Skip to main content

SynDISCO: A Mechanistic Modeling-Based Framework for Predictive Prioritization of Synergistic Drug Combinations Targeting Cell Signalling Networks

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

  • 662 Accesses

Abstract

The widespread development of resistance to cancer monotherapies has prompted the need to identify combinatorial treatment approaches that circumvent drug resistance and achieve more durable clinical benefit. However, given the vast space of possible combinations of existing drugs, the inaccessibility of drug screens to candidate targets with no available drugs, and the significant heterogeneity of cancers, exhaustive experimental testing of combination treatments remains highly impractical. There is thus an urgent need to develop computational approaches that complement experimental efforts and aid the identification and prioritization of effective drug combinations. Here, we provide a practical guide to SynDISCO, a computational framework that leverages mechanistic ODE modeling to predict and prioritize synergistic combination treatments directed at signaling networks. We demonstrate the key steps of SynDISCO and its application to the EGFR-MET signaling network in triple negative breast cancer as an illustrative example. SynDISCO is, however, a network- and cancer-independent framework, and given a suitable ODE model of the network of interest, it could be leveraged to discover cancer-specific combination treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Labrie M, Brugge JS, Mills GB, Zervantonakis IK (2022) Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 22(6):323–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cremers CG, Nguyen LK (2019) Network rewiring, adaptive resistance and combating strategies in breast cancer. Cancer Drug Resist 2(4):1106–1126

    PubMed  PubMed Central  Google Scholar 

  3. Jaaks P et al (2022) Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603(7899):166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolch W, Halasz M, Granovskaya M, Kholodenko BN (2015) The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 15(9):515–527

    Article  CAS  PubMed  Google Scholar 

  5. Romano D et al (2014) Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 16(7):673–684

    Article  CAS  PubMed  Google Scholar 

  6. Roskoski R Jr (2021) Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharmacol Res 165:105463

    Article  CAS  PubMed  Google Scholar 

  7. Ghomlaghi M, Hart A, Hoang N, Shin S, Nguyen LK (2021) Feedback, crosstalk and competition: ingredients for emergent non-linear behaviour in the PI3K/mTOR signalling network. Int J Mol Sci 22(13):6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen LK, Kholodenko BN (2016) Feedback regulation in cell signalling: lessons for cancer therapeutics. Semin Cell Dev Biol 50:85–94

    Article  CAS  PubMed  Google Scholar 

  9. Montagud A et al (2022) Patient-specific Boolean models of signalling networks guide personalised treatments. elife 11:e72626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frank TD, Cavadas MAS, Nguyen LK, Cheong A (2016) Non-linear dynamics in transcriptional regulation: biological logic gates. In: Carballido-Landeira J, Escribano B (eds) Nonlinear dynamics in biological systems. Springer International Publishing, Cham, pp 43–62

    Chapter  Google Scholar 

  11. Toni T, Stumpf MPH (2009) Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1):104–110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 5(4):e1000340

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shin S-Y, Müller A-K, Verma N, Lev S, Nguyen LK (2018) Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer. PLoS Comput Biol 14(6):e1006192

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nguyen LK et al (2013) A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci 126(Pt 6):1454–1463

    CAS  PubMed  Google Scholar 

  15. Bouhaddou M et al (2018) A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens. PLoS Comput Biol 14(3):e1005985

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghomlaghi M, Yang G, Shin S-Y, James DE, Nguyen LK (2021) Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1. PLoS Comput Biol 17(9):e1008513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin SY, Nguyen LK (2017) Dissecting cell-fate determination through integrated mathematical modeling of the ERK/MAPK signaling pathway. Methods Mol Biol 1487:409–432

    Article  CAS  PubMed  Google Scholar 

  18. Tyson JJ et al (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chowdhury S, Sarkar RR (2015) Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges. Database 2015:bau126

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gillespie M et al (2021) The reactome pathway knowledgebase 2022. Nucleic Acids Res 50(D1):D687–D692

    Article  PubMed Central  Google Scholar 

  21. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Licata L et al (2020) SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Res 48(D1):D504–d510

    CAS  PubMed  Google Scholar 

  23. Martens M et al (2021) WikiPathways: connecting communities. Nucleic Acids Res 49(D1):D613–d621

    Article  CAS  PubMed  Google Scholar 

  24. Malik-Sheriff RS et al (2020) BioModels-15 years of sharing computational models in life science. Nucleic Acids Res 48(D1):D407–d415

    CAS  PubMed  Google Scholar 

  25. Villaverde AF, Pathirana D, Fröhlich F, Hasenauer J, Banga JR (2022) A protocol for dynamic model calibration. Brief Bioinform 23(1):bbab387

    Article  PubMed  Google Scholar 

  26. Wenthur CJ, Gentry PR, Mathews TP, Lindsley CW (2014) Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol 54:165–184

    Article  CAS  PubMed  Google Scholar 

  27. Sebaugh JL (2011) Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10(2):128–134

    Article  CAS  PubMed  Google Scholar 

  28. Li X et al (2016) β-elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci Rep 6:21010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu F, Shang Y, Chen S-z (2014) Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro. Acta Pharmacol Sin 35(5):645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  31. Zhao W et al (2014) A new bliss Independence model to analyze drug combination data. J Biomol Screen 19(5):817–821

    Article  PubMed  Google Scholar 

  32. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  33. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41(2):93–141

    CAS  PubMed  Google Scholar 

  34. Yadav B, Wennerberg K, Aittokallio T, Tang J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ianevski A, Giri AK, Aittokallio T (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48(W1):W488–W493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arab-Bafrani Z, Shahbazi-Gahrouei D, Abbasian M, Fesharaki M (2016) Multiple MTS assay as the alternative method to determine survival fraction of the irradiated HT-29 colon cancer cells. J Med Signals Sens 6(2):112–116

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT (2018) Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim Biophys Acta Proteins Proteom 1866(2):327–347

    Article  PubMed  Google Scholar 

  38. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319

    Article  CAS  PubMed  Google Scholar 

  39. Hanson KM, Finkelstein JN (2019) An accessible and high-throughput strategy of continuously monitoring apoptosis by fluorescent detection of caspase activation. Anal Biochem 564-565:96–101

    Article  CAS  PubMed  Google Scholar 

  40. Kho D et al (2015) Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors 5(2):199–222

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakai K, Hung MC, Yamaguchi H (2016) A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res 6(8):1609–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Verma N et al (2017) Targeting of PYK2 synergizes with EGFR antagonists in basal-like TNBC and circumvents HER3-associated resistance via the NEDD4–NDRG1 axis. Cancer Res 77(1):86–99

    Article  CAS  PubMed  Google Scholar 

  43. Ho-Yen CM, Jones JL, Kermorgant S (2015) The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 17(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  44. Linklater ES et al (2016) Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers. Oncotarget 7(43):69903–69915

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qi J et al (2011) Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res 71(3):1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shin S-Y et al (2014) The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun 5(1):5777

    Article  CAS  PubMed  Google Scholar 

  47. Shin D et al (2014) The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. J Mol Cell Biol 6(4):338–348

    Article  CAS  PubMed  Google Scholar 

  48. Masuda H et al (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345

    Article  CAS  PubMed  Google Scholar 

  49. Zhu Z et al (2021) Eucannabinolide, a novel sesquiterpene lactone, suppresses the growth, metastasis and BCSCS-like traits of TNBC via inactivation of STAT3. Neoplasia 23(1):36–48

    Article  CAS  PubMed  Google Scholar 

  50. Chaudhary SS et al (2020) Chapter 11 – c-Met as a potential therapeutic target in triple negative breast cancer. In: Gupta SP (ed) Cancer-leading proteases. Academic, San Diego, California, United States, pp 295–326

    Google Scholar 

  51. Pedersen MW, Pedersen N, Ottesen LH, Poulsen HS (2005) Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br J Cancer 93(8):915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han S et al (2009) Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J Biol Chem 284(19):13193–13201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dussault I, Bellon SF (2009) From concept to reality: the long road to c-Met and RON receptor tyrosine kinase inhibitors for the treatment of cancer. Anti Cancer Agents Med Chem 9(2):221–229

    Article  CAS  Google Scholar 

  54. Allen JV et al (2011) The discovery of benzanilides as c-Met receptor tyrosine kinase inhibitors by a directed screening approach. Bioorg Med Chem Lett 21(18):5224–5229

    Article  CAS  PubMed  Google Scholar 

  55. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13(11):1235–1242

    Article  CAS  PubMed  Google Scholar 

  56. Shin S-Y et al (2021) Integrative modelling of signalling network dynamics identifies cell type-selective therapeutic strategies for FGFR4-driven cancers. bioRxiv:2021.2011.2003.467180

    Google Scholar 

  57. Frohlich F et al (2018) Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell Syst 7(6):567–579 e566

    Article  PubMed  Google Scholar 

  58. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290

    CAS  PubMed  Google Scholar 

  59. Zheng S et al (2022) SynergyFinder plus: toward better interpretation and annotation of drug combination screening datasets. J Pharmacokinet Pharmacodyn 20(3):587–596. https://doi.org/10.1016/j.gpb.2022.01.004

  60. Di Veroli GY et al (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32(18):2866–2868

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Victorian Cancer Agency Mid-Career Research Fellowship (MCRF18026), an Investigator Initiated Research Scheme grant from National Breast Cancer Foundation (IIRS-20-094), and a Metcalf Venture Grant by Cancer Council Victoria, Australia, awarded to L.K.N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Young Shin or Lan K. Nguyen .

Editor information

Editors and Affiliations

Appendices

Appendix A. Ordinary Differential Equations of the EGFR-MET Model

The reaction rates are given in Appendix B.

Left-hand sides

Right-hand sides

Initial conditions (nM)

d[pEGFR]/dt

v1 − v2

0.109

d[EGFRub]/dt

v3 − v4

6.940

d[PYK2m]/dt

v5 − v6

0.622

d[PYK2]/dt

v7 − v8 − v9 + v10

9.299

d[pPYK2]/dt

v9 − v10

2.510

d[pSTAT3]/dt

v11 − v12

1.178

d[cMETm]/dt

v13 − v14

0.023

d[cMET]/dt

v15 − v16 − v17 + v18

4.672

d[pcMET]/dt

v17 − v18

0.502

d[pCbl]/dt

v19 − v20

10.476

d[aPTP]/dt

v21 − v22

0.494

d[pERK]/dt

v23 − v24

0.669

d[STAT3uStattic]/dt

v25

0.00

Appendix B. Reactions and Reaction Rates of the EGFR-MET Network Model

 

Reaction

Reaction rates

v1

EGFR → pEGFR

kc1 * (EGF/(1 + Gefitinib/Ki1) + caEGF) * EGFR/(Km1 + EGFR)

v2

pEGFR → EGFR

(Vmax2 + kc2 * aPTP) * pEGFR/(Km2 + pEGFR)

v3

EGFR → EGFRub

(Vmax3 + kc3 * pCbl) * EGFR/(Km3 + EGFR) * Ki3a/(Ki3a + PYK2tot/(1 + PF396/Ki3b))

v4

EGFRub → EGFR

Vmax4 * EGFRub/(Km4 + EGFRub)

v5

∅ → PYK2m

Vs5 + Vmax5 * pSTAT3/(Km5 + pSTAT3)

v6

PYK2m → ∅

kdeg6 * PYK2m

v7

PYK2m → PYK2

Vmax7 * PYK2m/(Km7 + PYK2m)

v8

PYK2 → ∅

kdeg8 * PYK2

v9

PYK2 → pPYK2

(kc9a * pEGFR + kc9b * pcMET/(1 + EMD/Ki9)) * PYK2/(Km9 + PYK2)

v10

pPYK2 → PYK2

(Vmax10 + kc10 * aPTP) * pPYK2/(Km10 + pPYK2)

v11

STAT3 → pSTAT3

kc11 * (pPYK2/(1 + PF396/Ki3b)) * STAT3/(Km11 + STAT3)

v12

pSTAT3 → STAT3

(Vmax12 + kc12 * aPTP) * pSTAT3/(Km12 + pSTAT3)

v13

∅ → cMETm

Vs13 + Vmax13 * pSTAT3/(Km13 + pSTAT3)

v14

cMETm→ ∅

kdeg14 * cMETm

v15

cMETm → cMET

Vmax15 * cMETm/(Km15 + cMETm)

v16

cMET → ∅

(kdeg16 + kc16 * pCbl) * cMET/(Km16 + cMET)

v17

cMET → pcMET

(kc17 * HGF + caHGF) * cMET/(Km17 + cMET)

v18

pcMET → cMET

Vmax18 * pcMET/(Km18 + pcMET)

v19

Cbl → pCbl

kc19 * pEGFR * Cbl/(Km19 + Cbl)

v20

pCbl → Cbl

(Vmax20 + kc20 * aPTP) * pCbl/(Km20 + pCbl)

v21

PTP → aPTP

kc21 * pEGFR * PTP/(Km21 + PTP)

v22

aPTP → PTP

Vmax22 * aPTP/(Km22 + aPTP)

v23

ERK → pERK

(kc23a * pcMET/(1 + EMD/Ki23) + kc23b * pEGFR) * ERK/(Km23 + ERK)

v24

pERK → ERK

Vmax24 * pERK/(Km24 + pERK)

v25

STAT3 + Stattic ↔ STAT3uStattic

ka25 * STAT3 * Stattic − kd25 * STAT3uStattic

Appendix C. Best-Fitted Parameter Values Used for Simulations

Parameter

Value

Unit

Parameter

Value

Unit

kc1

413.0475

min−1

Km17

9.817479

nM

Km1

248.8857

nM

Vmax18

0.060674

nM min−1

Ki1

1.0000

μM

Km18

9.954054

nM

kc2

1406.048

min−1

kdeg16

24.49063

min−1

Km2

3.801894

nM

kc16

1.174898

min−1

Vmax3

0.000104

nM min−1

Km16

528.4453

nM

Km3

2.285599

nM

kc19

52.72299

min−1

Ki3a

0.08356

nM

Km19

13.30454

nM

Ki3b

1.0000

nM

kc20

35.64511

min−1

Vmax4

11.11732

nM min−1

Km20

24.32204

nM

kc3

10.78947

min−1

kc21

0.003972

min−1

Km4

90.78205

nM

Km21

52.72299

nM

Vs5

26.54606

nM min−1

Vmax22

0.034914

nM min−1

Vmax5

34.04082

nM min−1

Km22

46.45153

nM

Km5

4.74242

nM

Vmax2

112.2018

nM min−1

kdeg6

53.57967

min−1

Vmax12

7.638358

nM min−1

Vmax7

3.349654

nM min−1

Vmax20

0.048306

nM min−1

Km7

3.334264

nM

kc23a

7.03E + 09

min−1

kc9a

0.463447

min−1

kc23b

8.43E + 08

min−1

kc9b

0.988553

min−1

Km23

2.831392

nM

Km9

34.91403

nM

Vmax24

4.4E + 09

nM min−1

Vmax10

0.530884

nM min−1

Km24

0.156675

nM

Km10

9.141132

nM

kc10

0.006109

min−1

kdeg8

0.056624

min−1

Ki9

1.65577

nM

kc11

0.321366

min−1

Ki23

13.48963

nM

Km11

20.6063

nM

ka25

127.3503

μM−1 min−1

kc12

0.00029

min−1

kd25

11.74898

min−1

Km12

11.58777

nM

caEGF

0.089125

nM

Vs13

0.093756

nM min−1

caHGF

0.009036

nM

Vmax13

0.354813

nM min−1

EGFRtot

398.1072

nM

Km13

38.72576

nM

STAT3tot

144.2115

nM

kdeg14

4.560369

min−1

Cbltot

174.9847

nM

Vmax15

91.41132

nM min−1

PTPtot

296.4831

nM

Km15

6.456542

nM

ERKtot

166.7247

nM

kc17

0.000811

min−1

   

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shin, SY., Nguyen, L.K. (2023). SynDISCO: A Mechanistic Modeling-Based Framework for Predictive Prioritization of Synergistic Drug Combinations Targeting Cell Signalling Networks. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics