Skip to main content

Imaging Flow Cytometric Analysis of Primary Bone Marrow Erythroblastic Islands

  • Protocol
  • First Online:
Spectral and Imaging Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2635))

  • 738 Accesses

Abstract

The erythroblastic island (EBI) is a multicellular functional erythropoietic unit comprising a central macrophage nurturing a rosette of maturing erythroblasts. Since the discovery of EBIs more than half a century ago, EBIs are still studied by traditional microscopy methods after enrichment by sedimentation. These isolation methods are not quantitative and do not enable precise quantification of EBI numbers or frequency in the bone marrow or spleen tissues. Conventional flow cytometric methods have enabled quantification of cell aggregates co-expressing macrophage and erythroblast markers; however, it is unknown whether these aggregates contain EBIs as these aggregates cannot be visually assessed for EBI content. Combining the strengths of both microscopy and flow cytometry methods, in this chapter we describe an imaging flow cytometry method to analyze and quantitatively measure EBIs from the mouse bone marrow. This method is adaptable to other tissues such as the spleen or to other species provided that fluorescent antibodies specific to macrophages and erythroblasts are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Erbani J, Tay J, Barbier V, Levesque JP, Winkler IG (2020) Acute myeloid leukemia chemo-resistance is mediated by E-selectin receptor CD162 in bone marrow niches. Front Cell Dev Biol 8:668. https://doi.org/10.3389/fcell.2020.00668

  2. Gülcüler Balta GS, Monzel C, Kleber S, Beaudouin J, Balta E, Kaindl T et al (2019) 3D cellular architecture modulates tyrosine kinase activity, thereby switching CD95-mediated apoptosis to survival. Cell Rep 29:2295–2306.e2296. https://doi.org/10.1016/j.celrep.2019.10.054

    Article  CAS  PubMed  Google Scholar 

  3. Hritzo MK, Courneya J-P, Golding A (2018) Imaging flow cytometry: a method for examining dynamic native FOXO1 localization in human lymphocytes. J Immunol Methods 454:59–70. https://doi.org/10.1016/j.jim.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Gautam N, Sankaran S, Yason JA, Tan KSW, Gascoigne NRJ (2018) A high content imaging flow cytometry approach to study mitochondria in T cells: MitoTracker Green FM dye concentration optimization. Methods 134-135:11–19. https://doi.org/10.1016/j.ymeth.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Cerveira J, Begum J, Di Marco Barros R, van der Veen AG, Filby A (2015) An imaging flow cytometry-based approach to measuring the spatiotemporal calcium mobilisation in activated T cells. J Immunol Methods 423:120–130. https://doi.org/10.1016/j.jim.2015.04.030

    Article  CAS  PubMed  Google Scholar 

  6. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17:573. https://doi.org/10.1038/nri.2017.53

    Article  CAS  PubMed  Google Scholar 

  7. Levesque J-P, Jacobsen RN, Winkler IG (2017) The role of mesenchymal stem cells in hematopoiesis. In: Atkinson K (ed) The biology and therapeutic application of mesenchymal cells. Wiley, Hoboken, pp 467–480. https://doi.org/10.1002/9781118907474.ch32

    Chapter  Google Scholar 

  8. Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N et al (2017) Unraveling macrophage heterogeneity in Erythroblastic Islands. Front Immunol 8:1140. https://doi.org/10.3389/fimmu.2017.01140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tay J, Bisht K, McGirr C, Millard SM, Pettit AR, Winkler IG et al (2020) Imaging flow cytometry reveals that granulocyte colony-stimulating factor treatment causes loss of erythroblastic islands in the mouse bone marrow. Exp Hematol 82:33–42. https://doi.org/10.1016/j.exphem.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  10. Bessis M (1958) L'îlot érythroblastique. Unité fonctionnelle de la moelle osseuse. Rev Hematol 13:8–11

    Google Scholar 

  11. Jacobsen RN, Perkins AC, Levesque JP (2015) Macrophages and regulation of erythropoiesis. Curr Opin Hematol 22:212–219. https://doi.org/10.1097/moh.0000000000000131

    Article  CAS  PubMed  Google Scholar 

  12. Yeo JH, Lam YW, Fraser ST (2019) Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev. https://doi.org/10.1007/s12551-019-00579-2

  13. Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S et al (2019) Identification and transcriptome analysis of erythroblastic island macrophages. Blood 134:480–491. https://doi.org/10.1182/blood.2019000430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bisht K, Tay J, Wellburn RN, McGirr C, Fleming W, Nowlan B et al (2020) Bacterial lipopolysaccharides suppress Erythroblastic Islands and erythropoiesis in the bone marrow in an extrinsic and G- CSF-, IL-1-, and TNF-independent manner. Front Immunol 11:2548. https://doi.org/10.3389/fimmu.2020.583550

    Article  CAS  Google Scholar 

  15. Soni S, Bala S, Gwynn B, Sahr KE, Peters LL, Hanspal M (2006) Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 281:20181–20189. https://doi.org/10.1074/jbc.M603226200

    Article  CAS  PubMed  Google Scholar 

  16. Lee SH, Crocker PR, Westaby S, Key N, Mason DY, Gordon S et al (1988) Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters. J Exp Med 168:1193–1198. https://doi.org/10.1084/jem.168.3.1193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Translational Research Institute, The University of Queensland, and Mater Foundation for providing an excellent research environment and Flow Core Facility. The development of this methodology was supported by funding from the National Health and Medical Research Council Research Fellowship 1136130 (J.P.L.), and Mater Foundation (J.P.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Levesque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tay, J., Bisht, K., Winkler, I.G., Levesque, JP. (2023). Imaging Flow Cytometric Analysis of Primary Bone Marrow Erythroblastic Islands. In: Barteneva, N.S., Vorobjev, I.A. (eds) Spectral and Imaging Cytometry. Methods in Molecular Biology, vol 2635. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3020-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3020-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3019-8

  • Online ISBN: 978-1-0716-3020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics