Skip to main content

The Current State of Nanopore Sequencing

  • Protocol
  • First Online:
Nanopore Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2632))

Abstract

Nanopore sensing is a disruptive, revolutionary way in which to sequence nucleic acids, including both native DNA and RNA molecules. First commercialized with the MinIONTM sequencer from Oxford Nanopore TechnologiesTM in 2015, this review article looks at the current state of nanopore sequencing as of June 2022. Covering the unique characteristics of the technology and how it functions, we then go on to look at the ability of the platform to deliver sequencing at all scales—from personal to high-throughput devices—before looking at how the scientific community is applying the technology around the world to answer their biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fastest DNA sequencing technique | Guinness World Records. https://www.guinnessworldrecords.com/world-records/675050-fastest%C2%A0dna-sequencing%C2%A0technique. Accessed 30 May 2022

  2. Gorzynski JE, Goenka SD, Shafin K et al (2022) Ultra-rapid nanopore whole genome genetic diagnosis of dilated cardiomyopathy in an adolescent with cardiogenic shock. Circ Genom Precis Med CIRCGEN121003591. https://doi.org/10.1161/circgen.121.003591

  3. First DNA Sequencing in Space a Game Changer | NASA. https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing/. Accessed 3 June 2022

  4. Githinji G, de Laurent ZR, Mohammed KS et al (2021) Tracking the introduction and spread of SARS-CoV-2 in coastal Kenya. Nat Commun 12:4809. https://doi.org/10.1038/s41467-021-25137-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yingtaweesittikul H, Ko K, Rahman NA et al (2021) CalmBelt: rapid SARS-CoV-2 genome characterization for outbreak tracking. Front Med 8:790662. https://doi.org/10.3389/fmed.2021.790662

    Article  Google Scholar 

  6. Ranasinghe D, Jayadas TTP, Jayathilaka D et al (2021) Comparison of different sequencing techniques with multiplex real-time PCR for detection to identify SARS-CoV-2 variants of concern. Medrxiv:2021.12.05.21267303. https://doi.org/10.1101/2021.12.05.21267303

  7. Quick J, Loman NJ, Duraffour S et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–232. https://doi.org/10.1038/nature16996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faria NR, Quick J, Claro IM et al (2017) Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546:406–410. https://doi.org/10.1038/nature22401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Company history. https://nanoporetech.com/about-us/history. Accessed 3 June 2022

  10. Depledge DP, Srinivas KP, Sadaoka T et al (2019) Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 10:754. https://doi.org/10.1038/s41467-019-08734-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oxford Nanopore integrates “Remora”: a tool to enable real-time, high-accuracy epigenetic insights with nanopore sequencing software MinKNOW. https://nanoporetech.com/about-us/news/oxford-nanopore-integrates-remora-tool-enable-real-time-high-accuracy-epigenetic. Accessed 5 June 2022

  12. Djirackor L, Halldorsson S, Niehusmann P et al (2021) Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy. Neuro-oncol Adv 3:vdab149. https://doi.org/10.1093/noajnl/vdab149

    Article  Google Scholar 

  13. Ebbert MTW, Jensen TD, Jansen-West K et al (2019) Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol 20:97. https://doi.org/10.1186/s13059-019-1707-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dr. Kennda Lynch on Twitter: “A HUGE Thanks to Oxford @nanopore who helped to make my use of the MinION possible!!! Also thanks to @GTSciences, @NewEnglandBIO, and @QIAGENscience who all helped provide equipment, reagents, and support for my trip to Danakil to help film this episode!!”/Twitter. https://twitter.com/marsgirl42/status/1337200697255792641. Accessed 5 June 2022

  15. Quince C, Nurk S, Raguideau S et al (2021) STRONG: metagenomics strain resolution on assembly graphs. Genome Biol 22:214. https://doi.org/10.1186/s13059-021-02419-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 245 Gbases – the highest output record of the PromethION platform to date. https://www.linkedin.com/feed/update/urn:li:activity:6757616979751895041/. Accessed 6 June 2022

  17. Applying portable nanopore sequencing technology to the conservation of the critically endangered kākāpō. https://nanoporetech.com/about-us/news/interview-applying-portable-nanopore-sequencing-technology-conservation-critically. Accessed 6 June 2022

  18. Gowers G, Oliver F, Vince O, Charles J-H et al (2019) Entirely off-grid and solar-powered DNA sequencing of microbial communities during an ice cap traverse expedition. Genes-Basel 10:902. https://doi.org/10.3390/genes10110902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinohara Y, Kurniawan YN, Sakai H et al (2021) Nanopore based sequencing enables easy and accurate identification of yeasts in breweries. J I Brewing 127:160–166. https://doi.org/10.1002/jib.639

    Article  CAS  Google Scholar 

  20. Sakamoto Y, Zaha S, Suzuki Y et al (2021) Application of long-read sequencing to the detection of structural variants in human cancer genomes. Comput Struct Biotechnol J 19:4207–4216. https://doi.org/10.1016/j.csbj.2021.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Currin A, Swainston N, Dunstan MS et al (2019) Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synth Biol 4:ysz025. https://doi.org/10.1093/synbio/ysz025

    Article  CAS  Google Scholar 

  22. Goenka SD, Gorzynski JE, Shafin K et al (2022) Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat Biotechnol 1–7. https://doi.org/10.1038/s41587-022-01221-5

  23. Owen MJ, Niemi A-K, Dimmock DP et al (2021) Rapid sequencing-based diagnosis of thiamine metabolism dysfunction syndrome. New Engl J Med 384:2159–2161. https://doi.org/10.1056/nejmc2100365

    Article  PubMed  Google Scholar 

  24. Meyer A, Schloissnig S, Franchini P et al (2021) Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590:284–289. https://doi.org/10.1038/s41586-021-03198-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nowoshilow S, Schloissnig S, Fei J-F et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55. https://doi.org/10.1038/nature25458

    Article  CAS  PubMed  Google Scholar 

  26. Hotaling S, Kelley JL, Frandsen PB (2021) Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci 118:e2109019118. https://doi.org/10.1073/pnas.2109019118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nurk S, Koren S, Rhie A et al (2022) The complete sequence of a human genome. Science 376:44–53. https://doi.org/10.1126/science.abj6987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. COVID-19: Community Timeline. https://nanoporetech.com/covid-19/community-timeline. Accessed 30 May 2022

  29. Freed NE, Vlková M, Faisal MB, Silander OK (2020) Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol Methods Protoc 5:bpaa014. https://doi.org/10.1093/biomethods/bpaa014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Artic Network. https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html. Accessed 30 May 2022

  31. Stevanovski I, Chintalaphani SR, Gamaarachchi H et al (2022) Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv 8:eabm5386. https://doi.org/10.1126/sciadv.abm5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Pugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pugh, J. (2023). The Current State of Nanopore Sequencing. In: Arakawa, K. (eds) Nanopore Sequencing. Methods in Molecular Biology, vol 2632. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2996-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2996-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2995-6

  • Online ISBN: 978-1-0716-2996-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics