Skip to main content

RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2

  • Protocol
  • First Online:
Nanopore Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2632))

Abstract

RNA modifications regulate multiple aspects of cellular function including RNA splicing, translation, export, decay, stability, and phase separation. One of the comprehensive ways to detect such modifications is by the recent advancement of direct RNA sequencing from Oxford Nanopore Technologies (ONT). However, this method obtains a large amount of data with high complexity in the form of raw current signal that poses a new informatics challenge to accurately detect those modifications. Here, we provide nanoDoc2, a software to detect multiple types of RNA modification from nanopore direct RNA sequencing data. The nanoDoc2 includes a novel signal segmentation algorithm based on the trace value–a base probability feature that is added by the Guppy basecalling program from ONT during processing of the raw signal. The core of nanoDoc2 includes a machine learning algorithm in which a 6-mer segmented raw current signal is analyzed by deep one-class classification using a WaveNet-based neural network. As an output, an RNA modification is detected by a statistical score in each candidate position. Herein, we describe the detailed instructions on how to use nanoDoc2 for signal segmentation, train/test the neural network, and finally predict RNA modifications present in nanopore direct RNA sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suzuki T (2021) The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 22:375–392. https://doi.org/10.1038/s41580-021-00342-0

    Article  CAS  PubMed  Google Scholar 

  2. Tang Y, Chen K, Song B et al (2021) M6A-atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res 49:D134–D143. https://doi.org/10.1093/nar/gkaa692

    Article  CAS  PubMed  Google Scholar 

  3. Anreiter I, Mir Q, Simpson JT et al (2020) New twists in detecting mRNA modification dynamics. Trends Biotechnol 39(1):72–89

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jonkhout N, Tran J, Smith MA et al (2017) The RNA modification landscape in human disease. RNA 23:1754–1769. https://doi.org/10.1261/rna.063503.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar S, Mohapatra T (2021) Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol 9:1–22. https://doi.org/10.3389/fcell.2021.628415

    Article  Google Scholar 

  6. Boccaletto P, Stefaniak F, Ray A et al (2022) MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 50:D231–D235. https://doi.org/10.1093/nar/gkab1083

    Article  CAS  PubMed  Google Scholar 

  7. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  8. Collin W, Limbach PA (2014) Mass spectrometry of modified RNAs: recent developments (Minireview). Analyst 15:34–48. https://doi.org/10.1039/c5an01797a.Mass

    Article  Google Scholar 

  9. Sakurai M, Ueda H, Yano T et al (2014) A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24:522–534. https://doi.org/10.1101/gr.162537.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Workman RE, Tang AD, Tang PS et al (2019) Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods 16:1297–1305. https://doi.org/10.1038/s41592-019-0617-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735. https://doi.org/10.1038/nmeth.3444

    Article  CAS  PubMed  Google Scholar 

  13. Stoiber MH, Quick J, Egan R et al (2016) De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. bioRxiv 094672

    Google Scholar 

  14. Liu H, Begik O, Lucas MC et al (2019) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079. https://doi.org/10.1038/s41467-019-11713-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker MT, Knop K, Sherwood AV et al (2020) Nanopore direct RNA sequencing maps the complexity of arabidopsis mRNA processing and m6A modification. elife 9:1–35. https://doi.org/10.7554/eLife.49658

    Article  Google Scholar 

  16. Jenjaroenpun P, Wongsurawat T, Wadley TD et al (2021) Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res 49:1–13. https://doi.org/10.1093/nar/gkaa620

    Article  CAS  Google Scholar 

  17. Abebe JS, Price AM, Hayer KE et al (2022) DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing. Bioinformatics btac274

    Google Scholar 

  18. Maier KC, Gressel S, Cramer P, Schwalb B (2020) Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res 30:1332–1344. https://doi.org/10.1101/GR.257857.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leger A, Amaral PP, Pandolfini L et al (2021) RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat Commun 12:1–17. https://doi.org/10.1038/s41467-021-27393-3

    Article  CAS  Google Scholar 

  20. Pratanwanich PN, Yao F, Chen Y et al (2021) Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol 39:1394–1402. https://doi.org/10.1038/s41587-021-00949-w

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, Liu X, Wu B et al (2021) Quantitative profiling of N 6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol 22:1–17. https://doi.org/10.1186/s13059-020-02241-7

    Article  CAS  Google Scholar 

  22. Parker MT, Barton GJ, Simpson GG (2021) Yanocomp: robust prediction of m6A modifications in individual nanopore direct RNA reads. bioRxiv 06(15):448494

    Google Scholar 

  23. Hassan D, Acevedo D, Daulatabad SV et al (2022) Penguin: a tool for predicting pseudouridine sites in direct RNA nanopore sequencing data. Methods S1046-2023(22):00035–00034. https://doi.org/10.1016/j.ymeth.2022.02.005

    Article  CAS  Google Scholar 

  24. Ueda H (2020) nanoDoc: RNA modification detection using Nanopore raw reads with deep one-class classification. bioRxiv 09(13):295089. https://doi.org/10.1101/2020.09.13.295089

    Article  CAS  Google Scholar 

  25. Stephenson W, Razaghi R, Busan S et al (2022) Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genomics 2:100097. https://doi.org/10.1016/j.xgen.2022.100097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim D, Lee JY, Yang JS et al (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181:914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van den Burg GJJ, Williams CKI (2020) An evaluation of change point detection algorithms. arXiv 2003:06222

    Google Scholar 

  28. van den Oord A, Dieleman S, Zen H et al (2016) WaveNet: a generative model for raw audio. arXiv 1609:03499

    Google Scholar 

  29. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perera P, Patel VM (2019) Learning deep features for one-class classification. IEEE Trans Image Process 28:5450–5463. https://doi.org/10.1109/TIP.2019.2917862

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hiroyuki Aburatani and Dr. Genta Nagae (the Research Center for Advanced Science and Technology, the University of Tokyo) and Dr. Tsutomu Suzuki and Mr. Ryo Noguchi (Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo) for productive discussions and helpful advice. This work was supported by Exploratory Research for Advanced Technology (ERATO; JPMJER2002) from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ueda, H., Dasgupta, B., Yu, By. (2023). RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2. In: Arakawa, K. (eds) Nanopore Sequencing. Methods in Molecular Biology, vol 2632. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2996-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2996-3_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2995-6

  • Online ISBN: 978-1-0716-2996-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics