Skip to main content

Flow Cytometer Analyses, Isolation, and Staining of Murine Muscle Satellite Cells

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Fluorescence-activated cell sorting (FACS) is a powerful and requisite tool for the analysis and purification of adult stem cells. However, it is difficult to separate adult stem cells from solid organs than from immune-related tissues/organs. This is because of the presence of large amounts of debris, which increases noise in the FACS profiles. In particular, it is extremely difficult for unfamiliar researchers to identify muscle stem cell (also known as muscle satellite cell: MuSC) fraction because all myofibers, which are mainly composed of skeletal muscle tissues, become debris during cell preparation. This chapter describes our FACS protocol, which we have used for more than a decade, to identify and purify MuSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  3. McCarthy JJ, Mula J, Miyazaki M et al (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukada SI, Akimoto T, Sotiropoulos A (2020) Role of damage and management in muscle hypertrophy: different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta, Mol Cell Res 1867(9):118742

    Article  CAS  Google Scholar 

  5. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  6. Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  7. Qu-Petersen Z, Deasy B, Jankowski R et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Irintchev A, Zeschnigk M, Starzinski-Powitz A et al (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337

    Article  CAS  PubMed  Google Scholar 

  9. Goel AJ, Rieder MK, Arnold HH et al (2017) Niche Cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep 21:2236–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukada S, Uezumi A, Ikemoto M et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi M, Ogawa R, Watanabe Y et al (2012) Calcitonin receptor and Odz4 are differently expressed in Pax7-positive cells during skeletal muscle regeneration. J Mol Histol 43:581–587

    Article  CAS  PubMed  Google Scholar 

  12. Sherwood RI, Christensen JL, Conboy IM et al (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

    Article  CAS  PubMed  Google Scholar 

  13. Cornelison DD, Filla MS, Stanley HM et al (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94

    Article  CAS  PubMed  Google Scholar 

  14. Rozo M, Li L, Fan CM (2016) Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22:889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatsumi R, Anderson JE, Nevoret CJ et al (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    Article  CAS  PubMed  Google Scholar 

  16. Abou-Khalil R, Le Grand F, Pallafacchina G et al (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukada S, Higuchi S, Segawa M et al (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296:245–255

    Article  CAS  PubMed  Google Scholar 

  18. Fukada S, Yamaguchi M, Kokubo H et al (2011) Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138:4609–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi M, Watanabe Y, Ohtani T et al (2015) Calcitonin receptor signaling inhibits muscle stem cells from escaping the quiescent state and the niche. Cell Rep 13:302–314

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Noguchi YT, Nakayama H et al (2019) The CalcR-PKA-Yap1 Axis is critical for maintaining quiescence in muscle stem cells. Cell Rep 29:2154-63 e5

    Article  Google Scholar 

  21. Noguchi YT, Nakamura M, Hino N et al (2019) Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development 146:dev163618

    Article  CAS  PubMed  Google Scholar 

  22. Ogawa R, Ma Y, Yamaguchi M et al (2015) Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration. Development 142:51–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support of the Japan Society for the Promotion of Science (a Grant-in-Aid for Scientific Research (B), 19H04000). M.K. received funding from the Fuji Seal Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-ichiro Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kubota, M., Zhang, L., Fukada, Si. (2023). Flow Cytometer Analyses, Isolation, and Staining of Murine Muscle Satellite Cells. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics