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Abstract

Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in
cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and
under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark
of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.

The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative
level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer
bias and improve data collection. However, this method has limitations, such as insufficient visibility of
multiple nuclei in the cells attached to the substrate at low magnification.
Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow

cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of
the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these
cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells
obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of
IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The
advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are
discussed.
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1 Introduction

Cancer is related to genetic processes such as genome instability,
rearrangements, or specific gene mutations, followed by epigenetic
changes, which ultimately lead to deregulated cell proliferation.
One of the specific features of cancer is the presence of multi-
nucleated cells [1, 2]. In normal tissues, multi-nucleated cells of
macrophage origin like foreign body giant cells, Langerhans’ cells,
and osteoclasts are present [3]. Besides, multi-nucleated cells of
fibroblast origin are formed in some pathological processes
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[4, 5]. The most interesting, however, is the formation and dynam-
ics of multi-nucleated cells of cancer origin.
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Multi-nucleation is observed in many cancers [6–8]. The abun-
dance of polyploid multi-nucleated cells (MNCs) strongly corre-
lates with resistance to chemotherapy [8, 9]. Dormant large multi-
nucleated cells correlate with poor prognosis and are a hallmark of
relapse after anticancer treatment (reviewed in [1, 2]). The fre-
quency of the multi-nucleated cells in cancers increases after differ-
ent chemotherapy treatments with taxanes [10, 11], doxorubicin
[8, 9, 12], carboplatin [9, 13–15], and other drugs.

Polyploid multi-nucleated cancer cells can be generated by
several mechanisms: (i) mitosis without cytokinesis resulting in
the formation of plasmodium-like cell; (ii) cell-cell fusion with the
formation of the syncytium, and (iii) through mitotic arrest fol-
lowed by exit into the interphase without chromosome separation
(mitotic slippage). The outcome of these processes is different. The
first two mechanisms result in the formation of giant cells, with
each nucleus of nearly normal size. In the last case, the nuclei
formed are numerous and might be rather small since they contain
one or few chromosomes [16]. These are called micronuclei. The
technical challenge is whether one can distinguish such micronuclei
from the lobulated ones formed by other processes [17] and also
present in the cancer cell populations.

Currently, quantitative analysis of the multi-nucleated cells is
hampered because of the limitations of manual assessment of the
multi-nucleated cell frequency. Multi-nucleated cells containing
micronuclei could be evaluated under the microscope only using
relatively high magnification. This requires prolonged observations
with 3D visualization; otherwise, results might be biased. The
manual microscopy-based analysis is labor-intensive and time-
consuming. Automated microscopy can partially eliminate this
bias but suffers from the lack of image processing algorithms
[18]. The task of cell nuclei counting is challenging due to the
required nuclear segmentation of overlapping and/or touching
nuclei and the presence of noise and image acquisition variables
[19, 20]. Abnormalities in nuclei texture or shape are hallmarks of
cancer cells, and highly textured nuclei fluorescent images can lead
to apparent undesirable splitting of a single nucleus during image
segmentation.

Of particular interest is the formation of multi-nucleated cells
after mitotic arrest induced by anti-microtubule drugs frequently
happening in cancer cells [21]. Microscopic evaluation of the fre-
quency of mitotic slippage requires prolonged time-lapse record-
ings and manual data analysis of numerous time-lapse series [22–
24]. Besides, many cells die soon after slippage [23, 25]. Thus,
determining the outcome of mitotic arrest induced by drug treat-
ments in cancer cells remains challenging.
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Imaging flow cytometry (IFC) is a method of choice in the
morphometric research of highly heterogeneous populations of
cells [26]. IFC advantages are (1) imaging of single cells excluding
a requirement of cellular segmentation and (2) high-throughput
capabilities of instrumentation, allowing a standardized analysis of
tenths to thousands of images based on morphological and fluores-
cent features.

Among the different types of nuclei, there are three nuclei types
of particular interest: (1) lymphoid cell nuclei that are of regular
shape and relatively small size; (2) epithelial cell nuclei with homo-
geneous, nearly uniform chromatin distribution; (3) nuclei of high-
grade cancer cells that have irregular, pleomorphic boundaries,
clear nucleoli and heterogeneous chromatin [27].

A detailed description of IFC application for the development
of micronucleus assay using cells of lymphoid origin was given by
Rodrigues and co-authors [18, 28], Verma and co-authors [29],
and recently was expanded to skin epithelial cells [30]. The proce-
dure of multi-nuclearity assessment might combine several basic
image analysis algorithms such as watershed-based nuclei segmen-
tation, thresholding, and intensity-based spot-counting. Watershed
transform is one of the most popular approaches for nuclear and
cellular image segmentation [31–33]. Spot-counting algorithms
were intensively used for FISH and micronucleus image counting
in gene toxicity and radiotoxicity research [34]. Machine-learning
and deep learning approaches were developed recently for the
analysis of complex label-free and immunofluorescent images
where simple segmentation is not sufficient [35, 36].

Multi-nuclearity evaluation, as well as other nuclear morpho-
metric and image features such as image texture, nucleus-to-cyto-
plasm ratio, nucleus size, pleomorphism degree, can be helpful in
the evaluation of cancer grade and treatment efficiency [37]. Image
analysis based on the texture parameters, i.e., radiomics and not on
morphometry (length, area, size), remains challenging even after
successful nuclear segmentation [38–40] and quantitation of can-
cer cells types due to the heterogeneous chromatin distribution in
their nuclei still not possible. In the present study, we extend
the IFC application for the analysis of attached cultured cancer
cells with pleomorphic nuclei and show that promising results
could be obtained by using the developed protocol.

Addressing the question about the feasibility of IFC to analyze
the formation of multi-nucleated cells in cancer A549 cells
(non-small lung cancer carcinoma), we tested two models – cyto-
chalasin D-induced multi-nucleation and multi-nucleation after
mitotic slippage under paclitaxel treatment after Hoechst 33342
staining. In the first model, the formation of multi-nucleated cells
occurs through “endomitosis”, i.e., mitosis without cytokinesis
[41]. According to the microscopic analysis, these cells usually
have 3–6 nuclei of the same size and form [42]. In the second



model, multi-nucleated cells are tetraploid ones that have formed
after mitotic slippage [24]. These cells contain a different number
of nuclei, including so-called micronuclei [43].
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Galleries of multi-nucleated cells and cells with a single nucleus
can be easily obtained (Fig. 1a and b) manually; however, many
images come into the “gray” zone. The use of the EDF (extended
depth of focus) function resulted in a significant enhancement of
the contrast of the fluorescent images making the texture more
evident but precluded visual analysis of multi-nuclearity.

The percentage of cells with more than one nucleus was further
determined using machine-learning approaches. The standard
approach to analyze multi-nuclearity described in detail by Rodri-
guez and others [18, 28] has limitations in the discrimination of
mononucleated and multi-nucleated cells with pleomorphic nuclei
because of the insufficient gradients at the nuclear edges. When
EDF option was activated, nuclear staining became more heteroge-
neous, and also analysis by a complex of masks was inefficient. Since
some of the multi-nucleated cells could be easily distinguished by
manual visual inspection, we further employed a machine-learning
algorithm. This protocol gave a good separation of the test galleries
(Fig. 2a).

Statistical data were collected for both categories (single-
nucleated and multi-nucleated) and were comparable with the
results obtained by machine-learning algorithm (multi-classifier
2 at Fig. 2b). For the comparison we took a useful parameter that
is cell diameter/area (cell volume). The area size of multi-nucleated
taxol-treated cells was 118% from the single-nucleated taxol-treated
cell population and the overlap between two distributions is larger
than for the multi-classifier (Fig. 2c).

Manual inspection of image galleries obtained from control and
taxol-treated cells using different cut-off values on the multi-
classifier axis show that undoubtedly single nucleated cells are
located on the multi-classifier histogram below -0.3, and
undoubtedly multi-nucleated cells are located on the histogram
above 0.5 (Fig. 3d and e). We suggest that a reasonable estimate
of the minimal percentage of multi-nucleated cells with a high
degree of heterogeneity in chromatin staining can be obtained
using a machine-learning approach.

For a more detailed analysis of multi-nuclear cells, we used
high-resolution confocal microscopy. Confocal microscopy taken
with an equivalent pixel size of 70 nm in X-Y plane and step of
100 nm along the Z axis (LSM 780, PlanApo 63×/1.4 Oil immer-
sion objective) shows complex morphology of nuclei in untreated
cells (Fig. 3a) and gives a larger number of nuclei after treatments
(Fig. 3b), but takes a lot of time for analysis of individual cells
(scanning of one z-stack across the cell takes about 5–10 min)
and does not allow evaluation of the frequency of multi-nucleated
cells in the population. However, in some cases in the cells that have
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Fig. 1 (a) Mono-nucleated A549 cells. (b) Multinucleated A549 cells collected after mitotic slippage. The
presence of multiple nuclei/nuclear lobes is evident, but discrimination between multilobularity (one nucleus
with many lobes) and true multi-nuclearity (many nuclei) is not possible. Notice that the size difference
between cells in (a) and (b) is negligible (Brightfield)
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Fig. 2 (a) Histograms of mono- and multi-nucleated cells from training galleries for machine learning
algorithm (purple- mono-nucleated and yellow – multi-nucleated cells). (b) Histograms of events distribution
along Classifier Multi2. (Green – control A549 cells, red – A549 cells treated with taxol (analyzed with FlowJo
(BD Biosciences, USA). R1 defines the region of multi-nucleated cells. (c) Histograms of Area parameter in
control and treated with taxol A549 cells (128% of area) (blue – mono-nucleated cells; red- multi-nucleated
cells). (d-e) Histograms of Control (Green) and Taxol-treated (Red) cellular populations distributed along multi-
classifier 2. Gated mono-nucleated and multi-nucleated regions in each cell population, and Gray Zone
(between -0.3 and 0.5 scores) where identification of multi-nuclearity is ambiguous.

Fig. 3 Laser scanning confocal images of mono-nucleated multi-lobular (a) and multi-nucleated (b) cells in
culture. X-Y projection is given on the right; X-Z projection is given on the left, Y-Z projection is given at the
bottom. Hoechst 33342 staining. Scale bar 5 microns



formed after mitotic slippage, exact discrimination of multiple
nuclei from each other is not possible even by microscopy. Thus,
the detailed analysis of the multi-nuclearity complex approach -
IFC for the frequency of multi-nucleated cells and confocal micros-
copy for the estimation of the average number of nuclei per cell - is
recommended.
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We conclude that though IFC is limited in recognition of
multiple micronuclei from the multi-lobed mononuclear cancer
cells with pleomorphic nuclei, it stays the best method to determine
the frequency of multi-nucleated cancer cells.

2 Materials

2.1 Laboratory

Instrumentation and

Accessories

1. Imagestream X MKII (Amnis-Luminex, USA) 4-lasers system
with 60× magnification.

2. Laser scanning confocal microscope (LSM-780, Zeiss,
Germany).

3. Centrifuge without refrigeration (Eppendorf Centrifuge 5702,
USA).

4. Light inverted microscope (Zeiss Primovert, Germany).

5. Motorized inverted fluorescent microscope (Zeiss Cell
Observer, Germany).

6. Thermoblock (Thermo Fisher Scientific 3121 Water-Jacketed
CO2 Incubator with IR Sensor, USA).

7. Standard laminar flow hood (Thermo Fisher Scientific, USA).

8. Standard hemocytometer.

9. Sterile cultural ventilated flasks (25 cm2) and multi-well plates
(TPP, Switzerland).

10. 15 ml centrifugation tubes (TPP, Switzerland).

11. Petri dishes with a glass-bottom (Corning, USA).

2.2 Reagents 1. Complete DMEM medium: DMEM supplemented with
L-glutamine, Pen-Strep (penicillin-streptavidin), and 5% fetal
bovine serum (FBS).

2. CO2-independent DMEM medium (Gibco™, ThermoFisher
18045088, USA).

3. 0.5% CO2-independent DMEM media with 1% FBS (DMEM
with 1% FBS was diluted 1:1 by distilled water). For this,
25 mL of sterile distilled water was mixed thoroughly with
25 mL CO2-independent medium in laminar-flow hood.
500 μL was removed from this solution, and 500 μL of FBS
was added and mixed thoroughly.

4. Fetal Bovine Serum (Sigma F2442, USA, sterile-filtered, suit-
able for hybridoma).
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5. DMEM media, penicillin, streptomycin, L-glutamine suitable
for cell culture.

6. Hoechst 33342.

7. Taxol (Paclitaxel, Sigma T7402, USA).

8. Cytochalasin D.

9. Trypsin-EDTA 0.25% sterile solution.

10. Phosphate buffered saline.

3 Methods

3.1 Cancer Cell Line

A549 Culturing

1. Grow A549 cancer cell line in DMEM complete culture
medium supplemented with L-glutamine, Pen-Strep. and 5%
FBS in 25 cm2 culture flasks or multi-well plates (6-well plates
(TPP, Switzerland)).

3.2 Growing A549

Cellular Monolayer

with Taxol

1. After cells reach a subconfluent density, add Taxol (Sigma,
USA) to the final concentration of 100 or 300 ng/mL
(100–300 nM) and leave for 24 h in the CO2 incubator.

2. After 24 h, remove the Taxol by changing the culture medium.

3. Wash a monolayer with 5 ml of the culture medium and gently
shake the flask.

4. Transfer cultural medium with detached mitotic cells into a
15 mL tube.

5. Centrifuge mitotic cells in cell centrifuge at 300 g for 3 min.

6. After centrifugation, dispose a supernatant and collect pellet in
7 mL of complete DMEM with 5% FBS.

7. Centrifuge cell suspension again in fresh culture medium at
300 g for 3 min.

8. Dispose supernatant again, resuspend a pellet carefully in 7 ml
of a complete DMEM, and seed cells in a new Petri dish (see
Note 1).

9. Incubate cells in a Petri dish in a drug-free medium in CO2

incubator at 37 °C and 5% CO2 for 12 h.

3.3 Growing A549

Cellular Monolayer

with Cytochalasin D

1. After cells reach a subconfluent density in multi-well plates add
Cytochalasin D (Sigma, USA) to a final concentration of
0.5 μM and culture cells with the drug for 72 h.

2. After three days of incubation, remove the drug by replacing
three times the culture medium with drug-free complete
DMEM with 5% FBS.

3. Incubate cells in a drug-free medium in CO2 incubator at 37 °
C and 5% CO2 for another 24 h.
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3.4 Preparation of

Multi-Nucleated

Cellular Suspension

after Taxol or

Cytochalasin D

Treatment for Analysis

on Imagestream X

Mark II

1. After 12 h of post-Taxol growing of A549 cellular monolayer in
Petri dish, rinse cells three times with 3 mL 1× PBS.

2. Then rinse cellular monolayer two times with 2 mL solution of
0.05% Trypsin with 0.5 mM EDTA (in PBS).

3. Incubate cells in a Petri dish in 1 mL solution of Trypsin
(0.05%) with 0.5 mM EDTA for 3 min (see Note 2).

4. After detach cells from the dish surface, add 5 mLDMEMwith
5% FBS, resuspend cells, and collect in 15 mL centrifuge tube.

5. Take 10 μL of cell suspension and count cells with a standard
hemocytometer or automatic hemocytometer Countess
3 (Thermo Fisher Scientific, USA).

6. Prepare cellular suspension containing 500,000 cells and cen-
trifuge at 300 g for 3 min.

7. After centrifugation, dispose a supernatant and resuspend a
cellular pellet in 2 mL of hypotonic (0.5×) CO2-independent
medium containing 1% FBS with 5.5 μM Hoechst 33342.

8. Transfer cell suspension in the Eppendorf tube and incubate in
a thermostat at 37 °C for 30 min with periodical agitation every
5 min.

9. At the end of the incubation centrifuge a cellular suspension in
Eppendorf centrifuge at 300 g for 3 min.

10. Dispose the major part of the supernatant, and resuspend pellet
collecting 100,000–500,000 cells in approximately 60 μL o
remaining supernatant.

3.5 Analysis of

Micronuclei in Multi-

Nucleated Cells under

Microscope

1. Seed a cellular suspension of A549 cell line after treatment with
Taxol for 24 h and subsequential drug removal in 3.5 cm Petri
dishes with a glass bottom (Corning, USA).

2. Incubate cells in a Petri dish in CO2-incubator 12 h at 37 °C 5%
CO2.

3. After 12 h of incubation, dispose cultural medium and rinse
cells with 2 mL 1× PBS pre-warmed up to 37 °C.

4. Add 2 mL of 1% glutaraldehyde solution in 1× PBS to the cells
and incubate for 30–60 min (see Note 3).

5. Remove a glutaraldehyde solution from a Petri dish.

6. Rinse cell monolayer in the Petri dish with 1×PBS for 30 min
by changing 1×PBS three times every 10 min.

7. Add 1× PBS containing 5.5 μM Hoechst 33342 to a Petri dish
for at least for 30 min (see Note 4).

8. Take images using Zeiss Axio Observer microscope (Zeiss,
Germany) equipped with 63×/1.46 oil immersion objective
and Hamamatsu ORCA-FLASH II camera in DIC and DAPI
channels as 5×5 tiles with z-stack (15 μm size using
0.3 μm step).
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9. Deconvolve z-stacks using Huygens software (Scientific Vol-
ume Imaging, Netherlands) and count nuclei manually.

3.6 Preparation Cells

for Imaging Flow

Cytometry Analysis

1. Seed A549 cells line after treatment with Taxol for 24 h and
drug removal into 3.5 cm Petri dishes (Corning, USA).

2. Incubate cells in a Petri dish in CO2-incubator for 12 h at 37 °
C 5% CO2.

3. After 12 h incubation of taxol-treated cells in the drug-free
medium, dispose culture medium and rinse cells 3 times with
3 mL of PBS.

4. Then rinse cells 2 times with 2 mL Trypsin 0.05% with 0.5 mM
EDTA, and incubate in 1 mL Trypsin (0.05%) with 0.5 mM
EDTA for 3 min.

5. After cells detach from the surface, add 5 mL DMEM with 5%
FBS, resuspend cells, and collect in 15 mL tube (see Note 5).

6. Dispose the supernatant and resuspend the pellet of cells in
2 mL hypotonic (0.5×) CO2-independent medium containing
1% FBS with 5.5 μM Hoechst 33342 (see Note 6).

7. After incubation in hypotonic medium for 10 min., sediment
the cells by centrifugation at 300 g for 3 min.

8. Dispose the major part of the supernatant cautiously and resus-
pend the pellet in 60–100 μL of the same medium (seeNote 7).

3.7 Starting and

Running Imagestream

X Mark II

1. Fill out instrument sheath and cleaning containers (cleanser,
debubbler, sterilizer), empty waste, and check the speed beads
container. Load Default Template from File Menu. Run all
required calibrations and tests (see Note 8).

2. Select magnification at 60×, and high sensitivity mode. Turn on
and optimize power of 405 nm (and 488 nm, if required)
lasers. Disable other lasers (see Note 9).

3. Select the Scatterplot icon. Then select Area M01 on the
X-axis and Aspect Ratio M1 on the Y-axis. Draw the region
around single cells.

4. Set the acquisition parameters, specify the file name and the
destination folder, and change the events number to 10,000-
20,000. Collect bright-field imagery in channels 1 and 9, and
side scatter in channel 6, minimizing signal and avoiding
saturation.

5. Click on Load and apply an Eppendorf tube with sample in the
sample port when prompted to do so.

6. Acquire 10,000–20,000 cellular events. Define nuclear events
as positive for staining withHoechst 33342. Create a histogram
using as a parameter IntensityM07 and draw a region defining
cellular events positive for Hoechst 33342.
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7. Launch the IDEAS software analysis package. Spectral com-
pensation is not required unless additional staining is involved.
Open the file in the IDEAS software.

8. Create analysis template for the identification of single events
using dotplot with parameters Area M01 on the X-axis and
Aspect Ratio M1 on the Y-axis, and create a region around
single cells, and name it Single Cells.

9. Create a dotplot with Gradient RMS M01 on the X-axis, and
Gradient RMS M07 on the Y-axis. Select Single Cells as a
parent population. Draw the region and name it Focused
Cells.

10. Create two galleries with manually picked cells with clearly
identifiable single individual nuclei (Fig. 1) and with multi-
nucleated cells (> 30 cells each).

3.8 Evaluation of

Multi-Nuclear Cells

Using Machine-

Learning Module

In this protocol, a machine-learning module of “IDEAS” vs. 6.3
software (Amnis-Luminex, USA) is used.

1. After creating training galleries of images, start machine-
learning Module to create a new parameter for image analysis.

2. Choose populations (single, focused) if the populations are
GATED or ALL if they are not gated.

3. After populations of interest have been tagged, and galleries of
images were chosen, use control-click to select training galleries
(single and multi-nucleated cells). Alternatively, use the tag-
ging tool to create galleries (see Note 11).

4. To exclude existing irrelevant features from different categories
during step 3, select categories that best discriminate your data
(see Note 12).

5. Choose channels to analyze the images (Channel 7 – Hoechst
33343 staining).

6. Click the “Start” button to create a single multi-parameter, and
verify its content.

7. After creating the classifier, you can Edit or Finish and exit the
wizard.

8. View new multi-classifier features in the feature manager. Click
on the Analysis tab and select a new feature created and see the
weight of different components in the new Feature.

9. Apply a new multi-component classifier to the populations of
interest. For example, multi-classifier 1 (a combination of
Mean and Min Pixel and Lobe Count features that uses Mor-
phology and Skeleton Masks for Channel 7 (Hoechst 33343);
multi-feature classifier 2 (a combination of Bright Detail Inten-
sity and Variance Mean that uses fluorescent mask from Chan-
nel 7).
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10. Create histograms from merged file to compare control and
taxol-treated samples using a new chosen multi-feature.

11. Export FCS information from a file and analyze it using FlowJo
(Treestar-BD Biosciences, USA) or FACSExpress (De Novo
software, USA) off-line analysis program. Apply the
Kolmogorov-Smirnov test to verify whether differences
between overlapping histograms are significant (Fig. 2b).

4 Notes

1. If the multi-nucleated cells will be observed with a microscope,
use glass-bottom Petri dishes (Corning, USA).

2. Time needed for the complete detachment of cells might vary.
Incubation should be ended when a majority of cells start roll-
ing on the surface of the flask.

3. Cells could be fixed with PFA; however, it will result in slight
shrinkage of cells making analysis of the multi-nuclearity more
difficult.

4. Images could be taken with laser scanning confocal micro-
scope; however, this method is laborious and not useful for
quantification of the proportion of multi-nucleated cells in the
cellular population. This stage is important for the 3D recon-
struction and determining the true number of micronuclei per
cell, but not for the enumeration of the proportion of multi-
nucleated cells.

5. This stage is important for the 3D reconstruction and for deter-
mining the number of micronuclei per cell, but not for the
enumeration of multi-nucleated cells.

6. At this stage, 10 μL of suspension should be taken, and number
of cells should be counted on a hemacytometer. Whether the
overall concentration of cells exceeds 1 mln/ml, you can con-
tinue in the way described below. When concentration of cells
is lower, you should cautiously collect cells after each step.
When the concentration of cells is below 500,000 per ml, the
number of cells after the end of specimen preparation could be
low, and this will slow down ImageStream-based acquisition
even when cells will be resuspended in the minimal volume.

7. Cell suspension in the Eppendorf tube should be agitated every
5–7 min and incubated in 37 °C for 30 min.

8. If the concentration of cells after first sedimentation (step 5)
was low (less than 1 mln/mL), the volume for resuspension
should be minimal – about 40–50 μL.
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9. When you click “Startup” button make sure that the checkbox
for Start all calibrations and tests is checked. It will calibrate
the instrument following the start up.

10. Make sure that all cells can be seen in the Cell View column and
that debris is excluded from viewing and acquisition (use the
Single Cell gating for this purpose). Exclude the images with
saturated pixels by changing the excitation laser powers.

11. The IDEAS software (Amnis-Luminex, USA) machine-
learning module requires at least 25 images to be included in
the training galleries. We recommend 40–50 images if it is
possible. Unobvious and/or controversial images should not
be included into training galleries. More than two galleries can
be created and used.

12. Try to exclude different categories or some features irrelevant
to the task during step 3 of creating multi-parameter classifier.
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