Skip to main content

All-Atom Molecular Dynamics Simulations of Membrane-Spanning DNA Origami Nanopores

  • Protocol
  • First Online:
DNA and RNA Origami

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2639))

Abstract

Building on the recent technological advances, all-atom molecular dynamics (MD) simulations have become an indispensable tool to study the molecular behavior at nanoscale. Molecular simulations have been used to characterize the structure, dynamics, and mechanical and electrical properties of DNA origami objects. In this chapter we describe a method to build all-atom model of lipid-spanning DNA origami nanopores and perform molecular dynamics simulations in explicit electrolyte solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman NC (2016) Structural DNA nanotechnology. Cambridge University Press

    Google Scholar 

  2. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  3. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338(6109):932–936. https://doi.org/10.1126/science.1225624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burns JR, Stulz E, Howorka S (2013) Self-assembled DNA nanopores that span lipid bilayers. Nano Lett 13(6):2351–2356

    Article  CAS  PubMed  Google Scholar 

  6. Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S (2013) Lipid-bilayer-spanning DNA Nanopores with a bifunctional porphyrin anchor. Angew Chem Int Ed 52(46):12069–12072

    Article  CAS  Google Scholar 

  7. Burns JR, Seifert A, Fertig N, Howorka S (2016) A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat Nanotechnol 11(2):152–156. https://doi.org/10.1038/nnano.2015.279

    Article  CAS  PubMed  Google Scholar 

  8. Czogalla A, Franquelim HG, Schwille P (2016) DNA nanostructures on membranes as tools for synthetic biology. Biophys J 110(8):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishnan S, Ziegler D, Arnaut V, Martin TG, Kapsner K, Henneberg K, Bausch AR, Dietz H, Simmel FC (2016) Molecular transport through large-diameter DNA nanopores. Nat Commun 7:12787. https://doi.org/10.1038/ncomms12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hernández-Ainsa S, Bell NA, Thacker VV, Gopfrich K, Misiunas K, Fuentes-Perez ME, Moreno-Herrero F, Keyser UF (2013) DNA origami nanopores for controlling DNA translocation. ACS Nano 7(7):6024–6030

    Article  PubMed  Google Scholar 

  11. Ohmann A, Li C-Y, Maffeo C, Al Nahas K, Baumann KN, Göpfrich K, Yoo J, Keyser UF, Aksimentiev A (2018) A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat Commun 9(1):2426. https://doi.org/10.1038/s41467-018-04821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Göpfrich K, Li C-Y, Ricci M, Bhamidimarri SP, Yoo J, Gyenes B, Ohmann A, Winterhalter M, Aksimentiev A, Keyser UF (2016) Large-conductance transmembrane Porin made from DNA origami. ACS Nano 10(9):8207–8214

    Article  PubMed  PubMed Central  Google Scholar 

  13. Göpfrich K, Li C-Y, Mames I, Bhamidimarri SP, Ricci M, Yoo J, Mames A, Ohmann A, Winterhalter M, Stulz E, Aksimentiev A, Keyser UF (2016) Ion channels made from a single membrane-spanning DNA duplex. Nano Lett 16(7):4665–4669. https://doi.org/10.1021/acs.nanolett.6b02039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Göpfrich K, Zettl T, Meijering AE, Hernández-Ainsa S, Kocabey S, Liedl T, Keyser UF (2015) DNA-tile structures induce ionic currents through lipid membranes. Nano Lett 15(5):3134–3138

    Article  PubMed  Google Scholar 

  15. Cheatham TE III, Case DA (2013) Twenty-five years of nucleic acid simulations. Biopolymers 99(12):969–977. https://doi.org/10.1002/bip.22331

    Article  CAS  PubMed  Google Scholar 

  16. Shaw DE, Grossman J, Bank JA, Batson B, Butts JA, Chao JC, Deneroff MM, Dror RO, Even A, Fenton CH (2014) Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE Press, pp 41–53

    Google Scholar 

  17. Yoo J, Aksimentiev A (2013) In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci 110(50):20099–20104. https://doi.org/10.1073/pnas.1316521110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maingi V, Lelimousin M, Howorka S, Sansom MSP (2015) Gating-like motions and wall porosity in a DNA nanopore scaffold revealed by molecular simulations. ACS Nano 9(11):11209–11217. https://doi.org/10.1021/acsnano.5b06357

    Article  CAS  PubMed  Google Scholar 

  19. Maffeo C, Yoo J, Aksimentiev A (2016) De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Res 44(7):3013–3019. https://doi.org/10.1093/nar/gkw155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joshi H, Dwaraknath A, Maiti P (2015) Structure, stability and elasticity of DNA nanotubes. PCCP 17(2):1424–1434

    Article  CAS  PubMed  Google Scholar 

  21. Joshi H, Kaushik A, Seeman NC, Maiti PK (2016) Nanoscale structure and elasticity of pillared DNA nanotubes. ACS Nano 10(8):7780–7791. https://doi.org/10.1021/acsnano.6b03360

    Article  PubMed  Google Scholar 

  22. Li C-Y, Hemmig EA, Kong J, Yoo J, Hernández-Ainsa S, Keyser UF, Aksimentiev A (2015) Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field. ACS Nano 9(2):1420–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doye JP, Ouldridge TE, Louis AA, Romano F, Šulc P, Matek C, Snodin BE, Rovigatti L, Schreck JS, Harrison RM (2013) Coarse-graining DNA for simulations of DNA nanotechnology. Phys Chem Chem Phys 15(47):20395–20414

    Article  CAS  PubMed  Google Scholar 

  24. Schreck JS, Romano F, Zimmer MH, Louis AA, Doye JP (2016) Characterizing DNA star-tile-based nanostructures using a coarse-grained model. ACS Nano 10(4):4236–4247

    Article  CAS  PubMed  Google Scholar 

  25. Maingi V, Burns JR, Uusitalo JJ, Howorka S, Marrink SJ, Sansom MS (2017) Stability and dynamics of membrane-spanning DNA nanopores. Nat Commun 8:14784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoo J, Aksimentiev A (2015) Molecular dynamics of membrane-spanning DNA channels: conductance mechanism, electro-osmotic transport, and mechanical gating. J Phys Chem Lett 6(23):4680–4687

    Article  CAS  PubMed  Google Scholar 

  27. Joshi H, Maiti PK (2018) Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes. Nucleic Acid Res 46(5):2234–2242

    Article  CAS  PubMed  Google Scholar 

  28. Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M (2016) Designer nanoscale DNA assemblies programmed from the top down. Science 352(6293):1534–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macke TJ (1998) Case DA Modeling unusual nucleic acid structures. In: ACS symposium series. ACS Publications, pp 379–393

    Google Scholar 

  30. Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H (2008) Tiamat: a three-dimensional editing tool for complex DNA structures. In: International workshop on DNA-based computers. Springer, pp 90–101

    Google Scholar 

  31. Joshi H, Maffeo C, Aksimentiev A (2018) Molecular dynamics simulations of self-assembled DNA nanostructures. http://www.ks.uiuc.edu/Training/Workshop/Urbana2018c/tutorials/universal-all-atomTutorial.pdf

  32. Maffeo C, Aksimentiev A (2020) MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res 48(9):5135–5146. https://doi.org/10.1093/nar/gkaa200

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  34. VMD User Guide http://wwwksuiucedu/Research/vmd/current/ug/ughtml

    Google Scholar 

  35. VMD Tutorial. http://wwwksuiucedu/Training/Tutorials/vmd/tutorialhtml/indexhtml

    Google Scholar 

  36. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y (2015) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12(1):405–413

    Article  PubMed  PubMed Central  Google Scholar 

  38. NAMD User Guide. http://www.ksuiucedu/Research/namd/current/ug/

  39. NAMD Tutorial. http://www.ksuiucedu/Training/Tutorials/namd/namd-tutorial-unix-html/indexhtml

  40. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  41. Yoo J, Aksimentiev A (2018) New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys Chem Chem Phys 20(13):8432–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoo J, Li C-Y, Slone SM, Maffeo C, Aksimentiev A (2018) A practical guide to molecular dynamics simulations of DNA origami systems. In: Zuccheri G (ed) DNA nanotechnology: methods and protocols. Springer, New York, New York, NY, pp 209–229. https://doi.org/10.1007/978-1-4939-8582-1_15

    Chapter  Google Scholar 

  43. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189

    Article  CAS  Google Scholar 

  44. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621

    Article  CAS  Google Scholar 

  45. Brünger AT (1992) X-PLOR: version 3.1: a system for x-ray crystallography and NMR. Yale University Press

    Google Scholar 

  46. Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) Bad seeds sprout perilous dynamics: stochastic thermostat induced trajectory synchronization in biomolecules. J Chem Theory Comput 5(6):1624–1631

    Article  CAS  PubMed  Google Scholar 

  47. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential function for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  49. Beglov D, Roux B (1994) Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys 100(12):9050–9063

    Article  CAS  Google Scholar 

  50. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD Jr (2011) Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J Chem Theory Comput 8(1):348–362

    Article  Google Scholar 

  51. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoo J, Aksimentiev A (2015) Improved parameterization of amine–carboxylate and amine–phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields. J Chem Theory Comput 12(1):430–443

    Article  PubMed  Google Scholar 

  53. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  54. Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52(1):24–34

    Article  CAS  Google Scholar 

  55. Batcho PF, Case DA, Schlick T (2001) Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J Chem Phys 115(9):4003–4018

    Article  CAS  Google Scholar 

  56. Skeel RD, Hardy DJ, Phillips JC (2007) Correcting mesh-based force calculations to conserve both energy and momentum in molecular dynamics simulations. J Comput Phys 225(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  58. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  59. Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88(6):3745–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seifert A, Göpfrich K, Burns JR, Fertig N, Keyser UF, Howorka S (2014) Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9(2):1117–1126

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yoo J, Aksimentiev A (2012) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3(1):45–50

    Article  CAS  Google Scholar 

  62. Yoo J, Aksimentiev A (2012) Competitive binding of cations to duplex DNA revealed through molecular dynamics simulations. J Phys Chem B 116(43):12946–12954

    Article  CAS  PubMed  Google Scholar 

  63. Yoo J, Aksimentiev A (2016) The structure and intermolecular forces of DNA condensates. Nucleic Acids Res 44(5):2036–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Institutes of Health (P41-GM104601), National Science Foundation (DMR-1827346), and supercomputer time provided through XSEDE Allocation Grant MCA05S028 and the Blue Waters petascale supercomputer system (UIUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Aksimentiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Joshi, H., Li, CY., Aksimentiev, A. (2023). All-Atom Molecular Dynamics Simulations of Membrane-Spanning DNA Origami Nanopores. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics