Skip to main content

DNA Origami: Recent Progress and Applications

  • Protocol
  • First Online:
DNA and RNA Origami

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2639))

Abstract

This chapter explores the basic concept of DNA origami and its various types. By showing the progress made in structural DNA nanotechnology during the last 15 years, the chapter draws attention to the capability of DNA origami to construct complex structures in both 2D and 3D level. As well as looking at a few examples of dynamic DNA nanostructures, the chapter also explores the possible applications of DNA origami in different fields, such as biological computing, nanorobotics, and DNA walkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PW, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66. https://doi.org/10.1038/nnano.2009.311

    Article  CAS  PubMed  Google Scholar 

  2. Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC (2018) A self-assembled nanoscale robotic arm controlled by electric fields. Science 359(6373):296–301. https://doi.org/10.1126/science.aao4284

    Article  CAS  PubMed  Google Scholar 

  3. Gerling T, Wagenbauer KF, Neuner AM, Dietz H (2015) Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347(6229):1446–1452. https://doi.org/10.1126/science.aaa5372

    Article  CAS  PubMed  Google Scholar 

  4. Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11(3):982–987. https://doi.org/10.1021/nl1037165

    Article  CAS  PubMed  Google Scholar 

  5. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834. https://doi.org/10.1126/science.1214081

    Article  CAS  PubMed  Google Scholar 

  6. Li SP, Jiang Q, Liu SL, Zhang YL, Tian YH, Song C, Wang J, Zou YG, Anderson GJ, Han JY, Chang Y, Liu Y, Zhang C, Chen L, Zhou GB, Nie GJ, Yan H, Ding BQ, Zhao YL (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36(3):258. https://doi.org/10.1038/nbt.4071

    Article  CAS  PubMed  Google Scholar 

  7. Ma WJ, Zhang YX, Zhang YX, Shao XR, Xie XP, Mao CC, Cui WT, Li Q, Shi JY, Li J, Fan CH, Lin YF (2019) An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett 19(7):4505–4517. https://doi.org/10.1021/acs.nanolett.9b01320

    Article  CAS  PubMed  Google Scholar 

  8. Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E (2019) Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567(7748):366–372. https://doi.org/10.1038/s41586-019-1014-9

    Article  CAS  PubMed  Google Scholar 

  9. Bellot G, McClintock MA, Chou JJ, Shih WM (2013) DNA nanotubes for NMR structure determination of membrane proteins. Nat Protoc 8(4):755–770. https://doi.org/10.1038/nprot.2013.037

    Article  CAS  PubMed  Google Scholar 

  10. Le JV, Luo Y, Darcy MA, Lucas CR, Goodwin MF, Poirier MG, Castro CE (2016) Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 10(7):7073–7084. https://doi.org/10.1021/acsnano.6b03218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen JH, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319):631–633

    Article  CAS  PubMed  Google Scholar 

  12. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  13. Goodman RP, Schaap IA, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–1665. https://doi.org/10.1126/science.1120367. 310/5754/1661 [pii] 1126/science.1120367

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YW, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116(5):1661–1669

    Article  CAS  Google Scholar 

  15. Mathieu F, Liao SP, Kopatscht J, Wang T, Mao CD, Seeman NC (2005) Six-helix bundles designed from DNA. Nano Lett 5(4):661–665. https://doi.org/10.1021/nl050084f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CL, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76. https://doi.org/10.1038/nature07971

    Article  CAS  PubMed  Google Scholar 

  17. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418. https://doi.org/10.1038/nature08016. nature08016 [pii] 1038/nature08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006. https://doi.org/10.1093/nar/gkp436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ke YG, Douglas SM, Liu MH, Sharma J, Cheng AC, Leung A, Liu Y, Shih WM, Yan H (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908. https://doi.org/10.1021/ja906381y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730. https://doi.org/10.1126/science.1174251. 325/5941/725 [pii] 1126/science.1174251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346. https://doi.org/10.1126/science.1202998

    Article  CAS  PubMed  Google Scholar 

  22. Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103. https://doi.org/10.1038/ncomms2095

    Article  CAS  PubMed  Google Scholar 

  23. Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400):623–626. https://doi.org/10.1038/nature11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183. https://doi.org/10.1126/science.1227268

    Article  CAS  PubMed  Google Scholar 

  25. Marras AE, Zhou LF, Su HJ, Castro CE (2015) Programmable motion of DNA origami mechanisms. Proc Natl Acad Sci U S A 112(3):713–718. https://doi.org/10.1073/pnas.1408869112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wagenbauer KF, Sigl C, Dietz H (2017) Gigadalton-scale shape-programmable DNA assemblies. Nature 552(7683):78–83. https://doi.org/10.1038/nature24651

    Article  CAS  PubMed  Google Scholar 

  27. Ketterer P, Willner EM, Dietz H (2016) Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Sci Adv 2(2):e1501209. https://doi.org/10.1126/sciadv.1501209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H (2017) Biotechnological mass production of DNA origami. Nature 552(7683):84. https://doi.org/10.1038/nature24650

    Article  CAS  PubMed  Google Scholar 

  29. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344(6265):467–468. https://doi.org/10.1038/344467a0

    Article  CAS  PubMed  Google Scholar 

  30. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment – RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  31. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  32. Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338(6109):932–936. https://doi.org/10.1126/science.1225624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sigl C, Willner EM, Engelen W, Kretzmann JA, Sachenbacher K, Liedl A, Kolbe F, Wilsch F, Aghvami SA, Protzer U, Hagan MF, Fraden S, Dietz H (2021) Programmable icosahedral shell system for virus trapping. Nat Mater. https://doi.org/10.1038/s41563-021-01020-4

  34. Chatterjee G, Dalchau N, Muscat RA, Phillips A, Seelig G (2017) A spatially localized architecture for fast and modular DNA computing. Nat Nanotechnol 12(9):920. https://doi.org/10.1038/Nnano.2017.127

    Article  CAS  PubMed  Google Scholar 

  35. Sun W, Shen J, Zhao Z, Arellano N, Rettner C, Tang J, Cao T, Zhou Z, Ta T, Streit JK, Fagan JA, Schaus T, Zheng M, Han SJ, Shih WM, Maune HT, Yin P (2020) Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 368(6493):874–877. https://doi.org/10.1126/science.aaz7440

    Article  CAS  PubMed  Google Scholar 

  36. Zhao M, Chen Y, Wang K, Zhang Z, Streit JK, Fagan JA, Tang J, Zheng M, Yang C, Zhu Z, Sun W (2020) DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368(6493):878–881. https://doi.org/10.1126/science.aaz7435

    Article  CAS  PubMed  Google Scholar 

  37. Shaw A, Lundin V, Petrova E, Fordos F, Benson E, Al-Amin A, Herland A, Blokzijl A, Hogberg B, Teixeira AI (2014) Spatial control of membrane receptor function using ligand nanocalipers. Nat Methods 11(8):841–846. https://doi.org/10.1038/Nmeth.3025

    Article  CAS  PubMed  Google Scholar 

  38. Shaw A, Hoffecker IT, Smyrlaki I, Rosa J, Grevys A, Bratlie D, Sandlie I, Michaelsen TE, Andersen JT, Hogberg B (2019) Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat Nanotechnol 14(4):398–398. https://doi.org/10.1038/s41565-019-0404-3

    Article  CAS  PubMed  Google Scholar 

  39. Valero J, Pal N, Dhakal S, Walter NG, Famulok M (2018) A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. Nat Nanotechnol 13(6):496–503. https://doi.org/10.1038/s41565-018-0109-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210. https://doi.org/10.1038/nature09012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thubagere AJ, Li W, Johnson RF, Chen ZB, Doroudi S, Lee YL, Izatt G, Wittman S, Srinivas N, Woods D, Winfree E, Qian LL (2017) A cargo-sorting DNA robot. Science 357(6356):eaan6558. https://doi.org/10.1126/science.aan6558. ARTN eaan65581126/science.aan6558

    Article  CAS  PubMed  Google Scholar 

  42. Kosuri P, Altheimer BD, Dai MJ, Yin P, Zhuang XW (2019) Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 572(7767):136. https://doi.org/10.1038/s41586-019-1397-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lipfert J, Wiggin M, Kerssemakers JWJ, Pedaci F, Dekker NH (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2:439. https://doi.org/10.1038/ncomms1450. Artn 4391038/Ncomms1450

    Article  CAS  PubMed  Google Scholar 

  44. Lebel P, Basu A, Oberstrass FC, Tretter EM, Bryant Z (2014) Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 11(4):456. https://doi.org/10.1038/nmeth.2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Righini M, Lee A, Canari-Chumpitaz C, Lionberger T, Gabizon R, Coello Y, Tinoco I, Bustamante C (2018) Full molecular trajectories of RNA polymerase at single base-pair resolution. Proc Natl Acad Sci USA 115(6):1286–1291. https://doi.org/10.1073/pnas.1719906115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465. https://doi.org/10.1038/nature04268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinzhou Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haydell, M., Ma, Y. (2023). DNA Origami: Recent Progress and Applications. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics