wang L-J, Zhang H, Wang Y-S, Xu W-B, Xiong X-R, Li Y-Y et al (2011) Scriptaid improves in vitro development and nuclear reprogramming of somatic cell nuclear transfer bovine embryos. Cell Reprogram 13:431–439

    CAS  PubMed  Google Scholar 

  145. Li X, Ao X, Bai L, Li D, Liu X, Wei Z et al (2018) VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim 54:496–504

    CAS  PubMed  Google Scholar 

  146. Tsuji Y, Kato Y, Tsunoda Y (2009) The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2 [variant prime]-deoxycytidine. Zygote 17:109

    CAS  PubMed  Google Scholar 

  147. Silva CG, Martins CF, Bessler HC, da Fonseca Neto ÁM, Cardoso TC, Franco MM et al (2019) Use of trichostatin A alters the expression of HDAC3 and KAT2 and improves in vitro development of bovine embryos cloned using less methylated mesenchymal stem cells. Reprod Domest Anim 54:289–299

    PubMed  Google Scholar 

  148. Cibelli JB, Gurdon JB (2018) Custom-made oocytes to clone non-human primates. Cell 172:647–649

    CAS  PubMed  Google Scholar 

  149. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172:881–887

    CAS  PubMed  Google Scholar 

  150. Ruan Z, Zhao X, Qin X, Luo C, Liu X, Deng Y et al (2018) DNA methylation and expression of imprinted genes are associated with the viability of different sexual cloned buffaloes. Reprod Domest Anim 53:203–212

    CAS  PubMed  Google Scholar 

  151. Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S et al (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330:496–499

    CAS  PubMed  Google Scholar 

  152. Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N et al (2011) RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci U S A 108:20621–20626

    CAS  PubMed  Google Scholar 

  153. Braun SM, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR (2017) Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 8:1–8

    CAS  Google Scholar 

  154. Liu P, Chen M, Liu Y, Qi LS, Ding S (2018) CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22:252–261

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício M. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vargas, L.N., Silveira, M.M., Franco, M.M. (2023). Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. In: Moura, M.T. (eds) Somatic Cell Nuclear Transfer Technology . Methods in Molecular Biology, vol 2647. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3064-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3064-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3063-1

  • Online ISBN: 978-1-0716-3064-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics