Skip to main content

Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

  • 517 Accesses

Abstract

The bacterial flagellum employs a rotary motor embedded on the cell surface. The motor consists of the stator and rotor elements and is driven by ion influx (typically H+ or Na+) through an ion channel of the stator. Ion influx induces conformational changes in the stator, followed by changes in the interactions between the stator and rotor. The driving force to rotate the flagellum is thought to be generated by changing the stator-rotor interactions. In this chapter, we describe two methods for investigating the interactions between the stator and rotor: site-directed in vivo photo-crosslinking and site-directed in vivo cysteine disulfide crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  PubMed  Google Scholar 

  2. Terashima H, Kojima S, Homma M (2008) Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol 270:39–85

    Article  CAS  PubMed  Google Scholar 

  3. Morimoto YV, Minamino T (2014) Structure and function of the bi-directional bacterial flagellar motor. Biomol Ther 4:217–234

    Google Scholar 

  4. Takekawa N, Imada K, Homma M (2020) Structure and energy-conversion mechanism of bacterial Na+-driven flagellar motor. Trends Microbiol 28:719–731

    Article  CAS  PubMed  Google Scholar 

  5. Leake MC, Chandler JH, Wadhams GH et al (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  6. Reid SW, Leake MC, Chandler JH et al (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 103:8066–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A 110:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tipping MJ, Delaleza NJ, Limb R et al (2013) Load-dependent assembly of the bacterial flagellar motor. mBio 4:e00551-13

    Article  PubMed  PubMed Central  Google Scholar 

  9. Antani JD, Gupta R, Lee AH et al (2021) Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor. Nat Commun 12:5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pourjaberi SNS, Terahara N, Namba K et al (2017) The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol Microbiol 106:646–658

    Article  CAS  PubMed  Google Scholar 

  11. Terahara N, Noguchi N, Nakamura S et al (2017) Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor. Sci Rep 7:46081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dean GD, Macnab RM, Stader J et al (1984) Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J Bacteriol 159:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stader J, Matsumura P, Vacante D et al (1986) Nucleotide sequence of the Escherichia coli MotB gene and site-limited incorporation of its product into the cytoplasmic membrane. J Bacteriol 166:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kojima S, Blair DF (2004) Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry 43:26–34

    Article  CAS  PubMed  Google Scholar 

  15. Asai Y, Kojima S, Kato H et al (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato K, Homma M (2000) Multimeric structure of PomA, the Na+-driven polar flagellar motor component of Vibrio alginolyticus. J Biol Chem 275:20223–20228

    Article  CAS  PubMed  Google Scholar 

  17. Santiveri M, Roa-Eguiara A, Kühne C et al (2020) Structure and function of stator units of the bacterial flagellar motor. Cell 183:244–257

    Article  CAS  PubMed  Google Scholar 

  18. Deme JC, Johnson S, Vickery O et al (2020) Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 5:1553–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Mot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram- positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12:333–334

    Article  PubMed  Google Scholar 

  20. Kojima S, Imada K, Sakuma M et al (2009) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73:710–718

    Article  CAS  PubMed  Google Scholar 

  21. Ueno T, Oosawa K, Aizawa SI (1992) M-ring, S-ring and proximal rod of the flagellar basal body of Salmonella-typhimurium are composed of subunits of a single protein, FliF. J Mol Biol 227:672–677

    Article  CAS  PubMed  Google Scholar 

  22. Francis NR, Sosinsky GE, Thomas D et al (1994) Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol 235:1261–1270

    Article  CAS  PubMed  Google Scholar 

  23. Blair DF, Berg HC (1990) The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449

    Article  CAS  PubMed  Google Scholar 

  24. Sato K, Homma M (2000) Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus. J Biol Chem 275:5718–5722

    Article  CAS  PubMed  Google Scholar 

  25. Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050

    Article  CAS  PubMed  Google Scholar 

  26. Terashima H, Kojima S, Homma M (2021) Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor. J Bacteriol 9:e00016–e00021

    Google Scholar 

  27. Carroll BL, Nishikino T, Guo W et al (2020) The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. elife 9:e61446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou JD, Lloyd SA, Blair DF (1998) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A 95:6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266:733–744

    Article  CAS  PubMed  Google Scholar 

  30. Zhou JD, Blair DF (1997) Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273:428–439

    Article  CAS  PubMed  Google Scholar 

  31. Morimoto YV, Nakamura S, Kami-ike N et al (2010) Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 78:1117–1129

    Article  CAS  PubMed  Google Scholar 

  32. Yorimitsu T, Sowa Y, Ishijima A et al (2002) The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 320:403–413

    Article  CAS  PubMed  Google Scholar 

  33. Yorimitsu T, Mimaki A, Yakushi T et al (2003) The conserved charged residues of the C-terminal region of FliG, a rotor component of Na+-driven flagellar motor. J Mol Biol 334:567–583

    Article  CAS  PubMed  Google Scholar 

  34. Yakushi T, Yang J, Fukuoka H et al (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188:1466–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takekawa N, Kojima S, Homma M (2014) Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J Bacteriol 196:1377–1385

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang H, Braun TF, Blair DF (1996) Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261:209–221

    Article  CAS  PubMed  Google Scholar 

  37. Chin JW, Martin AB, King DS et al (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci U S A 99:11020–11024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI grant numbers 18K07108 and 21K07022 (to H.T.), 18K19293 (to S.K.), and 20H03220 (to M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Terashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Terashima, H., Homma, M., Kojima, S. (2023). Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics