Skip to main content

Analysis of Single-Cell RNA-seq Data

  • Protocol
  • First Online:
Statistical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2629))

Abstract

As single-cell RNA sequencing experiments continue to advance scientific discoveries across biological disciplines, an increasing number of analysis tools and workflows for analyzing the data have been developed. In this chapter, we describe a standard workflow and elaborate on relevant data analysis tools for analyzing single-cell RNA sequencing data. We provide recommendations for the appropriate use of commonly used methods, with code examples and analysis interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 17:63

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansen K, Risso D, Hicks S (2021) TENxPBMCData: PBMC data from 10X Genomics

    Google Scholar 

  3. Tian L, Su S, Dong X et al (2018) scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLOS Comput Biol 14:e1006361

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Hu J, Johnson WE et al (2019) Scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data. BMC Bioinf 20:222

    Article  Google Scholar 

  5. You Y, Tian L, Su S et al (2021) Benchmarking UMI-based single-cell RNA-seq preprocessing workflows. Genome Biol 22:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soneson C, Srivastava A, Patro R et al (2021) Preprocessing choices affect RNA velocity results for droplet scRNA-seq data. PLoS Comput Biol 17:e1008585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amezquita RA, Lun ATL, Becht E et al (2020) Orchestrating single-cell analysis with Bioconductor. Nat Methods 17:137–145

    Article  CAS  PubMed  Google Scholar 

  8. Hong R, Koga Y, Bandyadka S et al (2022) Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data. Nat Commun 13:1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen G, Ning B, Shi T (2019) Single-cell RNA-seq technologies and related computational data analysis. Front Genet 10:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCarthy DJ, Campbell KR, Lun ATL et al (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stuart T, Butler A, Hoffman P et al (2019) Comprehensive integration of single-cell data. Cell 177:1888–1902.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galow A-M, Kussauer S, Wolfien M et al (2021) Quality control in scRNA-Seq can discriminate pacemaker cells: the mtRNA bias. Cell Mol Life Sci 78:6585–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bacher R, Chu L-F, Argus C et al (2022) Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization. Nucleic Acids Res 50:e12–e12

    Article  CAS  PubMed  Google Scholar 

  15. Bacher R, Chu L-F, Leng N et al (2017) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14:584–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L Lun AT, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17:75

    Article  PubMed Central  Google Scholar 

  17. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown J, Ni Z, Mohanty C et al (2021) Normalization by distributional resampling of high throughput single-cell RNA-sequencing data. Bioinformatics 37:4123–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cole MB, Risso D, Wagner A et al (2019) Performance assessment and selection of normalization procedures for single-cell RNA-seq. Cell Syst 8:315–328.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  PubMed  Google Scholar 

  21. Luecken MD, Büttner M, Chaichoompu K et al (2022) Benchmarking atlas-level data integration in single-cell genomics. Nat Methods 19:41–50

    Article  CAS  PubMed  Google Scholar 

  22. Ding J, Condon A, Shah SP (2018) Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun 9:2002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vallejos CA, Risso D, Scialdone A et al (2017) Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods 14:565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brennecke P, Anders S, Kim JK et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  25. Lall S, Ghosh A, Ray S et al (2022) Sc-REnF: an entropy guided robust feature selection for single-cell RNA-seq data. Brief Bioinform 23:bbab517

    Article  PubMed  Google Scholar 

  26. Ranjan B, Sun W, Park J et al (2021) DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nat Commun 12:5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  28. McInnes L, Healy J, Melville J (2020) UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv180203426 Cs Stat

    Google Scholar 

  29. Chari T, Banerjee J, Pachter L (2021) The specious art of single-cell genomics. bioRxiv 2021.08.25.457696; https://doi.org/10.1101/2021.08.25.457696

  30. Johnson EM, Kath W, Mani M (2022) EMBEDR: Distinguishing signal from noise in single-cell omics data. Patterns 3(3):100443

    Google Scholar 

  31. Kobak D, Berens P (2019) The art of using t-SNE for single-cell transcriptomics. Nat Commun 10:5416

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong X, Bacher R (2022) Data-driven assessment of dimension reduction quality for single-cell omics data. Patterns 3:100465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ranjan B, Schmidt F, Sun W et al (2021) scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data. BMC Bioinf 22:186

    Article  CAS  Google Scholar 

  34. Sun X, Lin X, Li Z et al (2022) A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq. Brief Bioinform 23:bbab567

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hao Y, Hao S, Andersen-Nissen E et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573–3587.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Regev A, Teichmann SA, Lander ES et al (2017) The human cell atlas. elife 6:e27041

    Article  PubMed  PubMed Central  Google Scholar 

  37. HuBMAP Consortium, Writing Group, Snyder MP et al (2019) The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574:187–192

    Article  Google Scholar 

  38. Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One 12:e0190152

    Article  PubMed  PubMed Central  Google Scholar 

  39. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  40. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  41. Risso D, Perraudeau F, Gribkova S et al (2018) A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun 9:284

    Article  PubMed  PubMed Central  Google Scholar 

  42. Svensson V (2020) Droplet scRNA-seq is not zero-inflated. Nat Biotechnol 38:147–150

    Article  CAS  PubMed  Google Scholar 

  43. Soneson C, Robinson MD (2018) Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 15:255–261

    Article  CAS  PubMed  Google Scholar 

  44. Squair JW, Gautier M, Kathe C et al (2021) Confronting false discoveries in single-cell differential expression. Nat Commun 12:5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang M, Liu S, Miao Z et al (2022) IDEAS: individual level differential expression analysis for single-cell RNA-seq data. Genome Biol 23(1):33

    Google Scholar 

  46. Chervov A, Bac J, Zinovyev A (2020) Minimum spanning vs. principal trees for structured approximations of multi-dimensional datasets. Entropy 22:1274

    Article  PubMed  PubMed Central  Google Scholar 

  47. Setty M, Tadmor MD, Reich-Zeliger S et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji Z, Ji H (2016) TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44:e117–e117

    Article  PubMed  PubMed Central  Google Scholar 

  49. Street K, Risso D, Fletcher RB et al (2018) Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19:477

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saelens W, Cannoodt R, Todorov H et al (2019) A comparison of single-cell trajectory inference methods. Nat Biotechnol 37:547–554

    Article  CAS  PubMed  Google Scholar 

  52. Van den Berge K, Roux de Bézieux H, Street K et al (2020) Trajectory-based differential expression analysis for single-cell sequencing data. Nat Commun 11:1201

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. La Manno G, Soldatov R, Zeisel A et al (2018) RNA velocity of single cells. Nature 560:494–498

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lun ATL, Riesenfeld S, Andrews T et al (2019) EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol 20:63

    Article  PubMed  PubMed Central  Google Scholar 

  56. Muskovic W, Powell JE (2021) DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data. Genome Biol 22:329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hippen AA, Falco MM, Weber LM et al (2021) miQC: an adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLOS Comput Biol 17:e1009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhonda Bacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dong, X., Bacher, R. (2023). Analysis of Single-Cell RNA-seq Data. In: Fridley, B., Wang, X. (eds) Statistical Genomics. Methods in Molecular Biology, vol 2629. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2986-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2986-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2985-7

  • Online ISBN: 978-1-0716-2986-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics